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Abstract. In this paper, we prove a phase transition in the connectivity of finitary
random interlacements FZ*7 in Z¢, with respect to the average stopping time 7.
For each u > 0, with probability one FZ*” has no infinite connected component
for all sufficiently small T > 0, and a unique infinite connected component for all
sufficiently large T' < oo. This answers a question of Bowen (2019) in the special
case of Z<.

1. Introduction

The model of random interlacements (RI) was introduced by Sznitman (2010),
and finitary random interlacements (FRI) was recently introduced by Bowen (2019)
to solve the Gaboriau-Lyons problem in the case of arbitrary Bernoulli shifts over
a non-amenable group. The Gaboriau-Lyons problem (Gaboriau and Lyons, 2009)
asks whether every non-amenable measured equivalence relation contains a non-
amenable treeable subequivalence relation. Bowen (2019) gave a positive answer
for the special case by studying FRI. Informally speaking, FRI can be described
as a cloud of geometrically killed random walks on Z%. Similar to the convention
that the range of random interlacements (RI) at level u > 0 is denoted by Z", the
range of FRI is denoted by FZ“T, where u > 0 is the multiplicative parameter
controlling the number of geometrically killed random walks, and the parameter
T > 0 is the expected length of a geometrically killed random walk.

In this paper, we are interested in the FRI in the lattice Z¢, with d > 3. Bowen
(2019) showed that FRI measure converges to RI measure in the weak* topology
as T goes to infinity. Thus it is natural to compare the geometry, especially the
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connectivity properties of the two systems. For any two vertices z,y € FI%7T, z
and y are said to be connected if there exist vertices xg,x1, - ,x, € FI*“T such
that = = xg, y = &, and (x;, ;41) are edges in the graph FZ*7T for all 0 < i < n.

Sznitman (2010) proved that Z* is almost surely connected. In Procaccia and
Tykesson (2011) and Rath and Sapozhnikov (2012), it is shown that for any two
vertices x,y € ", there is a path between x and y via at most [d/2] random walk
trajectories, and this bound is sharp. This does not hold for FRI since for each site
x € Z% there is always a positive probability that z is an isolated point in FZ%T.

Bowen (2019) proved the existence of infinite connected components within
FI"T for large T in all non-amenable groups. He raised the question that, whether
there are infinite connected component(s) within FZ*” for each u > 0 and suffi-
ciently large 7' in any amenable group. See Question 2, Bowen (2019) for details.
In this paper, we give a partial affirmative answer to this question by showing
there exists a phase transition for the FRI in Z?. For any u > 0, there are
0 < To(u,d) < Ti(u,d) < co. If T > Ty, FI*" has a unique infinite cluster
almost surely. If 0 < T < Ty, FZ*T has no infinite cluster almost surely. To be
precise, we have

Theorem 1.1 (Supercritical Phase). For all u > 0, there is a 0 < T1(u,d) < oo
such that for all T > Ty, FI*T has an unique infinite cluster almost surely.

Theorem 1.2 (Subcritical Phase). For allu > 0, there is a 0 < Ty(u,d) < oo such
that for all0 < T < Ty, FIT has no infinite cluster almost surely.

Remark 1.3. In this paper, we consider percolation of FZ*T as percolation for
the edges crossed by trajectories in the FRI process. The notion of connectivity is
defined in the second paragraph of this section. In literature, one usually consid-
ers percolation of interlacements as percolation for the vertices (sites) hit by the
random interlacements process. The proof of Theorem 1.2 relies on the kind of
percolation we choose, whereas the proof of Theorem 1.1 holds for both bond and
site percolation.

The proof of Theorem 1.1 relies on a renormalization/block construction argu-
ment along with coupling the FRI to RI. We define a good block event in Section 3,
and we prove that this good event occurs with high probability in Section 4. In
Section 5 we apply a standard renormalization/block construction argument to see
the spread of our “good blocks" dominates a supercritical percolation. The proof
of uniqueness is presented in Section 6. The proof of Theorem 1.2 is presented in
Section 7.

