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The nearest-colattice algorithm:
Time-approximation tradeoff for approx-CVP

Thomas Espitau and Paul Kirchner

We exhibit a hierarchy of polynomial time algorithms solving approximate variants of the closest vector
problem (CVP). Our first contribution is a heuristic algorithm achieving the same distance tradeoff as
HSVP algorithms, namely &~ "/ ?#covol(A)!/" for a random lattice A of rank n. Compared to the so-
called Kannan’s embedding technique, our algorithm allows the use of precomputations and can be used
for efficient batch CVP instances. This implies that some attacks on lattice-based signatures lead to very
cheap forgeries, after a precomputation. Our second contribution is a proven reduction from approximating
the closest vector with a factor ~ n3/2 83"/ 1o the shortest vector problem (SVP) in dimension S.

1. Introduction

Lattices, CVP, SVP. In a general setting, a real lattice A is a finitely generated free Z-module, endowed
with a positive-definite quadratic form on its ambient space A ®z R, or equivalently is a discrete subgroup
of a Euclidean space.

A fundamental lattice problem is the closest vector problem, or CVP for short. The goal of this
problem is to find a lattice point that is closest to a given point in its ambient space. This problem is
provably difficult to solve, being actually an NP-hard problem. It is known to be harder than the shortest
vector problem (SVP) [19], which asks for the shortest nonzero lattice point. SVP is the cornerstone of
lattice reduction algorithms (see, for instance, [33; 20; 29]). These algorithms are at the heart of lattice-
based cryptography [31], and are invaluable in plenty of computational problems, including Diophantine
approximation, algebraic number theory or optimization (see [30] for a survey on the applications of the
LLL algorithm).

On CVP-solving algorithms. There are three families of algorithms solving CVP:

Enumeration algorithms. These consist in recursively exploring all vectors in a set containing a closest
vector. Kannan’s algorithm takes time n°"” and polynomial space [24]. This estimate was later refined
to n"/2t° by Hanrot and Stehlé [21].
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Voronoi cell computation. Micciancio and Voulgaris’ Voronoi cell algorithm solves CVP in (4 4 o(1))"
time but uses a space of (24 o(1))” [28].

Sieving algorithms. Here, vectors are combined in order to get closer and closer to the target vector.
Heuristic variants take as little as (% + o(l))"/ 2 time [7], but proven variants of classical sieves [3; 8; 15]
could only solve CVP with approximation factor 1 4 € at a cost in the exponent. In 2015, a (24 o(1))"
sieve for exact CVP was finally proven by Aggarwal, Dadush and Stephen-Davidowitz [1] thanks to the
properties of discrete Gaussians.

Many algorithms for solving the relaxed variant, APPROX-CVP, have been proposed. However, they
come with caveats. For example, Dadush, Regev and Stephens-Davidowitz [10] give algorithms for this
problem, but only with exponential time precomputations. Babai [5, Theorem 3.1] showed that one can
reach a 2""/?-approximation factor for CVP in polynomial time. To the authors’ knowledge, this has never
been improved (while keeping the polynomial-time requirement), though the approximation factor for
SVP has been significantly reduced [33; 20; 29].

We aim to solve the relaxed version of CVP for relatively large approximation factors, and study the
tradeoff between the quality of the approximation of the solution found and the time required to actually
find it. In particular, we exhibit a hierarchy of polynomial-time algorithms solving APPROX-CVP, ranging
from Babai’s nearest plane algorithm to an actual CVP oracle.

Contributions and summary of the techniques. We introduce our so-called Nearest-Colattice al-
gorithm in Section 3. Inspired by Babai’s algorithm, it shows that in practice, we can achieve the
performance of Kannan’s embedding but with a basis which is independent of the target vector. Denote
by T'(B) (resp. Teyp(B)) the time required to solve /B-Hermite-SVP (resp. exactly solve CVP) in rank B).
Quantitatively, we show:

Theorem 1.1 (informal). Let 8 > 0 be a positive integer and B be a basis of a lattice A of rank n > 28.
After precomputations using a time bounded by T (B)(n +1og | B|)°W, given a target t € A and under
a heuristic on the covering radius of a random lattice, the algorithm Nearest-Colattice finds a vector
X € A such that

i =]l < ©(8) covol(A)»

in time Teyvp(B)(n +log ||t]| +log || BI) .

Furthermore, the structure of the algorithms allows time-memory tradeoff and batch CVP oracle to be
used.

We believe that this algorithm has been in the folklore for some time, and it is somehow hinted at in
ModFalcon’s security analysis [9, Subsection 4.2], but without analysis of the heuristics introduced.

Our second contribution is an APPROX-CVP algorithm, which gives a time-quality tradeoff similar to
the one given by the BKZ algorithm [33; 21], or variants of it [17; 2]. Note however that the approximation
factor is significantly higher than the corresponding theorems for APPROX-SVP. Written as a reduction,
we prove that, for a y-HSVP oracle O:
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Theorem 1.2 (APPROX-CVPP oracle from APPROX-SVP oracle). Let A be a lattice of rank n. Then one
can solve the (n*?y3)-closest vector problem in A, using 2n* calls to the oracle O during precomputa-
tion, and polynomial-time computations.

Babai’s algorithm requires that the Gram-Schmidt norms do not decrease by too much in the reduced
basis. While this is true for an LLL reduced basis [26], we do not know a way to guarantee this in the
general case. To overcome this difficulty, the proof technique goes as follows: first we show that it is
possible to find a vector within distance %(\/ﬁy))\n (A) of the target vector, with the help of a highly-
reduced basis. This is not enough, as the target can be very closed compared to A,(A). We treat this
peculiar case by finding a short vector in the dual lattice and then directly computing the inner product
of the close vectors with our short dual vector. In the other case, Banaszczyk’s transference theorem [6]
guarantees that A, (A) is comparable to the distance to the lattice, so that we can use our first algorithm
directly.

