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ABSTRACT2

Growth mixture modeling is a popular analytic tool for longitudinal data analysis. It detects3
latent groups based on the shapes of growth trajectories. Traditional growth mixture modeling4
assumes that outcome variables are normally distributed within each class. When data violate5
this normality assumption, however, it is well documented that the traditional growth mixture6
modeling mislead researchers in determining the number of latent classes as well as in estimating7
parameters. To address nonnormal data in growth mixture modeling, robust methods based8
on various nonnormal distributions have been developed. As a new robust approach, growth9
mixture modeling based on conditional medians has been proposed. In this article, we present10
the results of two simulation studies that evaluate the performance of the median-based growth11
mixture modeling in identifying the correct number of latent classes when data follow the normality12
assumption or have outliers. We also compared the performance of the median-based growth13
mixture modeling to the performance of traditional growth mixture modeling as well as robust14
growth mixture modeling based on t distributions. For identifying the number of latent classes in15
growth mixture modeling, the following three Bayesian model comparison criteria were considered:16
deviance information criterion, Watanabe-Akaike information criterion, and leave-one-out cross17
validation. For the median-based growth mixture modeling and t-based growth mixture modeling,18
our results showed that they maintained quite high model selection accuracy across all conditions19
in this study (ranged from 87% to 100%). In the traditional growth mixture modeling, however, the20
model selection accuracy was greatly influenced by the proportion of outliers. When sample size21
was 500 and the proportion of outliers was 0.05, the correct model was preferred in about 90% of22
the replications, but the percentage dropped to about 40% as the proportion of outliers increased23
to 0.15.24

Keywords: robust methods, growth mixture modeling, conditional medians, Bayesian model comparison, outliers25

1 INTRODUCTION
Growth mixture modeling has been widely used for longitudinal data analyses in social and behavioral26
research. It is a combination of growth curve modeling (Bollen and Curran, 2006; Meredith and Tisak,27
1990) and finite mixture modeling (McLachlan and Peel, 2000). Growth curve modeling is a modeling28
method for analyzing longitudinal data. It describes the mean growth trajectory and the variability of the29

1



Kim et al. Class Enumeration in Median-Based GMM

individual trajectories around the mean trajectory. The finite mixture modeling is a statistical method to30
provide accurate statistical inferences when the target population consists of several heterogeneous groups.31
Mathematically, this is accomplished by modeling an unknown distribution (the target population) using32
a mixture of known distributions (heterogeneous groups/subpopulations). As a combination of the two33
methods, growth mixture modeling can handle longitudinal data with several unobserved heterogeneous34
subpopulations, each of which is characterized by a distinct growth trajectory. Since those groups cannot35
be directly observed, the groups are called latent groups (or latent classes). A growth curve model can be36
seen as a growth mixture model with one latent class.37

As growth mixture modeling has continued to receive attention, a number of approaches to growth38
mixture modeling have been developed. Traditional growth mixture modeling is built upon the assumption39
that latent growth factors and measurement errors are normally distributed. Namely, outcome variables are40
normally distributed within each class. When data violate this within-class normality assumption, using a41
traditional growth mixture model may mislead researchers in deciding the number of latent classes or in42
estimating parameters (Bauer and Curran, 2003; Bauer, 2007; Depaoli et al., 2019; Zhang et al., 2013).43
In social and behavioral sciences, data often have distributions that are not normal (Cain et al., 2017;44
Micceri, 1989). Robust methods based on various nonnormal distributions have been developed to address45
nonnormal data. For instance, Zhang et al. (2013) and Zhang (2016) introduced different types of Bayesian46
growth curve models by varying the distribution of measurement errors, including t, skewed-normal, and47
exponential power distributions to address nonnormal data. In Zhang et al. (2013), growth curve models48
using t distributions outperformed traditional growth curve models in parameter estimation when data had49
heavy tails or outliers. Lu and Zhang (2014) introduced growth mixture models based on t distributions50
for those situations in which data have outliers and non-ignorable missingness. Muthén and Asparouhov51
(2015) used a skewed-t distribution on latent factors to address intrinsically skewed data and showed that52
the skewed-t growth mixture model prefer a more parsimonious solution than traditional growth mixture53
modeling for skewed data.54

Recently, Tong, Zhang, and Zhou (2020) and Kim, Tong, Zhou, and Boichuk (under review) proposed55
a new Bayesian approach for growth modeling using conditional medians. The median is a well-known56
measure of central tendency that is robust against nonnormality, such as skewed data or data with outliers.57
Bayesian methods have been widely used in latent variable modeling, including growth mixture modeling58
(e.g., Lee, 2007; Lu et al., 2011; Tong et al., 2020; Zhang et al., 2013). Bayesian methods allow researchers59
to incorporate prior information into model estimation and to conduct inferences of complex models60
through advanced sampling algorithms. Tong et al. (2020) considered conditional medians in Bayesian61
growth curve modeling and showed that the conditional median approach provided less biased estimates62
than traditional growth curve modeling when data were not normally distributed. Kim et al. (under review)63
introduced the conditional median approach in Bayesian growth mixture modeling and showed that the64
median based approach provided less biased parameter estimates with better convergence rates than65
traditional growth mixture modeling.66

