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a b s t r a c t

Upper bounds on time-averaged heat transport are obtained for an eight-mode Galerkin truncation
of Rayleigh’s 1916 model of natural thermal convection. Bounds for the ODE model—an extension
of Lorenz’s three-ODE system—are derived by constructing auxiliary functions that satisfy sufficient
conditions wherein certain polynomial expressions must be nonnegative. Such conditions are enforced
by requiring the polynomial expressions to admit sum-of-squares representations, allowing the
resulting bounds to be minimized using semidefinite programming. Sharp or nearly sharp bounds
on mean heat transport are computed numerically for numerous values of the model parameters: the
Rayleigh and Prandtl numbers and the domain aspect ratio. In all cases where the Rayleigh number is
small enough for the ODE model to be quantitatively close to the PDE model, mean heat transport is
maximized by steady states. In some cases at larger Rayleigh number, time-periodic states maximize
heat transport in the truncated model. Analytical parameter-dependent bounds are derived using
quadratic auxiliary functions, and they are sharp for sufficiently small Rayleigh numbers.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Rayleigh–Bénard convection models the fundamental physics of buoyancy-driven flow in a fluid layer heated from below. Rayleigh’s
eminal model [1], comprised of the Boussinesq approximation to the Navier–Stokes equations in an idealized two-dimensional domain
ith stress-free isothermal boundaries, has been a primary paradigm of nonlinear dynamics for over a century. Its study has inspired
ignificant theoretical advances on many fronts, including linear [1] and nonlinear [2] stability analysis, weakly nonlinear theory [3],
attern formation [4], and chaos [5].
The relationship between the magnitude of the imposed temperature gradient and the resulting rate of heat transport—characterizing

he effective thermal conductivity of the convecting layer—is of particular importance for many applications in engineering and the
pplied sciences. Transport is quantified by the Nusselt number, Nu, the average convective enhancement of heat flux over purely
onductive flux. Typically one seeks the dependence of Nu on one or more model parameters, such as the Rayleigh number, Ra, a
imensionless parameter that is proportional to the imposed temperature gradient. Flows maximizing Nu might be turbulent but need
ot be; they could be steady or time-periodic, and dynamically stable or unstable. One motivation for this study is to investigate whether
imple steady states maximize heat transport, an idea suggested by recent computations of steady solutions with isothermal no-slip
oundaries that transport heat at slightly higher rates than three-dimensional turbulent flows [6–8].
Deducing the Nu–Ra relation is challenging in part because coexisting solutions in the strongly nonlinear regime may transfer heat

t widely varying rates [9,10]. Hence it is natural to focus analysis on bounding convective heat transport among all possible solutions.
etermining upper bounds on transport in Rayleigh’s model and variations thereof has been an active area of inquiry for well over
half century [11–15]. The best known upper bounds on heat transport in Rayleigh’s two-dimensional configuration with isothermal
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tress-free boundaries take the form Nu ≤ 0.106 Ra5/12 in the limit of large Ra [14,16]. It is not known whether there exist solutions
chieving the growth rate of this bound; no solutions have been found where Nu grows faster than O(Ra1/3) as Ra → ∞ [17,18].
A bound on Nu at particular parameter values is sharp if and only if it is attained by a solution of the equations of motion. Confirming

hat a particular steady flow maximizes Nu requires proving an upper bound with the same value. When this occurs we say that the
aximizing solution saturates the upper bound. Perfectly sharp bounds are typically beyond reach for nonlinear partial differential
quations (PDEs) like the Boussinesq equations governing Rayleigh–Bénard convection. For ordinary differential equations (ODEs),
owever, the recent development of methods based on polynomial optimization has made the construction of sharp bounds tractable.
n this paper we employ such methods to construct upper bounds on the finite-dimensional analogue of the Nusselt number for a
istinguished eight-ODE truncation of the Boussinesq equations. We compute auxiliary functions that by satisfying certain inequalities
mply bounds on time averages, similar to how Lyapunov functions imply stability of a particular state in a dynamical system.

Given any well-posed ODE with bounded trajectories x(t), there exist continuously differentiable auxiliary functions producing
rbitrarily sharp bounds on the time average of any continuous Φ(x) [19]. The practical challenge is to construct the auxiliary functions
hat satisfy the suitable inequalities. This is analytically intractable in general, but it can be implemented with computer assistance
hen the phase space vector field f(x) and quantity of interest Φ(x) are polynomial and one seeks polynomial auxiliary functions. In
uch cases the relevant inequality conditions correspond to nonnegativity of certain polynomial expressions; this nonnegativity can be
nforced by requiring the polynomials to admit sum-of-squares (SOS) representations. Optimization over polynomials subject to SOS
onstraints can be carried out computationally as a semidefinite program (SDP).
The use of SOS optimization to bound time averages was proposed in [20] and has since been applied to various dynamical

ystems [21–23]. In the present work we apply this technique to compute upper bounds on time-averaged heat transport for a truncated
odel of Rayleigh–Bénard convection. Upper bounds are constructed across a wide range of the three dimensionless model parameters:

he Rayleigh and Prandtl numbers and the domain aspect ratio. The Nusselt number is also computed along various particular solutions
f the ODEs to identify solutions whose heat transport saturates the bounds.
The rest of this paper is organized as follows. The governing PDEs and the truncated ODE model that we analyze are presented

n Sections 2 and 3, respectively. Various particular solutions of this system of ODEs are presented in Section 4, providing candidates
or the maximal heat transport that can be compared to the upper bounds. Section 5 describes the general construction of bounds
n time-averaged quantities for ODEs using SOS optimization. In Section 6, computational constructions for our particular ODE model
re presented using polynomial auxiliary functions up to degree eight, giving very tight numerical bounds on the heat transport. The
uxiliary function approach is carried out analytically in Section 7 for quadratic auxiliary functions, yielding bounds that are weaker
han the numerical bounds but have explicit parameter dependence. Conclusions are presented in Section 8, followed by computational
nd analytical details in the Appendices.

. Rayleigh–Bénard convection

In Rayleigh’s 1916 model [1], a two-dimensional incompressible fluid lies between stress-free top and bottom boundaries. A
emperature gradient in the fluid is maintained by heating the bottom boundary to a higher temperature than the top one. The velocity
(x, z, t), pressure p(x, z, t), and temperature T (x, z, t) are governed by the Boussinesq approximation to the Navier–Stokes equations,
xpressed in dimensionless form as

∂tu + u · ∇u = −∇p + σ∇
2u + σRa T ẑ,

∇ · u = 0,

∂tT + u · ∇T = ∇
2T .

(1)

o construct the dimensionless Eqs. (1), the length scale d is chosen so that the dimensional layer height is πd, time is nondimen-
ionalized using the thermal diffusion time d2/κ , and the temperature scale is given by the dimensional temperature drop ∆ from the
bottom to the top boundary. We define the temperature such that T = 1 along the bottom, implying that T = 0 along the top one.
The remaining material parameters—the thermal diffusivity κ , kinematic viscosity ν, gravitational acceleration g in the −z direction,
and linear coefficient of thermal expansion α—form two dimensionless groups, typically chosen as the Prandtl number σ =

ν
κ

and
ayleigh number Ra =

gα∆(πd)3
κν

. It is convenient to define a modified Rayleigh number R := Ra/π4 to avoid extra factors of π in the
imensionless form.
We consider convection in the dimensionless rectangular domain (x, z) ∈ [0, πA] × [0, π] of aspect ratio A that is periodic in the

horizontal coordinate x. The equations of motion in two spatial dimensions can be written in terms of the stream function ψ(x, z, t),
defined such that the horizontal and vertical velocity components are given by (u, w) = (∂zψ,−∂xψ). Finally, the dimensionless negative
temperature deviation is defined as θ := πR(Tc −T ), where Tc := 1− z/π is the dimensionless linear temperature profile of the purely
conducting state.

In terms of ψ and θ the dimensionless Boussinesq equations are

∂t∇
2ψ − {ψ,∇2ψ} = σ∇

4ψ + σ∂xθ,

∂tθ − {ψ, θ} = ∇
2θ + R∂xψ,

(2)

where {f , g} := ∂xf ∂zg − ∂z f ∂xg denotes the Poisson bracket.
Stress-free isothermal boundary conditions require ∂2z ψ and θ to vanish at the top and bottom boundaries. Impenetrability requires

ψ to be constant on both boundaries, and in a zero-momentum reference frame both constants can be chosen to be zero without loss
of generality. Thus, the boundary conditions on ψ and θ are

ψ, ∂2z ψ, θ = 0 at z = 0, π. (3)

No-slip boundary conditions, corresponding to ∂zψ rather than ∂2z ψ vanishing on the impenetrable boundaries, are of interest as well
but are not suitable for Fourier expansion. Following Rayleigh we may content ourselves with stress-free boundaries where, as explained
in the next section, expansions of ψ and θ in familiar Fourier basis functions readily produce models with desirable properties.
2
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The Nusselt number quantifying convective transport is defined as the ratio of total vertical heat flux, averaged over volume and
infinite time, to conductive flux. To define Nu in terms of ψ and θ , let the spatial average over the domain (x, z) ∈ [0, Aπ ] × [0, π] be
denoted as

⟨f ⟩ :=
1

Aπ2

∫ π

0

∫ Aπ

0
f (x, z) dx dz, (4)

nd denote the infinite-time average as

f := lim
τ→∞

1
τ

∫ τ

0
f (t) dt. (5)

o ensure limits exist one may instead define time averages using a limsup or liminf. The Nusselt number along a particular solution
o (2) is given by [24]

Nu = 1 +
1
R ⟨θ∂xψ⟩. (6)

he Nusselt number can be equivalently expressed via various other spatial integrals that have the same value as (6) when averaged
ver infinite time. One such alternative is the ratio of total transport at any fixed height z ∈ [0, π], averaged horizontally and over

time, to conductive transport, expressed as [24]

Nu = 1 +
1
R

[
∂z⟨θ⟩x(z) + ⟨θ∂xψ⟩x(z)

]
, (7)

here the horizontal average is denoted as

⟨f ⟩x :=
1
Aπ

∫ Aπ

0
f (x) dx. (8)

he correspondence between (6) and (7) for truncated models derived by projecting the equations of motion onto a finite set of Fourier
odes is preserved only by certain distinguished modal choices, including the modes we choose in the next section.