Remark 1.3. Based on a result due to Kannan (see for instance [12]) that /n y2 CVP reduces to y-SVP.
Combined with the reduction from y2-SVP to y-HSVP of [27], we get a polynomial time reduction from
Vny*-cvp to y-HSVP. Hence, our result is better when n3/2y3 is at most /ny?, i.e., whenn < y.

2. Algebraic and computational background

In this preliminary section, we recall the notions of geometry of numbers used throughout this paper,
the computational problems related to SVP and CVP, and a brief presentation of some lattice reduction
algorithms solving these problems.

Notation and conventions.

General notations. Z, Q) and R refer as usual to the ring of integers and the fields of rational and real
numbers. Given a real number x, the integral roundings floor, ceil and round to the nearest integer
are denoted respectively by |x], [x], [x]. All logarithms are taken in base 2, unless explicitly stated
otherwise.

Computational setting. The generic complexity model used in this work is the random-access machine
(RAM) model and the computational cost is measured in operations.

2.1. Euclidean lattices and their geometric invariants.

2.1.1. Lattices.

Definition 2.1 (lattice). A (real) lattice A is a finitely generated free Z-module, endowed with a Eu-
clidean norm || - || on the real vector space Agr = A ®z R.

We may omit to write down the norm to refer to a lattice A when any ambiguity is removed by the
context. By definition of a finitely-generated free module, there exists a finite family (vy, ..., v,) € A"
such that A = @]_, v;Z, called a basis of A. Every basis has the same number of elements rk(A), called
the rank of the lattice.
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2.1.2. Sublattices and quotient lattice. Let (A, || -||) be a lattice, and let A’ be a submodule of A. Then
the restriction of || - || to A’ endows A with a lattice structure. The pair (A’, || - ||) is called a sublattice
of A. In the remainder of this paper, we restrict ourselves to so-called pure sublattices, that is, those
such that the quotient A/A’ is torsion-free. In this case, the quotient can be endowed with a canonical

lattice structure by defining

lv+A'lla/ar= inf |Jlv—20'||4.
v'eAR

This lattice is isometric to the projection of A orthogonally to the subspace of Ag spanned by A’.

2.1.3. On effective lifting. Given a coset v+ A’ of the quotient A/A’, we might need to find a repre-
sentative of this class in A. While any element could be theoretically taken, from an algorithmic point
of view, we shall take an element of norm somewhat small, so that its coefficients remain polynomial
in the input representation of the lattice. An effective solution to do so consists in using, for instance,
the Babai’s rounding or Babai’s nearest plane algorithms. For completeness purposes we recast here the
pseudo-code of such a Lift function using the nearest-plane procedure.

Algorithm 1: Lift (by Babai’s nearest plane)

Input: A lattice basis B = (v, ..., vx) of A" in A, a vector 7 € Ag.
Result: A vector of the class 7 + A’ € A.

1 Compute the Gram-Schmidt orthogonalization (v7, ..., v}) of B
§ < —t
for i =k downto 1 do
S —§— LM] v
lof> [

return t + s

A W N

(9]

2.1.4. Orthogonality and algebraic duality. The dual lattice AV of a lattice A is defined as the module
Hom(A, Z) of integral linear forms, endowed with the derived norm defined by

lp(v)]
mn
veAr\{0} ||U||A

lell =

for ¢ € AY. By Riesz’s representation theorem, it is isometric to {x € Ag | (x,v) € Z forall v € A}
endowed with the dual of || - ||A.

Let A’ C A be a sublattice. Define its orthogonal in A to be the sublattice A’ ={x € AV : (x, A") =0}
of AY. It is isometric to (A/A’)", and by biduality A’ shall be identified with A/A’.

2.1.5. Filtrations. A filtration (or flag) of a lattice A is an increasing sequence of submodules of A, i.e.,
each submodule is a proper submodule of the next: {0} = Ag C A C Ay C--- C A = A. If we write
rk(A;) =d;, then we have 0 =dy < d) <dp < --- < dy =1k(A). A filtration is called complete if d; =i
for all i.
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Figure 1. Covering radius ;(A) of a two-dimensional lattice A.

2.1.6. Successive minima, covering radius and transference. Let A be a lattice of rank n. By discreteness
in Ag, there exists a vector of minimal norm in A. This parameter is called the first minimum of the
lattice and is denoted by A;(A). An equivalent way to define this invariant is to see it as the smallest
positive real r such that the lattice points inside a ball of radius r span a space of dimension 1. This

definition leads to the following generalization, known as successive minima.

Definition 2.2 (successive minima). Let A be a lattice of rank n. For 1 <i < n, define the i-th minimum
of A as X;(A) =inf{r € R|dim(span(A N B(0, r))) > i}.

Definition 2.3. The covering radius of a lattice A or rank #n is defined as
m(A) = max dist(x, A).
XGAR

It means that for any vector of the ambient space x € Ag there exists a lattice point v € A at distance
at most w(A).

We now recall Banaszczyk’s transference theorem, relating the extremal minima of a lattice and its
dual:

Theorem 2.4 (Banaszczyk’s transference theorem [6]). For any lattice A of dimension n, we have
1 <20 (A)(A) <n,

implying
1 <A (A (A) <n.

