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Rayleigh–Bénard convection (RBC) and Taylor–Couette flow (TCF) are two paradigmatic
fluid dynamical systems frequently discussed together because of their many
similarities despite their different geometries and forcing. Often these analogies require
approximations, but in the limit of large radii where TCF becomes rotating plane
Couette flow (RPC) exact relations can be established. When the flows are restricted
to two spatial independent variables, there is an exact specification that maps the three
velocity components in RPC to the two velocity components and one temperature field
in RBC. Using this, we deduce several relations between both flows: (i) heat and angular
momentum transport differ by (1 − RΩ), explaining why angular momentum transport
is not symmetric around RΩ = 1/2 even though the relation between Ra, the Rayleigh
number, and RΩ , a non-dimensional measure of the rotation, has this symmetry. This
relationship leads to a predicted value of RΩ that maximizes the angular momentum
transport that agrees remarkably well with existing numerical simulations of the full
three-dimensional system. (ii) One variable in both flows satisfies a maximum principle,
i.e. the fields’ extrema occur at the walls. Accordingly, backflow events in shear flow
cannot occur in this quasi two-dimensional setting. (iii) For free-slip boundary conditions
on the axial and radial velocity components, previous rigorous analysis for RBC implies
that the azimuthal momentum transport in RPC is bounded from above by Re5/6

S , where
ReS is the shear Reynolds number, with a scaling exponent smaller than the anticipated
Re1

S.
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1. Introduction

Rayleigh–Bénard convection (RBC), the buoyancy-driven motion of a fluid heated
from below, and Taylor–Couette flow (TCF) wherein a fluid is sheared between two
rigid differentially rotating cylinders, are paradigms in the physical and engineering
sciences and have been studied extensively to gain insights into turbulence. It has long
been recognized that despite their qualitative differences they share many features, both
physically and mathematically. Indeed, the comparison between RBC and TCF goes back
nearly to the original definition of these canonical fluids problems. As stated in Jeffreys
(1928):

Prof. G. I. Taylor and Major A. R. Low have both suggested to me that there should be an analogy
between the conditions in a layer of liquid heated below and in a liquid between two coaxial
cylinders rotating at different rates.

Jeffreys (1928) considered this analogy in the context of linear stability of the basic
states (pure conduction for RBC and axisymmetric laminar flow for TCF), a line of
reasoning quantified further by Chandrasekhar (1961). Subsequent investigations into
the onset of convective and shear turbulence have led to significant advances in pattern
formation, the mathematical theory of chaotic and nonlinear dynamics, and insight into
the influence and interaction of linear and nonlinear instabilities (Gollub & Swinney 1975;
Ahlers & Behringer 1978; Manneville 2010; Chossat & Iooss 2012).

This analogy was first extended to turbulent flow by Bradshaw (1969), with further
contributions due to Dubrulle & Hersant (2002) and Eckhardt, Grossmann & Lohse
(2007a,b). The basis for these analogies is the identification and comparison of
corresponding quantities between the two systems, such as the total dissipation and global
transport of physically motivated quantities, such as heat or angular momentum. The
similarities between RBC and TCF then lead to relations between the non-dimensional
parameters of the system and allow for direct comparisons of the pertinent physical
quantities. As noted by Brauckmann, Eckhardt & Schumacher (2017) and demonstrated
in direct numerical simulations, the similarity between TCF and RBC gives rise to similar
behaviour not only in the mean properties but also in the fluctuations, indicating that an
even more precise comparison may be possible.

There are profound differences between these two canonical problems as well. In
particular, RBC has a parameter with no correspondence in the TCF or rotating plane
Couette flow (RPC, i.e. the limit of vanishing curvature in TCF) setting, namely the
Prandtl number. The dynamics and analysis of RBC in the large Prandtl number limit –
see, e.g. Doering, Otto & Reznikoff (2006), Otto & Seis (2011) and Whitehead & Doering
(2012) – has no counterpart in TCF or RPC. Physically relevant boundary conditions are
also uniquely identified between convection and shear-driven flows. For the specific case
of two-dimensional (2-D) RBC between free-slip isothermal boundaries, for example,
Whitehead & Doering (2011) showed that the convective heat flux at arbitrary Prandtl
number is bounded above by the Rayleigh number to the 5/12 power, ruling out the
conjectured ‘ultimate’ ∼Ra1/2 scaling in this setting. We can identify a corresponding
situation in RPC under some additional assumptions, where the azimuthal momentum
transport is bounded above by the Reynolds number to the (perhaps unexpected) 5/6
power.