Deciding the number of latent classes is one of the important tasks in growth mixture modeling. There67
has been a number of studies on selecting the number of latent classes in growth mixture modeling. For68
example, Bauer and Curran (2003) showed that traditional growth mixture modeling tended to over-extract69
latent classes when data were non-normally distributed. Nylund, Asparouhov, and Muthén (2007), Tofighi70
and Enders, 2008, and Peugh and Fan (2012) evaluated the performance of information-based fit indices71
such as AIC and BIC and likelihood-based tests in identifying the correct number of latent classes. The72
performance of the model comparison criteria varied, but they appeared to be influenced by a number73
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of factors, especially the complexity of trajectory shapes and the magnitude of separations of latent74
classes. Depaoli et al. (2019) and Guerra-Peña et al. (2020) used Student’s t, skewed-t, and skewed-normal75
distributions on latent factors and explored class enumeration when data satisfied or violated the normality76
assumption. In Depaoli et al. (2019), the class enumeration was greatly influenced by the degree of latent77
class separation when the underlying population consisted of heterogenous subgroups. In Guerra-Peña et al.78
(2020), the growth mixture modeling with skewed-t successfully maintained the Type 1 error rate when the79
underlying population was homogeneous but had a skewed or kurtic distribution.80

The median-based growth mixture modeling approach in longitudinal data analysis is relatively new,81
and its performance has not been systematically investigated. In particular, little is known about the82
performance of the median-based growth mixture modeling in deciding the number of latent classes. To83
fill this gap, in this study, we explore this topic within a Bayesian framework. Two simulation studies84
were conducted to answer the following research questions: (a) how well do Bayesian model comparison85
criteria used in a growth mixture model analysis correctly identify the number of latent classes when86
the population is heterogeneous and the normality assumption holds? and (b) how well does the median-87
based growth mixture modeling perform in identifying the correct number of latent classes when the88
population is heterogeneous and contains outliers? We examined the class enumeration performance of89
the median-based growth mixture modeling and compared it to that for the traditional growth mixture90
modeling and growth mixture modeling based on t-distributed measurement errors, which is also known91
to be robust to nonnormal data in growth mixture modeling (Lu and Zhang, 2014; Zhang et al., 2013).92
For model selection, we used three Bayesian model comparison criteria: deviance information criterion93
(DIC; Spiegelhalter et al., 2002), Watanabe-Akaike information criterion (WAIC; Watanabe, 2010), and94
leave-one-out cross-validation (LOO-CV; Gelman et al., 2013; Vehtari et al., 2017). DIC is a widely used95
model comparison criterion in Bayesian analyses. WAIC and LOO-CV are relatively new criteria but have96
been increasingly used in Bayesian model comparison.97

The rest of this paper is organized as follows. We first briefly describe three different growth mixture98
modeling approaches considered in this study: traditional growth mixture modeling, growth mixture99
modeling based on t distributions, and growth mixture modeling based on conditional medians. In the100
subsequent section, we present results of the two simulation studies. The first simulation study presents the101
performance of DIC, WAIC, and LOO-CV used in the three types of growth mixture models when data are102
normally distributed within each class. The first simulation study was particularly designed to investigate103
whether the DIC, WAIC, and LOO-CV are reliable criteria before we consider nonnormal data. Then, the104
second simulation study evaluates the performance of the three types of growth mixture models when data105
contain outliers. We mainly examined the impact of outliers on class enumeration and parameter estimates.106
We end this article with a discussion and concluding remarks.107

2 GROWTH MIXTURE MODELS
2.1 Traditional approach (traditional GMM)108

Growth mixture models are designed to detect subpopulations that have distinct patterns of growth109
trajectory. Suppose that a population consisted of G subgroups (or latent classes) that have distinct patterns110
of change. Let yi = (yi1, . . . , yiT )

′
is a vector of T repeated observations for individual i (i ∈ {1, . . . , N})111

that belongs to class g. Then, a general form of growth mixture models can be specified as112

yi|(zi = g) = Λbig + εi,
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where Λ is a T × q matrix of factor loadings that determines the shape of the growth trajectories, big is113

a q × 1 vector of latent factors for class g, εi = (εi1, . . . , εiT )
′

is a T × 1 vector of measurement errors,114
and zi represents a class indicator with P (zi = g) = πg. The latent factors are usually assumed as big ∼115
Nq(βg,Ψg), where βg is a mean of big and Ψg is a variance-covariance matrix of big. The measurement116
errors are typically assumed to follow a normal distribution, εi ∼ NT (0,Σg). This assumption leads117
the conditional mean of yi given big to be E(yi|big) = Λbig. It is common to further assume that the118
measurement errors have equal variances across time and are independent of each other. That is, Σg = σ2gI ,119
where σ2g is a scale parameter for class g. We assumed this measurement error structure for the rest of this120
study.121
2.2 t-based approach (t-based GMM)122

The traditional GMM is built based upon the assumption that data within each class is normally distributed.123
However, when data do not satisfy this assumption, the traditional approach may lead to inappropriate124
conclusions such as biased parameter estimates or over-extraction of latent classes. As a robust approach to125
the traditional growth mixture modeling, t distributions have been used in growth mixture modeling, as126
they downweight extreme values in the model estimation process (Lu and Zhang, 2014; Zhang et al., 2013).127
In this growth mixture modeling approach, a multivariate t distribution can be assumed on the latent factors128
or measurement errors (Lu and Zhang, 2014; Tong and Zhang, 2012). In this study, for the t-based growth129
mixture modeling approach, we assumed that the measurement errors follow a multivariate t distribution,130