2.2. Computational problems in geometry of numbers.

2.2.1. The shortest vector problem. In this section, we introduce formally the SVP problem and its vari-
ants and discuss their computational hardness.

Definition 2.5 (y-SvP). Let y = y(n) > 1. The y-shortest vector problem (y-SVP) is defined as follows.
Input: A basis (v, ..., v,) of alattice A and a target vector ¢t € AR.

Output: A lattice vector v € A \ {0} satisfying ||v]| < yA1(A).
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In the case where y = 1, the corresponding problem is simply called SVP.

Theorem 2.6 (Haviv and Regev [22]). APPROX-SVP is NP-hard under randomized reductions for every
constant approximation factor.

A variant of the problem consists of finding vectors in Hermite-like inequalities.

Definition 2.7 (y-HSVP). Let y = y(n) > 1. The y-Hermite shortest vector problem (y-HSVP) is defined
as follows.

Input: A basis (vy, ..., v,) of a lattice A.

Output: A lattice vector v € A \ {0} satisfying [Jv]| < y covol(A)!/".

There exists a simple polynomial-time dimension-preserving reduction between these two problems,
as stated by Lovész in [27, 1.2.20]:

Theorem 2.8. One can solve y>-SVP using 2n calls to a y-HSVP oracle and polynomial time.
This can be slightly improved where the HSVP oracle is built from an HSVP oracle in lower dimension [2].

2.2.2. An oracle for y-HSVP. We note a function 7 (B) such that we can solve O(4/B)-HSVP in time at
most 7 (8) times the input size. We have the following bounds on 7, depending on if we are looking at
an algorithm which is:

deterministic: T(B) = (44 o(1))#/?, proven by Micciancio and Voulgaris in[28];
randomized: T (B) = (4/3 +o(1))#/? , introduced by Wei, Liu and Wang in [36];
heuristic: T(B8) = (3/2 + o(1))#/2, given in [7] by Becker, Ducas, Gama, Laarhoven.

There also exist variants for quantum computers [25], and time-memory tradeoffs, such as [23]. By
providing a back-and-forth strategy coupled with enumeration in the dual lattice, the self dual block
Korkine-Zolotarev (DBKZ) algorithm provides an algorithm better than the famous BKZ algorithm.

Theorem 2.9 (Micciancio and Walter [29]). There exists an algorithm outputting a vector v of a lattice A
satisfying

n—1 1
vl = B2@=D - covol(A) .

Such a bound can be achieved in time (n +log | B DOV T (B), where B is the integer input basis repre-
senting A.

Proof. The bound we get is a direct consequence of [29, Theorem 1]. We only replaced the Hermite
constant yg by an upper bound in O(f). ]

A stronger variant of this estimate is heuristically true, at least for “random” lattices, as it is suggested
by the Gaussian heuristic in [29, Corollary 2]. Under this assumption, one can bound not only the length
of the first vector but also the gap between the covolumes of the filtration induced by the outputted basis.



THE NEAREST-COLATTICE ALGORITHM 257

Theorem 2.10. There exists an algorithm outputting a complete filtration of a lattice A satisfying:
n+1-2i
covol(A;/Ai—1) = O(B) 50 covol(A)7.

Such a bound can be achieved in time (n +log || B DOV T (B), where B is the integer-valued input basis.

Further, we have

O(/B) covol? (Ay/An_p) ~ covol (An_ps1/An_p).

2.3. The closest vector problem. In this section we introduce formally the CVP problem and its variants
and discuss their computational hardness.

Definition 2.11 (y-CVP). Let y = y(n) > 1. The y-closest vector problem (y-CVP) is defined as follows.
Input: A basis (v, ..., v,) of alattice A and a target vector t € A Q R.

Output: A lattice vector v € A satisfying ||x —¢|| <y minyep |[v —1]].
In the case where y = 1, the corresponding problem is called CVP.
Theorem 2.12 (Dinur, Kindler and Shafra [11]). n¢/{(°g102m_ApproOX-CVP is NP-hard for any ¢ > 0.

We let Tcvp(B) be such that we can solve CVP in dimension 8 in running time bounded by Tcvp(8)
times the size of the input. Hanrot and Stehlé proved #/>°®) with polynomial memory [21]. Sieves
can provably reach (24 o(1))? with exponential memory [1]. More importantly for this paper, heuristic
sieves can reach (4/3 + 0(1))#/2 for solving an entire batch of 20-0588 instances [13].

3. The nearest colattice algorithm

We aim to solve the y-APPROX-CVP by recursively exploiting the datum of a filtration
AOCA1C"'CAk=A

via recursive approximations. The central object used during this reduction is the nearest colattice relative
to a target vector.

In this section, and the next one, we assume that the size of the bases is always small, essentially as
small as the input basis. This is classic, and can be easily proven.

3.1. Nearest colattice to a vector.

Definition 3.1. Let 0 > A" — A — A/A’ — 0 be a short exact sequence of lattices, and set 7 € AR to
be a target vector. A nearest A’-colattice to 7 is a coset v = v+ A’ € A/A’ which is the closest to the
projection of 7 in Ar/Ap, i.e., such that v = argmin,, [|(r —v) + A/”AR/AER‘

This definition makes sense thanks to the discreteness of the quotient lattice A/A’ in the real vector
space Ar/Afg.
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Figure 2. The A,-nearest colattice v + A, relative to 7, in green (left). The A-nearest colattice
v+ A relative to ¢ (right).

