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Wouter Castryck and Floris Vermeulen

Consider a smooth projective curve C over a finite field [, equipped with a simply branched morphism
C — P! of degree d < 5. Assume charF, > 2if d <4, and charF, > 3 if d = 5. In this paper we
describe how to efficiently compute a lift of C to characteristic zero, such that it can be fed as input
to Tuitman’s algorithm for computing the Hasse—Weil zeta function of C/ 4. Our method relies on the
parametrizations of low rank rings due to Delone and Faddeev, and Bhargava.

1. Introduction

About 20 years ago, Kedlaya published an influential paper [22], showing how one can employ Monsky—
Washnitzer cohomology to efficiently compute Hasse—Weil zeta functions of hyperelliptic curves over
finite fields having small odd characteristic. Its many follow-up works include several generalizations
to geometrically larger classes of curves, first to superelliptic curves [18], then to C,j curves [13] and
then further to nondegenerate curves [6], i.e., smooth curves in toric surfaces. A more significant step
was taken in 2016, when Tuitman [28; 29] published a Kedlaya-style algorithm that potentially covers
arbitrary curves, and at the same time beats the methods from [6; 13] in terms of efficiency. Unfortunately,
the user of Tuitman’s algorithm is expected to provide a lift of the input curve to characteristic zero that
meets the technical requirements from [29, Assumption 1]. Beyond nondegenerate curves, this is a
nontrivial task. As a result, the exact range of applicability of Tuitman’s method remains unclear.

A partial approach to lifting curves having gonality at most four was sketched in [7], with concrete
details being limited to curves of genus five. In the current paper we present a different method, which
is faster, works for curves of gonality at most five, and is much easier to implement. Concretely, we
assume that we are given an absolutely irreducible curve over a finite field [, of characteristic p > 2,
defined by a polynomial of the form

Fa@Y + Fa1 )y 4 4 fo(x) € Fylx, y] (1

for some d < 5. Moreover, the morphism @ from its nonsingular projective model C to the projective
line, induced by (x, y) — x, is assumed to be simply branched of degree d; in other words, all fibers of
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@ should consist of either d — 1 or d geometric points. Finally, if d =5 then it is assumed that p > 3.
Then our method efficiently produces a lift satisfying the main requirement from [29, Assumption 1],
which therefore can be fed as input to Tuitman’s algorithm, modulo Heuristic H discussed below.

In terms of moduli, the locus of genus g curves admitting a simply branched morphism to P! of
degree at most 5 has dimension min{2g + 5, 3g — 3} by a result of Segre [27]. For g =6 and g > 8
this exceeds the locus of nondegenerate curves (and hence the locus of curves for which point counting
was previously feasible) by four dimensions; see [10]. In particular, our lifting procedure applies to all
sufficiently general curves of genus g < 8.

Remark 1.1. Expecting our curve to be given in the form (1) is essentially equivalent to assuming
knowledge of an [,-rational degree d morphism C — P! that is simply branched, in contrast with the
assumptions from [7]. If such a morphism to P! exists but is not known, then one can try to resort to
methods due to Schicho, Schreyer and Weimann [24] or Derickx [14, Section 2.3] for finding one.

Lifting strategy. Write ¢ = p" and fix a degree n number field K in which p is inert. Let Og denote
its ring of integers and identify [, with Ok /(p). To lift the curve C means to produce a nonsingular
projective curve C/K whose reduction mod p is isomorphic to C/ [, ; necessarily, the genus of C should
be equal to that of C. Our actual goal is to lift the morphism @, which means that we want to equip C with
a morphism ¢ : C — P! reducing to ¢ : C — P! mod p, up to isomorphism. Our approach to solving this
problem is based on the parametrization of low rank rings by Delone and Faddeev [17, Proposition 4.2],
and Bhargava [2; 3], in combination with algorithms due to Hess for computing reduced bases [21]. In
doing so, we will find concrete, typically nonplanar equations for C over [, that have “free coefficients”,
which can be lifted to O naively,' in order to obtain a nonsingular projective curve C/K along with a
morphism ¢ : C — P! of the said kind. We refer to Section 2 for a more elaborate discussion.

Remark 1.2. In general, the polynomial (1), which defines a plane curve that is birationally equivalent
with C, is not liftable directly: there may be many singularities, which typically disappear when lifting
the coefficients of (1) naively to O, causing an increase of the genus.

Remark 1.3. In Kedlaya’s original algorithm, corresponding to the case d = 2, an implicit first step is to
rewrite (1) into Weierstrass form. Indeed, Weierstrass models have “free coefficients” that can be lifted
naively to Ok, always resulting in a hyperelliptic curve over K having the same genus. From now on
we assume d > 3.

Through elimination of variables (i.e., projection) we then obtain a planar model of the form f;(x)y? +
fa—1(x) y‘l_1 4+ fo(x) =0, for polynomials f; € Ok [x] which, in general, do not reduce to f,- mod p;
here, the lifted morphism ¢ again corresponds to (x, y) — x. The change of variables y <— y/f,;(x) yields
a monic defining equation

0, y) =Y+ fum1 Oy o fox) fa0), )

]Lifting a € Fg4 \ {0} naively to Ok means producing an element a € Ok such thata mod p =a.
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having the right shape to serve as input for Tuitman’s algorithm. All subsequent arithmetic in Tuitman’s
algorithm is done in the p-adic completion Z, of Ok (or rather its fraction field Q,), up to some finite
p-adic precision. But for the lifting step it suffices to work over Ok, and this has some implementation-
technical advantages [7, Remark 2].