εi ∼MTT (0,Σg, νg),

where νg is the degrees of freedom, 0 is the mean of εi, and Σg is a T × T scale matrix. Then, the131
distribution of yi conditioning on big can be written as yi|big ∼MTT (Λbig,Σg, νg).132
2.3 Median-based approach (median-based GMM)133

In growth mixture modeling based on conditional medians, it considers medians instead of means so that134
the growth mixture model can be more tolerant of non-normally distributed data (Kim et al., under review).135
A general form of median-based growth mixture models is specified as follows:136

yit|(zi = g) = Λtbig(0.5) + εit, Q0.5(yit|big(0.5)) = Λtbig(0.5),

where Q0.5(·) represents the median, Λt is the t-th row of Λ, big(0.5) is a vector of latent factors for the137
median-based model. This median based approach is established based on a Laplace distribution. That138
is, εit follows a Laplace distribution, as the sample median can be viewed as the maximum likelihood139
estimate of a Laplace distribution (Geraci and Bottai, 2007; Yi and He, 2009; Yu and Moyeed, 2001). A140
Laplace distribution has two parameters: a location parameter (µ) and a scale parameter (δ). In this model,141
εit follows a Laplace distribution with a location value of 0 and an unknown scale δg (εit ∼ LD(0, δg)).142
Then, the distribution of yit conditioning on big(0.5) can be written as yit|big(0.5) ∼ LD(Λtbig(0.5), δg).143

3 BAYESIAN ESTIMATION
To estimate parameters of the three types of growth mixture models, we used Bayesian methods. In this144
study, we used JAGS to estimate model parameters. JAGS is a program for Bayesian analysis using Markov145
chain Monte Carlo (MCMC) algorithms. We used the rjags package (Plummer, 2017) to run JAGS in R (R146
Core Team, 2019).147
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For the traditional GMM, the joint distribution of yi, bi, and zi is148

f(yi, bi, zi|β1:G,Ψ1:G, σ
2
1:G,π) = f(yi|bi, zi, σ21:G)f(bi|β1:G,Ψ1:G, zi)p(zi|π).

The complete likelihood (Celeux et al., 2006) for the traditional GMM is149

Lc =
N∏
i=1

f(yi, bi, zi|β1:G,Ψ1:G, σ
2
1:G,π).

The following priors were used to estimate the traditional growth mixture model: βg ∼ Nq(β0,Σ0),150
Ψg ∼ InvWishart(ν0, S0), σ2g ∼ InvGamma(c0, d0) for g = 1, . . . , G, and π ∼ Dirichlet(ζ).151

For the t-based GMM, we used a normal distribution and gamma distribution to construct a multivariate152
t distribution to simplify the posterior distribution (Kotz and Nadarajah, 2004; Zhang et al., 2013). If153

yi|big ∼ MTT (Λbig, σ
2
gI, νg), then it can be represented as yi|big, ωi ∼ MNT (Λbig,

σ2g
ωi
I), where154

ωi ∼ Gamma(νg/2, νg/2). In this approach, the joint distribution of yi, bi, zi, and ωi is155

f(yi, bi, zi, ωi|β1:G,Ψ1:G, σ
2
1:G, ν1:G,π) = f(yi|bi, zi, ωi, σ21:G)f(bi|β1:G,Ψ1:G, zi)f(ωi|ν1:G)p(zi|π).

The complete likelihood for the t-based GMM is156

Lc =
N∏
i=1

f(yi, bi, zi, ωi|β1:G,Ψ1:G, σ
2
1:G, ν1:G,π).

The following prior was additionally used to estimate the t-based GMM: νg ∼ Exp(k0), where Exp157
denotes the exponential distribution.158

For the median-based GMM, the joint distribution of yi, bi, and zi is159

f(yi, bi, zi|β1:G,Ψ1:G, δ1:G,π) = f(yi|bi, zi, δ1:G)f(bi|β1:G,Ψ1:G, zi)p(zi|π).

The complete likelihood for the median-based GMM is160

Lc =
N∏
i=1

f(yi, bi, zi|β1:G,Ψ1:G, δ1:G,π).

The following prior was additionally used to estimate the median-based GMM: δg ∼ InvGamma(c0, d0).161

4 MODEL SELECTION
We used DIC (Spiegelhalter et al., 2002), WAIC (Watanabe, 2010), and LOO-CV (Gelman et al., 2013;162
Vehtari et al., 2017) to select the number of latent classes for the traditional, t-based, and median-based163
GMMs. In the following, we briefly introduce the three model comparison criteria.164

DIC has been widely used in Bayesian model selection. It was first introduced by Spiegelhalter et al.165
(2002). DIC is defined based on the concept of deviance and the effective number of model parameters.166
The deviance is defined as167

D(Θ) = −2l(Θ) + 2log(h(x)),
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where Θ is a set of model parameters, l(Θ) is a log-likelihood, l(Θ) = log(f(y|Θ)), and h(x) is a constant168
that is canceled out when comparing models. The effective number of parameters (pD) is defined as169

pD = D(Θ)−D(Θ),

where D(Θ) is the deviance calculated at the posterior mean of Θ, and D(Θ) is the posterior mean of170
D(Θ). Combining these two, DIC becomes171

DIC = D(Θ) + 2pD.

