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Steady two-dimensional Rayleigh–Bénard convection between stress-free isothermal
boundaries is studied via numerical computations. We explore properties of steady
convective rolls with aspect ratios π/5 � Γ � 4π, where Γ is the width-to-height ratio
for a pair of counter-rotating rolls, over eight orders of magnitude in the Rayleigh number,
103 � Ra � 1011, and four orders of magnitude in the Prandtl number, 10−2 � Pr � 102.
At large Ra where steady rolls are dynamically unstable, the computed rolls display
Ra → ∞ asymptotic scaling. In this regime, the Nusselt number Nu that measures heat
transport scales as Ra1/3 uniformly in Pr. The prefactor of this scaling depends on Γ and
is largest at Γ ≈ 1.9. The Reynolds number Re for large-Ra rolls scales as Pr−1Ra2/3 with
a prefactor that is largest at Γ ≈ 4.5. All of these large-Ra features agree quantitatively
with the semi-analytical asymptotic solutions constructed by Chini & Cox (Phys. Fluids,
vol. 21, 2009, 083603). Convergence of Nu and Re to their asymptotic scalings occurs more
slowly when Pr is larger and when Γ is smaller.

Key words: Bénard convection

1. Introduction

Natural convection is the buoyancy-driven flow resulting from unstable density
variations, typically due to thermal or compositional inhomogeneities, in the presence of
a gravitational field. It remains the focus of experimental, computational and theoretical
research worldwide, in large part because buoyancy-driven flows are central to engineering
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heat transport, atmosphere and ocean dynamics, climate science, geodynamics and stellar
physics. Rayleigh–Bénard convection, in which a layer of fluid is confined between
isothermal horizontal boundaries with the higher temperature on the underside (Lord
Rayleigh 1916), is studied extensively as a relatively simple system displaying the essential
phenomena. Beyond the importance of buoyancy-driven flow in applications, Rayleigh’s
model has served for more than a century as a primary paradigm of nonlinear physics
(Malkus & Veronis 1958), complex dynamics (Lorenz 1963), pattern formation (Newell &
Whitehead 1969) and turbulence (Kadanoff 2001).

A central feature of Rayleigh–Bénard convection is the Nusselt number Nu, the factor
by which convection enhances heat transport relative to conduction alone. A fundamental
challenge for the field is to understand how Nu depends on the dimensionless control
parameters: the Rayleigh number Ra, which is proportional to the imposed temperature
difference across the layer, the fluid’s Prandtl number Pr and geometric parameters such as
the domain’s width-to-height aspect ratio Γ . Lord Rayleigh (1916) studied the bifurcation
from the static conduction state (where Nu = 1) to convection (where Nu > 1) when Ra
exceeds a Pr-independent finite value. In the strongly nonlinear large-Ra regime relevant to
many applications, convective turbulence is characterized by chaotic plumes that emerge
from thin thermal boundary layers and stir a statistically well-mixed bulk. Power-law
behaviour, where Nu scales like PrβRaγ , is often presumed for heat transport in the
turbulent regime, but heuristic theories – i.e. physical arguments relying on uncontrolled
approximations – yield various predictions for the scaling exponents. Rigorous upper
bounds on Nu derived from the equations of motion place restrictions on possible
asymptotic exponents but do not imply unique values. Meanwhile, direct numerical
simulations (DNS) and laboratory experiments designed to respect the approximations
employed in Rayleigh’s model have produced extensive data on Nu over wide ranges of
Ra, Pr and Γ . Even so, consensus regarding the asymptotic large-Ra behaviour of Nu
remains to be achieved (Chillà & Schumacher 2012; Doering 2020).

In addition to the turbulent convection generally observed at large Ra, there are
much simpler steady solutions to the equations of motion, such as the pair of steady
counter-rotating rolls shown in figure 1. Steady coherent flows are not typically seen in
large-Ra simulations or experiments because they are dynamically unstable. Nonetheless,
they are part of the global attractor for the infinite-dimensional dynamical system
defined by Rayleigh’s model, and recent results suggest that steady rolls may be one
of the key coherent states comprising the ‘backbone’ of turbulent convection. In the
case of no-slip top and bottom boundaries, Waleffe, Boonkasame & Smith (2015) and
Sondak, Smith & Waleffe (2015) found that, over the range of Rayleigh numbers they
explored, two-dimensional (2-D) steady rolls display Nu values very close to those of
three-dimensional (3-D) convective turbulence, provided that the horizontal period of the
rolls is tuned to maximize Nu at each value of Ra.