Example. To illustrate this definition, we give two examples in dimension 3, of rank 1 and 2 nearest
colattices. Set A to be a rank 3 lattice, and fix A and A; to be two pure sublattices of respective
ranks 1 and 2. Denote by m; the canonical projection onto the quotient A/A;, which is of dimension
3—ifori e {l1,2}. The A;-closest colattice to ¢, denoted by v; + A;, is such that m; (v;) is a closest
vector to 7r; (¢) in the corresponding quotient lattice. Figure 2 (left) and (right), respectively, depict these
situations.

Remark 3.2. A computational insight into Definition 3.1 is given by viewing a nearest colattice as a
solution to an instance of exact-CVP in the quotient lattice A/A’.

Taking the same notation as in Definition 3.1, let us project ¢ orthogonally onto the affine space v+ Ap,,
and take w to be a closest vector to this projection. The vector w is then relatively close to . Let us
quantify its defect of closeness towards an actual closest vector to ¢:

Proposition 3.3. With the same notation as above: ||t —w||> < u(A/A")?> + (A2
Proof. This is clear by Pythagoras’ theorem. ([l
By definition of the covering radius, we then have:

Corollary 3.4 (subadditivity of the covering radius over short exact sequences). Let
0—>A —->A—>A/AN -0
be a short exact sequence of lattices. Then we have w(A)? < /,L(A/A’)2 + (A

This inequality is tight, and is an equality when there exists a sublattice A” such that A’® A" = A
and A" C A/,
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3.2. Recursion along a filtration. Let us now consider a filtration A C A1 C --- C Ay = A and a
target vector t € Ar. Repeatedly applying Corollary 3.4 along the subfiltrations 0 C A; C A;41, yields a
sequence of inequalities ,uV(A,'H)2 — ;L(A,-)2 < u(ANit1/ A;)2. The telescoping sum now gives the relation
w(A)? < Zf: L (Aig1/ A;)?. This formula has a very natural algorithmic interpretation as a recursive
oracle for approx-CVvp:

(1) Starting from the target vector ¢, we solve the CVP instance corresponding to 7 (¢) in the quotient
Ay /Ax—1 with 7 the canonical projection onto this quotient to find v + Ag_;, the nearest Ay_i-
colattice to ¢.

(2) We then project ¢ orthogonally onto v + (Ax_1 ®z R). Call this vector ¢’.

(3) A recursive call to the algorithm on the instance (' — v, A9 C --- C Ag_1)) yields a vector w € A,.

(4) Return w + v.

Its translation in pseudo-code is given in an iterative manner in the algorithm Nearest-Colattice.

Algorithm 2: Nearest-Colattice

Input: A filtration {0} = Ao C A1 C--- C Ay = A, atarget t € Ag.
Result: A vector in A close to z.

185 <« —t

2 fori =k downto 1 do

3 s <= s —Lift(argmin,cyp,/a, , llv —Al)
4 return f + s

Proposition 3.5. Let B be a basis of a lattice A of rank n. Given a target t € AR, the algorithm
Nearest-Colattice finds a vector x € A such that ||x — t]|* < Zle w(Ais1/A})? in time

Teve(B)(n +1log |It]| +log | B[OV,

where B is the largest gap of rank in the filtration 8 = max; (tk(A;4+1) — rk(A;)).

Proof. The bound on the quality of the approximation is a direct consequence of the previous discussion.
The running time bound derives from the definition of Tcyp and the fact that the Lift operations can be
conducted in polynomial time. O

Remark 3.6 (retrieving Babai’s algorithm). In the specific case where the filtration is complete, that is to
say that rk(A;) =i for each 1 <i < n, the Nearest-Colattice algorithm coincides with the so-called

Babai’s nearest plane algorithm. In particular, it recovers a vector at distance

n 1 n
\/Zizl w(Ai/Ai—1)? = E\/Zizl covol(A;/A;i_1)?,

since for each index i, we have w(A;/A;—1) = % covol(A;/A;_1) as these quotients are one-dimensional.
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The bound given in Proposition 3.5 is not easily instantiable as it requires having access to the covering
radius of the successive quotients of the filtration. However, under a mild heuristic on random lattices,
we now exhibit a bound which only depends on the parameter 8 and the covolume of A.

3.3. On the covering radius of a random lattice. In this section we prove that the covering radius of a
random lattice behaves essentially in 4/rk(A).

In 1945, Siegel [34] proved that the projection of the Haar measure of SL,(R) over the quotient
SL, (R)/SL, (Z) is of finite mass, yielding a natural probability distribution v, over the moduli space £, of
unit-volume lattices. By construction this distribution is translation-invariant, that is, for any measurable
set S C £, and all U € SL,(Z), we have v,(S) = v,(SU). A random lattice is then defined as a
unit-covolume lattice in R"” drawn under the probability distribution v;,.

We first recall an estimate due to Rogers [32], giving the expectation! of the number of lattice points
in a fixed set.

Theorem 3.7 (Rogers’ average). Let n <4 be an integer and p be the characteristic function of a Borel

set C of R" whose volume is V, centered at 0. Then:
00 , n
0< / PIAN{O) dvy(A) —2e7V2 3" Loy < (v + 1)(6( %) +105- 2—").
L r.
n r=0

This allows us to prove that the first minimum of a random lattice is greater than a multiple of /7.

Lemma 4. Let A be a random lattice of rank n. Then, with probability 1 — 279%™ )1 (A) > c/n for a
universal constant ¢ > 0.

Proof. Consider the ball C of volume V = 0.99". Its radius is equal to 0.997 ~1/I" (% + 1)]/ " which is
lower bounded by c+/n for a constant ¢ > 0, using for instance Stirling’s estimate. By Theorem 3.7, the
expectation of the number of lattice points in C is at most

128(3)*(V+ 1)+ V e (1+0()V.