On Tuitman’s assumption. Let us discuss the specific requirements from [29, Assumption 1] in more
detail. A first assumption concerns the polynomial r(x) = A/ gcd(A, dA /dx) with A the discriminant
of (2), when viewed as a polynomial in y over Ok [x]:

(a) The discriminant of r(x) is a unit in Z,,.

Next, consider the ring R = Z,[x, 1/r, y]/(Q) and write Q,(x, y) for the field of fractions of R ® Q,
and [, (x, y) for the field of fractions of R ® [,. A second assumption is that we know explicit matrices

Wo € GLy(Zy[x,1/r]) and We € GLy(Z,[x=!, 1/r])

: . d—1 ; d—1 ;
such that, if we write bj o= "7_g (Wo)i+1,j+1¥" and bj oo = iZg (Woo)it1,j+1y', then:

(b) {boo, -..,ba—1,0} is an integral basis for Q, (x, y) over Q,[x] and its reduction mod p is an integral
basis for [, (x, y) over [, [x],

(©) {bo,00s - -->ba—1,00} 1s an integral basis for Q, (x, y) over Q, [x~!] and its reduction mod p is an
integral basis for [, (x, y) over [, [x~1].

Finally, writing
Ro=2Z,[x1boo+ - +Z4[xlbg—10 and Reo=2Z4[x 1000+ -+ Zy[x " 1ba—1.00,
it is assumed that

(d) the discriminants of the finite Z,-algebras (Ro/(r))red and (Roo/(1/X))red are units.

Here the subscript “red” means that we consider the reduced ring obtained by quotienting out the nilrad-
ical.?

The geometric meaning of assumptions (a) and (d) is discussed in [29, Proposition 2.3]; see also [28,
Remark 2.3]. They express that all branch points of ¢ : C — P!, as well as all points lying over these
branch points, should be distinct mod p. In our context, these properties are automatic. Indeed, since
p>2and@:C — P! is simply branched, there is no wild ramification, hence the ramification divisor
of ¢ reduces mod p to that of ¢. Thus, again because ¢ is simply branched, we see that the ramification
points of ¢ must reduce to 2g 4 2d — 2 distinct points that take distinct images under @, as wanted; here
g denotes the genus of C. We also see that ¢ is simply branched as well.

Assumptions (b) and (c), on the other hand, ask for an explicit description of our lift ¢ : C — P!
in terms of two affine patches ¢~ (P! \ {oo}) and ¢~ (P! \ {0}), glued together using W = W, ' Wi,
that is compatible with reduction mod p. In Tuitman’s own pcc_p and pcc_q code,’® the matrices Wy

2This takes into account the erratum pointed out in https://jtuitman.github.io/erratum.pdf.
3https ://github.com/jtuitman/pcc, see mat_WO() and mat_Winf () in coho_p.m and coho_q.m.
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and W, are found by computing integral bases for the function field extension K (x) € K(C) defined
by (2), using the Magma intrinsic MaximalOrderFinite (), and hoping that these have good reduction
mod p. There is a nonzero probability that this approach fails, in which case Tuitman’s code outputs
“bad model for curve”, but in practice this probability become negligible very rapidly as g grows; see the
tables in [7]. We therefore content ourselves with relying on the same bet, which we call Heuristic H:

Definition 1.4 (informal). The output (2) satisfies Heuristic H if the associated integral bases of K (C)
over K[x] and K[x~'], computed using Magma as in Tuitman’s implementation, meet the requirements
from [29, Assumption 1].

Of course, if through some other method one manages to find integral bases with good reduction, then
this would bypass Heuristic H. In particular, if d = 3 then, as explained in Remark 3.4, such integral
bases can be extracted as by-products of our lifting procedure.

Combined runtime. The running time of our lifting procedure is strongly dominated by that of Tuitman’s
algorithm, as should be clear from the discussions in Sections 3, 4 and 5 below. We will therefore omit
a detailed analysis, although it is crucial to note that lifting does not inflate the input size too badly.
Concretely, if we let § = maxp<;<4 deg f,-, then:

» The reader can check that all f; are of degree O(g), which in turn is O (§) thanks to Baker’s bound
[1, Theorem 2.4].

o When lifting coefficients from [, to O naively, we can choose them to be of bit size O (nlogg),
and as a result the same asymptotic estimate applies to the size of the coefficients of the f;.

o As discussed in [29, pages 313-314], the matrices Wy, W, produced by the Magma intrinsic, as
well as their inverses, involve K (x)-coefficients whose pole orders are in O(§), as required by [29,
Assumption 2]; for d = 3, the reader can check that the same bound applies to the integral bases
from Remark 3.4.

From [29, Theorem 4.10] it follows that O (p8*n?) bit operations suffice for computing the Hasse—Weil
zeta function of any curve C/ [, of the form (1), where we recall our dependence on Heuristic H if
d=4,5.