Here we report computations of steady 2-D convective rolls in the case of stress-free
top and bottom boundaries. We have carried out computations using spectral methods
over eight orders of magnitude in Ra, four orders of magnitude in Pr and more than
an order of magnitude in the aspect ratio Γ , defined as the width-to-height ratio of
a pair of rolls. As in the no-slip case, our steady states share many features with
time-dependent simulations between stress-free boundaries (Paul et al. 2012; Wang et al.
2020). Moreover, the results verify predictions about the Ra → ∞ limit made by Chini &
Cox (2009) who extended an approach initiated by Robinson (1967) to construct matched
asymptotic approximations of steady rolls between stress-free boundaries. In particular,
our computations agree quantitatively with the asymptotic prediction that Nu = O(Ra1/3)
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Steady convection between stress-free boundaries

0

1(a) (b)

FIGURE 1. Steady convective rolls between stress-free boundaries for (a) Ra = 106 and
(b) Ra = 108, with Pr = 1 and a horizontal period that is twice the layer height. Colour
represents dimensionless temperature and arrows indicate the velocity vector field. As Ra → ∞,
the temperature field develops an isothermal core while the thermal boundary layers and plumes
become thinner and the velocity field converges to a Ra-independent pattern that lacks boundary
layers.

uniformly in Pr with a Γ -dependent prefactor that assumes its maximum value at Γ ≈ 1.9,
and with corresponding asymptotic predictions about the Reynolds number that are
derived in appendix A. The rest of this paper is organized as follows. The equations
governing Rayleigh–Bénard convection and our numerical scheme for computing steady
solutions are outlined in § 2. The computational results are presented in § 3, followed by
further discussion in § 4.

2. Governing equations and computational methods

The Boussinesq approximation to the Navier–Stokes equations used by Lord Rayleigh
(1916) to model convection in a 2-D fluid layer are, in dimensionless variables,

∂tu + u · ∇u = −∇p + Pr∇2u + PrRa T ẑ, (2.1a)

∇ · u = 0, (2.1b)

∂tT + u · ∇T = ∇2T, (2.1c)

where u = ux̂ + wẑ is the velocity, p is the pressure and T is the temperature. The system
has been non-dimensionalized using the layer thickness h, the thermal diffusion time h2/κ ,
where κ is the thermal diffusivity, and the temperature drop Δ from the bottom boundary
to the top one.

The dimensionless spatial domain is (x, z) ∈ [0, Γ ] × [0, 1], and all dependent variables
are taken to be Γ -periodic in x. At the lower (z = 0) and upper (z = 1) boundaries, the
temperature satisfies isothermal conditions while the velocity field satisfies no-penetration
and stress-free boundary conditions:

T|z=0 = 1 and T|z=1 = 0, w|z=0,1 = 0, ∂zu|z=0,1 = 0. (2.2a–c)

The three dimensionless parameters of the problem are the aspect ratio Γ , the Prandtl
number Pr = ν/κ , where ν is the kinematic viscosity, and the Rayleigh number Ra =
gαΔh3/νκ , where −gẑ is the gravitational acceleration vector and α is the thermal
expansion coefficient. A single pair of the steady rolls computed here fits in the domain,
meaning the aspect ratio of the pair is Γ while that of each individual roll is Γ/2.

The static conduction state, for which u = 0 and T = 1 − z, solves (2.1) and (2.2a–c) at
all parameter values. Lord Rayleigh (1916) showed that rolls vertically spanning the layer
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with aspect ratio Γ bifurcate supercritically from the conduction state as Ra increases past

Rac(k) = (k2 + π2)3

k2 , (2.3)

where k = 2π/Γ is the wavenumber of the fundamental period of the domain. The
conduction state is absolutely stable if Ra < Rac(k) for all k admitted by the domain
(see e.g. Goluskin (2015)).

