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Abstract

Bayesian nonparametric (BNP) modeling has been developed and proven to be a powerful tool to

analyze messy data with complex structures. Despite the increasing popularity of BNP modeling,

it also faces challenges. One challenge is the estimation of the precision parameter in the

Dirichlet process mixtures. In this study, we focus on a BNP growth curve model and investigate

how noninformative prior, weakly informative prior, accurate informative prior, and inaccurate

informative prior affect the model convergence, parameter estimation, and computation time. A

simulation study has been conducted. We conclude that the noninformative prior for the precision

parameter is less preferred because it yields a much lower convergence rate, and growth curve

parameter estimates are not sensitive to informative priors.

Keywords: Nonparametric Bayesian modeling, Growth curve modeling, Robust method,

Dirichlet process mixture, Precision parameter prior.
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Assessing the Impact of Precision Parameter Prior in Bayesian Nonparametric Growth Curve

Modeling

Bayesian nonparametric (BNP) modeling, also called semiparametric Bayesian modeling in

the literature, has been recognized as a valuable data analytical technique due to its great

flexibility and adaptivity (e.g., Gershman & Blei, 2012; Müller & Mitra, 2004). It is rapidly

gaining popularity among methodologists and practitioners and has been applied to a variety of

models including regressions, latent variable models with complex structures, sequential models,

etc. BNP models are on an infinite dimensional parameter space and the complexity of the models

adapts to the data. One of the most popular BNP models is Dirichlet process (DP) mixtures.

Being able to adapt the number of latent classes to the complexity of the data, DP mixtures are

powerful in modeling empirical data. However, they also face technical challenges. One

challenge is the estimation of the precision parameter in the DP mixture. In this study, we focus

on the prior of precision parameter and investigate how it affects model convergence, parameter

estimation, and computation time in BNP growth curve modeling.

Growth curve models are broadly used in longitudinal research (e.g., McArdle &

Nesselroade, 2014; Meredith & Tisak, 1990). Many popular longitudinal models in social and

behavioral sciences, such as multilevel models, some mixed-effects models, and linear

hierarchical models, can be written as a form of growth curve models. In growth curve models,

dependent variables are repeatedly measured and explained as a function of time and possible

control variables. The mean function between the dependent variables and time is the mean

growth. Random effects and measurement errors cause the individual growth trajectories to

deviate from the mean growth curve. Traditional growth curve modeling is typically based on the

normality assumption. That is, both the random effects and measurement errors are assumed to

follow normal distributions. However, empirical data often violate the normality assumption

(Cain et al., 2017; Micceri, 1989). Nonnormal population distributions and data contamination

are two common causes of nonnormality. Although standard errors and test statistics have been

corrected to reduce the adverse effect of distributional assumption violation (e.g., Chou et al.,
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1991; Curran et al., 1996), normal-distribution-based maximum likelihood estimation may still

yield inefficient or inaccurate parameter estimates, and thus misleading statistical inferences (e.g.,

Maronna et al., 2006; Yuan & Bentler, 2001). Therefore, researchers have developed robust

methods to obtain accurate parameter estimation and statistical inference.

The ideas of robust methods can be divided into two types. For the first type, the key idea is

to downweight extreme cases. To do so, this type of robust methods assign a weight to each

subject in a dataset according to its distance from the center of the majority of the data (e.g.,

Pendergast & Broffitt, 1985; Silvapulle, 1992; Singer & Sen, 1986; Yuan & Bentler, 1998; Zhong

& Yuan, 2010). For the second type, the key idea is to use nonnormal distributions that are

mathematically tractable while building the statistical model. For example, latent variables and/or

measurement errors are assumed to follow a t or skew-t distribution (Tong & Zhang, 2012;

Zhang, 2016) or a mixture of certain distributions (Muthén & Shedden, 1999; Lu & Zhang, 2014).

While being useful, these methods have limitations under certain conditions. For example, the

downweighting method does not perform well when latent variables contain extreme scores (see

Zhong & Yuan, 2011). Using a t distribution or a mixture of normal distributions still imposes

restrictions on the shape of the data distribution.

The aforementioned issues are automatically resolved by BNP methods. BNP modeling

relies on a building block, Dirichlet process (DP), to handle the nonnormality issue. DP is a

distribution over probability measures that can be used to estimate unknown distributions.

Consequently, the nonnormality issue can be addressed by directly estimating the unknown

random distributions of latent variables or measurement errors (i.e., obtaining the posteriors of the

distributions).

The advantages of using BNP methods with DP priors have been discussed in the literature

(e.g., Fahrmeir & Raach, 2007; Ghosal et al., 1999; Hjort, 2003; Hjort et al., 2010; Müller &

Mitra, 2004; MacEachern, 1999). They do not constrain models to a specific parametric form

which may limit the scope and type of statistical inferences in many situations, especially when

data are not normally distributed. Thus, a typical motivation of using BNP methods is that one is
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unwilling to make somewhat arbitrary and unverified assumptions for latent variables or error

distributions as in the parametric modeling. Meanwhile, BNP methods can provide full

probability models for the data-generating process and lead to analytically tractable posterior

distributions.

BNP methods have been applied to complex models. For example, Bush and MacEachern

(1996), Kleinman and Ibrahim (1998), and Brown and Ibrahim (2003) used DP mixtures to

handle nonnormal random effects. Burr and Doss (2005) used a conditional DP to handle

heterogeneous effect sizes in the context of meta-analysis. Ansari and Iyengar (2006) included

Dirichlet components to build a semiparametric recurrent choice model. Dunson (2006) used

dynamic mixtures of DP to estimate the varied distributions of a latent variable which change

nonparametrically across groups. Si and Reiter (2013) and Si, et al. (2015) used DP mixtures of

multinomial distributions for categorical data with missing values. BNP approach has also been

adapted to structural equation modeling to relax the normality assumption of the latent variables

(e.g., Lee et al., 2008; Yang & Dunson, 2010). Tong and Zhang (2019) directly used a DP mixture

to model nonnormal data in growth curve modeling.