Practical performance. This paper comes with an implementation of our lifting procedure in Magma [4],
which can be found in the online supplement. The arxiv version [8] of our paper contains an appendix
reporting on how the code performs in combination with Tuitman’s implementation for computing Hasse—
Weil zeta functions. As discussed there, this gives satisfactory results for d = 3 and d = 4, leading to
a substantial enlargement of the class of curves admitting fast computation of their zeta function (over
finite fields with small odd characteristic). In degree d = 5 the combined code is considerably slower.
This is almost entirely due to the seemingly harmless “elimination of variables” step, which is needed to
put the lifted curve C/K in the form (2) and which produces large hidden constants in the above O(g)
and O (nlog q) estimates. Nevertheless, here too, it is practically feasible to compute zeta functions in a
nontrivial range.


http://msp.org/obs/2020/4-1/obs-v4-n1-x01-LiftingMagmaCode.zip
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Tracks for future work. Besides mitigating the effect of variable elimination and getting rid of Heuris-
tic H, a challenging goal is to dispose of the conditions on p and of the condition that ¢ is simply
branched. This seems to require changes to Tuitman’s algorithm that are similar to how Denef and
Vercauteren managed to make Kedlaya’s algorithm work in even characteristic [12]. Also, as explained
in Section 2, our naive lifting strategy using “free coefficients” is closely related to Schreyer’s proof [25,
Corollary 6.8] of the unirationality of # 4, the moduli space of simply branched degree d covers of P!
by curves of genus g, for d < 5. Such unirationality results are known to be false for d > 7, where there
is no hope for our strategy to work. This leaves d = 6 as an interesting open case, on which several
partial (positive) results have been proved by Geiss [20]; see [26, Figure 1] for an overview. It seems
worth investigating how Geiss’ results combine with our approach.

2. Preliminaries

Reduced bases and Maroni invariants. Let k be any field, which in the next sections will be specialized
to k =[F, and/or k = K. Consider a nonsingular projective curve C/k of genus g, along with a k-rational
degree d morphism ¢ : C — P!. Consider the inclusion of function fields k(x) € k(C) corresponding to
@. Let k[C]p and k[C], denote the integral closure of k[x] and k[1/x] inside k(C), respectively.

Theorem 2.1. There exist unique negative integers ry > ry > --- > rq_1 for which there is a basis

1,a1,...,aq-1 of k[Clo over k[x] such that 1, x"'ay, ..., x""‘ay_1 is a basis of k[Cls over k[1/x].

See [21] for a proof; it is standard to call e; = —r; — 2 the Maroni invariants of C with respect to ¢ (e.g.,
if ¢ is a degree 2 cover, then there is just one Maroni invariant, namely g — 1). A corresponding basis
1,aq,...,a4-1 is called a reduced basis. In our cases of interest, the integers r; and an accompanying
reduced basis can be computed efficiently: if k is a finite field or a number field, then the Magma
command ShortBasis () takes care of this.

Remark 2.2. In more geometric language, the integers r; are characterized by the sheaf decomposition
0xO0c = Op1 ® Opi (r1) ® Opi (r2) @ - - - @ Opi (rg—1) which, according to a theorem due to Grothendieck,
is indeed unique. As a consequence to the Riemann—Roch theorem, the Maroni invariants satisfy the

following basic properties:

(i) —1<e1<ex<---=<e41,

() esr+er+---+eg_1=g—d+1,
(iii) eq—1 < (2g—2)/d.

Models with “free coefficients”. As mentioned in the introduction, every cover ¢ : C — P! of degree
3 <d <5 admits a nonsingular projective model with “free coefficients” that can be lifted naively from
[, to Ok. This follows from Schreyer’s proof [25, Corollary 6.8] of the unirationality of H 4 for d < 5.
The natural ambient space for this model is a rational normal scroll, which can be obtained by gluing
together

(P'\ {oo}) x P42 and (P'\{0}) x P72
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©.3) (2ey —ex+2,3)

0,0) (2e2 —e1+2,0)

Figure 1. Polygon describing covers of degree 3.

in a nonstandard way; the gluing depends on the Maroni invariants eq, ..., e;—; of C with respect to ¢.
We refer to [15; 25] for more details on this construction, as well as on the claims below. For the sake
of conciseness we only describe what the model looks like on the left copy A! x P?~2, which we equip
with coordinates x, Y1, ..., Yy_1.

First assume that d = 3. Then C admits a defining equation of the form

Y @YY =0 3)

L+1h=3

with deg f;, 1, <l1e1+1l2e2+4 — g, such that ¢ corresponds to projection on the x-coordinate. Conversely,
every irreducible polynomial of the form (3) defines a curve having genus at most g; this can also be seen
using Baker’s bound [1, Theorem 2.4], because the dehomogenization with respect to Y, is supported on
the polygon from Figure 1. If equality holds then this polynomial defines a nonsingular projective curve
(on the entire rational normal scroll) and projection on the x-coordinate yields a degree 3 morphism to
P! whose associated Maroni invariants are ej, ;.