. Truncated model construction

Various ODE approximations of Rayleigh’s PDE model have been derived as truncated Galerkin expansions, starting with the work of
altzman [25] and Lorenz [5] in the 1960s. In these and subsequent studies of convection between stress-free boundaries, ψ and θ are

expanded in a Fourier basis in both directions. An ODE model is derived by selecting a finite set of modes, projecting ψ and θ onto these
odes, and projecting every term in the PDEs (2) onto the same modes. This yields a system of ODEs governing the amplitudes of the
ourier modes that are retained in the truncation. With sufficiently many modes included, the ODE dynamics are quantitatively close
o the PDE dynamics, so integrating the ODE system amounts to direct numerical simulation of the PDEs with a spectral discretization
f space. For various purposes, however, it is more useful to study a low-dimensional ODE model that differs quantitatively from the
DEs but captures certain qualitative features. The celebrated Lorenz equations [5], for instance, are a projection of Rayleigh’s system
nto only three modes.
In the present work we study an ODE model derived by projecting the Boussinesq equations onto the Fourier modes in the ansatz

ψ(x, z, t) = ψ11(t) sin(kx) sin(z) + ψ12(t) cos(kx) sin(2z) + ψ01(t) sin(z) + ψ03(t) sin(3z),
θ (x, z, t) = θ11(t) cos(kx) sin(z) + θ12(t) sin(kx) sin(2z) + θ02(t) sin(2z) + θ04(t) sin(4z),

(9)

where k := 2/A is the fundamental horizontal wavenumber corresponding to a domain of aspect ratio A. The first and second
subscripts on the mode amplitudes denote horizontal and vertical mode numbers, respectively. The chosen truncation includes the
triplet {ψ11, θ11, θ02}; a truncation with these three variables alone gives the Lorenz equations. It also includes the analogous triplet
with vertical mode numbers doubled, {ψ12, θ12, θ04}, alone yielding a rescaled version of the Lorenz equations. Modes in each triplet
are coupled together by the two remaining modes, ψ01 and ψ03.

The modes included in the truncation (9) can capture flows whose horizontal velocities do not vanish after horizontal averaging. This
is because the stream function modes ψ01 and ψ03 describe purely horizontal velocity fields. It was interest in such mean horizontal
flows that motivated Howard and Krishnamurti [26] to choose a truncation that is similar to (9) but omits the ψ03 and θ04 modes,
resulting in a six-dimensional ODE model. Their model helped illuminate a mean-flow instability but is not suitable for studying
heat transport even as a low-order model because some of its trajectories are unbounded. Another drawback of their model is that
expressions for time-averaged heat transport such as (6) and (7) that are equivalent in the PDE dynamics give expressions that generally
differ in the ODE dynamics once projected onto the chosen set of six modes. Thiffeault and Horton [27,28] found that adding the
θ04 mode restores boundedness of trajectories and equality between the truncated versions of (6) and (7), as well as conservation of
mechanical energy in the dissipationless limit. Separately, Hermiz et al. [29] found that adding the ψ03 mode results in an ODE system
whose solutions obey the truncated version of another PDE identity: ∂t

⟨
∇

2ψ
⟩
= 0, meaning that total vorticity is conserved.

Here we add both the θ04 and ψ03 modes to the six chosen by Howard and Krishnamurti [26] to construct an eight-dimensional
truncation with all of the desirable properties mentioned above. We call the resulting system the HK8 model because it is the minimal
extension of the six-mode model that restores these basic integral identities of the PDE. A version of the HK8 model was written down
by Gluhovsky et al. [30], who confirmed that including the θ04 mode added by Thiffeault and Horton [27,28] and the ψ03 mode added
by Hermiz et al. indeed combines the conservation properties of both. The HK8 model obtained by projecting the PDEs (2) onto the
3
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odes in (9) is [9]

ψ̇11 = −σ (k2 + 1)ψ11 + σ k
k2+1

θ11+
k
2
k2+3
k2+1

ψ01ψ12−
3k
2

k2−5
k2+1

ψ12ψ03,

ψ̇01= −σ ψ01 −
3k
4 ψ11ψ12,

ψ̇12= −σ (k2 + 4)ψ12 − σ k
k2+4

θ12 −
1
2

k3

k2+4
ψ11ψ01 +

3k
2

k2−8
k2+4

ψ11ψ03,

θ̇11 = −(k2 + 1)θ11 + Rkψ11 − kψ11θ02−
k
2ψ01θ12 +

3k
2 θ12ψ03,

θ̇02 = −4 θ02 +
k
2ψ11θ11,

θ̇12= −(k2 + 4)θ12 − Rkψ12 +
k
2ψ01θ11 −

3k
2 ψ03θ11 + 2kψ12θ04,

ψ̇03 = −9 σ ψ03 +
k
4ψ11ψ12,

θ̇04 = −16 θ04 − kψ12θ12.

(10)

iscussions of the projection procedure for general truncations can be found elsewhere [25,27].
The integral definitions of the Nusselt number for the PDE yield analogous expressions for the truncated model. We denote the

runcated Nusselt number as N to distinguish it from the PDE quantity Nu that it approximates. When applied to the modal expansions
9) that produce the HK8 truncation, the volume-averaged expression (6) for the Nusselt number becomes

N = 1 +
k

4R (ψ11θ11 − ψ12θ12), (11)

hile the horizontally-averaged expression (7) becomes

N = 1 +
1
R (2θ02 + 4θ04). (12)

It is shown in [27] that the infinite-time averages (11) and (12) must be equal for all solutions of the HK8 model. Maximizing N using
ither of the above expressions provides a finite-dimensional analogue of optimal heat transport for Rayleigh–Bénard convection. For
given parameter set, the maximal N is defined by

N∗
:= sup

x(t)
N, (13)

where the maximization is over all solutions x(t) of the HK8 model. The bifurcation structure of the HK8 model was explored in [9],
and upper bounds on heat transport that are not sharp in general were derived analytically in [31]. In Section 4 we explore particular
steady states and time-dependent solutions that provide lower bounds on N∗, and in Sections 6–7 we establish upper bounds on N∗

using polynomial optimization. Combining the upper and lower bounds, we identify states that provide the maximal N for the HK8
model and determine the regions in the σ–R plane where different types of solutions attain the maximal value N∗.

4. Particular solutions of the HK8 model

In this section we examine various particular solutions of the HK8 model, providing candidates for (and lower bounds on) the
maximal N . We begin by summarizing the bifurcation structure of steady states of the HK8 model reported in [9] and verified here.
Then we examine the heat transport along some time-dependent solutions. The maximum N among these particular solutions provides
a candidate for the supremum N∗ among all solutions, and we use it to judge the sharpness of upper bounds on N∗ reported in Sections 6
and 7. The value of N among steady states is of particular importance as it is theorized that steady states maximize heat transport for
Rayleigh–Bénard convection [18].

4.1. Steady states

At sufficiently small R the zero equilibrium is globally attracting. This solution corresponds to the purely conductive state in the
PDE. The HK8 system has three branches of nonzero equilibria that we call L1, L2, and TC in analogy with [26]. At the Rayleigh number

L1 , defined by

RL1 :=
(k2 + 1)3

k2
, (14)

the zero state undergoes a pitchfork bifurcation giving rise to L1 equilibria that exist for all R > RL1 , so-named because the only
nonzero modes are the first Lorenz triplet,

ψ11 = ±
√
8 1

k2+1

√
R − RL1 , θ11 = ±

√
8 k2+1

k

√
R − RL1 , θ02 = R − RL1 . (15)

s shown in Fig. 1(a), the L1 states are an approximation of a PDE steady state with a pair of counter-rotating convection rolls. The
ayleigh number RL1 reaches a minimum of 27/4 when k2 = 1/2, corresponding exactly to the onset of convection for 2D stress-free
ayleigh–Bénard convection. Therefore, we define the critical Rayleigh number Rc as

Rc :=
27
4
. (16)

t the Rayleigh number RL2 , given by

RL :=
(k2 + 4)3

, (17)
2 k2
4
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Fig. 1. Streamlines overlaid on contours of temperature (T ) for approximations of steady convection states whose mode amplitudes in the truncated Galerkin
xpansion (9) are equilibria of the HK8 model with (k2, σ ) = (1/2, 10). Each of the three types of equilibria is depicted near its onset: (a) an L1 state at R = 10,

(b) an L2 state at R = 185, and (c) a TC state at R = 150. The T scale ranges from 0 (dark) to 1 (light). Positive and negative vorticity is indicated by solid and
dashed streamlines, respectively. The TC states, in particular, display unphysical behavior due to the truncation of the PDE, evidenced by the internal temperature
maximum in (c).

the zero solution undergoes a second pitchfork bifurcation, giving rise to L2 equilibria when R > RL2 . There the nonzero modes are
he second Lorenz triplet,

ψ12 = ±
√
8 1

k2+4

√
R − RL2 , θ12 = ∓

√
8 k2+4

k

√
R − RL2 , θ04 =

1
2 (R − RL2 ). (18)

s shown in Fig. 1(b), the L2 states are an approximation of a PDE steady state with a two-by-two array of convection rolls. In the
ull PDE there are counterparts to the L1 and L2 branches that bifurcate from the conductive state at the same R values. They agree
symptotically with the truncated states in the weakly nonlinear regime, but this resemblance decreases as R grows.
The L1 and L2 equilibria are scaled versions of the nonzero equilibria of the Lorenz equations. In fact, if the HK8 equations are

estricted to the three-dimensional subspaces spanned by the nonzero variables in either (15) or (18), the resulting dynamics are
quivalent to those of the Lorenz equations. Thus, for any solution to the Lorenz equations, a corresponding solution to the HK8 system
an be obtained by a suitable linear change of variables. However, the dynamics of the HK8 model on these lower-dimensional manifolds
ppears to be unstable to off-manifold perturbations for sufficiently large R.
The third type of equilibria found in the HK8 model are called the TC states because they correspond to so-called tilted cells [26].

s shown in Fig. 1(c), a pair of steady convection rolls produces a mean horizontal flow whose direction breaks the symmetry of the L1
and L2 states. All eight modes are nonzero in the TC states, and here we compute them numerically using the numerical continuation
software MATCONT [32]. The temperature field in Fig. 1(c) is somewhat unphysical, as evidenced by the internal maxima of the steady
temperature field, reflecting the fact that the truncated model is not capturing the full PDE dynamics at this R.

Depending on the fixed values of k2 and σ , as R is varied there are five possible bifurcation structures where the TC branches
connect to the L1 or L2 branches,or both. Fig. 2 shows an example of each possible bifurcation structure, along with the regimes in the
k2–σ parameter plane where each structure occurs. In regimes III–V, a pair of TC branches connects to each L1 branch in a pitchfork
ifurcation at RTC1 , where [9]

RTC1
= 1 +

27σ 2

2

k4 + 5k2 + 7
2 2 2 2 2 . (19)
RL1 k + 1 (10σ + 3σ )(k + 1) + 2(k + 4)(5k − 4)
5
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Fig. 2. Examples of the five bifurcation structures of steady states of the HK8 model, with R as the bifurcation parameter (top). The k2–σ parameter regimes
where each bifurcation structure occurs are also shown and numbered correspondingly (bottom). Stars in parameter space (⋆) indicate the particular values for each
example bifurcation diagram above. Pitchfork (‘pf’) and saddle–node (‘sn’) bifurcations are labeled. Stability of steady states and locations of Hopf bifurcations are
not indicated. The results in this figure were reported by [9] and independently verified here. In the region I diagram, the TC branch bifurcates from the L2 branch
at a Rayleigh number very close to RL2 .