Although the application of BNP modeling has increased dramatically since the theoretical

properties of BNP methods were better understood and their computational hurdles were removed

(e.g., Neal, 2000), BNP modeling is still unfamiliar to the majority of researchers in social and

behavioral sciences. Additionally, there are technical issues that have not yet been fully addressed

(Sharif-Razavian & Zollmann, 2009). The convergence issue is one of such unanswered

questions. Nonconvergence can occur when BNP method is applied to complex models. Tong and

Zhang (2019) found that nonconvergence was largely caused by the precision parameter of the

mixing DP. The precision parameter is a critical hyperparameter that governs the expected

number of mixture components. When a noninformative prior was used for the precision

parameter, nonconvergence occurred or a longer computation time was observed (Tong & Zhang,

2019). Informative priors may help solve this issue. However, only a few studies have noticed and

discussed the effect of the precision parameter in DP mixtures (e.g., Jara et al., 2011; Ohlssen
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et al., 2007; West, 1992). Ishwaran (2000) was among the few that studied the informative prior

for the precision parameter. Ishwaran (2000) suggested to use the Gamma(2, 2) prior to

encourage both small and large values of the precision parameter. In sum, despite its impact on

the model convergence issue, no study has systematically investigated how the prior for the

precision parameter should be specified.

Therefore, in this study, we evaluate and compare noninformative, weakly informative,

accurate informative, and inaccurate informative priors for the precision parameter of DP

mixtures. We study how these priors influence model convergence, model estimation, and

computation time in BNP growth curve modeling. In the next section, we introduce BNP growth

curve modeling. After providing the conditional posterior distribution of the precision parameter,

we use a simulation study to assess the impact of four types of priors for the precision parameter.

Recommendations are provided at the end of the article. We also provide a guideline about the

implementation of BNP growth curve modeling using R (R Core Team, 2019) in the appendix.

Bayesian Nonparametric Growth Curve Modeling

We now introduce a typical growth curve model and a BNP method based on this model.

Consider a longitudinal dataset with N subjects and T measurement occasions. Let

yi = (yi1, . . . , yiT )′ be a T × 1 random vector with yij being a measurement from individual i at

time j (i = 1, . . . , N ; j = 1, . . . , T ). A growth curve model without covariates can be written as

yi = Λbi + ei,

bi = β + ui,

where Λ is a T × q factor loading matrix that determines the growth curves, bi is a q× 1 vector of

random effects, and ei is a vector of measurement errors. The vector of random effects bi varies

around its mean β. The residual vector ui represents the deviation of bi from β. When

Λ =


1 0
1 1
...

...
1 T − 1

 ,bi =
(
Li

Si

)
, and β =

(
βL

βS

)
,



PRECISION PARAMETER PRIOR IN BNP GCM 7

the model is reduced to a linear growth curve model with random intercept Li and random slope

Si. The mean intercept and slope are denoted as βL and βS , respectively.

Traditionally, ei and ui are assumed to follow multivariate normal distributions with mean

vectors of zero and covariance matrices Φ and Ψ, respsectively, so ei ∼MNT (0,Φ) and

ui ∼MNq(0,Ψ). Here MN denotes a multivariate normal distribution and its subscript indicates

its dimension. Measurement errors are often assumed to be uncorrelated with each other and have

equal variances across time. Statistically, this simplification means the covariance matrix of

measurement error Φ is reduced to Φ = σ2
eI where σ2

e is a scale parameter. In linear growth curve

models, ui = (uLi, uSi)′. Its covariance matrix is then Ψ = cov(ui) =
(

σ2
L σLS

σLS σ2
S

)
. Here σ2

L

and σ2
S represent the variances of the random intercept and slope across individuals, respectively,

and σLS represents the covariance between the random intercept and slope.

BNP methods do not make arbitrary distributional assumptions as in the parametric

modeling and thus are more flexible in handling nonnormal data (e.g., Lee et al., 2008; Tong &

Zhang, 2019). Unlike conventional nonparametric methods such as permutation tests, BNP

methods use full probability models to describe the data-generating process and thus can derive

posterior distributions for model parameters.

Within the BNP modeling scope, the parametric distributions of latent variables and

measurement errors in traditional methods are replaced by unknown random distributions. To

estimate these unknown distributions, Dirichlet process is frequently used as the prior (Ferguson,

1973, 1974). Specifically, a random “sample” from a DP is a random distribution. Here we denote

it as G. A DP has two hyperparameters, α and G0. The base distribution, G0, represents the

central tendency or “mean” distribution in the distribution space. The precision parameter, α,

quantifies how far away realizations of G deviate from G0. According to Ferguson (1973), DP is a

conjugate prior that has two desirable properties: (1) a sufficiently large support, and (2)

analytically manageable posterior distributions. Ferguson further derived the posterior of G,

DP (α̃, G̃0). Here α̃ = α +N and

G̃0 = α

α +N
G0 + N

α +N
GN
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with GN being the empirical distribution of the data. Notably, the posterior point estimate of G,

E(G|data) = G̃0, is a weighted average of the base distribution or prior mean G0 and the

empirical distribution or data GN . When α = 0, the posterior point estimate is reduced to the

empirical distribution GN , which is pure nonparametric. When α approaches to infinity, the

posterior point estimate gradually approximates G0, which is parametric. A common practice is to

specify a gamma prior for α, which would yield a posterior estimate that is neither 0 nor infinity.

In BNP growth curve modeling, latent variables and/or measurement errors can be modeled

nonparametrically. In this article, we focus on the distributional assumption of measurement

errors. When the normality of measurement errors is suspected, we assume that ei ∼ Ge where Ge

is an unknown random distribution that is determined by the data. In the BNP framework, DP is

typically adopted to specify Ge. Because the distribution of ei is continuous but DP is essentially

discrete, a DP mixture (DPM) can be used to model the the measurement errors such that

Ge =



D(µ(1)
e ,Φ(1)), with p = p1

D(µ(2)
e ,Φ(2)), with p = p2

...
...

D(µ(k)
e ,Φ(k)), with p = pk

...
...

,

where D represents a predetermined multivariate distribution (e.g., multivariate normal, t,

multinomial, etc.), and µ(k)
e and Φ(k), k = 1, . . . ,∞ are means and covariances of the multivariate

distribution in the kth component with probability pk. Theoretically, given an arbitraty

distriubtional shape, there could be infinite number of mixture components as k goes to infinity.