Next, assume that d = 4. Then C arises as the intersection of two surfaces defined by

Y finnn Y'Y =0 @
LA +H3=2

fori =1, 2, where deg f; 1, .1,.;; <l1e1+l2e2+I[3e3—b; for unique integers —1 < by < b, with b;+by =g—35,
called the Schreyer invariants of C with respect to ¢. Conversely, every irreducible such intersection
defines a curve of genus at most g; this too can be seen using (a three-dimensional version of) Baker’s
bound [23, Theorem 1], by noting that the dehomogenizations with respect to Y3 are supported on the
polytopes from Figure 2. If equality holds then it concerns a nonsingular projective curve, and projection

(07 21 0) (262 - bi9 2a O)
0,00
al (2e5 —b;, 0, 0)
0,0,2) (2e1—b;,0,2)

Figure 2. Polytope describing covers of degree 4.
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on the x-coordinate defines a degree 4 morphism to P! with associated Maroni invariants e;, s, e3 and
Schreyer invariants by, b;.

Finally, assume d = 5, which comes with five Schreyer invariants b; < - - - < b5 summing up to 2g — 12.
In this case C can be viewed as the intersection of five hypersurfaces, which are all obtained from a single
5 x 5 skew-symmetric matrix M over k[x][Y1, Y», Y3, Y4] whose (i, j)-th entry is of the form

My i()Y1+ My j(x)Yo+ M3, j(x)Y3+ My j(x)Ys ©)

with M, ; ;(x) € k[x] of degree at most e, + b; + b; + 6 — g. More precisely, our hypersurfaces are cut
out by the five 4 x 4 sub-Pfaffians of M.* Conversely, whenever the 4 x 4 sub-Pfaffians of such a matrix
define an irreducible curve, it has genus at most g. If equality holds then it concerns a nonsingular
projective curve, and projection on the x-coordinate defines a degree 5 morphism to P! with Maroni
invariants ey, ez, e3, e4 and Schreyer invariants by, by, b3, by, bs.

Lifting strategy revisited. In the next sections we show how results on ring parametrizations due to
Delone and Faddeev [17, Proposition 2.4] and Bhargava [2; 3] can be used to efficiently produce such
a “free coefficient” model for our input curve C/ [,. Then, by the above discussion, and using that the
genus cannot increase under reduction mod p, any naive coefficient-wise lift of this model to Ok will
define a nonsingular projective curve C/K along with a morphism ¢ : C — P! lifting C and @.

Remark 2.3. From a nonalgorithmic viewpoint, the fact that the Delone-Faddeev and Bhargava cor-
respondences produce nonsingular curves in rational normal scrolls might have been known to some
specialists (e.g., for d = 3 this can be read in Zhao’s Ph.D. thesis [31]).

3. Lifting curves in degreed =3

For R a PID, we recall that a ring of rank d over R is a commutative R-algebra which is free of rank
d as a module over R. Every ring S of rank d over R admits an R-basis of the form 1, oy, ..., aq—1.
This can be seen by applying the structure theorem for finitely generated free modules over PIDs to the
submodule R - 1 of S.

Parametrizing cubic rings. Let R be a PID. Cubic rings over R admit a parametrization using binary
cubic forms over R, considered modulo a natural action by GL,(R): for an element

A= (“ b) € GLy(R),
cd
and f = f3Y13 +f2Y12Y2 + 1Y Y22 +on23 a cubic form over R, we let

1
Ax f(Y1, Y2) = —— f(aY1 +cY2, bY1 +dY>).
det A

4The square roots of the determinants of the five 4 x 4 skew-symmetric submatrices.
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Theorem 3.1 (Delone—Faddeev). There is a canonical bijection between the set of cubic R-rings up to
isomorphism and binary cubic forms over R, modulo the action of GL,(R).

For a proof see e.g., [17, Proposition 4.2]. For use below we briefly describe how this bijection is
constructed. Let S be a cubic R-ring with basis 1, «j, ap. By adding elements of 1 - R to oy and op we
can assume that oja is in R. We call such bases normal. Now write out the multiplication table of S:

a0 = — 8o,
of = —g1+ fror — fr0, (6)
o5 =—g + foar — fio.

By associativity of S we have ozf -ap = - (ojap) and o -oz% = (x1a2) - ay. This gives

go = fof3,
g1 = f1f3, (7
&2 = fof2,

so the g; are determined by the f;. One then associates to S the cubic form f = f3Y 13 + foY 12 4+ 1Y Y22—|—
fo Y23. Conversely, given such a form f, associate to this the cubic ring, formally equipped with basis
1, a1, ap and multiplication defined by (6) and (7). The GL;(R)-action on cubic forms corresponds
precisely to changing one normal basis to another on the level of cubic rings.

Remark 3.2. A cubic form f = f3Y;+ £,Y2Yo+ fiY1Y]+ foY; is irreducible if and only if its associated
cubic R-ring is a domain. In this case, we may describe it as the subring of

Frac( RLyl )
(Y3 + y*+ fiy + fo)

'= 332+ oy + fi. This point of view is especially nice when

generated by 1, a1 = f3y, a0 = —foy~
R = k[x] for some field k. Indeed, then f(y, 1) = O defines a curve in AZ? over k and the cubic ring

associated to f has as its field of fractions the function field of this curve.

Lifting degree 3 covers. Consider the function field

F,(C) = Frac( Fqlx ] )

(f3y3+ f232+ 1y + fo)

defined by our input polynomial, and consider the integral closure [, [C]o of [, [x] inside it; this is a cubic
F,[x]-ring. Let ey, e; be the Maroni invariants of C with respect to @ and let 1, oy, @ be a corresponding
reduced basis. After adding to oy and «y elements of [, [x] we may assume that this basis is normal.
In more detail, if aja; = aay + bay + ¢, for a, b, ¢ € F,[x], then we replace a; by a; — b and a3 by
ap — a. This operation will not change the fact that the basis is reduced. Applying the Delone—Faddeev
correspondence to this basis produces a new cubic form

F(Y, Vo) = f3Y] + foYiVa+ FiV1 Y5+ foY;
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whose coefficients we, abusingly, again denote by f;.