This estimate upper bounds the probability that there exists a nonzero lattice vector in C by 2~ using
Markov’s inequality on the positive random variable |A N C|. ([

Using the transference theorem, we then derive the following estimate on the covering radius of a
random lattice:

Theorem 4.1. Let A be a random lattice of rank n. Then, with probability 1 — 2" (A) < d/n for
a universal constant d.

Proof. First note that the dual lattice AV follows the same distribution as A. Hence, using the estimate

—Q(n)

of Lemma 4, we know that with probability 1 — 2 , AM(AY) > ci/n. Banaszczyk’s transference

I The result proved by Rogers is actually more general and bounds all the moments of the enumerator of lattice points. For
the purpose of this work, only the first moment is actually required.
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theorem indicates that in this case,

n(A) <

’

n <ﬁ
MAY) T ¢

concluding the proof. (I

This justifies the following heuristic:

Heuristic 4.2. In algorithm Nearest-Colattice, foranyindex i, we have (A;+1/A;) <cAi(Ajr1/A;)
for some universal constant c.

The Gaussian heuristic suggests that “almost all” targets ¢ are at distance (1 + o(1))A;(A), so that for
practical purposes in the analysis we can take ¢ = 1 in Heuristic 4.2.

4.1. Quality of the algorithm on random lattices.

Theorem 4.3. Let 8 > 0 be a positive integer and B be a basis of a lattice A of rank n > 2. After
precomputations using a time bounded by T (8)(n + log IBINCWD, given a target t € Ag and under
Heuristic 4.2, the algorithm Nearest-Colattice finds a vector x € A such that

lx —t]| < ©(B)¥ covol(A)
in time Teyp(B) Poly(n, log ||¢]], log | B]).

Proof. We start by reducing the basis B of A using the DBKZ algorithm, and collect the vectors in blocks
of size B, giving a filtration

{0}=AoCA I C---CAr=A,

for k = (%] and rk(A;11/A;) = B for each index i except the penultimate one, of rank n — L%J We
define /; as rk(A;11/A;). By Theorem 2.10 and finite induction in each block using the multiplicativity
of the covolume over short exact sequences, we have fori < k —1,

1 1 lﬁ+l n+1-2j i
covol(Ajr1/A;) %covol(A)n( ]_[ O(B) 27 .>>
Jj=iB
n+2-2ip—l n+2-2if—1; 1
=0(B) 2E-D covol(A)~.
We also have

O(/B) covol(Ar/Ar_) /P ~ ©(B) 711 covolr A

so that the previous approximation is also true for i = k — 1. Using Heuristic 4.2 and Minkowski’s first
theorem, we can estimate the covering radius of this quotient as

n+2-2ip—I; 1
1(Aip1/A) < OG)O(B) -1 covolr A
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Proposition 3.5 now asserts that Nearest-Colattice returns a vector at distance from ¢ bounded by

k 2—-2if—; n 1
COVO](A)% Z @(\/17)(9(,3) 203*/13)1 = O (B)2-2 covol(A)~

i=0
where the last equality stems from the condition n > 28, so that only the first term is significant. O
Note that in the algorithm, all lattices depend only on A, not on the targets. Therefore, it is possible

to use CVP algorithms after precomputations. These algorithms are significantly faster; we refer to [13]
for heuristic ones and to [10; 35] for proven approximation algorithms.

5. Proven APPROX-CVP algorithm with precomputation

In all of this section, let us fix an oracle O, solving the y-HSVP. We solve APPROX-CVP with prepro-
cessing from the oracle O.

Theorem 5.1 (APPROX-CVPP oracle from HSVP oracle). Let A be a lattice of rank n. Then one can solve
the (n/%y3)-closest vector problem in A, using 2n* calls to the oracle O during precomputation, and
polynomial time computations.

The first step of this reduction consists in proving that we can find a lattice point at a distance
roughly A, (A).

Theorem 5.2. Let A be a lattice of rank n and t € A ® R a target vector; then one can find a lattice
vector ¢ € A satisfying ||c —t|| < %\/ﬁy)»n (A), using n calls to the oracle O during precomputation, and
polynomial time computations.

Proof. We aim to construct a complete filtration {0} C A} C --- C A, = A of the input lattice A such
that for any index 1 <i <n — 1, we have covol(A;/A;_1) < yA,(A). We proceed inductively:

» By acall to the oracle O on the lattice A, we find a vector b;. Set A1 = b1Z to be the corresponding
sublattice.

» Suppose that the filtration is constructed up to index i. Then we call the oracle O on the quotient
sublattice A/A; (or equivalently on the projection of A orthogonally to A;), and lift the returned
vector using the Lift function in v € A. Eventually we set A;1| = A; & vZ.

At each index, we have by construction A, ;1 1(A/A;) < Au(A). As such, covol(A/A;) < A, (A)" 1+,
and, eventually, we have, for each index i,

covol(A;/Ai—1) <y - X (A).

As stated in Remark 3.6, Babai’s algorithm on the point ¢ returns a lattice vector ¢ € A such that

le =1l < /) m(Ai/Ai)? < Sy ia(a)). 0
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Remark 5.3 (on the quality of this decoding). For a random lattice, we expect A, (A) ~ /n covol(A)V/7,
so that the distance between the decoded vector and the target is only a factor y times larger than the
guaranteed output of the oracle.