In practice, a finite number of mixture components often can describe a distribution well and the

number of mixture components is determined by the DP precision parameter α. Smaller α yields

a smaller number of mixture components. If α approaches infinity, there would be N mixture

components, one associated with each subject. Namely, the precision parameter α is an important

parameter that can determine the complexity of the model and how well the model fits the data,
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and thus may affect the convergence of the model. For the intraindividual measurement errors in

the typical linear growth curve model, Tong and Zhang (2019) proposed that

ei|Φi ∼ MNT (0,Φi),

Φi|G ∼ G,

G ∼ DP (α,G0).

That is, the unknown distribution Ge is approximated by a mixture of multivariate normal

distributions where the mixing measure has a Dirichlet process prior, Ge ∼ DPM . The DP prior

DP (α,G0) can be obtained using the truncated stick-breaking construction (e.g., Lunn et al.,

2013; Sethuraman, 1994). Specifically, DP (·) = ∑C
j=1 pjδzj

(·), 1 ≤ C <∞, where C

(1 ≤ C ≤ N,often set at a large number) is a possible maximum number of mixture components,

δzj
(·) denotes a point mass at zj and zj ∼ G0 independently. The random weights pj can be

generated through the following procedure. With q1, q2, . . . , qC ∼ Beta(1, α), define

p
′

j = qj

j−1∏
k=1

(1− qk), j = 1, . . . , C.

Then, pj is obtained by

pj =
p

′
j∑C

k=1 p
′
k

, (1)

to satisfy that
∑C

j=1 pj = 1. In practice, the updating of ei can proceed as in a typical DP mixture

model and its distribution is a infinite mixture distribution 1.

In general, the distribution of ei through the truncated stick-breaking construction is

Ge =



D(µ(1)
e ,Φ(1)), with p = p1

D(µ(2)
e ,Φ(2)), with p = p2

...
...

D(µ(C)
e ,Φ(C)), with p = pC

,

1 In practice, infinite-dimension means finite but unbounded dimension.
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where D represents a predetermined multivariate distribution, µ(j)
e and Φ(j), j = 1, . . . , C are

means and covariances of the multivariate distribution in the jth component, and pj is obtained

using Equation (1). Given that the mean of ei is 0, we constrain
∑C

j=1 pjµ
(j)
e = 0. For simplicity,

in this study, we follow Tong and Zhang (2019) and use multivariate normal distributions for the

mixing components and constrain µ(j)
e to be 0. We use inverse Wishart priors

p(Φ(j)) = IW (n0,W0) for the covariance matrices of the mixture components, Φ(j),

j = 1, . . . , C. Following Lunn et al. (2013, page 294), we fix the shape parameter n0 at a specific

number and assign an inverse Wishart prior to the scale matrix W0. With such a specification, the

measurement error for individual i, ei, has a pk probability of coming from the mixing component

MN(0,Φ(k)). The measurement errors for other individuals may also come from the same

mixing component. Let K denotes the number of mixing components or MN(0,Φ(k)) with

k = 1, . . . , C. In other words, K is the number of latent classes for ei and K can be smaller than

C, K ≤ C. Within each class, eis come from the same distribution.

We would like to note that a similar approach to BNP modeling is finite mixture modeling

(FMM). FMM estimates or equivalently approximates an unknown distribution using a mixture of

known distributions. A key difference between FMM and BNP modeling is that the number of

mixture components is treated as known in FMM, whereas this number is treated as unknown and

is freely estimated in BNP modeling. As a result, when FMM is used to handle nonnormality,

additional analyses such as model comparison are needed to determine the unknown number of

mixture components. BNP modeling therefore is believed to have the advantage of being more

objective and data-driven, given that additional analyses such as model comparison that may be

vulnerable to subjectivity are avoided.

Bayesian methods are applied to estimate BNP growth curve models. Bayesian methods are

becoming increasingly popular in recent years because of their flexibility and powerfulness in

estimating models with complex structures (e.g., Lee & Shi, 2000; Lee & Song, 2004; Lee & Xia,

2008; Serang et al., 2015; Zhang et al., 2007; Tong & Zhang, 2012). The key idea of Bayesian

methods is to compute the posterior distributions for model parameters by combining the
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likelihood function and the priors. As introduced previously, β,Φ, and Ψ are the model

parameters in traditional growth curve model. In a BNP growth curve model, β and Ψ remain

model parameters. In contrast, the measurement error covariance matrix Ψ is not directly

estimated. Instead, we obtain ei based on which we can get Φ. Another important parameter in

BNP growth curve modeling is the precision parameter α. Let p(β,Ψ, α) be the joint prior

distribution of model parameters and let L be the likelihood function. The joint posterior

distribution of model parameters is

p(β,Ψ, α|yi) ∝
∫
p(β,Ψ, α)× L db,

where b = (b′
1, . . . ,b

′
N)′ . It is dfficult to solve for this integral in practice. Instead, Markov chain

Monte Carlo (MCMC) methods (e.g., Gibbs sampling; Robert & Casella, 2004) are often used to

obtain parameter estimates and statistical inferences. Specifically, we first derive the conditional

posterior distribution for each of the parameters. We then iteratively draw samples from the

derived conditional posteriors to obtain empirical marginal distributions of the model parameters.

Finally, statistical inferences are made based on the empirical marginal distributions (Geman &

Geman, 1984).

Precision Parameter in BNP Models

The convergence issue in BNP growth curve modeling is likely related to the precision

parameter (Tong & Zhang, 2019). Here, we provide a theoretical discussion on how the prior of

the precision parameter can influence the number of latent classes for ei.

The DP precision parameter α is the key to govern the expected number of latent classes. It

directly determines the distribution of K, the number of latent classes of ei. With a larger K,

measurement errors of different individuals are more likely to have different distributions. West

(1992) found that K asymptotically follows a Poisson distribution

K = 1 + x, x ∼ Poisson (α (γ + logN)) (2)

where γ is Euler’s constant. Several percentiles of the distribution of K are given in Table 1. As
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shown in the table, K increases as α and N increases.

As discussed previously, a gamm prior Gamma(a1, a2) is often used for the hyperparameter

α. Given such a prior, West (1992) derived the posterior of α as a mixture of two gamma densities

α|· ∼ πxGamma(a1 +K, a2 − logx) + (1− πx)Gamma(a1 +K − 1, a2 − logx),

where x is an augmented variable x|· ∼ Beta(α + 1, N) and the weights πx is defined by

πx/(1− πx) = a1 +K − 1
N(a2 − logx) . Although West (1992) also provided an approximation to the

posterior of α, p(α|·) ≈ Gamma(a1 +K − 1, a2 + γ + logN), how good the approximation was

has not been investigated.