Lemma 3.3. Let f be obtained through the Delone—Faddeev correspondence as above. Then this is a
model for C of the form (3).

Proof. Note that the curve f(y, 1) =0 is indeed birationally equivalent with C, in view of Remark 3.2.

—e1—2

Denote by ey, e, the Maroni invariants of C. Since 1, a1, ay is a reduced basis, the elements 1, x o,

—ey—2

X o form a basis for [Fq[é ]oo, the integral closure of [, [x~!] inside Fy (5 ). Writing out the multi-

plication for this ring gives

x7617€274a1a2 — —X7e176274f_0f3,
x72€174a% — _x72€174f1 f3 +xfe172f2xfe172a] _x7261+6272f3x76272a2’
—2er—4 2 —2e,—-4 7 7 —2er+e1—2 7 . —e—2 —ery—27 . —er—2
X0y = —x T T fofa xR T fox T o = x T f 1T .

Since the coefficients of this table must be elements of [, [x~!] we see that deg fi<@—Dei+Q2—i)er+2
fori = 1,2, hence f(y, 1) is supported on the polygon from Figure 1. ]

Thus we can proceed as follows. We compute a reduced basis for the function field [, (C) over Fylx],
make it normal if needed, and apply the Delone—Faddeev correspondence to it to obtain a model f =0
of the form (3). As discussed in Section 2, any naive coefficient-wise lift of the polynomial f(y, 1) to a
polynomial f = f3y3 + foy2 + fiy + fo € Ok[x] defines a good lift. After making the polynomial f
monic as in (2), it can be fed to Tuitman’s algorithm to compute the zeta function of C over Fy.

'= £332 4 foy + f1 is an integral basis of

1

Remark 3.4. Our discussion also shows that 1, f3y, foy~
K (C) over K[x] that reduces to an integral basis of [, [C] over [, [x]. Using the variable change x = x™
and y = y/x°7° we find the patch

f3recipr. (x)y3 + fzrecipr. (x)y2 + flrecipn (x)y + f(;‘ecipr. (X)

above infinity, which admits an analogous integral basis. Here fl.reCipr' denotes the degree (i — 1)e; +
(2 —i)er + 2 reciprocal of f;. We can supply these bases as additional input to Tuitman’s algorithm,
thereby bypassing Heuristic H.

4. Lifting curves in degree d =4

Parametrizing quartic rings. The parametrization of quartic R-rings S is due to Bhargava [2]. This time,
the objects involved are pairs of ternary quadratic forms, up to an action of GL3(R) x GL,(R). For an
element

(A, B) € GL3(R) x GLy(R),

and a pair of ternary quadratic forms (Q1, Q) over R represented as 3 x 3 matrices, the action is defined
by

B AQ AT

(As B)*(Qla QZ) - B : (AQZAT) :
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Concretely, the quadratic forms associated with a quartic ring are obtained by specifying a cubic resolvent

(the next paragraph provides more details).

Theorem 4.1 (Bhargava). There is a canonical bijection between pairs (S, S") where S is a quartic ring
over R and S’ is a cubic resolvent for S, considered up to isomorphism, and pairs of ternary quadratic
forms over R, up to the action of GL3(R) x GL,(R).

See [2, Theorem 1], although we will not explicitly rely on this theorem. But we will recycle its
central map ¢, whose construction we briefly recall, while zooming in on our main case of interest,
namely where S is a domain, say with field of fractions F. We assume moreover that F' is a separable
Sy-extension of K = Frac R, i.e., its Galois closure £ /K has as Galois group the full symmetric group Sj.
Then a cubic resolvent for S is a certain full-rank subring S’ € EP* =: F'™, where D4 = ((12), (1324));
see [2, Definition 8] for a precise definition. In general, there might be more than one cubic resolvent
ring, but for maximal rings it is unique [2, Corollary 5]. Note that if F = K[y]/(f) with

f=0=rO =)= -—r)=y"+ay’ +by’ +cy+d
then F™ = K[y]/(res f) with
res f = (y —riro —r3ra)(y —rirs —rora)(y —rira —rar3)
=y> —by* + (ac — 4d)y — (a’d + ¢* — 4bd).
This polynomial is famously known as Lagrange’s cubic resolvent. The most important feature of the
Bhargava correspondence is the natural quadratic map
¢:F— F* o> aPa® 4 a®a®,
where the o) denote the conjugates of « inside E (numbered compatibly with the roots r;). This map

turns out to descend to a quadratic map of R-modules

S S’
¢ : z — R
Upon taking bases for S/R and S’/R we obtain our two ternary quadratic forms over R. Changing bases
of these modules then corresponds to an element of GL3(R) x GL,(R).