After the paper was posted on arXiv, we learned about works Erhard et al.
(2017); Erhard and Poisat (2016) considering a relevant continuum percolation
model. In this model, a Poisson cloud of Brownian motion paths (d = 2,3), or
Wiener sausages with radius r (d > 4), both truncated at some finite time ¢,
are sampled on R? according to intensity measure ALeb(Z%), for some fixed A > 0.
Erhard et al. (2017); Erhard and Poisat (2016) proved the existence of a percolation
phase transition with respect to ¢, and the asymptotic behavior of the critical value
ind>4asr—0.

The results we prove here for finitary interlacements may, at least superficially,
well resemble some discrete version of their problem. However, as pointed out in
Question (3) and (4), Erhard et al. (2017): the rigorous relations between their
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model and random interlacements or “the system of independent finite-time ran-
dom walks, which are initially homogeneously distributed on Z¢" remain open prob-
lems. It was conjectured in Erhard et al. (2017); Erhard and Poisat (2016) that
the continuum model will bear more similarities to a continuous version of random
interlacements Sznitman (2013) when A — 0, t — oo, while At remains a con-
stant. Heuristically, this also agrees with the setting in finitary interlacements, see
Definition 2.1 and 2.2 for details.

1.1. Open problems. The phase transition for FRI is not entirely understood. We
expect that there is a critical value 0 < T,(u,d) < oo such that FZ“” has an
infinite cluster for all T" > T, and no infinite cluster for all T' < T,.. Equivalently,
Ty (u,d) = To(u, d) in Theorems 1.1 and 1.2. We are unable to prove a sharp phase
transition in this paper. It is unclear that whether FZ%7 is monotonic with respect
to T. By Definition 2.2, as T increases, the average number of geometrically killed
random walks that each vertex generated decreases, but the average length of each
geometrically killed random walks increases. Therefore, unlike other percolation
models, one cannot prove a sharp phase transition for FRI using monotonicity.

Given Theorem 1.1 it is natural to ask about the internal graph distance in
the unique infinite cluster. In the case of random interlacements it was proved
in Cerny and Popov (2012); Drewitz et al. (2014b); Procaccia and Shellef (2014)
that the internal graph distance in RI is proportional to the Z¢ distance with high
probability. It would be interesting to show a similar result for the internal graph
distance in the unique infinite cluster of FZ*7T, for large enough T > 0. Moreover
if we denote by drzu.r(,-) and dzu(-,-) the internal graph distances in FRI and
RI, one can conjecture that for every u > 0,

lm lim  dpzer([0], [2])/[lzfly = lim dza (0], [2])/[l]1,

T—o00 ||z||1—o0 [|z]|1— o0

where [z] denotes the closest vertex in the appropriate infinite component to z € Z9.
A relative question is the continuity of the function

u— lim dezer (0], [z])/z]2
llzlli—oo
at all u > 0 for any large enough T' > 0 (proved for the internal distance in Bernoulli
percolation in Garet et al. (2017)).
Another natural question is to prove that the infinite component in FZ*7 has
good isoperimetric bounds (of the type proved in Procaccia et al., 2016 for RI).

2. Preliminaries on Finitary Random Interlacements

In this section, we collect some preliminary results on finitary random interlace-
ments. Most of these results first appear in Bowen (2019). We begin with recalling
the formal definition of FRI in Bowen (2019). Consider the lattice Z?, for d > 3.
A finite walk on Z¢ is a nearest-neighbor path w : {0,1,--- , N} — Z<, for some
N € Z, U{0}. N is called the length of the finite walk w. Let W®>) be the set
of trajectories of all finite walks. And note that WI%>) s a countable set.