Correspondence between RBC and RPC also extends into the realm of rigorous
mathematical analysis due to the vanishing of all geometric curvature terms in the
limit of TCF approaching RPC (see Dubrulle et al. (2005) for a detailed examination
of this limit). Energy stability of the conductive state in RBC corresponds precisely
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2-D Rayleigh–Bénard and rotating plane Couette flows

(up to the appropriate change of variables) to energy stability of the laminar plane-parallel
solutions of RPC. As an extension of energy stability, the original upper bound analysis
for statistically stationary heat transport in RBC introduced by Howard (1963) transfers
directly via relabelling and rescaling of variables to an upper bound analysis for the
energy dissipation rate in RPC (Busse 1969; Howard 1972). The subsequently developed
background method for producing upper bounds (Doering & Constantin 1992) shares
the same exact correspondence (Doering & Constantin 1994, 1996; Plasting & Kerswell
2003). Both Howard’s approach and the background method are easily adapted to the
cylindrical setting of TCF (Nickerson 1969; Constantin 1994).

The relation between RBC and TCF is complicated by the fact that the rotation in TCF
does not have a corresponding analogy in RBC. The comparison between the two flows
shown in Brauckmann et al. (2017) was, therefore, based on correspondences in mean
transport. Here, we discuss consequences of an exact relation between 2-D RBC and
azimuthally symmetric TCF in the limit of a large cylindrical radius where it becomes
rotating plane Couette flow (RPC) (Nagata 1986; Faisst & Eckhardt 2000; Nagata 2013).
We emphasize at this point that for the geometry and restrictions described below, the
resulting relations are exact, and without approximation. That is to say, the 2-D RBC
system has an exact analogue in 2D3C (2-dimensional, 3-component) RPC, the 2-D TCF
system in the limit of large radii relative to the gap size.

2. Derivation of the relations

Exact relations between TCF and RBC are only possible if the spatial variables are
restricted to two dimensions, as otherwise the number of dependent variables does not
match. In the full three-dimensional (3-D) setting, RBC has three velocity components
and one temperature, while TCF has only three components of velocity (both systems
also have a pressure gradient). Fully 2-D RBC has two components of velocity and a
temperature, while TCF or RPC that is independent of the azimuthal spatial coordinate
will have three components of velocity, with the azimuthal velocity playing the role
of the temperature in RBC. Some historical context for the analogy between RBC and
TCF as well as comments on how it fails in three dimensions are explained in Veronis
(1970). The comparison between the two systems is relatively straightforward (the precise
formulation of the analogy is given in an appendix to Nagata 2013), but for completeness
we repeat the relevant derivation, the main task in the following being to keep track of the
transformations in the dependent and independent variables.

2.1. 2-D Rayleigh–Bénard
For the 2-D Rayleigh–Bénard system, there are two velocity fields and a temperature field.
We take x1 as the spanwise (horizontal) direction and impose periodicity in this direction,
x2 is an additional horizontal direction that is absent in the 2-D case, and x3 points in
the direction of gravity The velocity field then has components u = (u(x1, x3), w(x1, x3))
that are restricted to be incompressible, ∂1u + ∂3w = 0. The boundary conditions on the
velocity field are usually rigid u = w = 0, or free-slip (w = 0 and ∂3u = 0) at the top and
bottom plates. The derivations in this section do not depend on the specific boundary
conditions on u; however, in § 3.3, we will consider free-slip boundary conditions
specifically and the implications on maximal heat transport (figure 1).

The dimensional temperature is T = T(x1, x3) and it satisfies the boundary
conditions T(x3 = 0) = T0 + δT and T(x3 = d) = T0, i.e. the temperature at the
bottom plate is higher by the fixed amount δT . Using the Boussinesq approximation,
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x3

x3

x2

x2

x1

x1

w = 0, T = T0

v = 0,
w = 0v = U,

w = 0

w = 0, T = T0 + δT

(b)(a)

FIGURE 1. (a) The geometry, choice of coordinates, and generic boundary conditions for the
Rayleigh–Bénard set-up (particular boundary conditions on u depend on the physical setting, i.e.
stress-free versus no-slip). (b) The same for Taylor–Couette.

the equations of motion are

∂tu + (u · ∇)u + 1/ρ∂1p = νΔu, (2.1a)

∂tw + (u · ∇)w + 1/ρ∂3p = νΔw + gβT, (2.1b)