Lifting degree 4 covers. We can assume that f4 = 1, i.e., our input polynomial (1) is monic. Let F,(C)
denote the function field it defines, which is a separable S4-extension of [, (x) because ¢ is simply
branched [16, Lemma 6.10]. Similarly, consider the cubic resolvent

Y =y (Fifs—4fo)y — (Fof3+ fi—4fof2) (8)

defining [, (Ces):= Fy (C)es. We let Fy [C]o and Fy [C™5]o be the respective integral closures of R =T, [x]
inside these fields. It can be argued that [, [C™$) is the unique cubic resolvent ring S’ for § = [Fq[f]o,
but for our needs it suffices to know that S’ C [Fq[é '%]p, which is immediate since [Fq[é '%]o is maximal.
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Let e, €2, e3 be the Maroni invariants of C with respect to @, and let by, b, be its Schreyer invariants.
Take reduced [, [x]-bases 1, ay, a2, a3 € [Fq[é loand 1, By, B2 € [Fq[éres]o. With respect to these bases,
the map ¢ above gives us two ternary quadratic forms Q1, Q5 € F,[x1[Y1, Y2, Y3]. To properly bound
the degrees of their coefficients, we have to understand how the Maroni invariants of the resolvent curve
C™ relate to data associated with C. Surprisingly, up to a small shift, these turn out to be the Schreyer
invariants of C with respect to @.

Theorem 4.2. Let k be a field of characteristic # 2 and consider a smooth projective curve over k
equipped with a simply branched degree 4 morphism to P!, say with Schreyer invariants by, by. Then the
Maroni invariants of its cubic resolvent are by + 2, by + 2.

Proof. This result is due to Casnati [5, Definition 6.4], although he formulated it in terms of Recillas’
trigonal construction, which is the geometric counterpart of Lagrange’s cubic resolvent, as pointed out
in [19, Section 8.6]. U

Lemma 4.3. The quadratic forms Q1, Q, obtained through Bhargava’s correspondence as above are a
model of C of the form (4).

Proof. Note that the polynomials indeed cut out a curve that is birationally equivalent with C, in view of
[3, Section 2].° Since 1, «;, a2, a3 and 1, B1, B2 are reduced bases, by Theorem 4.2 we have that

L, x4 2a;, x 220, x @ 2q3 and 1, x 2174, x72274p,

are bases of [Fq[é loo and [Fq[é ], the integral closures of [, [x~'in Fy (C) and Fy (C"®), respectively.
Now the quadratic map

¢ :F,(C) — F, (C™)
from above also descends to a quadratic map of [, [x~!']-modules

FylCloo  FylC™ ]

¢ R R

With respect to the above bases, ¢’ is defined by two quadratic forms over F, [x~!], which are necessarily
obtained from Q; and Q, by applying the corresponding (diagonal) change of basis matrices. In other
words, ¢’ is represented by the quadratic forms

KO (TN T2Yy, x T, xT8T2Y), xR 00 (x T T Y, x T4, O TY).

But these have coefficients in [, [x~']. Hence the degree of the Y;Y;-coefficient in Ql can be at most
e; +e; — by, and similarly for Q5. In other words, the dehomogenized polynomials 0 (y1, y2, 1) and
0>(y1, y2, 1) are supported on the polytopes from Figure 2. U

5élternatively, the reader can check that resy, (Q' (y1. 2. 1), @5 (y1. y2. 1)) = y? + ]73y13 + fgy% + f1y1+ fo. where O
and Q’2 are the quadratic forms from below.
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To compute these liftable quadrics Q, Q- in practice we will not directly compute the resolvent map
¢ with respect to reduced bases for [, (C) and [Fq(é ). Instead, we compute the map ¢ with respect to
certain naive bases for T, (C) and Fy (C™) and then apply change of basis to a reduced basis. In more
detail, denoting by f; the coefficients of the cubic resolvent polynomial of f as in (8), we consider the
bases

1, —foy Ly, y* for F,(C) and 1,y, —fyy ™! for F,(C™). )

Computing the representation of the resolvent map ¢ with respect to these bases can be done symbolically
by means of Vieta’s formulas, yielding the quadrics

3 fo 0 J1/2 3 0 —1/2 f3/2
o\=| 0 1 —f32|, O=|-1/2 0 0 |]. (10)
f1/2 =f3/2  fa f3/2 0 1

Now let 1, o1, ap, @3 and 1, By, B2 be reduced bases for [Fq[é lo and [Fq[é ®]y, respectively, as above. To
compute the cubic resolvent map with respect to these bases, we simply apply the change of basis action
from the naive bases in (9) to these reduced bases. We note that this involves elements of GL3([F, (x)) x
GL,(F4(x)) rather than GL3(F,[x]) x GL2(F,[x]). The resulting quadrics Q 1, QZ will be our model
of the form (4). Then, as explained in Section 2, we can take any Q1, Q> € Ok[x][y1, y2] lifting the
Q:(y1, 2, 1) in a support-preserving way. In order to find a plane model, we can compute the resultant
resy, (Q1, Q2), which is indeed of degree 4 in y = y;. After making it monic, it can be fed as input to
Tuitman’s algorithm.

5. Lifting curves in degreed =5

Parametrizing quintic rings. The parametrization of quintic R-rings S is also due to Bhargava [3]. We
assume that char R # 2, 3. The objects involved in the parametrization are now quadruples of 5 x 5
skew-symmetric matrices over R. There is a natural action of GLs(R) x GL4(R) on such objects, given
by

AM; AT

AM, AT

AM;AT |°

AM4AT

(A,B)*M =B -

with M = (M, M», M3, M4) a quadruple of 5 x 5 skew-symmetric matrices and (A, B) € GLs(R) x
GL4(R). Here the parametrization requires us to specify a sextic resolvent (see the next paragraph for
details).