Throughout this paper, we will use P for probability and FE for the corresponding
expectation. For z € Z? and n € N, let P” be the law of the simple random walk
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started at z and killed at time n. Define

1 = T \"
P = ([ — —— ) P~
= (751) 2 (751) 7

n=0

Le. P\ is the law of a geometrically killed simple random walk started at x with
1/(T + 1) killing rate. The expected length is T. We sometimes call geometrically
killed random walk a killed random walk.

For 0 < T < 0o, let v(T) be the measure on W% defined by

2d
(T) _ 2 :7 (T)
v T+1ch '

T €L

Note that v(T) is a o-finite measure.

Definition 2.1. For 0 < u,T < oo, the finitary random interlacements (FRI) point
process p is a Poisson point process (PPP) on W) with intensity measure uv(?).

Meanwhile, one may equivalently define FZ“7 constructively as follows:

Definition 2.2. For each vertex x € Z¢, define an independent Poisson random
variable N, with parameter 2du/(T + 1). We start independent N, geometrically
killed random walks from z, and each of them has expected length 7. The FRI can
be defined as the point measure on Wwi0-e) composed of all the geometrically killed
random walk trajectories above from all vertices in Z%.

It is easy to see the two definitions above are equivalent:

Proposition 2.3. The random point measure defined in Definition 2.2 is identically
distributed as the Poisson point process defined in Definition 2.1.

Proof: The equivalence follows directly from the standard construction of Poisson
point process with a c—finite intensity measure. See (4.2.1) of Drewitz et al. (2014a)
for example. (I

Remark 2.4. The construction in Definition 2.2 was informally described in Sub-
section 1.3.2, Bowen (2019).

Remark 2.5. Without causing further confusion, we will use FZ*7 to denote both
the Poisson point process on W) and the random subgraph of Z? it induces,
which has the vertex set the set of vertices visited by FZ%7T and the edge set the
set of edges crossed by trajectories in the process FZ%T.

The rest of this section mainly concerns the distribution of paths within FZ%7T
traversing a certain finite subset of Z¢. Let K C Z% be a finite subset. Let
Wi C W) be the set of all finite walks that visit K at least once. Define
the stopping times

Hi(w)=inf{t > 0:w(t) € K},
and

Hy(w) = inf{t > 1:w(t) € K}.
For a finite path w, we say Hx(w) = oo if w vanishes before it hits the set K.
Similar for Hg (w) = co. Define

W = {(a,b) € W) x WO) . 4(0) = b(0)}.
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Let K ¢ L C Z% be finite subsets. For z € L \ K, let f;(cT) be the measure on W (2
given by

& {(a,0)}) = 2d 15, () oo PA7” {1} ity =0 P ({8))-

Define a measure Q(LTI)( on W@ by
T
M= ¥ &

z€L\K

Define the concatenation map Con : W3 — Wwlio-e) by
Con(a,b) = (a(len(a)), a(len(a) — 1),--- ,a(0),b(1),--- ,b(len(b))).

Proposition 2.6 (Proposition 4.1 in Bowen, 2019). For any 0 < u,T < oo, let u
be FRI with parameters u,T and K C L C Z% be finite subsets. Then Ty \wy bt 08
a PPP with intensity measure u - Con*Q(LT);( = 1w, \wx wo'T) | where Con*Q(L]}( =

(LT}{ o Con~! is the push-forward measure.

For a finite subset A C Z¢ and x € Z¢, we denote the equilibrium measure of A

by
ea(w) = Pp(Ha = 00) - Lpea.
Define the capacity of A by
cap(4) = Z ea(x).
TEZ

One can define the random interlacements set Z%, u > 0 as a random vertex subset
of Z® such that for any finite subset K C Z%, we have P(Z*NK = ()) = ¢~ %cap(K),
The existence of such random subset is guaranteed in Sznitman (2010). By Dynkin’s
-\ lemma, there is a unique probability measure on {0, 1}Zd that samples such
random subsets. Random interlacements can also be defined as a Poisson point
process of bi-infinite nearest-neighbor trajectories on Z?. Readers are referred to
Drewitz et al. (2014a) for a thorough introduction of random interlacements.