∂tT + (u · ∇)T = κΔT, (2.1c)

combined with incompressibility: ∇ · u = 0, where ∇ = (∂1, ∂3), and Δ = ∂2
11 + ∂2

33. The
other variables are the kinematic viscosity ν, the thermal diffusivity κ , the density ρ, the
expansion coefficient β and the gravitational constant g. As mentioned above, x3 = 0 is
the bottom plate and x3 = d the top plate. In the absence of convection, the temperature
displays a linear profile, T0(x3) = δT (1 − (x3/d)). This non-convective buoyancy is
balanced by the pressure field p0(x3) = βgδTx3(1 − (x3/(2d))). We decompose the
full temperature field according to T(x1, x3, t) = T0(x3) + θ(x1, x3, t). Decomposing the
pressure in a similar manner, but using p to now refer to perturbations about the laminar
pressure p0, we can derive the equations for the deviation θ from the diffusive profile:

∂tu + (u · ∇)u + ∂1p = νΔu, (2.2a)

∂tw + (u · ∇)w + ∂3p = νΔw + gβθ, (2.2b)

∂tθ + (u · ∇)θ − δT(w/d) = κΔθ, (2.2c)

coupled with incompressibility for the velocity field.
In RBC, dimensionless variables for temperature, length and time are based on the

temperature difference δT , the height d and the thermal diffusivity κ . Then in the
non-dimensional setting, we have the system:

∂tu + (u · ∇)u + ∂1p = PrΔu, (2.3a)

∂tw + (u · ∇)w + ∂3p = PrΔw + PrRaθ, (2.3b)

∂tθ + (u · ∇)θ = w + Δθ, (2.3c)

again coupled with incompressibility of u, and where the Rayleigh number is given by
Ra = (gβδT d3)/(κν), and the Prandtl number Pr = ν/κ . We now wish to re-scale the
2-D RPC system so that it has the same functional form as these three equations. As we
see, the analogy is exact only when Pr = 1, and if we carefully re-scale the azimuthal
component of the velocity field so that it appears in the same way as the temperature
fluctuations.
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2-D Rayleigh–Bénard and rotating plane Couette flows

2.2. 2D3C plane Couette flow
The full Taylor–Couette system consists of three velocity components that are linked
by incompressibility. In order to split off a temperature-like component, we consider a
restricted geometry where the fields do not depend on the azimuthal spatial coordinate,
and we investigate the limit of large radius relative to the gap size, i.e. the limit of zero
curvature. In this set-up, the azimuthal velocity component decouples and can be re-scaled
to resemble the temperature fluctuations from RBC.

The radial direction in the TCF system is analogous to the gravitational direction in the
RBC system, so that the x3 direction becomes the radial one. The neutral direction for the
flow is the axial one, which, therefore, is referred to as the x1 direction, and in which we
assume the flow to be periodic. Finally, the azimuthal component becomes the x2 direction.
Invariance of the azimuthal position then implies that the velocity field has dependencies
(u(x1, x3), v(x1, x3), w(x1, x3)). In a frame of reference rotating with frequency Ω around
the x1-axis, the system then becomes

∂tu + (u · ∇)u + ∂1p = νΔu, (2.4a)

∂tw + (u · ∇)w + ∂3p = νΔw + 2Ωv, (2.4b)

∂tv + (u · ∇)v = −2Ωw + νΔv, (2.4c)

together with incompressibility, ∂1u + ∂3w = 0.
The domain is bounded by two walls, i.e. the inner and outer cylinders, which we denote

as x3 = 0 and x3 = d, that are parallel to the x1 − x2 plane. Between the plates, there is a
mean shear, maintained by moving the walls at constant speed U in the x2-direction. This
yields the boundary conditions v(x3 = 0) = U and v(x3 = d) = 0, which gives rise to a
linear laminar velocity profile, v(x3) = U(1 − (x3/d)). The typical physically motivated
boundary condition on the other components of velocity is the no-slip condition, meaning
that the other components of the velocity field vanish identically at these walls. In § 3.3,
we discuss the effect of considering a slippery boundary for v and w, a condition that is
not as physically relevant but is more conducive to analysis.