Models with smaller DICs are preferred.172

WAIC is a relatively recently developed Bayesian model comparison criterion. We used the following173
definition of WAIC (Gelman et al., 2013).174

WAIC = −2×
N∑
i=1

log

(
1

S

S∑
s=1

f(yi|Θ(s))

)
+ 2×

N∑
i=1

V arSs=1l(Θ
(s)),

where S is the number of MCMC iterations, and Θ(s) is a draw from the posterior distribution at the sth175
iteration. Models with smaller WAICs are preferred.176

LOO-CV evaluates the model fit based on an estimate of the log predictive density of the hold-out data.177
Each data point is taken out at a time to cross-validate the model that is fitted based on the remaining data.178
WAIC has been shown to be asymptotically equal to LOO-CV (Watanabe, 2010). Vehtari et al. (2017)179
introduced a method to approximate LOO-CV using Pareto-smoothed importance sampling, and this is180
implemented in the loo package (Vehtari et al., 2019) in R.181

We computed the three model comparison criteria based on marginal likelihoods as recommended in182
Merkle et al. (2019). The traditional GMM has a closed form of the marginal likelihood:183

LN (Θ) =
N∏
i=1

f(yi|β1:G,Ψ1:G, σ
2
1:G,π)

=
N∏
i=1

∑
zi

f(yi, zi|β1:G,Ψ1:G, σ
2
1:G,π)

=
N∏
i=1

G∑
g=1

πgf(yi|βg,Ψg, σ
2
g),

where f(yi|βg,Ψg, σ
2
g) = Φ(yi|Λβg,ΛΨgΛ

′
+ σ2gI), in which Φ(·|µ,Σ) represents a multivariate184

normal density function with mean µ and variance-covariance matrix Σ.185
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The marginal likelihoods of the t-based and median-based GMMs, however, do not have closed forms.186
For the t-based GMM, the marginal likelihood is187

LT (Θ) =
N∏
i=1

f(yi|β1:G,Ψ1:G, σ
2
1:G, ν1:G,π)

=
N∏
i=1

∑
zi

∫
f(yi, ωi, zi|β1:G,Ψ1:G, σ

2
1:G, ν1:G,π)dωi

=
N∏
i=1

G∑
g=1

πg

∫
f(yi|βg,Ψg, ωi, σg)f(ωi|νg)dωi.

For the median-based GMM, the marginal likelihood is188

LM (Θ) =
N∏
i=1

f(yi|β1:G,Ψ1:G, δ1:G,π)

=
N∏
i=1

∑
zi

∫
f(yi, bi, zi|β1:G,Ψ1:G, δ1:G,π)dbi

=
N∏
i=1

G∑
g=1

πg

∫
f(yi|bi, δg)f(bi|βg,Ψg)dbi.

Since
∫
f(yi|βg,Ψg, ωi, σg)f(ωi|νg)dωi and

∫
f(yi|bi, δg)f(bi|βg,Ψg)dbi do not have closed forms, we189

used the integrate function and hcubature function in the cubature package in R (Narasimhan et al., 2020)190
to numerically evaluate the one-dimensional and multidimensional integrals, respectively. Both functions191
provide an estimate with a relative error of the integration. In this study, the error was required to be less192
than 0.0001.193

5 SIMULATION STUDIES
In this section, we evaluated the performance of the three Bayesian model comparison criteria and the194
performance of the three types of growth mixture models in identifying the correct number of latent classes.195
Two simulation studies are presented. In the first study, we examined the performance of DIC, WAIC, and196
LOO-CV used in the traditional GMM, median-based GMM, and t-based GMM when data followed the197
within-class normality assumption. In the second study, we explored the impact of outliers on identifying198
the number of latent classes for each of the growth mixture models to evaluate the performance of the199
median-based GMM and compare it to the performance of the traditional GMM and t-based GMM. For200
both simulation studies, we also obtained parameter estimation bias to examine how well each of the201
growth mixture models recover parameters when the number of latent classes was correctly specified.202
5.1 Study 1: Examining the Performance of Bayesian Model Comparison Criteria203

5.1.1 Simulation design204

In the first simulation study, we report the accuracy of selecting a correct model using DIC, WAIC, and205
LOO-CV. Data were generated using a traditional two-class linear growth mixture model with 4 equally206
spaced time points. Mean trajectories from the two classes were set to have different intercepts and slopes.207
Parameter values for data generating model were set to be similar to those used for the simulation study208
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in Nylund et al. (2007). In Nylund et al., the bootstrap likelihood ratio test (BLRT; McLachlan, 1987)209
and Bayesian information criterion (BIC; Schwarz et al., 1978) identified the correct number of latent210
classes with high accuracy rates. The first class was characterized as having increasing scores over time211
(β1 = (2, 0.5)

′
), and the second class was characterized as a flat line (β2 = (1, 0)

′
). The variance-covariance212

matrix and residual variance were set to be Σ =

(
0.25 0

0 0.04

)
and σ2 = 0.2, and they were assumed213

to be the same across the two latent classes. The two groups of growth trajectories in this setting have a214
Mahalanobis distance1 (MD) value of 3.2, which indicates that the two groups are well-separated (Lubke215
and Neale, 2006). We also considered a condition with a lower degree of class separation by manipulating216
the intercept of the first class, β1 = (1.5, 0.5)