Theorem 5.1 (Bhargava). There is a canonical bijection between pairs (S, S') where S is a quintic ring
and S' is a sextic resolvent for S, considered up to isomorphism, and quadruples of 5 x 5 skew-symmetric
matrices over R, up to the action of GLs5(R) x GL4(R).
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See [3]; although as in the previous sections, we will not explicitly rely on this theorem. But we
will need the fundamental resolvent map (11) below. Let us again focus on the setting where S is a
domain with field of fractions F, and let K = Frac R. We assume that F is a separable Ss-extension of
K, i.e., its Galois closure E/K has as Galois group the whole of S5. Consider the order 20 subgroup
H = H® = AGL,(Fs) = ((12345), (1243)) C Ss. Then a sextic resolvent for S is a certain full-rank
subring ' C E H —. Fres: for a precise definition we refer to [3, Definition 5]. In general, such a sextic
resolvent ring is not unique, but for maximal quintic rings it is [3, Corollary 19]. If F = K[y]/(f) with

f=0=—r)G—r)—r)(y—r)y—rs) =y +ay* +by’ +cy* +dy +e.
then F™ = K[y]/(res f) withres f = (y — p)(y — p2)(y — p3)(y — p4) (¥ — p5)(y — pe), Where
p1 = (r1ry +rars +r3rs + rars + rsry — Fir3 — r3rs — rsry — rarg — r4r1)’

and {p1, p2, ..., ps} is the orbit of p; under the natural Ss-action permuting the ;. Note that p; is
stabilized by H". We choose p,4; to be stabilized by the conjugate subgroup

HCH) = (12345)77((13254), (3245))(12345)", for 0 <i < 4.

The polynomial res f is known as Cayley’s sextic resolvent; concrete expressions for its coefficients in
terms of a, b, ¢, d, e can be found in [11, Proof of Proposition 13.2.5].6

For an element € F™ we denote by o) the conjugates of « inside E, labeled so that o") is fixed
by H®_ Consider bases ag =1, a1, . . ., as for S/Rand By=1, B1, ..., Bs for S'/R, and define

m @ 0

o
Vdises=| 0!
@ Q2 (5)
a4 a4 PR a4

The central tool in Bhargava’s correspondence is the fundamental resolvent map, which is the bilinear
alternating form

1 1 1
g F*™ X F™ » F:(a, B) > Vdisc S oV +a@ o® +a® o@® o], (11
13(1) + ,3(2) ’3(3) —I—,3(6) ,3(4) + ,8(5)

This turns out to descend to a well-defined map §"x §" — §, where
S=Ra}+Ras+Rai+Ra} CF, S =RB;+RB;+RB;+ RB; + RBE C F™

are defined in terms of the dual bases «jj, ..., oy and Bj, ..., BZ with respect to the trace pairing, i.e.,
Trr/k (a,-aj) = §;; (with §;; the Kronecker delta), and similarly for ,8;'.‘. Note that the extensions F/K and
F'™ /K are both separable and so their trace pairings are nondegenerate. With respect to the bases {5;};

50r they can be found hard-coded in our accompanying Magma file precomputed_5.m.



122 WOUTER CASTRYCK AND FLORIS VERMEULEN

and {«};, the map g is represented by a quadruple M = (M, M, M3, My) of 5 x 5 skew-symmetric
matrices. Changing bases of S" and S then corresponds to an element of GLs(R) x GL4(R).

Remark 5.2. Our fundamental resolvent map differs from Bhargava’s original map by a factor %, which
is not an issue in view of our restrictions on the field characteristic.

Lifting degree 5 covers. As in the d = 4 case, we assume that our input polynomial f from (1) is monic
(ie., f5 =1). Let [, ((_? ) be the corresponding function field; this is a separable Ss-extension of [, (x)
because ¢ is simply branched [16, Lemma 6.10]. We also consider Cayley’s sextic resolvent associated
with our input polynomial, defining [, (C™) := Fy (C)™s. Let [I:q[é lo and ﬂ:q[é ']y be the respective
integral closures of R = [, [x] inside these two function fields; it can be argued that [, [CTe5]p is the unique
sextic resolvent ring S’ for § = [Fq[f]o, but as in the d = 4 case it suffices to observe that S’ C [, [C™]o.

Let e, e2, €3, es be the Maroni invariants of C with respect to @, and let by, by, b3, bs, bs be its
Schreyer invariants. Take reduced F,[x]-bases 1, ay, ..., a4 € [Fq[é]o and 1, Bq,...,B5 € [Fq[éres]o and
consider the quadruple (M, My, M3, M4) of 5% 5 skew-symmetric matrices over [, [x] arising along
the above construction. We represent this by the single matrix

M=M1Y1 +M2Y2+M3Y3+M4Y4 e k[x][Y1, Ya, Y3, Y4]

whose entries are now linear and homogeneous in the Y;. To get a handle on the degrees of their co-
efficients, we should again express the Maroni invariants of the resolvent curve C™ in terms of data
associated with C. As in the case of the cubic resolvent, this can be done in a surprisingly explicit way.