Consider the space {0, 1}Zd with the canonical product o-algebra. For u > 0,
let P* be the unique probability measure on {0, 1}Zd such that for all finite subset
K c 74,

P*({w € {0, 1}Zd cw(z) = 0,for all z € K}) = e~ weapf)
i.e. P" is the probability law for random interlacements at level u. For 0 < u, T <
o0, let P*T be the probability measure on {0, I}Zd such that for all finite subset
K cz4,
PuT({w € {0, I}Zd cw(z) = 0,for all z € K}) = e 2% Xaex PﬂgT)(HK:oo),

i.e. P»T is the law for FRI with parameters u,T. The following corollary connects

FRI and random interlacements.

Corollary 2.7 (Theorem A.2 of Bowen, 2019). Let u, T, uu be as in Proposition 2.6
and K C Z% be a finite subset. Then

(1)
uo ™M (W) =2d Y P (Hy = oo);
rzeK
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(2)
Thj};o P(,U(WK) — 0) — 672du~cap(K) _ P(IQdu NK = @)7

(3) P“T converges to P?% in the weak* topology as T — oo in the space of
probability measures on {0, 1}Zd.
Proof: Parts (1) and (2) follow from Proposition 2.6 and the fact that
Am P (Hg = 00) = Py(Hi = o0).
Part (3) also appears in Theorem A.2 of Bowen (2019). O
Let K C Z% be a finite subset. Define the killed equilibrium measure by
€5 (@) = (2d) P{") (Hx = oo) Lyex.
Define the killed capacity by
capM(K) := Z eg)(x).

r€Z4
Let )
é(T)( )= e ()
K capD)(K)

be the normalized equilibrium measure. Let W9 := {w € Wk : w(0) € K}. Define
a map

SK:WKB’LU'—)’U}OGW[O(,
where w® = sk (w) is the unique element of W such that w®(i) = w(Hg (w) + 1)
for all i > 0 and len(w®) = len(w) — Hg (w). Le. we keep the part of the trajectory
of w after hitting K, and index the trajectory in a way such that the hitting of K
occurs at time 0. If m(-) is a measure supported on K, then we define the measure

P, = Z m(z) P
rzeK

0

on Wy, for some T > 0.

Lemma 2.8. For 0 < u,T < 0o, let u be FRI with parameters u,T and K C Z°
be a finite subset. Then px = Sk is a PPP on Wy with intensity measure
u- cap(T)(K)PéEKT).

Proof: The proof follows from the Proposition 2.6 and properties of PPP (see
Exercise 4.6(c) in Drewitz et al., 2014a). O

As a consequence of Lemma 2.8, we have

Kn < U range(w)) =KnN ( U range(w)>7

weSupp(pK) weSupp()
where K, u, i are the same as in Lemma 2.8.
Lemma 2.9. Let N be a Poisson random variable with parameter u - cap(T)(K),
and {w;};>1 are i.i.d. killed random walks with distribution Pé(T) and independent
- K

from Ng. Then the point measure
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is a PPP on Wy with intensity measure u - cap(T)(K)Pém. In particular, iy has
K
the same distribution as pr .

Proof: The proof follows from the construction of PPP (see section 4.2 in Drewitz
et al., 2014a) and the merging and thinning property of Poisson distribution. O

Remark 2.10. A similar result (Corollary 4.2) was proved in Bowen (2019). Here
the previous two lemmas are stated in the form better suitable for the later use in
this paper.

Remark 2.11. The capacity with truncation/killing measure was defined in a con-
tinuous sense in Sznitman (2012). It can also be discretized, which gives us the same
cap!T)(-) as defined in this paper. Thus, similar to Teixcira (2009), finitary random
interlacements may also be equivalently interpreted as random interlacements on a
weighted graph with killing measure. This explains why we have representation of
finitary random interlacements on compact sets in Lemmas 2.8 and 2.9.