′
, which had MD = 2.7. Mixing proportions were set to be217

unbalanced: 75% from the first class and 25% from the second class. Two different sample sizes were218
considered (N=300, 500). Figure 1 depicts some examples of simulated individual growth trajectories219
when MD = 2.7 (left panel) and MD = 3.2 (right panel). For each of the conditions, we replicated 200220
datasets.221
5.1.2 Estimation222

In order to evaluate the three model comparison criteria in identifying the correct number of latent223
classes, we fitted a series of growth mixture models that differed in the number of latent classes (one, two,224
and three classes). For the purpose of comparison, three different growth mixture modeling approaches225
were considered: traditional GMM, median-based GMM, and t-based GMM. The following priors were226
used for model inferences: p(βg) = MN(0, 103 × I) for g ∈ {1, 2, 3}, p(Ψ) = InvWishart(2, I2),227
p(σ2) = InvGamma(.01, .01), p(ν) = Exp(0.1), and p(π) ∼ Dirichlet(10jG), where G is the number228
of latent classes, and jG is a G × 1 vector that has 1 for all components for G > 1. These priors were229
set to have little information about the parameters. The total number of iterations was 10, 000, and the230
first half of the iterations were discarded for burn-in. The convergence of Markov chains was evaluated231
by the Geweke’s convergence test (Geweke, 1991). Our simulation results were summarized based on232
replications in which all the three models (one-, two-, and three-class models) were converged for each233
modeling method. The convergence of chains can be influenced by starting values. The 10, 000 iterations234
appeared to be enough, but we allowed each model to be fitted with 10 different starting values at most to235
obtain converged results. Additionally, the parameter space for the mean intercept was constrained in order236
to avoid label switching problems.237
5.1.3 Results238

The proportion of datasets that converged for each condition is shown in Table 1. All models showed239
adequate convergence rates in all conditions with rates ranging from 0.97 to 1.00 for the traditional GMM,240
0.93 to 1.00 for the median-based GMM, and 0.95 to 1.00 for the t-based GMM.241

For each condition, model comparison was examined using DIC, WAIC, and LOO-CV for the traditional,242
median-based, and t-based GMMs. We compared values across one-, two-, and three-class models and243
selected the most preferred model using each of the criteria. For DIC, a model with a smaller DIC was244
preferred over the other competing parsimonious models if the difference in their DIC values were larger245
than 10 (Lunn et al., 2012). For WAIC and LOO-CV, the loo package provides a function for comparing246
competing models. When comparing two models, the function estimates the difference in their expected247
predictive accuracy and the standard error of the difference, which provides the degree of uncertainty in the248
difference. We selected models based on the differences that are significantly different from 0.249

1 Mahalanobis distance was calculated as MD =
√

(µ1 − µ2)T Σ−1(µ1 − µ2), where µ1and µ2 represents the mean of the first and second latent classes,
respectively, and Σ is the common variance-covariance matrix of latent factors.
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The model selection results are shown in Table 2. In general, the performance of DIC, WAIC, and250
LOO-CV were influenced by the degree of class separation and sample size. All three criteria had quite251
high proportions of correct model selection when the degree of class separation was high (i.e., MD = 3.2)252
or sample size was large (i.e., N=500). Under the conditions with MD = 3.2, the three criteria performed253
well in correctly discovering the two-class model across the three types of growth mixture models. The254
three criteria chose the correct model over 98% of the time for the traditional GMM, over 94% of the time255
for the median-based GMM, and over 97% of the time for the t-based GMM. Under the conditions with256
MD = 2.7, DIC had higher selection accuracy than WAIC and LOO-CV across the three different growth257
mixture models. For example, when sample size was 300, DIC preferred the data generating two-class258
model about 40% of the time, and WAIC and LOO-CV preferred the two-class model less than 30% of the259
time.260

Figure 2 presents the magnitude of absolute bias in the intercept and slope parameter estimates for each261
of the growth mixture models when the number of latent classes was the same as the data generating model.262
We calculated absolute bias for each model parameter, and Figure 2 shows the absolute bias that averaged263
over fixed parameters to compare the parameter estimates for the three types of growth mixture models.264
When data followed the within-class normality assumption, the three types of growth mixture models265
had similar bias values. All three models tended to have smaller bias when there was a higher degree of266
latent class separation (i.e., MD = 3.2) or a larger sample size (i.e., N=500). Note that the performance of267
variance-covariance components also had similar patterns of absolute bias.268 5.2 Study 2: Examining the Impact of Outliers on Class Enumeration269

5.2.1 Simulation Design270

In the first simulation study, we presented the performance of the three Bayesian model comparison271
criteria when data were generated from a normal distribution within each class. The results showed that272
the performance of the criteria depended on the degree of latent class separation and sample size. When273
latent classes were well separated (i.e., conditions with MD = 3.2), the three criteria selected the true274
model with high proportions. In Study 2, we designed our simulation study based on the conditions with275
MD = 3.2, so that we can clearly examine how outliers influence class enumeration. In this simulation276
study, we manipulated sample size (N=300, 500) and percentage of outliers (5%, 10%, and 15%). The other277
aspects of the simulation design (population model, parameter values, and mixing proportions) were the278
same as those in Study 1. Subjects in the first latent class were set to have outliers for simplicity. In order to279
generate data with outliers, r% (r ∈ {5, 10, 15}) of subjects in the first latent class were randomly selected280
to have outliers at arbitrarily selected measurement occasions. The outliers were set to be higher than281
the majority of observations by generating measurement errors from N(Cσ, σ2), where C was randomly282
selected from {3, 5, 10} with probabilities 0.4, 0.4, and 0.2, respectively. We considered 200 replications283
for each condition.284