As in the case of RBC, we are primarily concerned with deviations v′ from the linear
profile, that is

v(x1, x3, t) = U(1 − (x3/d)) + v′(x1, x3, t), (2.5)

where v′ is the dimensional form of the deviations. The linear part in v is absorbed in
the pressure (compensating the centrifugal forces) as was done for RBC, so that only the
fluctuations remain. The equation for the azimuthal component then becomes

∂tv
′ + (u · ∇)v′ − (U/d)w = −2Ωw + νΔv′. (2.6)

The contribution from the normal velocity has a prefactor proportional to (U − 2Ωd) that
can be absorbed in the azimuthal component v′ with the rescaling

v′ = (U − 2Ωd)θ. (2.7)

Note that this scaling introduces a partial asymmetry between the velocity components
since it affects only one and not all three components. It is, therefore, not reasonable for
the full 3-D system.

The identification of this renormalization of the azimuthal velocity fluctuations to the
variable θ is intentional, as this normalized dependent variable is identified with the
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Rayleigh–Bénard Plane Couette

Corresponding velocities u, w u, w
Temperature and azimuthal velocity θ (U/d − 2Ω)v

Prandtl number Pr 1
Rayleigh, Reynolds, and rotation numbers Ra Re2

SRΩ(1 − RΩ)

Nusselt numbers NuT − 1 (NuS − 1)/(1 − RΩ)

TABLE 1. Exact relations between the azimuthally independent RPC system and 2-D RBC.

temperature fluctuations for the 2-D RBC system described above. With this definition
of θ , the dimensional equation for the azimuthal velocity becomes

∂tθ + (u · ∇)θ = d/w + νΔθ (2.8)

and the evolution of u and w in RPC become

∂tu + (u · ∇)u + ∂1p = νΔu, (2.9a)

∂tw + (u · ∇)w + ∂3p = νΔw + 2Ω((U/d) − 2Ω)θ (2.9b)

Now we introduce dimensionless variables for the rest of the system using the gap d and
the viscosity ν to generate spatial and temporal scales (and, hence, velocity as well), which
give the shear Reynolds number ReS = Ud/ν, and the rotation number, RΩ = 2Ωd/U.
Then the full non-dimensional equations for RPC become

∂tu + (u · ∇)u + ∂1p = Δu, (2.10a)

∂tw + (u · ∇)w + ∂3p = Δw + Re2
SRΩ(1 − RΩ)θ, (2.10b)

∂tθ + (u · ∇)θ = w + Δθ, (2.10c)

which is formally identical to the RBC case identifying Pr = 1 and the Taylor number
Ta with the Rayleigh number, Ra = Re2

SRΩ(1 − RΩ). This derivation did not use the
boundary conditions on the velocity field so that it is valid for both rigid and free-slip
boundary conditions or any mixture thereof.

The exact relationships between the RPC and RBC systems considered here are
summarized in table 1.

3. Consequences of the relation between RPC and RBC

3.1. Heat and momentum transport
The first set of consequences we discuss here stem from the heat and angular momentum
transport, and will be valid for all boundary conditions on the velocity fields u and w. In
RBC, the temperature difference drives convection, which enhances the heat transport
between the plates. The Nusselt number measures the heat transport in units of the
diffusive heat transport, and is computed as NuT = 1 + wθ , where ·̄ refers to an average in
time, and across the x1 direction.

For RPC, the azimuthal momentum transport is derived by averaging the dimensional
equation for the azimuthal velocity in the x1 direction and in time: ∂3wv = 2Ωw̄ + ν∂2

33v̄.
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2-D Rayleigh–Bénard and rotating plane Couette flows

Integrating this once in x3 then gives the momentum current

J = wv − ν∂3v̄ = −ν∂3 v̄|x3=0 , (3.1)

which is independent of the position x3 between the plates. Using the laminar profile and
(2.7) for the azimuthal velocity and dividing J by the linear viscous drag νU/d, one arrives
at the equivalent of the Nusselt number in RPC for the non-dimensional variables

NuS = 1 +
(

1 − 2Ωd
U

)
wθ = 1 + (1 − RΩ) wθ, (3.2)

⇒ NuS(ReS, RΩ) − 1 = (1 − RΩ)(NuT(Ra) − 1). (3.3)

Thus, while the relation between the parameters Ra in RBC and Ta in RPC is symmetric
under the exchange RΩ to 1 − RΩ , the relation between heat and momentum transport is
not. Remarkably, this connection predicts that NuS approaches the laminar value NuS = 1
for RΩ approaching 1, for any value of ReS.