The above denominator is negative in regimes I and II, so the TC and L1 branches do not connect. Similarly, in regimes I–IV, a pair of
TC branches connects to each L2 branch in a pitchfork bifurcation at RTC2 , where

RTC2

RL2
= 1 +

27σ 2

k2 + 4
k4 + 5k2 + 7

(10σ − 3σ 2)(k2 + 4)2 + 2(k2 + 1)(5k2 + 11)
. (20)

or parameter combinations in regime V the TC and L2 branches do not connect, as the denominator of (20) is negative. Counterparts
o the TC branches have been observed for the full PDE, at least for some values of k2 and σ [9]. The bifurcations connecting the TC
ranches to the L1 and L2 branches are quantitatively accurate only in the σ → 0 limit since this is when they occur in the weakly
onlinear regime.
The L1, L2, and TC states are the only nonzero steady states of the HK8 model [9], so finding the maximum N among them at a given

arameter set yields the maximum heat transport by any steady state. Evaluating (11) or (12) to find N in the HK8 model gives the
6
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eat transport by the L1 and L2 equilibria:

NL1 = 3 − 2
RL1

R
, NL2 = 3 − 2

RL2

R
. (21)

oth values approach 3 as R → ∞, but NL1 > NL2 at any parameters where both states exist. We computed NTC numerically at many
arameter values in all five parameter regimes. In regimes I–IV we found NL1 > NTC in all cases, meaning the L1 branch maximizes
eat transport among steady states. In regime V, at sufficiently large R the TC branch maximizes N among steady states. Whether
hese maximal steady N values are also maximal among time-dependent solutions remains to be determined by the bounds computed
n Sections 6 and 7. We note that the results at large R are unlikely to be representative of the PDE: the values of NL1 begin to deviate
rom the values of Nu for the analogous steady solutions of the Boussinesq equations (i.e., the primary branch of convection rolls that
rises as the first instability of the conduction state) near R = 2Rc . Mean horizontal flow, exhibited in the HK8 system by the TC
quilibria and various time-dependent solutions, has been observed to reduce heat transport in simulations of 2D Rayleigh—Bénard
onvection in a horizontally periodic domain with stress-free boundaries [10].
All three nonzero steady branches can undergo Hopf bifurcations. Determining k2 and σ for the various pitchfork, saddle–node,

nd Hopf bifurcations to exist (with R as the bifurcation parameter) subdivides the five parameter regimes of Fig. 2 into 16 regimes,
s reported in [9]. The Hopf bifurcation on the L1 branch involves only the three Lorenz modes {ψ11, θ11, θ02} and is precisely the
opf bifurcation found in the Lorenz equations [5]. With the present variables (scaled differently from the Lorenz equations), the Hopf
ifurcation exists when σ > 1 + 4/(k2 + 1) and occurs at RH1 , where

RH1

RL1
= 1 + (σ + 1)

σ (k2 + 1) + (k2 + 5)
σ (k2 + 1) − (k2 + 5)

. (22)

ince the L2 subspace is another rescaling of the Lorenz equations, its Hopf bifurcation is similar. It exists when σ > 1 + 16/(k2 + 4)
nd occurs at RH2 , where

RH2

RL2
= 1 + (σ + 1)

σ (k2 + 4) + (k2 + 20)
σ (k2 + 4) − (k2 + 20)

. (23)

Additional Hopf bifurcations may occur on the TC branch, as detailed in [9].
Periodic states emerging from Hopf bifurcations of the L1 and L2 branches remain in their respective subspaces of Lorenz triplets,

here the dynamics are equivalent to those of the Lorenz equations. In the Lorenz equations, the truncated Nusselt number is
aximized at the nonzero equilibria [22,33] that correspond to the L1 equilibria. As a result, these three-dimensional periodic orbits
annot produce larger heat transport than NL1 . It remains possible that time-dependent states involving all eight modes can have larger
than all steady states; we examine such solutions in the next subsection.

.2. Time-dependent states

When time-dependent trajectories are not known exactly, time averages may be estimated from (5) by numerically integrating the
ystem starting from particular initial conditions and averaging over sufficiently large time intervals. It is generally not possible to
ompute the supremum (13) of N directly in this way since the number of possible initial conditions is infinite, and the dependence
f N on initial conditions is non-convex. As in the previous subsection, the goal of directly computing time averages is to identify
andidates for the maximal heat transport, and to compare the resulting values of N to the upper bounds in Sections 6–7.
We numerically integrated (10) to search for attracting time-dependent solutions of the HK8 model with (k2, σ ) = (1/2, 10) fixed.

hese parameter values lie in regime V of Fig. 2, and they correspond to the standard choice (β, σ ) = (8/3, 10) in the Lorenz equations.
his k value minimizes the Rayleigh number RL1 of convective instability in both the HK8 model and the PDE. Numerical integration
as carried out using MATLAB’s ode45 function with absolute and relative tolerances of 10−12 and 10−9, respectively, and all other
ettings at their default values. The time-averaged Nusselt number (12) was computed by averaging periodic trajectories over several
ull periods and by averaging aperiodic trajectories over 104 to 105 time units after initial transients.

When (k2, σ ) = (1/2, 10), the TC branch has subcritical Hopf bifurcations at R ≈ 21.8Rc and R ≈ 999Rc . Above the first
ifurcation, numerical integration with a variety of randomly generated initial conditions gives trajectories where all eight modes
ppear to be chaotic. The top row of Fig. 3 shows part of such a trajectory at R = 250. We were able to find such seemingly chaotic
rajectories for R/Rc ∈ (21.8, 45) and again at R ≳ 1.8×103 Rc ; between these two intervals, the only states we found using numerical
ntegration are periodic. An example atR = 500 is shown in the bottom row of Fig. 3. Bistability between periodic and seemingly chaotic
tates was found for R ≳ 1.8 × 103 Rc , where some initial conditions produced solutions that approached periodic trajectories, while
thers tended towards a nonperiodic attractor similar to that depicted in the top row of Fig. 3. Bistable behavior was not identified
or any smaller values of R. The system exhibits period doubling bifurcations as R is increased from the Hopf bifurcation of the TC
ranch and as R is decreased from R ≈ 46Rc into the nonperiodic regime, but the possibility of a full period doubling cascade was
ot explored in detail.
Fig. 4 shows the values of N versus R for all steady states and time-dependent states found using time integration. The N values in

he nonperiodic regime all lie below the steady state maximum. AsR is raised, the N values of the periodic states surpasses NTC , meaning
hat heat transport is not maximized by a steady state at large R. At such large R, however, the HK8 model is not expected to closely
eflect behavior of the PDE. At smaller R we did not find any time-dependent states with N larger than the steady state maximum.
or R ≲ 71Rc the steady states indeed maximize heat transport, as follows from our sharp upper bounds on N∗ in Section 6 that are
qual to max{N ,N }.
L1 TC

7
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Fig. 3. Evolution of the Lorenz modes (ψ11, θ11, θ02) and the ψ12 mode in projections of phase space for trajectories of the HK8 system. The top row displays orbits
f an apparently chaotic trajectory at R = 250, while the bottom row depicts a stable periodic trajectory at R = 500. In each case, all eight variables are generically
onzero along orbits.

Fig. 4. Nusselt numbers of steady and time-dependent solutions of the HK8 model for (k2, σ ) = (1/2, 10). Symbols denote time averages over time-dependent states
hat are periodic (•) or appear to be chaotic (×). Solid lines denote linearly stable equilibria while dashed lines denote unstable equilibria. TC equilibria are stable
nly in the small interval of R between their emergence from the L1 branch and the subsequent Hopf bifurcation. Locations of Hopf bifurcations are indicated by
ed squares (■).

. Bounding time averages using sum-of-squares polynomial optimization

To bound the optimal time-averaged heat transport among all trajectories in the HK8 model—the supremum (13) of N as defined
quivalently by (11) or (12)—we use a general method for bounding infinite-time averages in ODEs and PDEs. As explained below, the
ethod relies on constructing auxiliary functions that satisfy certain inequalities, implying a bound on the time average of interest.

n the case of ODEs with polynomial right-hand sides, bounds on averages of polynomial quantities can be sought using polynomial
uxiliary functions. In such cases the conditions on auxiliary functions amount to nonnegativity constraints on polynomial expressions,
nd auxiliary functions can be constructed computationally using methods of polynomial optimization with sum-of-squares (SOS)
onstraints. The SOS approach was suggested only a few years ago [20] and has surpassed other methods for the few systems to
hich it has been applied [21–23]. This approach is described for general ODEs in the present section. Numerical and analytical results

rom its application to bounding time-averaged heat transport in the HK8 model appear in Section 6 and Section 7, respectively.
Consider a well-posed autonomous ODE ẋ = f(x), where f : Rn

→ Rn is continuously differentiable and each trajectory x(t) ∈ Rn

ith initial condition x(0) = x0 remains bounded forward in time. Let Φ : Rn
→ R be a continuous quantity of interest whose

nfinite-time average (5) along the trajectory x(t) emanating from x0 is denoted by Φ(x0). Define the supremum of the time average
mong all trajectories as

Φ
∗

:= sup Φ(x0). (24)

x0∈Rn

8
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ur aim is to seek an upper bound Φ
∗

≤ U that applies uniformly to all trajectories. In our application to the HK8 model in the
ollowing sections, we choose Φ = 1+

1
R (2θ02 + 4θ04) because then Φ = N , and upper bounds apply to the supremum (13) of N over

all trajectories.
To construct global upper bounds on Φ

∗
, introduce an auxiliary function V : Rn

→ R in the class C1 of continuously differentiable
unctions. Any such V remains bounded along bounded trajectories. This implies f · ∇V = 0 on every trajectory, where the gradient is
ith respect to x, since

f(x(t)) · ∇V (x(t)) =
d
dt V (x(t)) = lim

τ→∞

1
τ

[
V (x(τ )) − V (x(0))

]
= 0. (25)

o produce upper bounds on Φ , use the identity (25) to estimate

Φ = Φ + f · ∇V ≤ sup
x∈Rn

[Φ(x) + f(x) · ∇V (x)] . (26)

his is useful because computing or estimating the right-hand supremum requires no knowledge of trajectories. While Φ(x) may be
nbounded over Rn, a judicious choice of V (x) makes the above supremum finite. Since (26) applies to all trajectories in bounded
ystems and for all V ∈ C1, it remains true when we maximize Φ over initial conditions and minimize the upper bound over V to find

Φ
∗

≤ inf
V∈C1

sup
x∈Rn

[Φ(x) + f(x) · ∇V (x)] . (27)

n equivalent way to express this inequality is

Φ
∗

≤ inf
V∈C1
S≥0

U, (28)

here S ≥ 0 indicates the pointwise nonnegativity on Rn of the function

S(x) := U −Φ(x) − f(x) · ∇V (x). (29)

In fact, for all bounded well-posed ODEs and continuous Φ(x), it has been proved that the inequality in (27) is an equality [19] if the
maximization is taken over a compact domain containing the attracting region of the ODE. The practical challenge is to construct an
auxiliary function V such that S ≥ 0 can be verified with the smallest possible upper bound U .