3. Definition of Good Boxes

Recall the general outline of renormalization argument described in Section 1. In
this section we define the "good" block event in which there is a locally generated
large connected cluster in the corresponding “box". The viability of such event
will be proved in the Section 4. Parts of the definition below are inspired by Rath
and Sapozhnikov (2011). This also enables us to apply their estimates for regular
interlacements in the next section.

Without loss of generality, we will always assume here the FRI’s are constructed
according to Definition 2.2. For any u,T > 0, the FRI FZ*“7 is identically dis-
tributed as the union of two independent copies of FRI with intensity level u/2 and
average stopping time T, i.e.

FIuT = FTV*T U FTYT,
w/2,T

where FZ; is the i-th copy. For x € Z? and R € Z,, let B(x, R) := v+ [—R, R]*
be a box of length R centered at 2. We write B(R) = B(0,R). Let B(R) :=
[—64R?,64R?])% be a box in the lattice Z%. We define some subboxes in B(R). For
0<i<8Rand 1<j<d,let

z;j = (—32R? + 8Ri)e;,
where e; is the j-th unit vector in 74, Let
bij(R) :=z;; +[~R,R]* C B(R),
and
bi;(R) ==z ; + [-2R,2R] C B(R).

For any subset A C Z%, we define the internal vertex boundary of A by

OmA:={xec A:3yecZ\ Asuch that |z —y|, = 1},
and define the external vertex boundary by

O°"'A:={x € Z?\ A:Jy € A such that |z —y|; = 1}.

Recall the construction of FRI in Definition 2.2. Let D; be the random subgraph
in Z<¢ consisting of all trajectories of killed random walks starting in B(0, 128R?) in

FRI ]-'I;‘/Q’T, for i = 1,2, and D = D; UD,. For any subsets A, B C Z% where A is
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connected, let C(A, B) be the connected component of AU B containing A. Define
the random set

C'L’,j (Ji) = C(.Z‘, ZA)LJ'(R) n Dl).
For 1 < j < d, we define the “top" half of B(R) in the j-direction by
Bf(R)={zeR*:0<x; <64R? and —64R*> < z; < 64R?, if i # j},
and define the “bottom" half of B(R) in the j-direction by

By (R)={r €eR*: —64R*> < 2; < 0, and — 64R* < z; < 64R?, if i # j}.

Let
AF(R) = {2z e R : 96R* < z; < 128R”, and — 128R* < z; < 128R?, if i # j},
and

A7 (R) = {z e R?: —128R* < z; < —96R?, and —128R* < z; < 128R?, if i # j}.

Definition 3.1. We say B(R) is good if the following conditions hold:
(1) Forall 0 <i<8Rand 1 <j <d, let

E; ;= {x € b; j(R)NDy : cap(Cij(x)) > Rz(d_Q)/g}.
We have E; ; # () for all 4, j.
(2) Forall0<i<8Rand1<j<d, and forallz € E; ;, and y € E,; 11 ;,
Cit1,j(y) NC(Cij(z),D2) # 0.

Le., C; j(z) and Cit1,(y) are connected by Ds.
(3) For all 1 < j <d, no geometrically killed random walks starting in A;r (R)

intersect with B; (R), and no geometrically killed random walks starting
in A; (R) intersects with Ej(R).

Remark 3.2. All conditions in Definition 3.1 are restrictions on the trajectories
of the killed random walks starting in B(0,128R?). This fact is crucial in the
renormalization argument in Section 5.

Now we define the shift of the box B(R) in Z%. For x € Z¢, let
B.(R) = 32R*z + B(R).
We say that B, (R) is good if B(R) is a good box in FZ*T — 32R?z.
Remark 3.3. Suppose z and y are two neighboring vertices in Z¢, and both B, (R)
and By(R) are good, then by condition (3) in Definition 3.1 the connectivity event
in BE(R) N Ey(R) can be generated only by the random walk paths starting in

B(z,128R%)NB(y, 128 R?), so we have a large connected component crossing B, (R)
and By(R).