We can now complete the reduction:

Proof of Theorem 5.1. Let A be a rank n lattice. Without loss of generality, we might assume that the
norm || - || of A coincides with its dual norm, so that the dual A" can be isometrically embedded in Ag.
We first find a nonzero vector in the dual lattice ¢ € AV, where ||c|| < yZA1(AY) using Lovdsz’s reduction
stated in Theorem 2.8 on the oracle O. Define v € A and e € A ® R to satisfy t = v + e with ||e|| minimal.
We now have two cases, depending on how large the error term e is:

Case ||c|llell = % (large case): Then, by plugging Banaszczyk’s transference inequality to the bound on

lell, we get
L k@)

lell = ———— = 2
2y°A(AY) — 2ny
Thus, we can use Theorem 5.2 to solve APPROX-CVP with approximation factor equal to

ﬁy 1 ! 3 3
=niy’.

2 \2ny?

Case |c|le]l < % (small case): Then, we have by linearity, (c,t) = (c, v) + (c, ¢). Hence, by the
Cauchy—Schwarz inequality and the assumption on ||c|||le|| we can assert that

L{e, 1) 1= (¢, v).

Let A’ be the projection of A over the orthogonal space to ¢ and denote by 7 the corresponding orthogonal
projection.

Let us prove that 7 (v) is a closest vector of 77 (¢) in A’. To do so, let us take p a shortest vector 7 (¢) in A.
We now look at the fiber (in A) above p and take the closest element p to ¢ in this set. Then by Pythagoras’
theorem, p is an element of the intersection of 7~ (5) with the convex body D = {x | [{c, x)| < %} As
the vector ¢ belongs to the dual of A, we have that for any p;, p; € 71_1(13), (p1 — p2,c) € Z, so that
7 Y(p)NDis of cardinality one. Write p for this point. Then, (p, c) = (v, ¢), as [{p — v, c)| < % and
is an integer. Now remark that by minimality of ||v — ¢||, we have by Pythagoras’ theorem that v = p,
implying that 7 (v) = p.

By induction, we find w € A such that ||z (w—1)|| <n3/?y3||w(v—1)| and since (¢, w —t) = (c, v — 1)
we obtain ||w — ]| < n3%y3||lv—1]. O

Overall, we get the following corollary by using the Micciancio-Voulgaris algorithm for the oracle O:

Corollary 5.4. We can solve BO""/P)_APPROX-CVP deterministically in time bounded by 2P times the
size of the input.

Remark 5.5. Using exactly the same proof scheme, we can refine the approximation factor to an n3/?ygy
by using a separate ys-SVP oracle instead of using y-HSVP as a y2-SVP oracle.
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Figure 3. Illustration of the situation depicted in the proof, in the two-dimensional case.

6. Cryptographic perspectives

In cryptography, the bounded distance decoding (BDD) problem? has a lot of importance, as it directly
relates to the celebrated learning with error (LWE) problem [31]. This latter problem can be reduced to
APPROX-CVP, but our theoretical reduction with HSVP has a loss which is too large to be competitive.

In the so-called GPV framework [18], instantiated in the DLP cryptosystem [14] and its follow-ups
FALCON [16], MODFALCON [9], a valid signature is a point close to a target, which is the hash of the
message. Hence, forging a signature boils down to finding a close vector to a random target. Our first
(heuristic) result implies that, once a reduced basis has been found, forging a message is relatively easy.
Previous methods such as in [16] used Kannan’s embedding [24] so that the cost given only applies for
one forgery, whereas a batch forgery is possible for roughly the same cost.

The same remark applies for practically solving the BDD problem, and indeed the LWE problem. Once
a highly reduced basis is found, it is enough to compute a CVP on the tail of the basis, and finish with
Babai’s algorithm. More precisely, by using the same notation and exploiting the proof of Theorem 4.3,

a sufficient condition for decoding will be
2B—n
I7(e)]l <6(B) 7 covol(A)7,

where, 7 is the orthogonal projection onto A/Aj and B is the rank of this latter lattice.

This trick seems to have been in the folklore for some time, and is the reason given by NEWHOPE [4]
designers for selecting a random “a”, which corresponds to a random lattice (where the authors of [4]
claim that Babai’s algorithm is enough, but it seems to be practically true in general for an extremely

well reduced basis, i.e., with more precomputations performed).

2This problem being defined as finding the closest lattice vector of a target, provided it is within a fraction of A (A).



THE NEAREST-COLATTICE ALGORITHM 265

Acknowledgments

This work was done while the authors were visiting the Simons Institute for the theory of computing in

February 2020. They also thanks the anonymous reviewers for their insightful comments on this work.

(1]

(2]

(3]

(4]

[5]
[6]

(71

(8]

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

References

D. Aggarwal, D. Dadush, and N. Stephens-Davidowitz. Solving the closest vector problem in 2" time - the discrete
Gaussian strikes again! In 56th FOCS. IEEE Computer Society Press. 2015.

D. Aggarwal, J. Li, P. Q. Nguyen, and N. Stephens-Davidowitz. Slide reduction, revisited—filling the gaps in SVP ap-
proximation. arXiv preprint arXiv:1908.03724, 2019.

M. Ajtai, R. Kumar, and D. Sivakumar. Sampling short lattice vectors and the closest lattice vector problem. In Proceedings
17th IEEE Annual Conference on Computational Complexity. IEEE, 2002.

E. Alkim, L. Ducas, T. Péppelmann, and P. Schwabe. Post-quantum key exchange - A new hope. In USENIX Security
2016.

L. Babai. On Lovdsz’ lattice reduction and the nearest lattice point problem. Combinatorica, 6(1), 1986.

W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Mathematische Annalen, 296(1),
1993.