The right-hand side of (28) is an optimization problem over the infinite-dimensional space C1. Letting V be a polynomial of degree
o larger than d gives an optimization problem over the finite-dimensional vector space Pn,d of such polynomials in n variables. This
ound need not be sharp for finite d, but it is proven to converge to Φ

∗
as d → ∞ for any dynamical system where trajectories

emain in a compact set forward in time [34,35]. The resulting optimization problem is finite-dimensional and convex in V , but still
it is not tractable since deciding nonnegativity of the polynomial S is NP-hard in general. We thus use a relaxation that has become
standard for polynomial optimization since its introduction two decades ago [36–38]: nonnegativity of S over Rn is ensured by the
stronger requirement that S admits a representation as a sum of squares of other polynomials. That is, we require S to lie in the set
Σn of SOS-representable polynomials in n variables. If V has fixed maximum degree d, the upper bound from the resulting polynomial
optimization problem is [20–22]

Φ
∗

≤ U∗

d := inf
V∈Pn,d

U s.t. S ∈ Σn. (30)

The SOS-constrained polynomial optimization problem on the right-hand side of (30) is computationally tractable if d and n are not
too large. The ODE studied here has dimension n = 8, and computations with d ≤ 6 run in seconds on a laptop. Convergence of the
upper bound to Φ

∗
as d → ∞ is not guaranteed by the theorems of [34,35] because they use slightly different SOS conditions implying

onnegativity only on a compact set. However, in practice the bounds (30) often converge rapidly to Φ
∗
[21–23].

The usual computational approach to solving an SOS-constrained optimization problem as in (30) is to reformulate it as a semidefinite
program (SDP), a standard type of conic optimization problem. This is done by representing the polynomial S using a symmetric Gram
matrix Q by

S = bTQb, (31)

where b(x) is a vector of polynomial basis functions. The vector b is chosen such that S is in the span of the scalar polynomial entries
n bbT, so that at least one Q exists satisfying (31). Furthermore, S is an SOS polynomial if and only if at least one Q satisfying (31) is
ositive semidefinite [39]. For a chosen basis b, the polynomial optimization (30) can be formulated equivalently as

Φ
∗

≤ U∗

d := min
V∈Pn,d

U s.t. S = bTQb,
Q ⪰ 0. (32)

n the above optimization problem, the bound U and the coefficients of the polynomial V are tunable. The equality S = bTQb is enforced
y expanding out the right-hand product and matching coefficients on each monomial term, amounting to affine constraints on the
ntries of Q. Thus, the optimization is over symmetric matrices Q subject to affine and semidefinite constraints that depend linearly
n the tunable variable U and the coefficients of the ansatz for V . These two types of constraints on a semidefinite matrix are what
efine an SDP [40]. Various software is available to solve SDPs computationally, and we report numerical results in the next section.
nalytical solutions are possible in cases leading to very small SDPs, as in [22,39], and we report some analytical results in Section 7.
9
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. Numerical upper bounds

To compute upper bounds on N∗—the maximum of N among all trajectories in the HK8 model—we numerically solved polynomial
ptimization problems of the form (32). In the definition (29) of S, the vector f is the right-hand side of the HK8 model (10), and we
hoose

Φ = 1 +
1
R (2θ02 + 4θ04) , (33)

o that Φ = N according to (12). As discussed in Section 3, the two expressions (11) and (12) for the Nusselt number are equivalent
long all time-averaged trajectories. Upper bounds on the two quantities proved using the auxiliary function method are also identical.
o see this, notice that if V0 := θ02/2 + θ04/4, then

k
4 (ψ11θ11 − ψ12θ12) = 2θ02 + 4θ04 + f · ∇V0, (34)

where the quantity on the left-hand side is the function whose time average corresponds to (11). Therefore, if an upper bound on (11)
is obtained with the auxiliary function V , the same bound on (12) can be established with the auxiliary function V + V0. Solving (30)
with Φ defined by (33) and an auxiliary function V of polynomial degree d provides an upper bound N∗

≤ U∗

d . We performed such
omputations with d = 2, 4, 6, and 8, for various values of the model parameters (R, σ , and k). In Section 6.2, we maximize these
pper bounds over k to provide an analogy to the maximal heat transport of the PDE.
When solving the optimization problem in (32) to find the bound U∗

d , we do not need to consider a fully general polynomial ansatz
or V because some structure of V can be anticipated by examining the structure of the HK8 model. Restricting the V ansatz accordingly
mproves numerical conditioning and reduces computational cost. One source of structure is symmetry. The ODE (10) and the quantity
o be bounded (33) each are invariant under both of the following sign symmetries:

(ψ11, ψ01, ψ12, θ11, θ02, θ12, ψ03, θ04) ↦→ (ψ11,−ψ01,−ψ12, θ11, θ02,−θ12,−ψ03, θ04),
(ψ11, ψ01, ψ12, θ11, θ02, θ12, ψ03, θ04) ↦→ (−ψ11, ψ01,−ψ12,−θ11, θ02,−θ12, ψ03, θ04).

(35)

We impose these same symmetries on the V ansatz since this does not change the optimal bounds U∗

d [23,35]. The second structural
constraint on V comes from the requirement that the highest-degree terms in the polynomial f · ∇V be of even degree—a necessary
condition for the SOS constraint in (32) to be satisfied. In general one expects an odd maximum degree of d + 1 since f is quadratic.
To avoid this we require that the highest-degree terms cancel in f · ∇V . This imposes linear constraints on the highest-degree terms in
V that we encode into the V ansatz. Restricting V with these linear constraints and with the symmetries (35), we formulated the SOS
problems of the form (30) as SDPs with the MATLAB software YALMIP [41,42] (version R20190425). The resulting optimization problems
were then solved using MOSEK version 9.0.98 [43]. Further details of our computational implementation are given in Appendix A.

As a first example we fix (k2 = 1/2, σ = 10), and consider the dependence of the upper bound on R. At this value of k, the
Rayleigh number RL1 (k) that emerges as the first instability of the zero state takes its minimal value of Rc = 27/4. Fig. 5(a) shows the
upper bounds we computed in this case using SOS methods. Also shown are lower bounds on N∗ found by searching among various
trajectories of the HK8 system, as discussed in Section 4. Agreement of upper and lower bounds on N∗ to within numerical precision
implies that the upper bounds are sharp or very nearly so, and that the corresponding trajectories maximize N . In such cases we say
that the maximal solutions saturate the upper bounds. The relative gap between the upper bounds and lower bounds on N∗ established
in this work is depicted in Fig. 5(b); for R ≲ 560Rc , these two quantities agree to at least five significant digits.

Different trajectories saturate the upper bounds on N over various R intervals. When R ≤ RL1 , all trajectories satisfy N = 1 since
they tend to the equilibrium at the origin. On the subsequent interval RL1 ≤ R ≤ RTC1 ≈ 20.8Rc , the L1 equilibria maximize N . At the
resent k2 and σ values, NTC > NL1 for all R > RTC1 , and TC equilibria are maximal on the interval RTC1 ≤ R ≲ 69Rc . Time-dependent
tates appear to maximize N for larger R, with periodic orbits saturating the upper bound on the interval 69Rc ≲ R ≲ 520Rc .
We draw this conclusion because N on the periodic orbits agrees with the best upper bound to within the numerical error of our
SOS computations. In such cases we say for simplicity that the periodic orbit saturates the bound. Strictly speaking we do not expect
periodic orbits to exactly saturate a bound computed with V of any finite degree d, as explained in [22], but we ignore this distinction
provided U∗

d is sufficiently converged to the large-d limit. The branch of periodic orbits that saturates the upper bound is the one that
emerges, initially unstable, from the Hopf bifurcation at RH1 ≈ 21.80Rc . For R larger than 520Rc , time-dependent solutions may still
aximize N , but our upper bounds on N∗ are not sharp enough to confirm it.

.1. Dependence on wavenumber and Prandtl number

We now examine how the upper bounds and the states that saturate them depend on the parameters k2 and σ . When k2 is fixed
o values other than 1/2 with σ still fixed at 10, the bounds are qualitatively similar to those depicted in Fig. 5. We computed upper
ounds on N∗ at various wavenumbers and searched among known trajectories for the largest N values. Fig. 6 shows the upper bounds
e computed at five different wavenumbers using V of degrees up to eight. The different line styles in Fig. 6 indicate the type of state
hat appears to saturate the upper bounds at various R and k. As in the k2 = 1/2 case, each bound is saturated by L1 equilibria at small
, by TC equilibria at larger R, and—at least in the smaller-k cases—by periodic orbits at still larger R. The fact that L1 states maximize
at onset is proved analytically in [31] and in Section 7 below. The Rayleigh number where the TC branch of equilibria bifurcates

rom the L1 branch changes with k2 according to (19), but in each case the emerging TC states saturate the bound for some interval of
ayleigh number.
Similarly, we may consider how the situation changes when σ is fixed to various values while k2 = 1/2. The analytical bound proved

n Section 7.2 below implies that for k2 = 1/2, the σ -independent L1 states maximize N for R at least as large as R′(2−1/2) = 14Rc ,
here R′(k) is defined by (39) below. For R > R′, we computed numerical upper bounds on N for various σ ∈ [0.01, 100]. In each
ase, the upper bounds appear to be saturated by time-dependent solutions for all R sufficiently large. The main qualitative distinction
etween different σ values is whether or not there exists an interval ofR, starting atR′, over which TC states saturate the upper bounds.
t was observed in Section 4 that NTC exceeds NL1 if and only if (k2, σ ) lies in Region V of Fig. 2, which corresponds to σ ≳ 3.523 when
2

= 1/2. Indeed, for various σ > 3.523 our upper bounds are saturated by TC states over bounded intervals of R, whereas for smaller
we found no such intervals.
10
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Fig. 5. (a) Upper bounds (U∗

d ) on the truncated Nusselt number (N) computed by solving the SOS optimization (32) with degree-d auxiliary polynomials, compared
o N on particular solutions of the HK8 model with k2 = 1/2 and σ = 10. (b) Relative difference between the U∗

d and the lower bound L, determined by finding the
aximum N over the particular solutions obtained in Section 4.

Fig. 6. Upper bounds on N computed by solving the polynomial optimization problem (32) with V of degree up to eight. Upper bounds were computed for various
with σ = 10 across a range of R. The line style indicates whether the upper bound is saturated by L1 or TC equilibria ( ) or a time-periodic orbit ( ). The
otted lines ( ) indicate where the upper bounds of degree eight do not match the maximal N among the known steady and time-dependent solutions.

.2. Optimal wavenumbers

In the full PDE model (2) of 2D Rayleigh–Bénard convection, steady solutions of each horizontal period exist for sufficiently large R.
Thus for the PDE it is natural to search among all horizontal periods for the steady states that maximize heat transport. The analogue in
the HK8 model is to maximize N over k—the horizontal wavenumber of modes that are included in the truncated Galerkin expansion (9).
Thus we consider the quantity

N∗

k∗ (R, σ ) := sup
k>0

N∗(R, k, σ ). (36)

To find upper bounds on N∗

k∗ , we repeatedly solved the SOS optimization in (32) using V of degree six, sweeping through k and using the
ATLAB function fminsearch to converge to the global maximum of U∗ over k. Lower bounds on N∗ were computed by maximizing
6 k∗

11
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Fig. 7. Upper bounds on N∗ , largest N values among steady states, and largest known N values among time-dependent states, each maximized over k at σ = 10.
The maximizer k∗ generally depends on R and the type of trajectory that saturates the bound. Upper bounds were computed using V of degree six.