The Nusselt number is defined as the ratio of total mean heat flux in the vertical direction
to the flux from conduction alone:

Nu = 1 + 〈wT〉, (2.4)

where w and T are dimensionless solutions of (2.1) and 〈·〉 indicates an average over
space and infinite time. (For steady states, the time average is not needed.) The governing
equations imply the equivalent expressions

Nu = 〈|∇T|2〉 = 1 + 1
Ra

〈|∇u|2 + |∇w|2〉, (2.5)

the latter of which self-evidently ensures Nu > 1 for all sustained convection. Another
emergent measure of the intensity of convection is the bulk Reynolds number defined
using the dimensional root-mean-squared velocity Urms, which in terms of dimensional
quantities is Re = Urmsh/ν. We choose our reference frame such that 〈u〉 = 0, so in
dimensionless terms

Re = 1
Pr

〈u2 + w2〉1/2. (2.6)

We compute steady (∂t = 0) solutions of (2.1) using a vorticity–stream function
formulation,

∂zψ∂xω − ∂xψ∂zω = Pr∇2ω + PrRa∂xθ, (2.7a)

∇2ψ = −ω, (2.7b)

∂zψ∂xθ − ∂xψ∂zθ = −∂xψ + ∇2θ, (2.7c)

where the stream function ψ is defined by u = x̂∂zψ − ẑ∂xψ , the (negative) scalar
vorticity is ω = ∂xw − ∂zu = −∇2ψ and θ is the deviation of the temperature field T from
the conduction profile 1 − z. The boundary conditions used in our computations are thatψ ,
∇2ψ and θ vanish on both boundaries. The latter two conditions follow from the stress-free
and fixed-temperature conditions, respectively. Impenetrability of the boundaries implies
that ψ is constant on each boundary, and choosing the reference frame where 〈u〉 = 0
requires these constants to be identical. Their value can be fixed to zero since translating
ψ by a constant does not affect the dynamics.

We solve the time-independent (2.7) numerically using a Newton–GMRES (generalised
minimal residual) iterative scheme. Starting with an initial iterate (ω0, ψ0, θ0) that does
not exactly solve (2.7), each iteration of the Newton’s method applies a correction until
the resulting iterates have converged to a solution of (2.7). Following Wen, Corson &
Chini (2015b) and Wen & Chini (2018), the linear partial differential equations for the
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corrections are

(Pr∇2 − ψz∂x + ψx∂z)
i	ω + (−ωx∂z + ωz∂x)

i	ψ + RaPr∂x	θ = −Fωres
i
, (2.8a)

	ω + ∇2	ψ = −Fψres
i
, (2.8b)

(−∂x + θz∂x − θx∂z)
i	ψ + (∇2 − ψz∂x + ψx∂z)

i	θ = −Fθres
i
, (2.8c)

where the superscript i denotes the ith Newton iterate, the corrections are defined as

	ω = ωi+1 − ωi, 	ψ = ψ i+1 − ψ i, 	θ = θ i+1 − θ i (2.9a–c)

and vanish on the boundaries, and

Fωres = Pr∇2ω + RaPrθx − ψzωx + ψxωz, (2.10a)

Fψres = ∇2ψ + ω, (2.10b)

Fθres = ∇2θ − (ψzθx − ψxθz + ψx) (2.10c)

are the residuals of the nonlinear steady (2.7). We simplify the implementation by setting
Fψres = 0, in which case 	ψ can be obtained by solving ∇2	ψ = −	ω for a given 	ω.
After this simplification, the pair (2.8a) and (2.8c) can be solved simultaneously for 	ω

and 	θ .
For each iteration of Newton’s method, we solve (2.8a) and (2.8c) iteratively using the

GMRES method (Trefethen & Bau III 1997). The spatial discretization is spectral, using
a Fourier series in x and a Chebyshev collocation method in z (Trefethen 2000). The ∇2

operator is used as a preconditioner to accelerate convergence of the GMRES iterations.
The roll states of interest have centro-reflection symmetries (cf. figure 1),