A. Becker, L. Ducas, N. Gama, and T. Laarhoven. New directions in nearest neighbor searching with applications to lattice
sieving. In 27th SODA. ACM-SIAM, 2016.

J. Blomer and S. Naewe. Sampling methods for shortest vectors, closest vectors and successive minima. Theoretical
Computer Science, 410(18) 2009.

C. Chuengsatiansup, T. Prest, D. Stehlé, A. Wallet, and K. Xagawa. Modfalcon: compact signatures based on module
NTRU lattices. IACR Cryptology ePrint Archive, 2019.

D. Dadush, O. Regev, and N. Stephens-Davidowitz. On the closest vector problem with a distance guarantee. In 20714
IEEE 29th Conference on Computational Complexity (CCC), IEEE, 2014.

I. Dinur, G. Kindler, and S. Safra. Approximating-CVP to within almost-polynomial factors is np-hard. In Proceedings
39th Annual Symposium on Foundations of Computer Science. IEEE, 1998.

C. Dubey, and T .Holenstein. Approximating the closest vector problem using an approximate shortest vector oracle
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. 2011

L. Ducas, T. Laarhoven, and W. P. van Woerden. The randomized slicer for CVPP: sharper, faster, smaller, batchier.
Cryptology ePrint, Report 2020/120.

L. Ducas, V. Lyubashevsky, and T. Prest. Efficient identity-based encryption over NTRU lattices. In ASTACRYPT 2014.
Springer 2014.

F. Eisenbrand, N. Hihnle, and M. Niemeier. Covering cubes and the closest vector problem. In the 27th symposium on
Computational geometry, 2011.

P-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest, T. Ricosset, G. Seiler, W. Whyte, and
Z. Zhang. Falcon: Fast-Fourier lattice-based compact signatures over NTRU. Submission to the NIST’s post-quantum
cryptography standardization process, 2018.

N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell’s inequality. In 40th ACM STOC. ACM Press,
2008.

C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In 40th
ACM STOC. ACM Press, 2008.

O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert. Approximating shortest lattice vectors is not harder than approxi-
mating closest lattice vectors. Information Processing Letters, 71(2) 1999.

G. Hanrot, X. Pujol, and D. Stehlé. Analyzing blockwise lattice algorithms using dynamical systems. In CRYPTO 2011.
Springer, 2011.



266 THOMAS ESPITAU AND PAUL KIRCHNER

[21] G. Hanrot and D. Stehlé. Improved analysis of Kannan’s shortest lattice vector algorithm. In CRYPTO 2007. Springer,
2007.

[22] 1. Haviv and O. Regev. Tensor-based hardness of the shortest vector problem to within almost polynomial factors. In 39th
ACM STOC. ACM Press, 2007.

[23] G. Herold, E. Kirshanova, and T. Laarhoven. Speed-ups and time-memory trade-offs for tuple lattice sieving. In PKC 2018.
Springer, 2018.

[24] R. Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of operations research, 12(3) 1987.

[25] T. Laarhoven, M. Mosca, and J. Van De Pol. Finding shortest lattice vectors faster using quantum search. Designs, Codes
and Cryptography, 77(2-3) 2015.

[26] A. K. Lenstra, H. W. J. Lenstra, and L. Lovész. Factoring polynomials with rational coefficients. Math. Ann., 261 1982.
[27] L. Lovasz. An algorithmic theory of numbers, graphs, and convexity. SIAM, 1986.

[28] D. Micciancio and P. Voulgaris. Faster exponential time algorithms for the shortest vector problem. In 27st SODA. ACM-
SIAM, 2010.

[29] D. Micciancio and M. Walter. Practical, predictable lattice basis reduction. In EUROCRYPT 2016. Springer, 2016.
[30] P. Q. Nguyen and B. Vallée. The LLL algorithm. Springer, 2010.

[31] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM (JACM), 56(6)
2009.

[32] C. A. Rogers et al. Mean values over the space of lattices. Acta mathematica, 94 1955.
[33] C. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci., 53 1987.
[34] C. L. Siegel. A mean value theorem in Geometry of Numbers. Annals of Mathematics, 46(2) 1945.

[35] N. Stephens-Davidowitz. A time-distance trade-off for GDD with preprocessing—instantiating the DLW heuristic. preprint
arXiv:1902.08340, 2019.

[36] W. Wei, M. Liu, and X. Wang. Finding shortest lattice vectors in the presence of gaps. In CT-RSA 2015. Springer, 2015.
Received 28 Feb 2020. Revised 28 Feb 2020.

THOMAS ESPITAU: t.espitau@gmail.com
NTT Corporation, Tokyo, Japan

PAUL KIRCHNER: paul.kirchner@Qirisa.fr
Rennes University, Rennes, France

:'msp


https:/dx.doi.org/arXiv:1902.08340
mailto:t.espitau@gmail.com
mailto:paul.kirchner@irisa.fr
http://msp.org

VOLUME EDITORS

Stephen D. Galbraith
Mathematics Department
University of Auckland
New Zealand

https://orcid.org/0000-0001-7114-8377

The cover image is based on an illustration from the article “Supersingular
curves with small noninteger endomorphisms”, by Jonathan Love and Dan
Boneh (see p. 9).

The contents of this work are copyrighted by MSP or the respective authors.
All rights reserved.

Electronic copies can be obtained free of charge from http://msp.org/obs/4
and printed copies can be ordered from MSP (contact@msp.org).

The Open Book Series is a trademark of Mathematical Sciences Publishers.
ISSN: 2329-9061 (print), 2329-907X (electronic)

ISBN: 978-1-935107-07-1 (print), 978-1-935107-08-8 (electronic)

First published 2020.