Theorem 5.3. Let k be a field of characteristic # 2 and consider a smooth projective curve over k
equipped with a simply branched degree 5 morphism to P!, say with Schreyer invariants by, .. ., bs.
Then the Maroni invariants of its sextic resolvent are g —2 —bs, ..., g —2 —by.

Proof. This theorem seems new and is part of a generalization of Theorem 4.2, which is currently being
elaborated in collaboration with Yongqgiang Zhao [9]. In the meantime, a proof of Theorem 5.3 can be
found in the master thesis of the second listed author [30]. O

Lemma 5.4. Denote by M ri,j the (i, j)-th entry of the matrix M., constructed through Bhargava’s cor-
respondence as above. Then deg M, ;. j <e +b;+b;+6—g. Inparticular, this defines a model for C
of the form (5).

Proof. The fact that the sub-Pfaffians of M cut out a curve birational to C follows again from [3, Sec-
tion 2]. As for the claim on the degrees, we apply the same proof strategy as in the degree 4 case. Denote
by [Fq[a]OQ the integral closure of [, [x ']in Fy (C). Let go be the fundamental resolvent form attached

to the basis 1, oy, ..., a4 of F4[Clo over F4[x], and let g, be the fundamental resolvent form attached
to the basis 1, x 1 2q, ..., x % 20y of [l:q[é]oo over [, [x~!]. We have that, for all u, v € Fy (C"™),
disc F,[Clo
oo, ) = x5 g (1, v).

g0, v) = Ve
Vdisc 4 [Cleo
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Letog, ..., ay and B;, ..., B35 be dual bases for 1, ay, ..., a4 and 1, By, ..., Bs, respectively. Then the
corresponding dual bases for the rings [Fq[(_f ]oo and [F,,[E e8] o are

/ —_—
af, x4 2at, x4 for Fy[Cleo  and B, x14287F, ..., x5+2 B for Fy[C™ e,
where the e are the Maroni invariants of the resolvent. We now compute, for i, j > 0,

(xe 42 x€]+2ﬂ ) €+€}+4x7g74g0(13;k,ﬁ;<) (12)

x—e[_g—2+€;+€} (Ml)lj (x€]+2 *) (13)

Il
-
i M“
n

It follows that g, is represented by the matrix whose entries have coefficients
XxTUTETRERG (M), =15 1=1,...,4.

But these coefficients belong to [, [x~']. Hence we find that deg(!\7ll),-j <e+b+bj+6—gby
Theorem 5.3, as wanted. O

To compute such a liftable matrix in practice, we follow a similar approach as in the case of degree 4
covers. Namely, we will not be computing the fundamental resolvent map with respect to our reduced
bases directly, but rather compute this for certain naive bases and apply change of basis. Concretely,
consider the naive bases

l’y’yz’ y3’y4 for ”:q(é) and 19 Y, y25y3’y4’ ys for ”:q(ErCS)’

along with the slightly altered fundamental resolvent map

1 1 1
g 1 F (C™) x Fy(C™) — Fy(C) : (a, B) > yJdisc f - @V +a@ a® +a©® @ a6
13(1) +5(2) ,3(3) 4 5(6) ﬁ(4) _|_/3(5)

where 4/ disc ]7 = det((y")(j))oii54,1<]<5 We compute the M( " e [, [x] for which

g0l y )—ZM“” ",

r=0

giving five 5 x 5 skew-symmetric matrices M'@, ..., M'®; here we used that M ;y) = (0 as soon as i or
Jj is zero, allowing us to disregard these terms. We call this the naive model.

Remark 5.5. It is important to note that these expressions can be computed symbolically in terms of
the coefficients f; of f, by means of Vieta’s formulas. Therefore this computation only has to be done
once for all curves. This is in complete analogy with the degree 4 case, see (10). However, there the
naive model was very simple, whereas this time the expressions involved are rather long. However, a
computer has no trouble with these computations.
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Now compute reduced bases 1, oy, ..., a4 for F4[Clo and 1, By, ..., Bs for [Fq[éres]o along with their
corresponding dual bases. Acting on the naive model with a change of basis from the naive bases to
the duals of these reduced bases, yields the altered resolvent map g’ with respect to these dual reduced
bases. Note that this action will be by an element of GLs([F, (x)) x GL4([F, (x)) rather than GLs([F,[x]) x
GL4(F4[x]). To obtain instead the resolvent map g we have to multiply by

/discF,[Clo

disc f

Since we already have the reduced bases at hand, this factor is easiest to compute as the determinant of
the change of basis matrix from the naive basis for [Fq(é ) to the reduced basis 1, a1, ..., a4.

At this point, we have a representation of the fundamental resolvent map g with respect to the duals
of the reduced bases for [Fq[é]o and [Fq[éres]o as a 5 x 5 skew-symmetric matrix M with entries in
klx]1[Y1, Y2, Y3, Y4], linear and homogeneous in the Y;. This is the desired model, which we can lift
naively, in a skew-symmetry preserving way, to a matrix having entries in Ok [x][Y1, Y2, Y3, Y4]. Com-
puting its five 4 x 4 sub-Pfaffians, dehomogenizing, and then eliminating variables finally returns our
output (2), ready to be fed as input to Tuitman’s algorithm.
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