[ω,ψ, θ](x, z)= [ω,ψ,−θ ](Γ/2 − x, 1 − z), [ω,ψ, θ ](x, z) = [−ω,−ψ, θ ](Γ −x, z),
(2.11a,b)

which allow the full fields to be recovered from their values on one quarter of the
domain, so we encode these symmetries to reduce the number of unknowns. The GMRES
iterations are stopped once the L2-norm of the relative residual of (2.8a,c) is less than
10−2, and the Newton iterations are stopped once the L2-norm of the relative residual of
(2.7a,c) is less than 10−10. For Ra not far above the critical value Rac(k), convergence
to rolls of period Γ = 2π/k is accomplished by choosing the initial iterate with ω0 =
−√

RaPr sin(πz) sin(kx) and θ0 = −0.1[sin(2πz)+ sin(πz) cos(kx)]. For each Pr, results
from smaller Ra (or Γ ) are used as the initial iterate for larger Ra (or Γ ).

3. Results

We computed steady rolls over a wide range of Ra starting just above the value
Rac(k) at which the rolls bifurcate from the conduction state and ranging up to
109 or higher depending on the other parameters. Computations were carried out for
Pr = 10−2, 10−1, 1, 10, 102 and a range of values of Γ such that the fundamental
wavenumber k = 2π/Γ lies in 1/2 � k � 10. Data for all the Γ = 2 cases are tabulated
in the supplementary material available at https://doi.org/10.1017/jfm.2020.812.
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FIGURE 2. The Ra-dependence of (a) Nu and (b) Re, compensated by the asymptotic scalings
(3.1), for steady convective rolls with Γ = 2 (k = π) at various Pr. Dashed lines in panels (a) and
(b) denote, respectively, the asymptotic prefactor cn(π) ≈ 0.2723 from Chini & Cox (2009) and
our asymptotic prediction cr(π) ≈ 0.0978. Figure 6 shows the same Nu values not compensated
by Ra1/3.

Our computations reach sufficiently large Ra to show clear asymptotic scalings of bulk
quantities:

Nu ∼ cn(k)Ra1/3 and Re ∼ cr(k)Pr−1Ra2/3 as Ra → ∞. (3.1)

Both of these scalings are predicted by the asymptotic analysis of Chini & Cox (2009),
although only the Nu scaling was stated explicitly there. Chini & Cox (2009) gave an
asymptotic prediction for the prefactor cn(k) but not for cr(k). Using their asymptotic
approximations for the stream function and vorticity within each convection roll, we
derived an expression for cr(k) in terms of cn(k) that is presented in appendix A.

Figure 2 shows the Ra-dependence of the compensated quantities Nu/Ra1/3 and
RePr/Ra2/3 for rolls of aspect ratio Γ = 2 (k = π) at various Pr. Rolls of this aspect ratio
bifurcate from the conduction state at the Rayleigh number Rac(π) = 8π4 ≈ 779. It is
clear from figure 2 that both Nu and the Péclet number RePr become independent of Pr as
Ra → ∞, as predicted by the asymptotics of Chini & Cox (2009), and also as Ra decreases
towards the Pr-independent value Rac. Convergence to the large-Ra asymptotic scaling is
slower when Pr is larger, at least over the four decades of Pr considered here. Numerical
values of Nu and Re at large Ra suggest scaling prefactors that are indistinguishable from
the values cn(π) ≈ 0.2723 and cr(π) ≈ 0.0978 predicted by asymptotic analysis.