A noninformative prior for α seems to be reasonable, especially when the information about

number of latent classes are not available. However, a noninformative prior may cause

nonconvergence of Markov chains. Therefore, it is worth evaluating different priors for the

precision parameter.

A Simulation Study

We now present a simulation study to evaluate the influence of the prior for the precision

parameter in BNP growth curve modeling when data are normally distributed and contain

outliers2. The linear growth curve model in the previous section is used. Measurement errors are

modeled nonparametrically to address the nonnormality. Based on the results of previous studies,

the number of times points (T ), the covariance between the random intercept and slope (σLS), and

the measurement error variance (σ2
e ) have trivial effects on the performance of BNP growth curve

modeling (e.g., Tong & Zhang, 2019). Therefore, we only consider a set of values for these

parameters in this study. We follow the empirical data analysis results in Tong and Zhang (2019)

2 Note that nonnormal data may be caused by nonnormal population distributions or data contaminations. We work

with outliers in this simulation study because BNP methods are essentially infinite mixture modeling procedures.

Generating and dealing with outliers from multiple different distributions are more manageable as we easily know the

true number of underlying classes. It is worth verifying the conclusions of this paper for nonnormal population

distributions in the future.



PRECISION PARAMETER PRIOR IN BNP GCM 13

to select the population parameter values: the fixed effects are fixed at

β = (βL, βS)
′
= (6.2, 0.3)

′
; the number of measurement occation is T = 4; measurement error

variance σ2
e = 0.5; variances of the random intercept and slope are 1 and 0.1, respectively; and the

covariance between the random intercept and slope σLS = 0.

Three potentially influential factors are manipulated in the simulation study, including

sample size, data distribution, and precision parameter prior. First, two sample sizes are

considered, N =200 or 600, representing small and large sample sizes. Second, data are either

normal or containing outliers. When generating outliers, three proportions of outliers are

considered, r% =5%, 10%, or 20%. To generate outliers, we randomly select r% observations at

each measurement occasion and replace them by extreme values. The extreme values are

generated from 10 different distributions with a large mean of Li + Si(j − 1) +mσe where

m ≥ 5 is generated from a truncated Poisson distribution, and a variance of σ2
e which is the same

as that of the normal data. As a result, the true distribution of the data is a mixture of 11

distributions. Outliers generated in this way conform to the definition of outliers (Tong & Zhang,

2017; Yuan & Zhong, 2008). See Figures 1 and 2 in the supplemental document to aid the

understanding of the shape of generated normal data and data with outliers. Third, four priors for

the precision parameter are investigated (see Figure 1): a diffuse prior Gamma(.001, .001), a

weakly informative prior Gamma(2, 2) suggested by Ishwaran (2000), an accurate informative

prior Gamma(100, 100) and an inaccurate informative prior Gamma(10, 100). Gamma(10,100)

is an inaccurate informative prior because its mean is 0.1 and its variance is as small as 0.001.

According to Table 1, the resulting number of latent classes ranges from 1 to 3 whereas the true

number of mixed underlying distribution is 11. For all the other model parameters, conventional

noninformative priors such as those in Zhang et al. (2013) are used. Specifically, fixed effects β

have noninformative diffuse priors N(0, 106). The covariance matrix of the random intercept and

slope Ψ has an inverse-Wishart prior with an identity scale matrix and degrees of freedom being

2.

In each simulation condition, 500 datasets are generated. BNP growth curve modeling is
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applied for each dataset using JAGS with the rjags package in software R (Plummer, 2017; R

Core Team, 2019). The total length of Markov chains is set at 50,000 and the first half of

iterations is the burn-in period. 3 We assess how different priors affect model convergence rate,

parameter estimation, and computation time.

Geweke tests (Geweke, 1991) are used to perform the convergence diagnostics. After the

burn-in period, if parameter values are sampled from the stationary distribution of the chain, the

means of the first and last parts of the Markov chain (by default the first 10% and the last 50%)

should be equal and Geweke’s statistic asymptotically follows a standard normal distribution. A

Markov chain converges when the Geweke’s statistic is between -1.96 and 1.96. If none of the

convergence diagnostics (i.e., Geweke tests) for all model parameters suggest non-convergence,

the model is said to have converged. In each simulation condition, the convergence rate is defined

as the proportion of converged models out of the total 500 generated replications.

For the assessment of model estimation, we obtain the parameter estimate bias, average

standard error (ASE), empirical standard error (ESE), mean squared error (MSE), and coverage

probability (CP) of the 95% highest posterior density (HPD) credible intervals for each parameter

based on converged simulation replications4.

In addition, the estimation time (in seconds) is recorded for each replication. The average

estimation time (AET) is the average of the estimation time for all the converged replications.

All program code and detailed results for the simulation study are available on our GitHub

site: https://github.com/CynthiaXinTong/PrecisionParPrior_BNP_GCM.

3 Multiple lengths of Markov chains were tested before the current setting was selected. The convergence results with

50,000 iterations were about the same as those for longer chains.

4 ASE is the mean estimated standard error across replications. ESE is the standard deviation of the parameter

estimates from all replications. MSE is computed as squared bias plus squared ESE. Posterior credible interval, also

called credible interval, is the Bayesian counterpart of the frequentist confidence interval. A HPD interval is

essentially the narrowest interval on a posterior that covers a given proportion of the probable posterior values.
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Main results

Figure 2 shows the convergence rate for BNP growth curve modeling with different

precision parameter priors when sample size is 200. This figure clearly shows that outliers harm

model convergence. Note that the convergence rate for data with 5% outliers is the lowest. This

may be because a small proportion of outliers (e.g., 5%) creates a steep and high-curvature region

for the Markov chain to enter and thus more difficult to converge. As the outlier proportion

increases, the curvature becomes smoother so the convergence rate is higher. Among the four

studied priors, the noninformative prior for the precision parameter always leads to the lowest

convergence rate, i.e., less than 30% across all the simulation conditions. Informative priors

substantially increase the model convergence rate. Specifically, the convergence rate doubles

when we switch from the noninformative prior to the the weakly informative prior suggested by

Ishwaran (2000) in the condition with normal data. The incremental amount is about 30% of the

original convergence rate in the conditions with outliers. Both accurate informative priors and

inaccurate informative priors lead to higher convergence rates. The importance of using

informative priors is more salient when data are not normal. Note that inaccurate informative

priors yield slightly higher convergence rates than accurate informative priors because the

variance of the inaccurate prior is lower and thus its precision is higher. When N = 600, model

convergence results for BNP growth curve models follow the same pattern, and thus are not

reported here.