For each dataset, we fitted a series of growth mixture models that differed in the number of latent classes285
(one-, two-, and three-latent classes) using the traditional GMM, median-based GMM, and t-based GMM.286
The prior specification and model estimation for this study were in the same way as those described in287
Study 1.288 5.2.2 Results289

The proportion of datasets that converged for each condition is shown in Table 3. The three types of290
growth mixture models showed adequate convergence rates when the number of latent classes was 1 or291
2. For the three-class growth mixture model, the traditional GMM had lower convergence rates when the292
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percentage of outliers increased. The t-based and median-based GMM had convergence rates over .97293
across all conditions.294

Tables 4 and 5 show the impact of outliers on class enumeration for the three types of growth mixture295
models. The proportions of selecting 1-class, 2-class, and 3-class models using DIC, WAIC, and LOO-CV296
are reported for the traditional GMM, median-based GMM, and t-based GMM across all conditions. In the297
traditional GMM, the model selection accuracy was the lowest among the three models. Different from the298
other growth mixture models, WAIC and LOO-CV performed better than DIC in model selection (except299
for the condition with N=300 and 5% of outliers). When the percentage of outliers increased, the accuracy300
dropped noticeably. When the percentage of outliers was 15, WAIC and LOO-CV preferred the two-class301
model only in about 40% of the time for the traditional GMM. When N=500, in particular, the traditional302
GMM tended to select the more complicated 3-class model, treating outliers as from an additional class.303
In the median-based GMM, the accuracy slightly decreased as the percentage of outliers increased, and304
the accuracy increased as the sample size increased. DIC had higher accuracy than WAIC and LOO-CV.305
DIC preferred the two-class model in at least 87% of the time when sample size was 300 and at least 94%306
of the time when sample size was 500. The t-based GMM had similar patterns of accuracy to those for307
the median-based GMM, but the t-based GMM had higher values. Similar to the median-based GMM,308
DIC outperformed WAIC and LOO-CV, and DIC preferred the two-class model in at least 96% of the time309
when sample size was 300 and in almost all replications when sample size was 500.310

Figure 3 presents the magnitude of absolute bias in the intercept and slope parameter estimates for all311
conditions when the number of latent classes was the same as the data generating model. The absolute bias312
values in Figure 3 were obtained in the way described in Study 1. The results for the conditions without313
outliers (i.e., r0) were included in this figure as a benchmark. As the percentage of outliers increased, the314
absolute bias for the traditional GMM clearly increased. The median-based and t-based GMMs also had315
the increasing trend as the percentage of outliers increased, but the magnitude was minor compared to the316
traditional GMM. The t-based GMM appeared to have a slightly higher bias than the median-based GMM317
when data contained outliers. The estimation results for the variance-covariance components had similar318
patterns.319

6 CONCLUSIONS AND DISCUSSION
Identifying the correct number of latent classes is one of the important tasks in growth mixture modeling320
analysis. It is well known that traditional growth mixture models do not perform well when data do not321
follow a normal distribution within each class. It may provide biased parameter estimates and detect spurious322
latent classes that do not have any substantive meanings. In this article, we evaluated the performance of323
median-based GMM in identifying the correct number of latent classes and compared it to the performance324
of traditional GMM and t-based GMM. The median-based GMM is known to be robust to nonnormal325
data, but there had been little known about how it determined the number of latent classes. We focused on326
situations in which data were contaminated by outliers and compared the performance of the three types of327
growth mixture models in identifying the number of latent classes. We used Bayesian methods for this study,328
and the number of latent classes was determined by DIC, WAIC, and LOO-CV. When data satisfied the329
normality assumption, the three growth mixture models had similar performance. Model selection accuracy330
was influenced by the magnitude of class separation and sample size. DIC appeared to have slightly higher331
accuracy than WAIC and LOO-CV, especially under the lower level of class separation. When data had332
outliers, class enumeration in the traditional GMM was greatly affected, and the model selection accuracy333
dropped as the proportion of outliers increased. In this particular situation, WAIC and LOO-CV tended334
to have higher accuracy than DIC. In the median-based GMM, DIC had higher accuracy than WAIC and335
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LOO-CV. The median-based GMM also had accuracy that slightly decreased as the proportion of outliers336
increased or sample size decreased, but the accuracy was still high (e.g., above .87 by DIC across all337
conditions). The t-based GMM had slightly higher accuracy than the median-based GMM as the proportion338
of outliers increased, but the difference in accuracy decreased as sample size increased.339

Finite mixture modeling is mainly used for two purposes: one is to identify latent groups of individuals340
that have qualitatively distinct features, and the other is to approximate a complicated distribution (Bauer341
and Curran, 2003; Gelman et al., 2013; Titterington et al., 1985). In our simulation study with outlying342
observations, it may be reasonable that the model comparison criteria used in the traditional GMM preferred343
the three-class model over the two-class model (the data generating model) to accommodate extreme344
values, especially when there were a large sample size (i.e., N=500) and a high percentage of outliers (i.e.,345
15%). This behavior of traditional GMM is well documented in other studies (e.g., Bauer and Curran, 2003;346
Guerra-Peña and Steinley, 2016; Muthén and Asparouhov, 2015). In practice, however, researchers often347
conduct a growth mixture modeling analysis to discover meaningful latent classes, rather than discovering348
latent classes just to approximate data. In such case, using a traditional GMM may confuse researchers in349
determining the number of latent classes and interpretation of results. Additionally, if a relatively large350
number of observations (e.g., 15% when sample size is 500) were generated from a distribution that is351
different from the rest of the data, this portion of data would be fair to form a separate class. Outliers in our352
simulation study, however, were randomly generated from three different distributions rather than just one353
distribution. In reality, outliers may be purely random numbers independently generated from different354
distributions, and it would not be able to treat them as a separate class.355