Now we define a family {Y,, : z € Z9} of {0, 1}-valued random variables given by

y, — {1, if B,(R) is good;

. (3.1)
0, otherwise.

If there is an infinite open cluster in the lattice {Y, },cza, then by Remark 3.3 there
is an infinite open cluster in the underlying original lattice. When T = R3, we will
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show that B(R) is good with high probability for all sufficiently large R. Then
we will use a renormalization argument to show that there is an infinite cluster in

FT® almost surely for large R.
Remark 3.4. For simplicity, we will assume R € Z, for the rest of this paper.

For R € Ry \ Z,, one can replace R and R? by |R| and | R]? respectively in the
definition of good boxes, and all results will follow accordingly.

Throughout the rest of this paper, we denote positive constants by ¢, C, ¢y, ¢/, - - -,
and their values can be different from place to place. All constants are dependent
on the dimension d by default.

4. B(R) is good with High Probability
In this section, we prove that B (R) is good with high probability. Le.,

Theorem 4.1. Consider the FRI FI*“® . For all u > 0, we have
lim P(Yy=1)=1.
Rgnoo ( 0 )

To show Theorem 4.1, we will consider the following weaker version of conditions
(1) and (2) in Definition 3.1:
(1I*) Forall 0 <i<8Rand 1 <j <d,let
CNi)j (33) = C(J?, lA)Z"j (R) N ]:I’Lf’T) .
and

E;j:= {x €bi;(R)yNFIYT: cap(C; ;(z)) > RQ(d_Q)/?’}.

We have E~’” = () for all 4, 5.
(2*) Forall 0<i<8Rand 1< j<d,andforall z € E; ;, and y € Ei-l-l,jv
Cis14(y) NC (Cig (), FTZT) 0.

We first prove that condition (1*) and (2*) occur with high probability. Then we
show that no killed random walk starting in Z¢ \ B(128R?) will reach B(R) with
high probability. Combining these we know condition (1) and (2) in Definition 3.1
occur with high probability. We will show condition (3) occurs with high probability
separately in Lemma 4.12.

We will often use the following large deviation bound for Poisson distributions.

Lemma 4.2 (Equation 2.11 in Rath and Sapozhnikov, 2011). If X is a Poisson
distribution with parameter A, then

P(\/2< X <2)\) > 1 -2 M0

4.1. Coupling of FRI and RI. In this subsection we introduce a coupling of FRI
and RI that is crucial in the proof of Lemma 4.7. Let K C Z be a finite subset, and
let u,T" > 0. For any points z € K, let N, , be i.i.d. Poisson random variables with

parameter u. Let {Ym(lj’f) + 1}, and {Y;Z’j) + 1}, be iid. geometric random
variables with parameter 1/(T + 1). Moreover, for i € Z4, let {Sﬁ’?}%‘;o and
{S,(f,;z)}flo:o be independent copies of simple random walks starting at z. Now we
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can construct a random point measure Z7 (u, K) on W) as follows: for each
r e Kand 1l <3< Ny, if

(s K =0,
we add a delta measure on

Y(T )1)
{Sn T }n 0

in Z7 (u, K).

The following lemma is a consequence of Lemma 2.9. Let ux = ZjV:Kl dw; be
the restriction of FRI Poisson point measure on K, where Ny is a Poisson random
variable with parameter u - cap(™)(K), and {w;};>; are i.i.d. killed random walks
with distribution Pé(KT) and independent from Ng.

Lemma 4.3. Z7(u, K) is identically distributed as pix .
Proof: Notice that if we fix x € K and 1 <14 < N4, then

({S” et K = @> = P (Hy = 00) = ey (x).