The transport of momentum as a function of rotation number has been studied for
different parameter values in both TCF and RPC. Assuming that the Nusselt number in
RBC follows a scaling law NuT ∼ cRaα with an as yet undetermined exponent α and some
constant c, we can obtain a scaling for NuS in terms of both ReS and RΩ and determine the
maximal RΩ . First, we observe that

NuS − 1 ∼ cRe2α
S Rα

Ω(1 − RΩ)1+α − 1 + RΩ

⇒ NuS ∼ RΩ + cRe2α
S Rα

Ω(1 − RΩ)1+α. (3.4)

For large ReS, the first part can be neglected and the relation reduces to

NuS ∼ c′Rα
Ω(1 − RΩ)1+α, (3.5)

away from RΩ = 0 or RΩ = 1. Maximizing this transport over the rotation rate RΩ (for
ReS � 1) leads to

RΩ,m ∼ α

1 + 2α
. (3.6)

In one conjectured asymptotic regime of thermal convection (Spiegel 1963), it is expected
that α = 1/2 so that the maximal momentum transport would occur for RΩ,m ∼ 1/4.
The Reynolds numbers in numerical simulations and even in experiments are not high
enough to reach this regime, and one resorts to Reynolds number dependent local scaling
exponents. For RPC and ReS = 2 × 104, Salewski & Eckhardt (2015) find a maximum near
RΩ,m ≈ 0.2. The transition from TCF to RPC is discussed in Brauckmann et al. (2016),
where it is shown that the maximum again appears near RΩ,m ≈ 0.2 when the ratio of
the radius of the inner cylinder to that of the outer cylinder is η = 0.99. This amounts to
a ratio of angular velocities of μ = 0.9043, which is remarkably close to μ = 0.9801,
which is the Rayleigh criterion for RΩ = 1 for this value of η. This observation is
further cemented by the recent numerical and experimental results reported in Ezeta et al.
(2020). Both sets of data (for TCF and RPC) are shown in figure 2 (blue symbols). This
agreement with observations is remarkable because the derivation here is valid only for
the 2-D setting with a rescaling of v that violates the natural scaling of the velocity
fields, whereas the reported maxima of RΩ ∼ 0.2 comes from numerical studies of the
full 3-D flow. However, since rotation reduces the transverse components and enhances
the azimuthally invariant parts, Brauckmann et al. (2016) also isolated the contribution of
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FIGURE 2. Nusselt number NuS for TCF and RPC versus rotation number RΩ for ReS = 2 ×
104, redrawn from figure 8( f ) of Brauckmann, Salewski & Eckhardt (2016). The full symbols
are for TCF at radius ratio η = 0.99, the open symbols are for RPC. The blue data are for the
full 3-D flow; they have a broad maximum at RΩ ≈ 0.22, and a narrow one for smaller RΩ of
a different origin (see Salewski & Eckhardt 2015; Brauckmann et al. 2016). The green data are
obtained from the azimuthally invariant 2-D part of the flow. The continuous red line is a fit of
the 2-D part to expression (3.5), with optimal parameters α = 0.26 and c = 37 and a maximum
near RΩ ≈ 0.18, very close to the maximum obtained from (3.6).

the azimuthally invariant 2-D component of the flow, shown in figure 2 as the green data
points. They show a maximum near RΩ ≈ 0.18. Moreover, a fit of the 2-D contributions to
the functional form (3.5) with α = 0.26 approximates these data very well over essentially
the entire range 0 < RΩ < 0.6 for which data are available. This confirms that the 2-D
analysis presented here adequately explains features of the 3-D flow, in this case, the
momentum transport of the azimuthally invariant part of the flow. We note that α = 0.26
is significantly less than either of the prevailing theoretical predictions for turbulent
convection (α = 1/2 and α = 1/3). This may be due to the restriction to azimuthally
invariant parts of the flow (2-D flow, see Whitehead & Doering (2011), for example),
or it may be because ReS = 2 × 104 is not in the asymptotic regime where one of these
expected laws takes hold. In either case, the general form of the fit from (3.5) is remarkably
accurate.

3.2. Mean profiles and the maximum principle
In turbulent RBC flows, one expects the temperature to be well mixed in the interior, so
that the profile consists, to a good approximation, of steep boundary layers near the top and
bottom plates, and a region of constant temperature in the middle. We anticipate the same
behaviour will hold for the azimuthal velocity v relative to the x3 direction. Moreover, since
(2.1c) is an explicit advection–diffusion equation, the temperature satisfies a maximum
principle, i.e. T is bounded by its values at the walls,

T0 ≤ T ≤ T0 + δT, (3.7)
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at any point in the volume. This arises because near a maximum the first derivative
vanishes and the second is negative, so diffusion will act to reduce it. For RBC, this
indicates that heat cannot pile up at the walls beyond that supplied by the boundary
condition. Translated to RPC, the corresponding statement will address the relation
between the downstream velocity and its value at the walls. A velocity field that lies
outside the values provided by the boundary conditions is referred to in the literature as a
backflow event. Existence of such backflow events has been a matter of controversy which
was settled with the explicit demonstration of such events by Lenaers et al. (2012).