N over k among each of the three types of states seen to maximize N at various parameters: the L1 equilibria, the TC equilibria, and
stable periodic orbits found by time integration. For the L1 states, the optimal wavenumber is (k∗)2 = 1/2, corresponding to steady
convection cells of aspect ratio 2

√
2. Here NL1 attains its maximum of

max
k>0

NL1 = 3 −
27
2R

, (37)

in the regime R > Rc where these L1 states exist. The maximum of NTC over k was found using Mathematica by numerically optimizing
the analytical expressions for the TC equilibria at various fixed values of R and σ . At these same R and σ , the maximum value of N
over k for the stable periodic orbits was determined using a search algorithm similar to the one used to maximize the upper bound,
with numerical integration performed to determine N at each iteration.

Fig. 7 shows the upper and lower bounds on N∗

k∗ in the σ = 10 case. The upper bounds are sharp or nearly sharp over the full
range of R. At σ = 10, the states that saturate or nearly saturate these bounds are the L1 equilibria at small R, the TC equilibria at
intermediate R, and the stable periodic orbits at larger R. In particular, the maximum value N∗

k∗ is attained by NL1 when R ≲ 13.2Rc
and steady states when R ≲ 34.2Rc . The optimizer k∗ increases with R, and (k∗)2 > 1.56 whenever TC equilibria or time-dependent
states saturate the bound. Similar behavior was observed for various choices of σ ∈ (3.5, 100]. When σ < 3.5, the value of NTC lies
below NL1 (see Fig. 2), and hence at small Prandtl number there is no interval of R where TC saturates the upper bound on N∗

k∗ .
To study the effects of changing σ , at various fixed σ we determined the intervals of R where our k-maximized upper bounds are

saturated by the L1 equilibria, TC equilibria, or time-periodic states. Fig. 8 summarizes the results. At each σ , we used a bisection search
to find the largest R such that an L1 equilibrium saturates the k-maximized upper bound. That is, we computed the k-maximized upper
bound and increased R when the upper bound differed from the maximum of NL1 by less than 10−5, and we decreased R otherwise.
Analogous computations for TC equilibria were carried out to find the boundary between regions II and III.

Regions I and II together in Fig. 8 comprise the parameter regime in the HK8 model where, according to our upper bounds, the
maximum of N over all k is attained by steady states. It is an open question whether steady states maximize heat transport in the full
PDE model of Rayleigh–Bénard convection [18]. For the HK8 model at all σ and all R values small enough for the model to capture
PDE behavior, Fig. 8 suggests that this is indeed the case.

7. Analytical upper bounds using quadratic auxiliary functions

In principle the bounding framework (32) can be applied numerically or analytically, but many of the bounding computations
reported in Section 6 would be analytically intractable because the polynomial expression (29) for S has hundreds or thousands of
terms. Bounds can be derived analytically in the case of quadratic V , however, and we do so in this section. The resulting bounds are
rigorous and depend analytically on the parameters R, k, and σ , whereas the numerical bounds in Section 6 were subject to rounding
errors in the solutions to the SDPs, and they had to be computed anew for each triplet of parameter values.

The best analytical upper bounds on N take different forms in four different regimes of the k–R parameter plane. These four regimes
are shown in Fig. 9, and the bounds in each are

N ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, 0 ≤ R ≤ RL1 ,

NL1 , RL1 < R ≤ R′,

NL1 +
1
R

[
RL1 − RL2 +

√
2
√
(R − RL1 )2 + (R − RL2 )2

]
, R > R′, 0 < k ≤ k′,

1 [ √
2 √ 2

]
′ ′

(38)
NL1 + R RL1 − RL2 + (RL2 − RL1 ) + 4(R − RL1RL2 ) , R > R , k > k ,

12
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Fig. 8. Regions in the σ–R plane where the upper bound on N∗

k∗—the maximum heat transport over k—is saturated by: (I) L1 equilibria and (II) TC equilibria. In
egion (III), time-periodic states appear to saturate the upper bounds, but for some parameter combinations the upper bounds with V of degree six are not sufficient
o confirm this. The intersection between the three regions occurs near σ = 3.5 and R = 17.6Rc , corresponding to the minimal σ where the Nusselt number of
he TC equilibria exceed that of L1 for sufficiently large R.

Fig. 9. Parameter regimes where the four different analytical upper bounds (38) on N are proved for the HK8 model. In the cross-hatched region, N = 1 for all
solutions. The bound N ≤ NL1 is proved here for the full horizontally hatched region; it was proved in [31] only for the part of this region below the dashed line
( ). The diagonally and vertically hatched regions correspond to the third and fourth cases in (38), respectively.

where we recall that RL1 (k) and RL2 (k) are defined by (14) and (17) and that NL1 = 3 − 2
RL1
R , and where R′ is defined by

R′(k) :=

⎧⎨⎩
1
2

(
RL1 + RL2

)
, 0 ≤ k ≤ k′,

−15
2(5k2−4)

RL1 +

√
11+5k2
5k2−4

RL1RL2 , k > k′,
(39)

and k′
≈ 1.00319 is the positive real root of (5k2 + 11)RL1 = (5k2 − 4)RL2 . Note that the bounds (38) are uniform in σ , unlike the

bounds reported in Section 6 that were computed numerically with V of degree 4 and higher.
The bound in the first regime of (38) is sharp and is saturated by the zero equilibrium, which is globally attracting below the first

instability at RL1 . The bound in the second regime of (38) is saturated by the L1 equilibria. The same bound was proved by Souza
& Doering [31] on the strictly smaller parameter regime where RL1 < R ≤

√
RL1RL2 . In Section 7.2 we strengthen their result by

extending its applicability up to the larger parameter value R′. The bound in the third regime of (38) is new and is proved in Section 7.2.
The bound in the fourth regime was proved by Souza & Doering for R >

√
RL1RL2 . Their results are superseded in the second and third

egimes by our new bounds. It is possible to improve the bound in the fourth regime using quadratic V , as suggested by the bounds we
13



M.L. Olson, D. Goluskin, W.W. Schultz et al. Physica D 415 (2021) 132748

h
B
t

7

b
c
d

F
S
o
I
s

s
m
t

W
i
f
s

ave computed numerically, but we were unable to derive an analytical expression; partial analytical results are given in Appendix D.
ounds in the third and fourth regimes of (38) are not sharp; it is evident from the numerical bounds reported in the previous section
hat V of higher polynomial degrees provide better bounds.

.1. Sum-of-squares construction in the quadratic case

The quadratic ansatz that we consider for the auxiliary function V need not be the most general possible since some structure can
e anticipated, as described in Section 6. First, we require that V is invariant under the two symmetries (35) because this does not
hange the optimal bound. Second, we require that the cubic terms of f · ∇V cancel so that the polynomial S contains only terms of
egree two and lower. The most general quadratic V satisfying these two conditions takes the form

V = c1θ02 + c2θ04 + c3ψ2
11 + c4ψ2

01 + c5ψ2
12 + c6θ211 + c7θ202 + c8θ212 + c9ψ01ψ03 + c10ψ2

03 + c11θ204, (40)

where the coefficients must satisfy the linear relations:

c6 = c8, c7 = 2c6, 6c4 − c9 −
4(3 + k2)
k2 + 1

c3 +
4k2

k2 + 4
c5 = 0,

c11 = 2c8,
2
3
c10 − c9 −

4(k2 − 5)
k2 + 1

c3 +
4(k2 − 8)
k2 + 4

c5 = 0.
(41)

The previous derivation of upper bounds on N for the HK8 model in [31] was presented as an analogue of the ‘‘background method’’
for PDEs [12,16]. In the PDE setting, the background method can be viewed as a special case of a more general auxiliary functional
method—the PDE analogue of our general approach (32)—where the auxiliary functional is quadratic [23,44]. Likewise, the argument
in [31] is equivalent to a special case of our present analysis where the quadratic ansatz (40) for V has only two free coefficients (the
‘‘background values’’) rather than the six free coefficients in (40)–(41). Appendix C gives the exact constraints on these coefficients that,
if added, would make our analysis equivalent to [31]. We do not impose these unnecessary constraints here, leading to better bounds
on N in some parameter regimes.

With the quadratic V ansatz (40) and coefficients constrained by (41), the expression (29) for the polynomial S that must be SOS
becomes

S = U − 1 +

(
4c1 −

2
R

)
θ02 + 16c8θ202 +

(
16c2 −

4
R

)
θ04 + 64c8θ204

+ 2σ (k2 + 1)c3ψ2
11 + k

(
−

1
2
c1 − 2Rc8 − 2

σ

k2 + 1
c3

)
ψ11θ11 + 2(k2 + 1)c8θ211

+ 2σ (k2 + 4)c5ψ2
12 + k

(
c2 + 2Rc8 + 2

σ

k2 + 4
c5

)
ψ12θ12 + 2(k2 + 4)c8θ212

+
σ

3

(
c9 + 4

3 + k2

k2 + 1
c3 − 4

k2

k2 + 4
c5

)
ψ2

01 + 10σ c9ψ01ψ03

+ 27σ
(
c9 + 4

k2 − 5
k2 + 1

c3 − 4
k2 − 8
k2 + 4

c5

)
ψ2

03.

(42)

or each (R, k, σ ), the SOS optimization (30) asks for the smallest U such that the ci can be chosen to make the above expression an
OS polynomial of the state variables. The corresponding value of U provides an upper bound on the time-averaged Nusselt number N
ver all solutions to the HK8 model. To proceed analytically, we consider the SDP (32) that is equivalent to the SOS optimization (30).
n this formulation, the SOS constraint on expression (42) for S is replaced by the equivalent constraint that S = bTQb for some positive
emidefinite Gram matrix Q and vector b of polynomial basis functions.
We first choose a vector b such that S = bTQb holds for at least one matrix Q, then we determine when Q can be positive

emidefinite. The Gram matrix representation of S is possible if and only if S lies in the span of the scalar polynomial entries of the
atrix bbT. Any such b suffices; the existence of a positive semidefinite Q does not depend on the choice of b. Here we simply choose

he entries of b to be monomials:

b =

⎡⎢⎣b1
b2
b3
b4

⎤⎥⎦ , where b1 =

[
ψ11
θ11

]
, b2 =

[
ψ01
ψ03

]
, b3 =

[
ψ12
θ12

]
, b4 =

[ 1
θ02
θ04

]
. (43)

e have grouped the entries of b into the four sub-vectors bi to exploit symmetry. In particular, because the expression (42) for S is
nvariant under both transformations in (35), we group monomials such that b1, b2, b3, and b4 are invariant under, respectively, the
irst transformation only, the second transformation only, neither, and both. We then restrict Q to be block diagonal with blocks Qi
ized according to the bi. In this case the relation S = bTQb becomes

S =

4∑
bT
i Qibi, (44)
i=1

14
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nd this implies

Q1 =

⎡⎣ 2σ (k2 + 1)c3 −
k
2

(
1
2 c1 + 2Rc8 + 2 σ

k2+1
c3

)
−

k
2

(
1
2 c1 + 2Rc8 + 2 σ

k2+1
c3

)
2(k2 + 1)c8

⎤⎦ ,
Q2 =

⎡⎣ σ
3

(
c9 + 4 3+k2

k2+1
c3 − 4 k2

k2+4
c5

)
5σ c9

5σ c9 27σ
(
c9 + 4 k2−5

1+k2
c3 − 4 k2−8

k2+4
c5

)
⎤⎦ ,

Q3 =

⎡⎣ 2σ (4 + k2)c5 k
2

(
c2 + 2Rc8 + 2 σ

k2+4
c5

)
k
2

(
c2 + 2Rc8 + 2 σ

k2+4
c5

)
2(k2 + 4)c8

⎤⎦ ,
Q4 =

[ U − 1 2c1 − 1/R 8c2 − 2/R
2c1 − 1/R 16c8 0
8c2 − 2/R 0 64c8

]
.