For converged replications, we evaluate the impact of precision parameter priors on

parameter estimation and computation time. Results for N = 200 are summarized in Tables 2-5.

The relative performance of the four priors in conditions with a larger sample size (N = 600 ) has

a similar pattern. Detailed results for N = 600 are available in the supplemental document.

From Tables 2-5, we obtain the following findings. First, the estimates of growth curve

parameters (βL, βS, σ
2
L, σ

2
S, σLS, σ

2
e ) are not affected by different priors. Estimation bias, standard

errors, MSE, and coverage probability of the 95% HPD credible interval across different precision

parameter prior conditions are very close to each other, respectively. Note that when outliers exist
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(see Tables 3-5), the true population parameter value of the measurement error variance σ2
e is

unknown. So, bias, MSE, and CP for this parameter cannot be calculated.

Second, the estimation of the hyperparameter α is greatly affected by different priors.

When the noninformative prior is used, the estimated α can be very large (e.g., 28.284 in Table 3)

or small (e.g., 0.019 in Table 5), associating with a large standard error. When Gamma(2, 2) or

Gamma(100, 100) is used, estimated α is almost always close to 1. When Gamma(10, 100) is

used, estimated α is around 0.1. Different α values indicate a different total number of classes K.

In general, a larger α value may yield a larger number of latent classes. Since the estimated α has

a large standard error when the noninformative diffuse prior is used, the corresponding estimated

K can be large or small, too. For the weakly informative and accurate informative priors, the

estimated number of latent classes ranges from 4 to 6 for different data conditions, whereas for

the inaccurate informative prior, the estimated number of latent classes is about 2 or 3. It is

interesting to see that although distinctively different hyperparameter estimates are obtained

leading to different number of latent classes, the estimated growth curve parameters are

essentially similar. This is because although outliers are generated from 10 different distributions,

the 10 different distributions are not separated far apart. With a low class separation, one

distribution may be enough to describe several outliers generated from different distributions.

Thus, even the inaccurate informative prior can yield a precision parameter that is adequate to

model the measurement errors.

Third, BNP growth curve modeling with the inaccurate informative prior Gamma(10, 100)

requires the shortest computation time. This is because the inaccurate informative prior here has

the smallest variance and thus is most “informative” among the four priors.

Fourth, outliers affect the performance of BNP growth curve modeling. When data contain

a large proportion of outliers (e.g., 20%), estimation bias for the average of random intercepts βL

and variance of random intercepts σ2
L are much larger than those when outlier proportion is low.

In addition, outliers influence computation time. It is worth mentioning that it is most time

consuming when the outlier proportion is 5%. A possible reason is that a small proportion of
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outliers creates a steep and high-curvature region for Markov chains to enter and thus takes longer

time to converge. With more outliers, the curvature is smoother so the computation is faster.

Discussion

Restricting to a parametric probability family can delude investigators and falsely make an

illusion of posterior certainty (Müller & Mitra, 2004). On the contrary, BNP methods are adaptive

and powerful to discover complex patterns in real data. Although BNP growth curve modeling

has been proposed, the effect of the precision parameter was not fully studied. In this article, we

have conducted a simulation study to investigate how different types of precision parameter priors

impact the convergence rate, model estimation, and computation time in BNP growth curve

modeling. We found that the noninformative prior suffered from the lowest convergence rates

while the inaccurate informative prior with the smallest prior variance yielded the highest

convergence rates and the fastest computations. Furthermore, we found that the estimation of

growth curve parameters was not affected by the prior of the precision parameter. Based on these

results, we recommend to use informative priors with high precision in practice.

We would like to note that although it seems counterintuitive that the inaccurate informative

prior for the precision parameter performed the best, such findings have been observed in the

literature. For example, Finch and Miller (2019) found that slightly informative priors can be

advantageous in small samples even when these priors are incorrect. Depaoli (2013) showed that

growth mixture model estimations obtained with inaccurate priors were still more accurate than

maximum likelihood or Bayesian estimation with diffuse priors. Zitzmann et al. (2020) explicitly

discussed this issue for small samples. Our simulation results also supported the argument that

the amount of information in the prior can be more important than the accuracy of the prior under

certain circumstances.

We also want to point out that the estimation bias was relatively large in our simulation

study, when compared to that in previous studies (Tong & Zhang, 2019). This is because we

consider much higher outlier proportions. When the outlier proportion is low (i.e., 5%), parameter
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estimates are very close to the true population values. As the outlier proportion increases, the bias

increases. One possible way to improve the performance of BNP growth curve modeling when

the outlier proportion is high is to use a nonnormal base distribution. In our simulation study, for

simplicity, we used normal distributions with zero mean as the mixing components of BNP

modeling. This cannot handle asymmetric nonnormal distributions, which may partly explain the

less satisfactory performance of BNP modeling in the conditions with high outlier proportions.

But BNP methods in general are very flexible. A nonnormal base distribution may overcome this

limitation. While future studies may continue along this path, we want to emphasize that BNP

modeling as in our study still outperforms traditional growth curve modeling and is recommended

to use in general when data are suspected to be nonnormal (Tong & Zhang, 2019) no matter the

nonnormality is caused by nonnormal population distribution or data contamination.