Both the median-based GMM and t-based GMM had high model selection accuracy when outliers exist356
in data. The t-based GMM had slightly higher accuracy than the median-based GMM, but the average357
absolute bias of intercept and slope parameter estimates for the t-based GMM was also slightly higher than358
the median-based GMM. This study focused on situations in which nonnormality was caused by outliers359
in measurement errors. Although robust methods based on Student’s t distributions may break down for360
skewed data, they typically perform well for data with outliers (Zhang et al. 2013). Median-based GMM is361
expected to perform well for other types of nonnormal data. We additionally investigated the relationship362
between class membership recovery and the proportion of outliers using the data generating model to363
examine whether the proportion of outliers influenced the class membership recovery and, consequently,364
parameter estimation. Given the well-separated latent classes in Study 2, the class recovery rates for the365
three types of GMMs were quite high. The recovery rate for the traditional GMM appeared to be influenced366
by the proportion of outliers (ranged from 88.1% to 93.9%). The median-based and t-based GMMs had367
similar class recovery rates (approximately .94) across all conditions. These results suggest that the bias is368
more likely to be associated with how each model handles outlying observations. It is worth evaluating369
both t- and median-based GMMs under various types of nonnormal data and providing general guidelines370
for robust growth mixture modeling analysis.371

This study used marginal likelihoods to calculate DIC, WAIC, and LOO-CV. In a Bayesian latent variable372
modeling analysis, the conditional likelihood is relatively easier to obtain than the marginal likelihood373
because it does not require integration and is readily available in many Bayesian software programs, such374
as JAGS, OpenBUGS, and Stan. However, in recent studies (e.g., Merkle et al., 2019; Zhang et al., 2019),375
it is reported that employing the conditional likelihood in model selection can be misleading. Merkle et al.376
(2019) recommended use of marginal likelihood based information criteria in Bayesian latent variable377
analysis. In our pilot study with conditional likelihoods, DIC, WAIC, and LOO-CV performed poorly in378
model selection compared to their marginal likelihood counterparts. There are no systematic evaluations379
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about the performance of conditional likelihood based information criteria and marginal likelihood based380
information criteria in Bayesian growth mixture modeling. This topic will be further investigated in our381
future research.382

This article shows that median-based GMM has many advantages over traditional GMM not only in model383
estimation, but also in model selection. This study also compared the performance of the median-based384
GMM with t-based GMM, which is also known to be a robust approach to growth mixture modeling.385
Although the t-based GMM had higher model selection accuracy when data had outliers, the median-based386
GMM also achieved satisfying accuracy, especially when the model selection was evaluated by DIC.387
Additionally, the median-based GMM appeared to be slightly better in parameter estimation. In conclusion,388
we recommend the median-based GMM for growth mixture modeling analysis as it provides stable class389
enumeration, robust parameter estimates, and straightforward interpretation.390
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TABLES

Table 1. Proportion of Converged Datasets
Separation Sample size Model G=1 G=2 G=3
MD=2.7 300 Traditional 1.00 1.00 0.99

Median 1.00 1.00 0.93
t 1.00 0.96 0.96

500 Traditional 1.00 1.00 0.97
Median 1.00 0.98 0.96

t 0.99 0.98 0.95
MD=3.2 300 Traditional 1.00 1.00 1.00

Median 1.00 1.00 0.98
t 1.00 1.00 0.99

500 Traditional 1.00 1.00 1.00
Median 1.00 1.00 1.00

t 1.00 1.00 0.96
Note. Traditional represents the traditional GMM; Median represents the median-based GMM; t represents
the t-based GMM; G represents the total number of latent classes.
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Table 2. Proportion for Selecting 1-class, 2-class, and 3-class Models Using DIC, WAIC, and LOO-CV
DIC

MD=2.7 MD=3.2
N 300 500 300 500
G 1 2 3 1 2 3 1 2 3 1 2 3

Traditional 0.60 0.39 0.01 0.13 0.87 0.00 0.01 0.99 0.00 0.00 1.00 0.00
Median 0.59 0.39 0.01 0.12 0.86 0.02 0.03 0.97 0.01 0.00 1.00 0.00

t 0.59 0.40 0.01 0.14 0.85 0.01 0.01 0.99 0.00 0.00 1.00 0.00
WAIC

MD=2.7 MD=3.2
N 300 500 300 500
G 1 2 3 1 2 3 1 2 3 1 2 3

Traditional 0.67 0.24 0.09 0.22 0.75 0.04 0.02 0.98 0.00 0.00 0.99 0.01
Median 0.59 0.29 0.12 0.14 0.77 0.09 0.04 0.95 0.01 0.00 0.95 0.05

t 0.65 0.25 0.10 0.21 0.74 0.05 0.02 0.98 0.00 0.00 1.00 0.00
LOO-CV

MD=2.7 MD=3.2
N 300 500 300 500
G 1 2 3 1 2 3 1 2 3 1 2 3

Traditional 0.67 0.24 0.09 0.21 0.75 0.04 0.02 0.98 0.00 0.00 0.99 0.01
Median 0.65 0.24 0.11 0.19 0.74 0.07 0.06 0.94 0.01 0.00 0.95 0.05

t 0.65 0.25 0.10 0.21 0.74 0.05 0.02 0.98 0.00 0.00 1.00 0.00
Note. Traditional represents the traditional GMM; Median represents the median-based GMM; t represents
the t-based GMM; G represents the total number of latent classes; The numbers in bold represent the
proportions of times that the true number of latent classes was selected.
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Table 3. Proportion of Converged Datasets
Sample size Outlier Model G=1 G=2 G=3