(45)

There is no loss of generality in letting all entries of Q outside the Qi blocks be zero because if there exists any Q ⪰ 0 satisfying
= bTQb, then there exists such a Q that is block diagonal [45]. This simplifies matters because the condition Q ⪰ 0 is equivalent

o Qi ⪰ 0 holding for each block. In other words, S is an SOS polynomial if and only if each bT
i Qibi is an SOS polynomial. To prove an

pper bound N ≤ U in the following analysis, it suffices to find coefficients ci such that Qi ⪰ 0 for all four matrices in (44)–(45). A
imilar analytical procedure was implemented in [22] to exploit symmetry when bounding time averages in the Lorenz equations.

.2. Analytical bounds near the onset of convection

The origin ceases to be globally attracting when the L1 equilibria emerge as R increases past RL1 , corresponding to the onset of
onvection in the PDE model. At each k there exists an interval of Rayleigh number where the L1 states maximize N . In this subsection
e prove that

N ≤ NL1 = 1 + 2
(
1 −

RL1

R

)
(46)

when RL1 ≤ R ≤ R′, where R′(k) is defined as in (38). The regime of the k–R plane where this bound is proven is represented by
horizontal hatching in Fig. 9. The bound (46) may hold at some R values larger than R′ for certain k2 and σ , but this cannot be proved
using V that are quadratic.

To prove (46), we let U = NL1 in the expression (42) for S. When this bound holds it is saturated by the L1 equilibria. The auxiliary
function method can give a sharp bound on time averages only if S vanishes pointwise on all trajectories that saturate the bound [19],
so in the present case S must vanish on the L1 equilibria, whose nonzero coordinates are given by (15). This is possible only if all four
terms in the sum S = bT

i Qibi are SOS polynomials that vanish at the L1 equilibria. The second and third terms vanish there for any Qi
because b2 and b3 vanish. The first and fourth terms, on the other hand, vanish at the L1 equilibria if and only if they take the form

bT
1Q1b1 = q1

[
ψ11 −

k
(k2+1)2

θ11

]2
, bT

4Q4b4 = q4
[
θ02 − (R − RL1 )

]2
+ q5θ204, (47)

here the SOS constraints require q1, q4, q5 ≥ 0. Applying the above identities on the right-hand side of S = bT
i Qibi and equating

oefficients on each side of this equality determines four of the coefficients of V :

c1 = −
1
2R

, c2 =
1
4R

, c3 =
(k2 + 1)4

8σk2R(R − RL1 )
, c8 =

1
8R(R − RL1 )

. (48)

o establish the bound (46), the eleven coefficients of the V ansatz (40) must satisfy not only the four expressions above but also the five
onstraints in (41). This ensures Q1,Q4 ⪰ 0 when R ≥ RL1 , so it remains only to choose coefficients c5 and c9 such that Q2,Q3 ⪰ 0.
e observe that a 2-by-2 matrix is positive semidefinite if and only if its upper left entry and determinant are both nonnegative.
pplying this criterion gives four inequalities that are equivalent to Q2 and Q3 being positive semidefinite. We performed quantifier
limination using the Reduce and Exists commands in Mathematica to determine that these inequalities can be satisfied if and only
f RL1 ≤ R ≤ R′. Thus, optimization with quadratic V yields the sharp bound N∗

= NL1 on this parameter regime.

7.3. Analytical bounds at larger Rayleigh number

In the regime where R ≥ R′, we have proved a new analytical bound when k ≤ k′
≈ 1.00319 but not when k > k′. Our bound in

the former case is

N ≤ 3 −
2RL1

R
+

1
R

[
RL1 − RL2 +

√
2
√
(R − RL1 )2 + (R − RL2 )2

]
. (49)

o derive this bound we consider the expression (42) for S where U is equal to the right-hand side of (49). As in the previous subsection,
e must show that the resulting S can be written in the form S =

∑4
i=1 b

T
i Qibi, where each term in the sum is an SOS polynomial—or,

quivalently, where each Qi ⪰ 0.
Allowing for fully general SOS constraints leads to analytical difficulties, even with the simplifying block diagonal structure of Q.

Unlike in Section 7.2, we cannot anticipate where the polynomial S must vanish. Instead we simplify the analysis by making assumptions
on the forms of the SOS representations. In particular we observe that, in the σ → ∞ limit, the Lorenz triplets {ψ , θ , θ } and
11 11 02
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Fig. 10. Analytical upper bounds on N∗ in the k2 = 1/2 case, proved with optimal quadratic auxiliary functions (U∗

2 ) and with the suboptimal choice of [31]. The
ounds are uniform in σ . Values of NTC are shown at several selected values of σ to demonstrate near-convergence of U∗

2 to the envelope of steady state Nusselt
umbers over σ .

ψ12, θ12, θ04} decouple, and the maximal N is obtained when each triplet is in the L1 and L2 states, respectively (see Appendix B.1 for
etails). This motivates us to assume that the SOS representations of the first and third SOS polynomials take the form

bT
1Q1b1 = q1

[
ψ11 −

k
(k2 + 1)2

θ11

]2

, bT
3Q3b3 = q3

[
ψ12 +

k
(k2 + 4)2

θ12

]2

. (50)

The above constraints are stronger than the general SOS conditions and could potentially lead to suboptimal bounds, but this appears to
not occur; at various fixed parameter values in this regime, upper bounds computed numerically with the optimal choice of quadratic
V agree precisely with the analytical bound (49).

With the assumption (50) on SOS representations, the coefficients of V satisfy

c3 =
(k2 + 1)
σ

RL1c8, c5 =
(k2 + 4)
σ

RL2c8, c1 = 4(RL1 − R)c8, c2 = 2(RL2 − R)c8. (51)

As a result of (50), the matrices Q1 and Q3 defined in (45) each have determinant zero, and so Q1,Q3 ⪰ 0 as long as c8 ≥ 0. The
condition Q2 ⪰ 0 requires c8 > 0 because c8 = 0 would imply that detQ = −16σ 2c29 , which is negative for all c9. Furthermore, it can
be shown that if c8 is positive, Q4 ⪰ 0 whenever detQ4 ≥ 0. We also observe that detQ4 = 0 must hold at the minimal U; otherwise,
there would exist smaller U such that Q4 ⪰ 0. After the relations (51) are applied to Q4, the detQ4 = 0 condition becomes

U − 1 =

(
8(RL1 − R)c8 − 1/R

)2
+

(
8(RL2 − R)c8 − 1/R

)2
16c8

. (52)

Minimizing U over positive c8 yields the bound (49), where the minimizer is

c8 =
[
32R2 (

(R − RL1 )
2
+ (R − RL2 )

2)]−1/2
. (53)

It remains to find c9 such that Q2 ⪰ 0. Again performing quantifier elimination with Mathematica’s Reduce and Exists commands,
e find that such c9 exist if and only if k ≤ k′. This condition and the R ≥ R′ condition define the regime in the R–k plane where we

proved the bound (49). For the standard wavenumber k2 = 1/2, Fig. 10 compares the optimal analytical bounds—(46) and (49)—that
can be proved using quadratic V , to the upper bound from [31], as well as to the N values of various steady states.

7.4. Quadratic bounds compared to steady states at maximal Prandtl number

The analytical bounds (38) proved using quadratic V are uniform in σ , so they are also upper bounds on the maximum of N over
σ . That is,

N∗

σ∗ (k,R) := max
σ>0

N∗(k, σ ,R) ≤ U∗

2 (k,R). (54)

When RL1 ≤ R ≤ R′(k), the quadratic-V upper bound is saturated by the σ -independent L1 states, and N∗

σ∗ = U∗

2 . For R > R′, the
niform-in-σ bounds cannot always be sharp at particular σ because there are cases where N is maximized by the σ -dependent TC
tates. However, this does not rule out the possibility that the uniform-in-σ bounds may be sharp upper bounds on N∗

σ∗ . Investigating
his possibility, we find that the analytical bounds (38) are nearly equal to N∗ but slightly larger in general when R > R′.
σ∗

16
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Fig. 11. Difference between the best upper bound provable using quadratic auxiliary functions (U∗

2 ) and the value N∗

σ∗ defined by (54), for various fixed values of
k2 . The difference vanishes as R decreases towards R′(k) and in the limit R → ∞.

The relationship between the quadratic-V upper bounds and the quantity N∗

σ∗ may be visualized by constructing an envelope of
TC curves at multiple values of σ . Fig. 10 shows a few such curves in the k2 = 1/2 case. The bound U∗

2 follows the contour of this
nvelope, but a small separation occurs after the quadratic-V bound diverges from NL1 . As shown in Fig. 11 for various fixed k, the
ounds provided by quadratic auxiliary functions are almost but not quite saturated by N∗

σ∗ when R > R′. The N∗

σ∗ values used in
ig. 11 we obtained by finding exact expressions for NTC with computer algebra, then maximizing the result over σ for various fixed
alues of R and k. In each case, the maximizing σ ∗ lies in region V of Fig. 2—the parameter regime in the k2–σ plane where the branch
f TC equilibria connects only to the L1 branch. As R → ∞, the quadratic-V bounds and the infinite-σ limit of NTC both asymptote to
= 5; see Appendix B.1 for details on the infinite-σ limit.