To see how the maximum principle applies to RPC, we let v = −2Ωx3 + ṽ, so that
ṽ satisfies the advection–diffusion equation ∂tṽ + (u · ∇)ṽ = νΔṽ. This perturbative
velocity field ṽ satisfies a maximum principle, i.e. its extreme values occur only at x3 = 0
or x3 = d. This can be stated succinctly as 2Ωd ≤ ṽ ≤ U, or 0 ≤ v ≤ U for the original
azimuthal velocity component (assuming a positive U). This implies that in this setting
there is no backflow, i.e. the azimuthal velocity has a constant sign, and events like the ones
observed by Lenaers et al. (2012) cannot occur in 2D3C RPC. It would be of significant
interest to determine if such events can occur for 3-D RPC or even for the full TCF system.
If so, one must question whether these events are present only for full 3-D flows or if the
current restriction in RPC is unique.

3.3. Free-slip boundary conditions
Although the no-slip boundary condition is clearly the physically motivated choice for
TCF, and, hence, for RPC as well, there is still some interest in considering the free-slip
condition, although there is less immediate physical motivation for this. Indeed, Rayleigh
(1916) invoked free-slip conditions for mathematical convenience:

. . . for a further condition we should probably prefer dw/dz = 0 [no-slip], corresponding to
a fixed solid wall. But this entails much complication, and we may content ourselves with the
supposition d2w/dz2 = 0 [free-slip]. . .

Thus, in the interest of reducing such ‘complication’ due to the no-slip condition, we
will consider stress-free (free-slip) boundary conditions on the plates for u and w. As
mentioned previously, this is presented in the form w = 0 and ∂3u = 0 at x3 = 0 and
1. Incompressibility then implies that the vorticity in the x2 direction defined by ω2 =
∂1w − ∂3u vanishes at these boundaries as well. This leads to an enstrophy balance, where
the enstrophy is defined as the square of the L2 norm of ω2, i.e. ‖ω2‖2

2. This restriction
which we consider in this section only, does not reflect on any other aspect of the system
as described above.

As shown by Whitehead & Doering (2011), this enstrophy balance, coupled with a
uniform bound on w(x3) near the boundary and a piece-wise linear, monotonic temperature
profile, will yield a bound on the Nusselt number in RBC of the form NuT ≤ cRa5/12.
Translated into the RPC system, this becomes

NuS � RΩ + Re5/6
S (1 − RΩ)17/12R5/12

Ω , (3.8)

which will have a maximum as ReS → ∞ for RΩ,m = 5/22 ∼ 0.227 by (3.6). This is the
only setting to date for which the scaling of NuS is sublinear with respect to ReS, deviating
from the anticipated Re1

S scaling, and, hence, there is no anomalous dissipation in this
setting. Remarkably this scaling affects the ReS-dependence, but it has little influence on
the location of the maxima in RΩ .
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4. Conclusions and discussion

We have analysed some consequences of an exact relationship between 2-D RBC and
2D3C RPC, the limit of 2-D TCF flow for large radii relative to the gap width. These
two problems can be mapped onto each other via an identification of corresponding
fields and a change of variables as defined in table 1. This converts the well-known
analogy between these systems to an exact comparison. Comparison of these conclusions
to previous numerical and experimental observations indicate that some of the results
apply to the full 3-D situation. For instance, the additional factor in the relation
between heat and momentum transport gives an asymmetry in the location of the
maximum as a function of RΩ , which agrees well with observations on fully 3-D
flows.

Restricting to the 2-D setting removes the possibility of a backflow event due to a
maximum principle, and, for the specific choice of free-slip boundary conditions, there
is a sublinear scaling of torque with shear Reynolds number. In both cases, it should
be interesting to explore further how higher dimensions and modifications of boundary
conditions can cause deviations from these 2-D relations. More generally, the differences
in the equations of motion between the 2-D and 3-D cases may point to other observables
in which fully 3-D RBC and RPC differ.
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