
 

Absence of Evidence for the Ultimate State of Turbulent
Rayleigh-Bénard Convection

There are a number of distinct predictions for the
asymptotic behavior of heat transport Nu as the
Rayleigh number Ra → ∞ in thermal turbulence described
by the fundamental model of Rayleigh-Bénard convection
[1]. One is Nu ¼ OðRa1=3Þ [2–5] and another is the so-
called “ultimate” scaling Nu ¼ OðRa1=2Þ [6], possibly
modified by logarithmic corrections ranging from
Ra1=2=ðlog RaÞ3=2 [7] to Ra1=2=ðlog RaÞ3 [8].
He et al. [9] reported measurements [10] of Nu for

Ra ∈ ½3 × 1012; 1015� citing them as evidence of transition
to the ultimate state as characterized by the pre-asymptotic
multiparameter fit in Ref. [11]. In this Comment, without
questioning the veracity of the measurements (they have
been questioned [12]) we show that the data do not support
the claim.
Figure 1 shows the data with a linear least-squares

fit of logNu to logRa yielding Nu ¼ 0.0502 × Ra0.336.
This agrees remarkably with—indeed extends—the Nu ¼
0.0508 × Ra1=3 fit (within about�5%) to experimental data
in the overlapping range Ra ∈ ½2 × 1011; 5 × 1013� [13].
He et al.’s data, however, suggests more structure than

pure power law scaling. The inset of Fig. 1 shows the
�2.9% (2σ) deviations from the pure power law fit with a
systematic trend that calls for fitting to functional forms
capable of capturing the data’s convexity. Data and theories
without pure scaling can be compared by examining local
slopes d logNu=d log Ra. If data are sufficiently dense then
finite difference approximations may be extracted [14] but
the data at hand are not, so local slopes can at best be
estimated from derivatives of statistically equivalent fits.
For quadratic, cubic, quartic, and quintic polynomial

least-squares fits of logNu to logRa, residual deviations
are, respectively, 1.19%, 1.09%, 1.08%, and 1.07% (2σ)
variations with no systematic trends [10]. Thus each is an
equally valid quantitative description of the data,
and Fig. 2 shows local slopes computed from these
equivalent fits.

He et al. [9] drew a line with ðd logNu=d log RaÞ ¼ 0.38
at the high end of their data citing correspondence with a
theoretical value from [11] at Ra ¼ 1014, but 0.333 <
ðd logNu=d log RaÞ < 0.336 for all of the equivalent fits
at Ra ¼ 1014. They also reported a transition to Re ∼ Ra1=2

Reynolds number scaling (necessary but not sufficient for
Nu ∼ Ra1=2 scaling) for Ra > 5 × 1014. The scaling fit to
those data, however, is Nu ¼ 0.0261 × Ra0.356 while local
slopes of equivalent fits barely reach 3=8 ¼ 0.375 (a bound
on heat transport dominated by a single horizontal length
scale [15]) at Ra ¼ 1015. But the theoretical slope from
Ref. [11] is well above 0.39 there. Thus the claim by
He et al. [9] that their experiment reached the ultimate
regime is not justified by their data.
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FIG. 1. Nu vs Ra data [10] from Ref. [9] and the power law fit
Nu ¼ 0.0502 × Ra0.336. Inset: Δ≡ Nudata=Nufit − 1.

FIG. 2. Solid lines: local slopes from 1st (black), 2nd (blue),
3rd (red), 4th (green), and 5th (light blue) order polynomial fits of
logNu to logRa. Dashed line: theoretical pre-asymptotic fit from
Ref. [11]. Dotted line: ðd logNu=d log RaÞ ¼ 1
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