. Conclusions

The auxiliary function method was applied using sum-of-squares optimization to establish upper bounds on the mean heat transport,
, among all solutions of the HK8 system, a truncated version of Rayleigh’s PDE model [1]. Values of N were also calculated along
arious particular solutions to the HK8 system. The upper bounds are sharp in many cases, as confirmed by their coincidence with N
n a known steady or time-periodic solution. For purposes of numerical computation, SOS optimization was performed via semidefinite
rogramming with auxiliary functions of polynomial degrees 2, 4, 6, and 8 at various choices of the model parameters R, σ , and k.
oreover, upper bounds were derived analytically using quadratic auxiliary functions, yielding estimates that depend explicitly on the
arameters R and k, and improving upon a previous result.
For all values of k and σ where we computed bounds by SOS optimization, steady states maximize N for a range of R past the

nset of convection. Specifically, for all k and σ there exists an interval of R where the L1 equilibria maximize N . This interval contains
the σ -independent interval RL1 ≤ R ≤ R′, as follows from our analytical bounds. When σ is sufficiently large, there exists a bounded
interval of R within (R′,∞) where the TC equilibria saturate the upper bound; for smaller σ the L1 equilibria transport optimally among
all steady states of the HK8 model. Numerical results suggest that time-dependent trajectories typically maximize N for sufficiently
large R. The emergence of time-periodic solutions that transport more heat than any steady state contrasts with the Lorenz equations
where the L1 equilibrium maximizes N for all R beyond onset [5,22,46]. Motivated by the physics of the full PDE model, where the
aspect ratio of convection cells need not be fixed, we also maximized our bounds over k. Similar maximization over the horizontal
period of the primary roll state has been carried out in recent studies of maximal heat transport for the full PDE [47–49]. Doing so
naturally divides the σ–R parameter space into regions (Fig. 8) where the so-maximized bounds are saturated by each of the three
types of solutions described above. For a range of R after the onset of convection, bounds are always saturated by steady states. This
means that maximal heat transport is achieved by steady flows, at least for the small range of R where the HK8 model faithfully reflects
the full PDE.

The HK8 model considered in this paper is but one of many distinguished truncations of Rayleigh’s 1916 model satisfying certain
conservation laws obeyed by the PDE. A systematic approach to identifying such physically distinguished models was first explored
by Thiffeault [27,28], who provided a guide to building higher-dimensional ODE models of Rayleigh–Bénard convection. It remains for
future work to derive a hierarchy of such models and compute upper and lower bounds on the truncated Nusselt number in successively
larger models. In principle, this can be done using the same computational methods we have illustrated here for the HK8 model. This
program may ultimately reveal solutions that maximize heat transport in the full PDE model of Rayleigh–Bénard convection. Analysis
of increasingly faithful approximations of the PDE may illuminate whether or not steady coherent convection realizes maximal heat
transport.
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ppendix A. Numerical procedure

In this appendix, we detail the computational procedure used to solve the SOS optimization problems whose results are reported
n Section 6. If the SDP corresponding to (30) is solved without simplification, computational cost and numerical ill-conditioning quickly
ecome prohibitive as the polynomial degree is raised. Both aspects may be improved by restricting the ansatz for the auxiliary function
. Numerical conditioning can be improved by rescaling the phase space variables in the governing ODE system. Here we detail the
pecific monomial reduction and rescaling used to produce the results of Section 6.
The HK8 ODE and the expression for N are each invariant under the symmetries (35). We impose this same invariance on V since

oing so does not affect the optimal value of the resulting SOS problem (30) [23,35]. The first symmetry in (35) dictates the degrees
f ψ12, θ12, ψ01, and ψ03 have an even sum in each monomial of the V ansatz, and the second symmetry in (35) dictates the same for
11, θ11, ψ01, and ψ03. The symmetric monomials take the form:

(ψ01ψ03)d1 (ψ11θ11)d2 (ψ12θ12)d3 θ
d4
02 θ

d5
04 p(x)2, (A.1)

where d1, . . . , d5 are nonnegative integers and p(x) is any monomial of the HK8 variables. Since Φ , V , and the ODE share the same
symmetries, the polynomial S defined by (29) does also. For a properly ordered polynomial basis vector, the Gram matrix representing
S can then be written in block diagonal form without changing the optimum of the SDP. This block diagonalization is automated by
YALMIP, and in Section 7 it is illustrated explicitly for the case of quadratic V . In SDP computations, block diagonalization significantly
reduces computational cost and memory usage and improves conditioning.

The V ansatz can be further restricted by observing that the SOS constraint on S requires the highest-degree monomials in S to be
f even degree. Such monomials generally come from the f · ∇V term in (29). If the highest-degree monomials in V are of even degree

d, then for the HK8 model the polynomial f ·∇V generally includes terms of odd degree d+1. Hence the SOS constraint can be satisfied
only if the leading terms in V are constrained such that the highest-degree terms in f · ∇V cancel. This condition amounts to linear
onstraints on the coefficients of the highest-degree terms of V . In the present application to the HK8 model, these linear constraints
mply that the degree-d terms of V take the form

(ψ01ψ03)aq(x)2, (A.2)

where a is a nonnegative integer and q(x) is any monomial of degree (d−a)/2. This condition on V , along with the imposed symmetry,
restricts V to a subspace of the vector space P8,d whose dimension is much smaller than the full dimension, as summarized in Table A.1.
In theory the smaller V ansatz gives the same bounds, but in practice it approximates these bounds with less numerical error, as well
as lower computational cost.

Scaling the ODE variables has a significant impact on the numerical conditioning of the SDP computations. A common heuristic
implemented when using SOS optimization to study dynamical systems is to scale the state variables so that the relevant trajectories
lie within the region [−1, 1]n [22,50]. The appropriate variable scalings for the HK8 system were determined empirically using a
combination of time integration and SOS bounds on the time average of each state variable. To achieve the desired scaling across
a wide range of parameter values, the two Lorenz triplets {ψ11, θ11, θ02} and {ψ12, θ12, θ04} were scaled by their values at the L1 (15)
and L2 (18) steady states, respectively. The remaining variables, ψ01 and ψ03, were scaled by

√
R and

√
R/27, respectively, motivated

by their values at the TC equilibria. For many computations, all variables were scaled down further, typically by a factor of two, because
doing so was empirically observed to reduce the numerical error.

After defining the V ansatz and rescaling the ODE variables as described above, the optimization toolbox YALMIP [41] (version
R20190425) was used to formulate the SOS optimization problem (30) as an SDP (32) and interface with the SDP solver. The resulting
SDP was solved using MOSEK [43] (version 9.0.98), which implements a primal–dual interior-point algorithm. Most computations were
performed on a 3.0 GHz Intel Xeon processor, with some smaller problems solved on a laptop with a 2.2 GHz Intel i5 processor.

Appendix B. Limiting cases of the HK8 model

B.1. The HK8 system in the infinite Prandtl number limit

In this appendix, we examine the HK8 model in the limit of large Prandtl number, and determine upper bounds on N using SOS
optimization. Proper balancing of terms in the HK8 system suggests that as σ → ∞, the shear modes ψ and ψ are O(σ−1), and all
01 03
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Table A.1
Number of monomials in the ansatz for the auxiliary function V of degree d before and after
reducing the ansatz using the structure of the HK8 model. The number of monomials before
reduction is

(8+d
d

)
.

d Unreduced Reduced

2 45 11
4 495 88
6 3003 488
8 12870 2084
10 43758 7251

other variables are O(1) as σ → ∞. Scaling the state variables of the HK8 system according to these assumptions allows the dynamics
o be reduced to two 2-dimensional systems:

θ̇11 =
k2 + 1
RL1

(
R − RL1 − θ02

)
θ11,

θ̇02 = −4θ02 +
k2 + 1
2RL1

θ211,

(B.1)

nd

θ̇12 =
k2 + 4
RL2

(
R − RL2 − 2θ04

)
θ12,

θ̇04 = −16θ04 +
k2 + 4
RL2

θ212,

(B.2)

here

ψ11 =
k

(k2 + 1)2
θ11, ψ01 = −

3k
4σ
ψ11ψ12,

ψ12 = −
k

(k2 + 4)2
θ12, ψ03 =

k
36σ

ψ11ψ12.

(B.3)

nder a suitable change of variables, (B.1) and (B.2) are each equivalent to the large–σ limit of the Lorenz equations studied previously
in [51]:

ẏ = (ρ − 1 − z) y,

ż = −βz + y2,
(B.4)

orresponding to the restriction of Lorenz equations to the plane x = y. To obtain (B.4) from (B.1) we change variables according to

θ11 =
√
2RL1 y, θ02 = RL1 z, (k2 + 1)t ↦→ t,

β = 4/(k2 + 1), ρ = R/RL1 .
(B.5)

nd a similar scaling may be applied to θ12 and θ04 to obtain (B.4) from (B.2). Therefore the dynamics of (B.1) and (B.2) can each be
understood by studying the ODE (B.4). The nonzero equilibria of (B.4) are (y, z) = (±

√
β(ρ − 1), ρ − 1). These equilibria are globally

stable within their respective half-plane (y > 0 or y < 0) for all ρ > 1. In contrast to the Lorenz equations at finite σ , trajectories of
B.4) cannot become chaotic [51].

When R > RL2 , (B.1) and (B.2) each have three equilibria: a pair of Lorenz-like equilibria corresponding to the L1 or L2 states, and
he zero equilibrium. Any combination of these provides an equilibrium for the full HK8 system, and therefore there are nine in total.
he four such equilibria where both Lorenz-like systems are nonzero are stable when they exist, and correspond to the large-σ limit
f the TC states. The maximum N over all equilibria in the large-σ limit is NTC − 1 = (NL1 − 1) + (NL2 − 1). It can be shown using SOS

optimization with degree two auxiliary functions that for sufficiently large R, the TC equilibria saturate the upper bound U∗

d , and thus:

max
x(t)

N =

⎧⎨⎩
1, 0 < R ≤ RL1 ,

3 − 2RL1/R, 2RL1 < R ≤ RL2 ,

5 − 2RL1/R − 2RL2/R, R > RL2 .

(B.6)

These upper bounds arise as the σ → ∞ limit of the bounds constructed at finite σ in Section 7. In the infinite-Prandtl number limit
of the HK8 system, equilibria saturate the upper bound on N for all R and k. This provides a contrast to the bounds at finite Prandtl
number determined in Section 6, where time-dependent states were observed to maximize N for R sufficiently large.