300 5% Traditional 1.00 1.00 0.99
Median 1.00 1.00 0.98

t 1.00 1.00 0.98
10% Traditional 1.00 1.00 0.90

Median 1.00 0.99 0.99
t 1.00 1.00 1.00

15% Traditional 1.00 0.95 0.84
Median 1.00 1.00 0.97

t 1.00 1.00 0.98
500 5% Traditional 1.00 1.00 0.96

Median 1.00 1.00 0.98
t 1.00 1.00 0.98

10% Traditional 1.00 1.00 0.88
Median 0.99 0.99 0.97

t 1.00 1.00 1.00
15% Traditional 1.00 0.98 0.64

Median 1.00 1.00 0.98
t 1.00 1.00 0.98

Note. Traditional represents the traditional GMM; Median represents the median-based GMM; t represents
the t-based GMM; G represents the total number of latent classes.
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Table 4. Proportion for Selecting 1-class, 2-class, and 3-class Models Using DIC, WAIC, and LOO-CV
When N=300

DIC
Outlier 5% 10% 15%

G 1 2 3 1 2 3 1 2 3
Traditional 0.10 0.75 0.15 0.23 0.46 0.31 0.27 0.23 0.51

Median 0.04 0.95 0.01 0.08 0.90 0.02 0.10 0.87 0.03
t 0.01 0.99 0.00 0.03 0.97 0.00 0.04 0.96 0.00

WAIC
Outlier 5% 10% 15%

G 1 2 3 1 2 3 1 2 3
Traditional 0.36 0.63 0.01 0.44 0.49 0.08 0.41 0.38 0.20

Median 0.09 0.86 0.05 0.21 0.72 0.07 0.24 0.71 0.05
t 0.06 0.93 0.01 0.07 0.90 0.03 0.09 0.91 0.00

LOO-CV
Outlier 5% 10% 15%

G 1 2 3 1 2 3 1 2 3
Traditional 0.36 0.63 0.01 0.45 0.46 0.08 0.41 0.40 0.20

Median 0.12 0.84 0.04 0.25 0.71 0.04 0.28 0.69 0.03
t 0.06 0.94 0.01 0.08 0.90 0.03 0.09 0.91 0.00

Note. Traditional represents the traditional GMM; Median represents the median-based GMM; t represents
the t-based GMM; G represents the total number of latent classes; Outliers represents the percentage of
outliers; The numbers in bold represent the proportions of times that the true number of latent classes was
selected.
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Table 5. Proportion for Selecting 1-class, 2-class, and 3-class Models Using DIC, WAIC, and LOO-CV
When N=500

DIC
Outlier 5% 10% 15%

G 1 2 3 1 2 3 1 2 3
Traditional 0.00 0.70 0.30 0.03 0.29 0.67 0.03 0.06 0.91

Median 0.00 1.00 0.00 0.00 0.98 0.02 0.00 0.94 0.06
t 0.00 1.00 0.00 0.00 0.99 0.01 0.00 1.00 0.00

WAIC
Outlier 5% 10% 15%

G 1 2 3 1 2 3 1 2 3
Traditional 0.08 0.90 0.02 0.11 0.62 0.26 0.03 0.39 0.58

Median 0.00 0.92 0.08 0.02 0.88 0.09 0.06 0.85 0.09
t 0.00 1.00 0.00 0.00 0.99 0.01 0.00 0.99 0.01

LOO-CV
Outlier 5% 10% 15%

G 1 2 3 1 2 3 1 2 3
Traditional 0.07 0.91 0.02 0.11 0.63 0.26 0.03 0.39 0.57

Median 0.01 0.93 0.06 0.03 0.89 0.08 0.09 0.84 0.08
t 0.00 1.00 0.00 0.00 0.99 0.01 0.00 0.99 0.01

Note. Traditional represents the traditional GMM; Median represents the median-based GMM; t represents
the t-based GMM; G represents the total number of latent classes; Outliers represents the proportion of
outliers; The numbers in bold represent the proportions of times that the true number of latent classes was
selected.
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Figure 1. Examples of simulated 300 individual growth trajectories from two groups that are relatively
close to each other (MD = 2.7, left panel) and two groups that are relatively far away from each other
(MD = 3.2, right panel). For each panel, the red dashed line indicates the growth trajectory for the first
class and the blue solid line indicates the growth trajectory for the second class.

Figure 2. Average absolute bias for the traditional, the median-based, and the t-based GMM in conditions
with varied degrees of latent class separation and sample sizes.
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Figure 3. Average absolute bias for the traditional, the median-based, and the t-based GMM in conditions
with varied proportions of outliers and sample sizes.
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