Nusselt and Reynolds numbers of steady rolls converge to the asymptotic scalings
(3.1) over the full range 1/2 � k � 10 for which we have computed steady rolls. This
is evident in figure 3 where the k-dependence of the compensated quantities Nu/Ra1/3 and
RePr/Ra2/3 is shown for various Ra in the Pr = 1 case. As Ra increases, these quantities
converge to asymptotic curves that we have called cn(k) and cr(k). It is clear from the
figure that this convergence is slower when k is larger, and that Re reaches its asymptotic
scaling sooner than Nu does. Since rolls with k = π/

√
2 are the first to bifurcate from

the conduction state, at Rac(π/
√

2) = 27π4/4, this is the k that initially maximizes both
Nu and Re. As Ra → ∞, the k values that maximize Nu and Re approach the asymptotic
values k ≈ 3.31 (Γ ≈ 1.9) and k ≈ 1.4 (Γ ≈ 4.5), respectively, where the corresponding
maximal prefactors are cn ≈ 0.273 and cr ≈ 0.117.
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N
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Ra
1
/3

k = 2π /Γ

Ra = 1010

Ra = 109

Ra = 108

Ra = 107
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Ra = 104

0.3

0.2

0.1

Re
Pr

/R
a2

/3

0.15

0.10

0.05

00 4 6 8 102

k = 2π /Γ
4 6 8 102

(a) (b)

FIGURE 3. The k-dependence of (a) Nu and (b) Re, compensated by the asymptotic scalings
(3.1), for steady convective rolls with Pr = 1 at various Ra. The dashed lines in panels (a) and
(b) are, respectively, the asymptotic prefactor cn(k) predicted by Chini & Cox (2009) and the
corresponding prefactor cr(k) we derived using their results.

N
u/

Ra
1
/3

0.3

0.2

0.1

(a)

k = 2π /Γ

Pr = 102, Ra = 1010

Pr = 10, Ra = 1039/4

Pr = 1, Ra = 109

Pr = 10–1, Ra = 109

Pr = 10–2, Ra = 109

00 4 6 8 102

k = 2π /Γ
4 6 8 102

Re
Pr

/R
a2

/3

0.15

0.10

0.05

(b)

FIGURE 4. Dependence of compensated (a) Nu and (b) Re on k for various Pr in the large-Ra
asymptotic regime. Reaching this regime requires larger Ra when Pr is larger. Asymptotic
predictions (- - -) of cn(k) and cr(k) are as in figure 3.

Both Nu and the Péclet number RePr of steady rolls become nearly independent of Pr as
Ra grows large. The large-Ra coalescence of data for different Pr is evident for the k = π
case in figure 2, as is the fact that Pr can have a substantial effect in the preasymptotic
regime. To show that Pr-independence at large Ra occurs over the full range 1/2 � k � 10
of our computations, figure 4 depicts the k-dependence of compensated Nu and Re at large
Ra for various Pr. All Nu/Ra1/3 and RePr/Ra2/3 values plotted in figure 4 fall close to the
asymptotic predictions for cn(k) and cr(k) that, at leading order in the asymptotic small
parameter Ra−1/3, are independent of Pr.

The asymptotic scaling of steady rolls at large Ra is reflected not only in the collapse
of rescaled bulk quantities such as Nu/Ra1/3 and RePr/Ra2/3 but also in the collapse of
the boundary and internal layer profiles when the appropriate spatial variable is stretched
by Ra1/3. Figure 5 shows this collapse of the temperature and vorticity profiles at the
bottom boundary and at the left edge of the periodic domain for the case where Pr = 1
and Γ = 2 (k = π). Coincidence of these scaled profiles at large Ra confirms that the
thickness of both the thermal and vorticity layers scale as Ra−1/3 on all four edges of
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FIGURE 5. Scaled spatial structure of temperature T and compensated vorticity ω near the
(a) bottom and (b) left side of a convection roll where Pr = 1 and Γ = 2. Solid curves are
spectral interpolants of Ra = 1010 values.

a single convection roll, while both fields are strongly homogenized in the interior with
T ∼ 1/2 and ω ∼ 0.522Ra2/3. Profiles at other Pr are not shown but collapse similarly.
These findings confirm the deduction of a homogenized interior by Chini & Cox (2009), as
well as their prediction that the core vorticity magnitude is asymptotic to

√
cn(π)Ra2/3 ≈

0.5218Ra2/3 uniformly in Pr.
Another quantity of interest is the kinetic energy dissipation rate per unit mass,