The convergence rate of BNP growth curve modeling was found to be higher in previous

studies, i.e., close to one (Tong & Zhang, 2019). We would like to note that the difference is

likely due to the list of parameters counted during convergence assessment. In Tong and Zhang

(2019), the convergence rate was computed only for growth curve parameters. When only growth

curve parameters are considered, nonconvergence rarely occurred in our study. The major

problem is the precision parameter. As shown in the simulation study, nonconvergence frequently

arose for this parameter (detailed Geweke tests results for each parameter are available on our

GitHub site: https://github.com/CynthiaXinTong/PrecisionParPrior_BNP_GCM). Another

possible reason why convergence rates were relatively low (below 70%) in our simulation is that

Geweke tests often yield lower rates of convergence than other diagnostic methods (e.g., Jang &

Cohen, 2020). However, as pointed out in Jang and Cohen, the pattern of convergence rates for

model comparison was similar for different diagnostic tests. Namely, our conclusions about

which precision parameter priors to use in BNP growth curve modeling will not be affected by the

diagnostic tests. We further discuss the use of Geweke tests in the next paragraph. Notably,

although the non-convergence for the precision parameter seemed not to impact parameter

estimates for the growth curve parameters, such issue may mislead model fit assessment.
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Although model assessment and model comparison methods have been proposed for various

models, samples of different sizes, and data structures (e.g., Celeux et al., 2006), their

performance in BNP analysis has not been studied. Therefore, future studies on how different

precision parameter priors affect model fit assessment are encouraged.

In our study, model convergence diagnostics were conducted using Geweke tests. Although

Geweke tests are commonly used in the Bayesian literature, it is impossible to say with certainty

that a finite sample from an MCMC algorithm is representative of an underlying stationary

distribution and a combination of strategies aiming at evaluating and accelerating MCMC sampler

convergence is recommended (Cowles & Carlin, 1996). For our simulation study, Geweke tests

were relatively easy to systematically implement. In empirical studies, we recommend using

multiple strategies (e.g., trace plots, multiple chains) to check model convergence. In addition,

since Zitzmann and Hecht (2019) pointed out that it is possible that the approximation of the

Bayesian estimates is still not optimal even when a chain converges, we recommend substantive

researchers conducting sensitivity analysis and evaluating how the length of the Markov chains

affects the model estimation results.

Our study echoed the previous literature in that using informative priors may help reduce

computation time in Bayesian modeling. We would like to note that there are other approaches

that can be used to further increase the computation efficiency. For example, Berger et al. (2020)

and Daniels and Kass (1999) proposed shrinkage priors, and Hecht et al. (2020) proposed a model

reformulation approach in which the sample covariance matrix was modeled instead of individual

observations. This latter approach has been applied to the Bayesian continuous-time model

(Hecht & Zitzmann, 2020) as well as the Bayesian STARTS model (Ludtke et al., 2018). Future

research on BNP growth curve modeling could incorporate this approach and other potentially

efficient approaches to reduce computation time.

The employment of BNP growth curve modeling is a field still in its early stage. New

Dirichlet process variants and generalizations are being proposed every year to cater to specific

applications. BNP modeling was only used to handle the nonnormality in intraindividual
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measurement errors in our study. The similar strategy can be used for random effects, such as

random intercepts and slopes. Also, although we worked with balanced data, BNP growth curve

modeling should be able to handle unbalanced data (e.g., individually varying time points).

However, as implied by previous studies (Tong, 2014), the convergence issue may be more

challenging, thereby awaiting future studies.

Appendix. Implementation

To facilitate the application of BNP growth curve modeling, we illustrate how it can be

implemented in free software R using the rjags package (Plummer, 2017; R Core Team, 2019).

First, we specify the model using JAGS code and save it into a text file model.txt.

model{

# Model specification for BNP linear growth curve model

for (i in 1:N){

LS[i,1:2]~dmnorm(muLS[i,1:2], Inv_cov[1:2,1:2])

muLS[i,1]<-bL[1]

muLS[i,2]<-bS[1]

for (t in 1:T){

y[i, t] ~ dnorm(muY[i,t], taue[i])

muY[i,t] <- LS[i,1]+LS[i,2]*(t-1)

}

taue[i] <- taue.mix[groupe[i]]

groupe[i] ~ dcat(pei[])

for (j in 1:C){ ##C is the largest possible #

number of classes, can be set at a large

number, e.g., 20.

ginde[i,j] <- equals(j,groupe[i])

}

}

#Priors for model parameter

for (i in 1:1){
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bL[i] ~ dnorm(0, 1.0E-6)

bS[i] ~ dnorm(0, 1.0E-6)

}

## truncated stick breaking construction

pe[1]<-qe[1]

for (j in 2:C){

pe[j] <- qe[j] * (1 - qe[j - 1]) * pe[j -1 ] / qe

[j - 1]

}

for (j in 1:C){

qe[j] ~dbeta(1, alpha)T(0.0001,0.9999)

pei[j] <- pe[j]/sum(pe[])

taue.mix[j] ~ dgamma(aprece,bprece)

}

##DP precision parameter,4 different priors were used in

#our simulation study

alpha~dgamma(100,100)

aprece <- 2

bprece ~dgamma(2,2)

##total clusters

Ke <- sum(cle[])

for (j in 1:20) {

suminde[j] <- sum(ginde[,j])

cle[j] <- step(suminde[j]-1)

}

Inv_cov[1:2,1:2]~dwish(R[1:2,1:2], 2)

R[1,1]<-1

R[2,2]<-1

R[2,1]<-R[1,2]

R[1,2]<-0

para[1] <- bL[1]

para[2] <- bS[1]
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Cov[1:2,1:2]<-inverse(Inv_cov[1:2,1:2])

para[3] <- Cov[1,1]

para[4] <- Cov[2,2]

para[5] <- Cov[1,2]

for (i in 1:N){

for (t in 1:T){

par[i,t] <- y[i,t]-LS[i,1]-LS[i,2]*(t-1)

}

}

for (t in 1:T){

for(i in 1:N){

err[(t-1)*N+i] <- par[i,t]

}

}

para[6] <- sd(err[])*sd(err[])

para[7] <- Ke

para[8] <- alpha

para[9] <- bprece

}

JAGS has been integrated with the R software environment. To run the above JAGS code in

R, we first install and load the rjags package.

install.packages("rjags")

library(rjags)

Then, we prepare the data, the initial values, and run jags.

##prepare data

data <- read.table(’data.txt’)

N <- nrow(data)

jagsdata <- list(N=N, T=4, C=20, y=as.matrix(data))

##specify initial values
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inits <- list(Inv_cov = structure(.Data = c(1.0,0.0,0.0,10.0), .

Dim = c(2,2)),

alpha = 1.0, bL = c(6.2),bS = c(0.3),bprece = 0.5,".RNG.name" =

"base::Wichmann-Hill", ".RNG.seed" = 115)

#note that we specified the random number generator and the seed

#so our study can be replicated.