:'msp

MATHEMATICAL SCIENCES PUBLISHERS
798 Evans Hall #3840, c/o University of California, Berkeley CA 94720-3840
contact@msp.org http://msp.org


http://msp.org/obs/4
mailto:contact@msp.org
mailto:contact@msp.org
http://msp.org

THE OPEN BOOK SERIES 4
Fourteenth Algorithmic Number Theory Symposium

The Algorithmic Number Theory Symposium (ANTS), held biennially since 1994, is the premier international forum
for research in computational and algorithmic number theory. ANTS is devoted to algorithmic aspects of number
theory, including elementary, algebraic, and analytic number theory, the geometry of numbers, arithmetic algebraic
geometry, the theory of finite fields, and cryptography.

This volume is the proceedings of the fourteenth ANTS meeting, which took place 29 June to 4 July 2020 via video
conference, the plans for holding it at the University of Auckland, New Zealand, having been disrupted by the
COVID-19 pandemic. The volume contains revised and edited versions of 24 refereed papers and one invited paper
presented at the conference.

Smith
On the security of the multivariate ring learning with errors prob buter Castryck and Frederik 57
Vercauteren

Two-cover descent on plane quartics with rational bitangents 73

Abelian surfaces with fixed 3-torsion — Frank Calegari, Shiv d P. Roberts 91

Lifting low-gonal curves for use in Tuitman’s algorithm — 5 Vermeulen 109

Simultaneous diagonalization of incomplete matrices and app en Coron, Luca Notarnicola and 127
Gabor Wiese

Hypergeometric L-functions in average polynomial time — dlaya and David Roe 143

Genus 3 hyperelliptic curves with CM via Shimura reciproci a and Sorina Ionica 161

A canonical form for positive definite matrices — Mathieu
Woerden

sch, John Voight and Wessel P.J. van 179

Computing Igusa’s local zeta function of univariates in dete: Ashish Dwivedi and Nitin Saxena 197

Computing endomorphism rings of supersingular elliptic curve
Kirsten Eisentriger, Sean Hallgren, Chris Leonardi, Travis

-finding in isogeny graphs — 215

233
s Espitau and Paul Kirchner 251

New rank records for elliptic curves having rational torsion —
The nearest-colattice algorithm: Time-approximation tradeoff for'

Cryptanalysis of the generalised Legendre pseudorandom function
Kosti¢

Thorsten Kleinjung and DuSan 267

Counting Richelot isogenies between superspecial abelian surfaces atsuyuki Takashima 283
ashita and Everett W. Howe 301
e Scheidler 317
335

353

Algorithms to enumerate superspecial Howe curves of genus 4 — Mo
Divisor class group arithmetic on C3 4 curves — Evan MacNeil, Michael
Reductions between short vector problems and simultaneous approximation
Computation of paramodular forms — Gustavo Rama and Gonzalo Tornaria

An algorithm and estimates for the Erd6s—Selfridge function — Brianna Sorenson, J8
Webster

Totally p-adic numbers of degree 3 — Emerald Stacy

Counting points on superelliptic curves in average polynomial time — Andrew V. Sutherland


http://dx.doi.org/10.2140/obs.2020.4.1
http://dx.doi.org/10.2140/obs.2020.4.7
http://dx.doi.org/10.2140/obs.2020.4.23
http://dx.doi.org/10.2140/obs.2020.4.39
http://dx.doi.org/10.2140/obs.2020.4.57
http://dx.doi.org/10.2140/obs.2020.4.73
http://dx.doi.org/10.2140/obs.2020.4.91
http://dx.doi.org/10.2140/obs.2020.4.109
http://dx.doi.org/10.2140/obs.2020.4.127
http://dx.doi.org/10.2140/obs.2020.4.143
http://dx.doi.org/10.2140/obs.2020.4.161
http://dx.doi.org/10.2140/obs.2020.4.179
http://dx.doi.org/10.2140/obs.2020.4.197
http://dx.doi.org/10.2140/obs.2020.4.215
http://dx.doi.org/10.2140/obs.2020.4.233
http://dx.doi.org/10.2140/obs.2020.4.251
http://dx.doi.org/10.2140/obs.2020.4.267
http://dx.doi.org/10.2140/obs.2020.4.283
http://dx.doi.org/10.2140/obs.2020.4.301
http://dx.doi.org/10.2140/obs.2020.4.317
http://dx.doi.org/10.2140/obs.2020.4.335
http://dx.doi.org/10.2140/obs.2020.4.353
http://dx.doi.org/10.2140/obs.2020.4.371
http://dx.doi.org/10.2140/obs.2020.4.387
http://dx.doi.org/10.2140/obs.2020.4.403

	1. Introduction
	2. Algebraic and computational background
	2.1. Euclidean lattices and their geometric invariants
	2.1.1. Lattices
	2.1.2. Sublattices and quotient lattice
	2.1.3. On effective lifting.
	2.1.4. Orthogonality and algebraic duality
	2.1.5. Filtrations
	2.1.6. Successive minima, covering radius and transference

	2.2. Computational problems in geometry of numbers
	2.2.1. The shortest vector problem
	2.2.2. An oracle for -hsvp

	2.3. The closest vector problem

	3. The nearest colattice algorithm
	3.1. Nearest colattice to a vector
	3.2. Recursion along a filtration
	3.3. On the covering radius of a random lattice
	4.1. Quality of the algorithm on random lattices

	5. Proven approx-cvp algorithm with precomputation
	6. Cryptographic perspectives
	Acknowledgments
	References
	
	