ε(x∗, t∗) = ν

2

2∑
i,j=1

(∂x∗
i
u∗

j + ∂x∗
j
u∗

i )
2, (3.2)

where ∗ denotes dimensional variables. The corresponding bulk viscous dissipation
coefficient C = 〈ε〉h/U3

rms can be expressed in dimensionless variables as

C = Re−3Pr−2

〈
1
2

2∑
i,j=1

(∂iuj + ∂jui)
2

〉
. (3.3)

Identity (2.5) gives C = Re−3Pr−2Ra(Nu − 1), so the asymptotic scalings (3.1) imply

C ∼ cn(k)cr(k)−3PrRa−2/3 ∼ cn(k)cr(k)−2Re−1. (3.4)

That is, C depends asymptotically on Ra and Pr via the distinguished combination
PrRa−2/3 that is asymptotic to Re−1. This scaling of the dissipation coefficient is
characteristic of flows without viscous boundary layers, such as laminar Couette or
Poiseuille flow, consistent with the steady velocity fields computed here (cf. figure 1).
Indeed, for stress-free steady convection, viscous dissipation is dominated by that in the
homogenized core since the vorticity is of the same asymptotic magnitude in the core as
in the thin vorticity layers.

The average of dissipation over time and horizontal directions, denoted ε̄(z), has been
used to compare convection between the cases of stress-free and no-slip boundaries. In 3-D
simulations of the stress-free case at Ra = 5 × 106, Petschel et al. (2013) found that the
normalized profile ε̄(z)/〈ε〉 exhibits ‘dissipation layers’ near the boundaries that depend
strongly on Pr. In steady rolls, on the other hand, we find that ε̄(z)/〈ε〉 is independent of
Pr at asymptotically large Ra, as shown in figure S1 of the supplementary material.
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Wang et al. (2020)
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Pr = 10

Pr = 1

Pr = 10–1

Pr = 10–2

Chini & Cox (2009)

Ra

Nu

FIGURE 6. Dependence of Nu on Ra for: steady rolls with Γ = 2 and various Pr,
time-dependent 2-D simulations with mean aspect ratio Γ = 3.2 and Pr = 10 (Wang et al. 2020,
see text), and upper bounds applying to all flows with Γ = 2

√
2 and any Pr (Wen et al. 2015a,

see text). The dashed line is the asymptotic prediction Nu ∼ 0.2723 Ra1/3 of Chini & Cox (2009)
for Γ = 2. The same Nu values of steady rolls are shown compensated by Ra1/3 in figure 1.

4. Discussion

The steady rolls we have computed share many features with unsteady flows from DNS
of Rayleigh–Bénard convection with isothermal stress-free boundary conditions. In recent
simulations, Wang et al. (2020) found multistability between unsteady states exhibiting
various numbers of roll pairs in wide 2-D domains. Each of the coexisting states suggested
scalings approaching the Nu = O(Ra1/3) and Re = O(Ra2/3) asymptotic behaviour of
steady rolls. As in the steady case, the prefactors of these scalings depended on the mean
aspect ratios of the unsteady rolls. The highest Nusselt numbers among Wang et al.’s data
occur in five-roll-pair states in a Γ = 16 domain – meaning each roll pair has Γ ≈ 3.2
on average – but steady Γ = 3.2 rolls have still larger Nu. At Ra = 109 and Pr = 10, for
example, the DNS exhibit Nu = 198.01 and Re = 10 135 while steady Γ = 3.2 rolls at the
same parameters yield the larger values of Nu = 253.61 and Re = 11 333, and comparisons
at other Ra are similar (cf. table S4 of the supplementary material). Figure 6 shows the Nu
of these five-roll-pair DNS states along with the larger Nu of the steady rolls computed
here for various Pr and Γ = 2. The steady rolls also achieve larger Nu values than have
been attained in other unsteady simulations with stress-free boundaries in two dimensions
(Goluskin et al. 2014; van der Poel et al. 2014) and in three dimensions (Petschel et al.
2013; Pandey, Verma & Mishra 2014; Pandey & Verma 2016; Pandey et al. 2016).