##run jags

#save the start time

time0 <- proc.time()

#read the model, burn 25,000 iterations

model <- jags.model(file="model.txt", data=jagsdata, inits=inits,

n.chains = 1, n.adapt=25000)

#run 25,000 iterations after the burn-in priord

model.samples <- coda.samples(model, c("para"), n.iter=25000)

#save results into model.res

model.res <- as.mcmc(do.call(rbind,model.samples))

#obtain the estimation time: end time - start time

time1 <- proc.time()-time0

Finally, we extract the model estimation results from model.res.

#parameter estimates

summary(model.res)

#HPD credible intervals

HPDinterval(model.res)

#geweke tests

geweke.diag(model.res)
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Table 1

Different percentiles (5%, 50%, 95%) of the distribution of the number of clusters K, given

different values of precision parameter α and sample size N

α = 0.1 α = 1 α = 2
5% 50% 95% 5% 50% 95% 5% 50% 95%

N = 200 1 1 3 3 7 11 7 13 19
N = 600 1 2 3 4 8 13 9 15 21
N = 1000 1 2 3 4 8 13 10 16 23
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Table 2

Model estimation for BNP growth curve modeling with different precision parameter priors when

data are normal and N = 200

Prior Est. Bias ASE ESE MSE CP AET
Gamma(0.001, 0.001) βL 6.204 0.004 0.082 0.084 0.007 0.957 539.332

βS 0.301 0.001 0.033 0.032 0.001 0.957 539.332
σ2

L 0.999 -0.001 0.138 0.142 0.020 0.936 539.332
σ2

S 0.118 0.018 0.021 0.018 0.001 0.922 539.332
σLS -0.010 -0.010 0.040 0.034 0.001 0.993 539.332
σ2

e 0.497 -0.003 0.024 0.036 0.001 0.816 539.332
K 2.113 - 0.803 2.331 - - 539.332
α 11.134 - 18.109 104.805 - - 539.332

Gamma(2, 2) βL 6.198 -0.002 0.082 0.080 0.006 0.958 740.331
βS 0.302 0.002 0.033 0.031 0.001 0.965 740.331
σ2

L 1.008 0.008 0.139 0.131 0.017 0.965 740.331
σ2

S 0.118 0.018 0.021 0.018 0.001 0.927 740.331
σLS -0.010 -0.010 0.040 0.034 0.001 0.983 740.331
σ2

e 0.499 -0.001 0.024 0.034 0.001 0.823 740.331
K 4.106 - 2.415 0.776 - - 740.331
α 0.732 - 0.526 0.126 - - 740.331

Gamma(100, 100) βL 6.200 0.000 0.083 0.083 0.007 0.948 1024.509
βS 0.299 -0.001 0.033 0.032 0.001 0.958 1024.509
σ2

L 1.014 0.014 0.139 0.133 0.018 0.967 1024.509
σ2

S 0.117 0.017 0.021 0.018 0.001 0.942 1024.509
σLS -0.010 -0.010 0.040 0.036 0.001 0.976 1024.509
σ2

e 0.499 -0.001 0.024 0.036 0.001 0.827 1024.509
K 5.037 - 1.924 0.407 - - 1024.509
α 0.992 - 0.099 0.004 - - 1024.509

Gamma(10, 100) βL 6.202 0.002 0.082 0.082 0.007 0.945 370.307
βS 0.301 0.001 0.033 0.031 0.001 0.971 370.307
σ2

L 1.001 0.001 0.138 0.129 0.017 0.971 370.307
σ2

S 0.117 0.017 0.021 0.018 0.001 0.942 370.307
σLS -0.012 -0.012 0.040 0.037 0.001 0.974 370.307
σ2

e 0.498 -0.002 0.024 0.035 0.001 0.835 370.307
K 1.981 - 0.874 0.199 - - 370.307
α 0.099 - 0.031 0.001 - - 370.307

Note. Est. = estimate; ASE = average standard error; ESE = empirical standard error; MSE =

mean squared error; CP = coverage probability of the 95% HPD credible interval; AET = average

estimation time.
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Table 3

Model estimation for BNP growth curve modeling with different precision parameter priors when

data contain 5% of outliers and N = 200

Prior Est. Bias ASE ESE MSE CP AET
Gamma(0.001, 0.001) βL 6.300 0.100 0.092 0.083 0.017 0.793 841.706

βS 0.313 0.013 0.037 0.036 0.001 0.948 841.706
σ2

L 1.006 0.006 0.160 0.145 0.021 0.956 841.706
σ2

S 0.118 0.018 0.024 0.017 0.001 0.985 841.706
σLS -0.009 -0.009 0.046 0.044 0.002 0.985 841.706
σ2

e 3.133 - 0.125 0.138 - - 841.706
K 5.184 - 1.189 5.433 - - 841.706
α 28.284 - 51.922 75.124 - - 841.706

Gamma(2, 2) βL 6.311 0.111 0.092 0.088 0.020 0.763 971.782
βS 0.311 0.011 0.037 0.034 0.001 0.957 971.782
σ2

L 1.007 0.007 0.161 0.146 0.021 0.967 971.782
σ2

S 0.117 0.017 0.024 0.018 0.001 0.976 971.782
σLS -0.008 -0.008 0.046 0.041 0.002 0.976 971.782
σ2

e 3.119 - 0.124 0.136 - - 971.782
K 6.515 - 2.905 0.981 - - 971.782
α 1.126 - 0.676 0.171 - - 971.782

Gamma(100, 100) βL 6.298 0.098 0.091 0.090 0.018 0.794 1088.448
βS 0.314 0.014 0.037 0.034 0.001 0.944 1088.448
σ2

L 0.987 -0.013 0.158 0.134 0.018 0.964 1088.448
σ2

S 0.117 0.017 0.024 0.018 0.001 0.976 1088.448
σLS -0.004 -0.004 0.045 0.041 0.002 0.992 1088.448
σ2

e 3.133 - 0.124 0.130 - - 1088.448
K 6.161 - 1.930 0.467 - - 1088.448
α 1.003 - 0.100 0.005 - - 1088.448

Gamma(10, 100) βL 6.311 0.111 0.091 0.090 0.020 0.767 561.074
βS 0.311 0.011 0.037 0.034 0.001 0.952 561.074
σ2