B.2. TC equilibria in the infinite-R limit

Expressions for the TC equilibria can be obtained using symbolic manipulation, yet their exact formulas are too complicated to
analyze directly. In order to better understand the behavior of the TC equilibria, we compute asymptotic formulas for these equilibria
in the large-R limit. Solutions to the truncated model in this limit have almost no correspondence to solutions of the full PDE; the

purpose of this analysis is purely to gain a better understanding of the HK8 model.
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The qualitative behavior of the TC states at large R may be categorized by dividing the k2–σ plane into three distinct parameter
regimes, much like the analysis performed in Section 4.1. Let S1 and S2 be the regions where the TC branch connects to only the L1 or
L2 branch, respectively, defined by

S1 := {(k2, σ ) : (10σ − 3σ 2)(k2 + 4)2 + 2(k2 + 1)(5k2 + 11) ≤ 0}, (B.7)

S2 := {(k2, σ ) : (10σ + 3σ 2)(k2 + 1)2 + 2(k2 + 4)(5k2 − 4) ≤ 0}. (B.8)

Below, we prove that the large-R limit of N is

N1
0 =

20(k2 + 1)(5k2 + 11) + 2(65k4 + 313k2 + 698)σ + 45(k2 + 4)2σ 3

20(k2 + 1)(5k2 + 11) + 2(65k4 + 403k2 + 788)σ + 9(k2 + 4)2σ 3 , (k2, σ ) ∈ S1,

N2
0 =

20(k2 + 4)(5k2 − 4) + 2(35k4 − 83k2 − 442)σ + 45(k2 + 1)2σ 3

20(k2 + 4)(5k2 − 4) + 2(35k4 + 7k2 − 82)σ + 9(k2 + 1)2σ 3 , (k2, σ ) ∈ S2.
(B.9)

he regions S1 and S2 correspond with regions V and I–III, respectively, in Fig. 2. In the part of parameter space that separates S1 and
2 (called regions III–IV in Fig. 2), the TC branch connects to both the L1 and L2 branches via pitchfork bifurcations, and as a result TC
quilibria only exist for a finite range of R. Hence, the large-R limit of the TC states need only be considered in S1 and S2.
We first derive algebraic conditions on the TC equilibria, using the fact that all eight variables are nonzero at the TC states. Define

he variables X = ψ2
11 and Y = ψ2

12. Then, assuming X and Y are nonzero, the algebraic system whose solutions are equilibria of the
K8 model reduces to

0 = k
(
RL1 − R

)
+

k
8
(k2 + 1)2X +

(
(k2 + 1)α +

5k
12σ

(k2 + 4)2
)
Y +

(
k2

8
α −

5k2

12σ
β

)
XY ,

0 = k
(
RL2 − R

)
−

(
(k2 + 4)β +

5k
12σ

(k2 + 1)2
)
X +

k
8
(k2 + 4)2Y −

(
k2

8
β +

5k2

12σ
α

)
XY ,

(B.10)

here

α =
k(5k2 + 11)

12σ 2 , β =
k(5k2 − 4)

12σ 2 . (B.11)

fter further simplification, the variable X in (B.10) takes the form

X =
kR + C0 + C1Y

D0 + D1Y
, (B.12)

here Y solves the quadratic equation

Y 2
+ (A0R + A1)Y + (B0R + B1) = 0. (B.13)

The constants Ai, Bi, Ci,Di are independent of R and may be determined from (B.10). To determine asymptotic expansions for X and Y
as R → ∞, we let ε = 1/R and multiply (B.13) by ε, resulting in the singular perturbation problem

εY 2
+ (A0 + A1ε)Y + (B0 + B1ε) = 0. (B.14)

B.2.1. Outer approximation
The equilibria corresponding to the infinite-R limit of the TC equilibria in S2 can be found by substituting the expansion Y ∼

∑
n ε

nYn
into (B.14). This yields a hierarchy of equations for Yn, with the leading term Y0 given by

Y0 = −
B0

A0
. (B.15)

ubstituting the series for Y into (B.12) yields a geometric series with leading order

x0 =
k

D0 + D1Y0
. (B.16)

ecause all eight variables must be real and nonzero, the above expansions provide limiting behavior for the TC equilibria as long
s x0, Y0 > 0, corresponding exactly to the set S2. Within this region, (B.15) and (B.16) determine the limiting behavior for all eight
ariables on the TC branch. If the limiting behavior of NTC is desired, it is more useful to express N directly in terms of X and Y , yielding
n asymptotic series for N . After simplification, the volume-averaged expression (11) for N becomes

N = 1 +
k
4R

(
(k2 + 1)2

k
X + (α − β)XY +

(k2 + 4)2

k
Y
)
. (B.17)

he expressions (B.15) and (B.16) imply that the leading order behavior of N in S2 is given by

N2
0 =

k
4

(
(k2 + 1)2

k
x0 + (α − β)(x0Y0)

)
=

20(k2 + 4)(5k2 − 4) + 2(35k4 − 83k2 − 442)σ + 45(k2 + 1)2σ 3

20(k2 + 4)(5k2 − 4) + 2(35k4 + 7k2 − 82)σ + 9(k2 + 1)2σ 3 .

(B.18)

urther terms in the expansion may be computed using the asymptotic series computed above. It can be shown that this expansion is
alid in the set S , where the TC branch connects only to L , as elsewhere the leading-order terms of X or Y will be negative. Within the
2 2
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nterior of S2, N2
0 is strictly increasing in both k2 and σ , reaching its maximum value of 3 along the entirety of the interior boundary of S2,

nd approaching its minimum value of 1 as σ vanishes. The leading-order term has a jump discontinuity at the point (k2, σ ) = (4/5, 0).
Convergence of the asymptotic series may be demonstrated by comparing its first few terms against computed values of N at chosen

arameter values. As expected, the leading-order expansion converges at a rate of O(ε2) as ε → 0, while including more terms improves
he order of accuracy.

.2.2. Inner approximation
The large-R limit of the TC equilibria in S1 can be found after rescaling (B.14) by y = εY , to obtain

y2 + (A0 + A1ε)y + (B0ε + B1ε
2) = 0. (B.19)

This scaling emerges when seeking a dominant balance between the first two terms of (B.14). We then proceed as in Appendix B.2.1
to find that the leading-order expansion for N is given by

N1
0 = 1 +

k
4

(
(α − β)X0y0 +

(k2 + 4)2

k
y0

)
=

20(k2 + 1)(5k2 + 11) + 2(65k4 + 313k2 + 698)σ + 45(k2 + 4)2σ 3

20(k2 + 1)(5k2 + 11) + 2(65k4 + 403k2 + 788)σ + 9(k2 + 4)2σ 3 .

(B.20)

here

y0 = −A0, X0 =
k + C1y0
D1y0

. (B.21)

This solution corresponds to the asymptotic state of the TC branch in S1 that is of particular interest since the TC equilibria maximize
among the steady states of the HK8 model at sufficiently large R in this parameter regime. The leading-order term N1

0 is nearly
onstant in k2 and is strictly increasing in σ , rapidly approaching 5 as σ → ∞. As (k2, σ ) approaches the interior boundary of S1, the
C equilibria approximate L1 states and therefore N1

0 → 3 in this limit.

ppendix C. Special case of the quadratic SOS method: results of Souza & Doering

The analysis of Souza & Doering in [31] amounts to a special case of the quadratic SOS approach implemented in Section 7, with the
oefficients of the general quadratic auxiliary function (40)–(41) restricted more than necessary. The bounds they prove are identical
o those proven in Section 7 when R ≤

√
RL1RL2 , bur for larger R they prove instead that [31]

N ≤ NL1 +
1
R

[
RL1 − RL2 +

√
(RL2 − RL1 )2 + 4(R −

√
RL1RL2 )2

]
. (C.1)

n this interval, more general quadratic V give sharper bounds, as shown by the results of Sections 6 and 7.
To show how the analysis of [31] fits into our present framework, let us derive the large-R bound of (C.1) in the language of Section 7.

et z1 and z2 be constants to be chosen below—the ‘‘background variables’’ in the language of [31]—and define the constant

α =
z1 + z2
z21 + z22

. (C.2)

ur approach in Section 7 reduces to the special case of [31] if the coefficients ci of V in (40) are restricted such that

c1 =
1 − 2αz1

2R
, c2 =

1 − 2αz2
4R

, c3 =
(k2 + 1)(α − 1)

8σR
,

c5 =
(k2 + 4)(α − 1)

8σR
, c8 =

α

8R2 , c9 = 0.
(C.3)

ith the coefficients constrained by (41) and (C.3), there are only two free parameters remaining in the expression for V , and therefore
he auxiliary function is determined by specifying z1 and z2. Under these restrictions on V , the minimal upper bound such that the
polynomial S is sum-of-squares is

N ≤ 1 + 2(z1 + z2), (C.4)

rovided z1 and z2 can be chosen so that α ≥ 0 and
RL1

R
(α − 1) − α(z1 − 1)2 ≥ 0, (C.5)

RL2

R
(α − 1) − α(z2 − 1)2 ≥ 0. (C.6)

The bound of (C.1) in the R >
√
RL1RL2 case may then be constructed by taking [31]

z1 =

√
RL1

[
−RL1 + 2R

√
RL2
RL1

− RL2 +
√
(RL2 − RL1 )2 + 4(R −

√
RL1RL2 )2

]
2R

(√
RL1 +

√
RL2

) ,

z2 =

√
RL2

RL1
(z1 − 1) + 1.

(C.7)

his bound is valid whenever R >
√
RL1RL2 but is not as tight as the result obtained in Section 6 and Section 7 using the most general

uadratic ansatz for V .
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ppendix D. Analytical bounds in the larger-wavenumber regime

This appendix gives partial results towards the analytical optimization of N with quadratic V in the regime where R > R′ and k > k′

cf. Fig. 9). In this regime the bound (49) does not hold, so the assumptions (50) are not valid. Our best analytical bound coincides with
hat of [31]:

N ≤ NL1 +
1
R

[
RL1 − RL2 +

√
(RL2 − RL1 )2 + 4(R −

√
RL1RL2 )2

]
. (D.1)

he exact auxiliary function required to prove this bound is given in Appendix C. However, this bound is not optimal among quadratic
; numerical solution to (30) with quadratic V gives sharper bounds at many parameter values.
In order for the construction of optimal V to become analytically tractable, we want to further restrict V in a way that will be

ustified a posteriori by the sharpness of the resulting bounds, much as was done for the smaller-k regime in Section 7.3. If the bounds
re saturated by the TC equilibria, then S must vanish there. Since ψ01 = −27ψ03 on the TC equilibria,

bT
2Q2b2 = q2 (ψ01 + 27ψ03)

2 . (D.2)

e further observe in SOS computations with quadratic V that the determinants of Q1 and Q3 are zero up to the tolerance of the
olver. This implies that for some q1, q2, A1, and A2,

bT
1Q1b1 = q1 (ψ11 − A1θ11)

2 , bT
3Q3b3 = q3 (ψ12 − A2θ12)

2 . (D.3)

These restrictions impose the coefficient relationships

c3 =
(5k2 − 4)(k2 + 1)
(5k2 + 11)(k2 + 4)

c5, c9 =
108

(k2 + 4)(5k2 + 11)
c5,

c1 = 8
k2 + 1

k
√
σ c3c8 − 4Rc8 −

4σ
k2 + 1

c3, c2 = 4
k2 + 4

k
√
σ c5c8 − 2Rc8 −

2σ
k2 + 4

c5.
(D.4)

he semidefinite constraints will be satisfied if c5 and c8 are each nonnegative, so it remains to determine c5 and c8 that minimize U .
By the same argument used in Section 7.3, the optimal Q4 must have a determinant of zero, in which case the SOS optimization is
quivalent to

min
c5,c8≥0

U, (D.5)

here

U − 1 =
1

16c8

[(
8Rc8 +

1
R

+
8σµ
k2 + 1

c5 − 16
k2 + 1

k
(σµc5c8)1/2

)2

+

(
8Rc8 +

1
R

+
8σ

k2 + 4
c5 − 16

k2 + 4
k

(σ c5c8)1/2
)2

]
,

(D.6)

ith

µ =
(5k2 − 4)(k2 + 1)
(5k2 + 11)(k2 + 4)

. (D.7)

umerical solutions of (D.5)–(D.7), obtained using the Mathematica function NMinimize, agree with numerical solutions to the full
OS optimization problem for various parameter values in this regime, suggesting the assumptions (D.2)–(D.3) leading to this simpler
inimization problem are not overly restrictive. However, we have not been able to derive an analytical solution to (D.5)–(D.7) that is
imple enough to be useful.
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