Comparing steady rolls in the stress-free case with those previously computed in
the no-slip case, there are significant differences in their dependence on the aspect
ratio Γ . With stress-free boundaries, Nu = O(Ra1/3) for each Γ as Ra → ∞, with
maximal asymptotic heat transport attained by rolls of optimal aspect ratio Γ ≈ 1.9. In
the no-slip computations of Waleffe et al. (2015) and Sondak et al. (2015), on the other
hand, the Γ values that maximize Nu decrease towards zero proportionally to Ra−0.22 at
large Ra. (A similar phenomenon occurs in porous medium Rayleigh–Bénard convection
(see Wen et al. (2015b)).) The no-slip steady rolls display Nu scaling like Ra0.28 when Γ
is fixed but scaling like Ra0.31 when the optimal Γ is chosen to maximize Nu at each Ra.
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The measured exponent 0.31 is unlikely to be exact, so it remains possible that the
asymptotic scaling of optimal-Γ steady rolls is Nu = O(Ra1/3) in the no-slip case, as
in the stress-free case.

Steady rolls in the stress-free and no-slip cases differ also in their dependence on
the Prandtl number. Only with stress-free boundaries do the Nusselt number Nu and
Péclet number RePr apparently become uniform in Pr as Ra → ∞. To see how this
Pr-independence emerges in the stress-free scenario, first note that area-integrated work
by the buoyancy forces must balance area-integrated viscous dissipation – i.e. Ra 〈wT〉 =〈|∇u|2 + |∇w|2〉 in the dimensionless formulation of (2.4) and (2.5). The former integral
is dominated by plumes since the roll’s core is isothermal, so it scales proportionally
to the dimensional quantity αΔgδhUrms, where δ is the dimensional plume thickness.
The latter integral is dominated by the core since the vorticity is O(Urms/h) everywhere
in the stress-free case, so this integral scales proportionally to the dimensional quantity
ν(Urms/h)2h2. Balancing advection with diffusion of temperature anomalies in the thermal
boundary layers, which also have thickness δ, requires that Urms scales in proportion
to κh/δ2. Combining this scaling relationship with that from the integral balance
gives the dimensionless thermal boundary-layer thickness as δ/h = O(Ra−1/3) – and so
Nu = O(Ra−1/3) – uniformly in Pr. These relationships also imply that Urms is
proportional to (κ/h)Ra2/3, and so the Péclet number RePr = Urmsh/κ scales as Ra2/3

uniformly in Pr. Ultimately, it is the passivity of the vorticity boundary layers that results
in the Pr-independence of these emergent bulk quantities. The vorticity layers not only
make no contribution to the total dissipation at leading order but also have no leading-order
effect on the stream function that is responsible for the convective flux 〈wT〉.

The Re = O(Ra2/3) scaling found at large Ra for steady rolls and approximately
evidenced in the DNS of Wang et al. (2020) means that buoyancy forces can sustain
substantially faster-than-free-fall velocities. Indeed, if flow speeds were limited by
the maximum buoyancy acceleration acting across the layer height then dimensional
characteristic velocities could not be of larger order than

√
gαΔh, and Re could not

be larger than O(Ra1/2). Such Re may be expected if the bulk flow was dominated by
effectively independent rising and falling plumes. Significantly higher speeds apparently
persist within coherent convection rolls, whether steady or unsteady.

Although steady rolls cannot give heat transport larger than Nu = O(Ra1/3) as Ra → ∞
in the stress-free case (Chini & Cox 2009), it is an open question whether larger Nu can
result from time-dependent flows or other types of steady states in either two dimensions
or three dimensions. Rigorous upper bounds on Nu derived from the governing equations
– bounds depending on Ra that apply to all flows regardless of whether they are steady or
unsteady and stable or unstable – do not rule out Nu growing faster than Ra1/3. Specifically,
for the 2-D stress-free case Whitehead & Doering (2011) proved analytically that Nu �
0.289 Ra5/12 uniformly in both Pr and domain aspect ratio. Wen et al. (2015a) improved
the prefactor of this bound by solving the relevant variational problem numerically,
computing bounds up to large finite Ra with a prefactor depending weakly on Γ . The
numerical upper bound they computed for Γ = 2