L 0.985 -0.015 0.158 0.144 0.021 0.960 561.074
σ2

S 0.119 0.019 0.024 0.018 0.001 0.964 561.074
σLS -0.009 -0.009 0.046 0.042 0.002 0.968 561.074
σ2

e 3.118 - 0.124 0.136 - - 561.074
K 2.903 - 0.872 0.240 - - 561.074
α 0.103 - 0.032 0.001 - - 561.074

Note. Est. = estimate; ASE = average standard error; ESE = empirical standard error; MSE =

mean squared error; CP = coverage probability of the 95% HPD credible interval; AET = average

estimation time.
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Table 4

Model estimation for BNP growth curve modeling with different precision parameter priors when

data contain 10% of outliers and N = 200

Prior Est. Bias ASE ESE MSE CP AET
Gamma(0.001, 0.001) βL 6.437 0.237 0.103 0.102 0.066 0.348 591.282

βS 0.335 0.035 0.043 0.039 0.003 0.917 591.282
σ2

L 1.018 0.018 0.187 0.173 0.030 0.977 591.282
σ2

S 0.126 0.026 0.028 0.022 0.001 0.917 591.282
σLS -0.007 -0.007 0.053 0.047 0.002 0.977 591.282
σ2

e 5.464 - 0.173 0.180 - - 591.282
K 3.112 - 1.106 1.728 - - 591.282
α 1.041 - 2.885 7.422 - - 591.282

Gamma(2, 2) βL 6.424 0.224 0.103 0.105 0.061 0.426 938.496
βS 0.336 0.036 0.043 0.038 0.003 0.886 938.496
σ2

L 1.020 0.020 0.187 0.174 0.031 0.966 938.496
σ2

S 0.121 0.021 0.027 0.020 0.001 0.970 938.496
σLS -0.008 -0.008 0.053 0.044 0.002 0.979 938.496
σ2

e 5.448 - 0.172 0.171 - - 938.496
K 6.314 - 2.798 0.942 - - 938.496
α 1.090 - 0.652 0.163 - - 938.496

Gamma(100, 100) βL 6.428 0.228 0.104 0.100 0.062 0.398 1045.439
βS 0.332 0.032 0.043 0.040 0.003 0.903 1045.439
σ2

L 1.020 0.020 0.188 0.172 0.030 0.964 1045.439
σ2

S 0.123 0.023 0.027 0.021 0.001 0.961 1045.439
σLS -0.009 -0.009 0.053 0.043 0.002 0.982 1045.439
σ2

e 5.459 - 0.174 0.175 - - 1045.439
K 6.091 - 1.911 0.409 - - 1045.439
α 1.002 - 0.100 0.004 - - 1045.439

Gamma(10, 100) βL 6.426 0.226 0.103 0.102 0.062 0.395 389.282
βS 0.333 0.033 0.043 0.041 0.003 0.897 389.282
σ2

L 1.011 0.011 0.185 0.177 0.032 0.957 389.282
σ2

S 0.123 0.023 0.027 0.021 0.001 0.943 389.282
σLS -0.007 -0.007 0.052 0.045 0.002 0.975 389.282
σ2

e 5.457 - 0.172 0.169 - - 389.282
K 2.935 - 0.878 0.206 - - 389.282
α 0.103 - 0.032 0.001 - - 389.282

Note. Est. = estimate; ASE = average standard error; ESE = empirical standard error; MSE =

mean squared error; CP = coverage probability of the 95% HPD credible interval; AET = average

estimation time.
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Table 5

Model estimation for BNP growth curve modeling with different precision parameter priors when

data contain 20% of outliers and N = 200

Prior Est. Bias ASE ESE MSE CP AET
Gamma(0.001, 0.001) βL 6.890 0.690 0.149 0.120 0.490 0.000 460.170

βS 0.385 0.085 0.061 0.054 0.010 0.735 460.170
σ2

L 1.321 0.321 0.315 0.284 0.183 0.884 460.170
σ2

S 0.141 0.041 0.038 0.027 0.002 0.952 460.170
σLS 0.019 0.019 0.080 0.062 0.004 0.980 460.170
σ2

e 9.238 - 0.242 0.258 - - 460.170
K 2.713 - 0.810 0.307 - - 460.170
α 0.019 - 0.047 0.089 - - 460.170

Gamma(2, 2) βL 6.890 0.690 0.150 0.120 0.490 0.000 949.186
βS 0.381 0.081 0.061 0.052 0.009 0.787 949.186
σ2

L 1.358 0.358 0.321 0.279 0.206 0.879 949.186
σ2

S 0.143 0.043 0.038 0.024 0.002 0.962 949.186
σLS 0.011 0.011 0.082 0.064 0.004 0.983 949.186
σ2

e 9.167 - 0.245 0.265 - - 949.186
K 5.458 - 2.392 0.564 - - 949.186
α 0.941 - 0.566 0.095 - - 949.186

Gamma(100, 100) βL 6.882 0.682 0.149 0.121 0.480 0.000 1056.953
βS 0.381 0.081 0.061 0.054 0.010 0.774 1056.953
σ2

L 1.323 0.323 0.314 0.284 0.185 0.878 1056.953
σ2

S 0.143 0.043 0.038 0.026 0.003 0.944 1056.953
σLS 0.010 0.010 0.081 0.062 0.004 0.981 1056.953
σ2

e 9.172 - 0.243 0.256 - - 1056.953
K 5.695 - 1.811 0.321 - - 1056.953
α 0.998 - 0.099 0.003 - - 1056.953

Gamma(10, 100) βL 6.897 0.697 0.150 0.116 0.499 0.000 391.429
βS 0.379 0.079 0.061 0.052 0.009 0.803 391.429
σ2

L 1.354 0.354 0.319 0.280 0.204 0.861 391.429
σ2

S 0.141 0.041 0.038 0.026 0.002 0.956 391.429
σLS 0.014 0.014 0.081 0.064 0.004 0.980 391.429
σ2

e 9.166 - 0.242 0.255 - - 391.429
K 2.880 - 0.855 0.151 - - 391.429
α 0.103 - 0.032 0.001 - - 391.429

Note. Est. = estimate; ASE = average standard error; ESE = empirical standard error; MSE =

mean squared error; CP = coverage probability of the 95% HPD credible interval; AET = average

estimation time.
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Figure 1. Density curves for the four precision parameter priors used in the simulation study
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Figure 2. Convergence rate for different priors when N = 200