√
2 is shown in figure 6; its scaling at

large Ra is Nu � 0.106 Ra5/12. For 3-D flows in the stress-free case, only the larger upper
bound Nu � O(Ra1/2) has been proved (Doering & Constantin 1996). It remains to be
seen whether upper bounds smaller than O(Ra5/12) or O(Ra1/2) can be proved for 2-D
or 3-D flows, respectively, and whether there exists any sequence of solutions for which
Nu grows faster than O(Ra1/3). In view of available evidence, it is possible that, at each
Ra and Pr, the steady 2-D roll with the largest value of Nu – i.e. with Nu maximized
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over Γ – transports more heat than any other 2-D or 3-D solution. We are aware of no
counterexamples to this possibility, either in the stress-free case studied here or in the
no-slip case.
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Appendix A. Asymptotic calculation of RePr/Ra2/3

In this appendix, we derive the asymptotic scaling relation for Re that follows from the
asymptotic analysis of Chini & Cox (2009) but is not reported there. In the large-Ra
limit, a steady roll’s velocity field is properly scaled by (κ/h)Ra2/3 rather than by the
thermal diffusion velocity κ/h. Accordingly, we introduce the rescaled dimensionless
velocity (u∞,w∞), which is related to the dimensionless velocity in (2.1) by (u,w) =
Ra2/3(u∞,w∞). With this rescaling, the expression (2.6) for Re becomes

Re = 1
Pr

〈
u2
∞ + w2

∞
〉1/2

Ra2/3 = 1
Pr

〈
|∇ψ∞|2

〉1/2
Ra2/3, (A 1)

where ψ∞ is the correspondingly rescaled stream function. Consequently, the prefactor in
the asymptotic relation (3.1) for Re satisfies

cr =
〈
|∇ψ∞|2

〉1/2
. (A 2)

To evaluate the right-hand side of (A 2) in Ra → ∞ limit we first integrate by parts to find

∫ 1

0

∫ π/k

0
|∇ψ∞|2 dx dz =

∣∣∣∣∣
∫ 1

0

∫ π/k

0
ψ∞ω∞ dx dz

∣∣∣∣∣ ∼ Ωc(k)

∣∣∣∣∣
∫ 1

0

∫ π/k

0
ψ∞(x, z) dx dz

∣∣∣∣∣ ,
(A 3)

where ∇2ψ∞ = −ω∞. The asymptotic approximation in (A 3) follows from two
asymptotic estimates. First, the vorticity ω∞(x, z) in a steady roll’s core is homogenized
to a spatially uniform value Ωc as Ra → ∞, and, according to the analysis of Chini
& Cox (2009), this value is related the prefactor in the Nu–Ra asymptotic relation via
Ωc ∼ √

cn(k). Second, owing to the stress-free conditions and symmetries on a steady
roll’s periphery, the vorticity field is of the same asymptotic order in both the vorticity
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boundary layers and the core, so the contribution of these boundary layers to the middle
integral in (A 3) is negligible relative to that from the O(1) core where ω∞ ∼ Ωc.

Unlike the temperature and vorticity fields, the stream function ψ∞ at leading order in
Ra is a smooth function over the entire spatial domain. The leading-order expression for
ψ∞ given by (22)–(23) of Chini & Cox (2009) is, in our notation,

ψ∞(x, z) ∼
∞∑

n=1,odd

ψn(z) sin (nkx) =
∞∑

n=1,odd

4Ωc

πk2n3

[
1 − cosh (nk(z − 1/2))

cosh (nk/2)

]
sin (nkx).

(A 4)
Substituting (A 4) into the right-hand side of (A 3), integrating term-by-term, dividing by
the cell width π/k to obtain the spatial average, and taking the square root of the resulting
expression gives the asymptotic prediction

cr(k) ∼
⎛
⎝8cn(k)

π2k2

∞∑
n=1,odd

1
n4

[
1 − 2 tanh (nk/2)

nk

]⎞
⎠

1/2

. (A 5)

Values of cn(k) and corresponding values of cr(k) for various k ∈ [1/4, 10] are given in
table S1 of the supplementary material.
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