By Lemma 2.9, uy is a PPP with intensity measure u - Cap(T)(K)Pé<T>, and by
K

definition
it (@) = cap™ (K2,
The result follows from the thinning property of Poisson distributions. O

Consider those trajectories in Z7 (u, K) with length larger or equal to a fixed

number Ty > 0. We define the random point measure 277 (u, K) as follows: for
each v € K and 1 <4 < Ny, if

Y > T,
and .
(50 (g,

n=1

we add a delta measure on -
i Y 1
(S0
in 277 (u, K). Note that by definition Z77 (u, K) ¢ I7(u, K). Here we say
Ty C I, if all edges open in the support of 7 is also open in support of Zs.

Now we construct a third random point measure Z7>7° (u, K') which is identically
distributed as the collection of all trajectories within a RI traversing K, and we
also define a Z770(u, K) C Z770(u, K) when all trajectories in Z770(u, K) are
truncated at a fixed time Tp. For each x € K and 1 <i < N, if

Y(r i) > Ty,
and _
{Sr(ll;;)}’?lo:l NK = wa

we add a delta measure on

{Snx }n 0
in Z7-To(y, K) and we add a delta measure on

(S

n,r
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in Z7T0(u, K). By definition 7770 (u, K) ¢ 77 (u, K) for any T,Ty > 0. If
To = 0, Z7%(u, K) is identically distributed as the set of all trajectories in Z"
traversing K but not including the backward parts before they enter K for the first
time. We write Z7 (u, K) := Z70(u, K).

Lemma 4.4. Let Y + 1 be a geometric random variable with parameter 1/(T +
1) independent from everything else, and q¢ = q(T,Ty) := P(Y > Ty). Let ik
be the restriction of PPP for random interlacements at level uq on the set K,
i.e. g = Z;V:’i dw,; 18 a random point measure, where Nx is a Poisson random
variable with parameter uq - cap(K), and {0;};>1 are i.i.d. simple random walks
with distribution P., and independent from Nx. Then I7T0(u, K) is identically
distributed as fig = Zjvfl O,

Proof: This is similar to the proof of Lemma 4.3. For « € 0K,
P(18883i: 1 K = 0) = Pa(fi = o6) = exla).
Note that for all z € K \ 0" K,
P(tstying =0) =
The result again follows from the thinning property of Poisson distributions. O
4.2. Facts about capacity. We often use the following facts about capacity (or killed

one) in our proof.

Lemma 4.5 (Proposition 6.5.2 in Lawler and Limic, 2010). There are constants
c1,c2 > 0 such that for all R > 0,

cR12 < cap(B(R)) < o R42.

Lemma 4.6 (Monotonicity of Capacity; Exercise 1.15 in Drewitz et al., 2014a).
For any finite sets By C Ey C 72,

cap(En) < cap(Ey).
4.3. Condition (1*). Similar to Rath and Sapozhnikov (2011), we may write

qu/2T U qu/(Qd 4)T

where ]-'sz/k@d DT are iid. copies of finitary interlacements with intensity level
u/(2d—4) and average stopping time T'. By translation invariance, one may without
loss of generality prove the desired result for ¢ = 4R and j = 1. This case, we have
TAR,1 = O, b4R’1(R) = B(fi)7 and b4R71(R) = B(QR)

To begin with, let us consider the following random variable

Nk {0 o e i 107) )

and event AS}%’1 = {Nﬁ%l > 1}, where ¢y > 0 is the constant in Lemma 6, Rath
and Sapozhnikov (2011), which is independent to R. We first prove that
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Lemma 4.7. There is a constant ¢ = c(u) > 0 such that for all sufficiently large
R, P(Aillg,l) > 1 —exp(—cR%2).

w/(2d—4),R®

Proof: Note that IV, i R) 1 is determined by trajectories within FZ,% travers-

ing B(R), which can be sampled according to Subsection 4.1. Recalhng the nota-
tions used there, we have N, i R) ; stochastically dominates the random variable N, i )

where

(1
NAER),l =

{(m, i) € 0MB(R) x Z¥, s.t.i < Nyuja-sy, (S0, 0 B(R) =0,

Vs = BY, {SUDHEL € ot BIRY), cap ({SUPVEY) > coR” 7}

and ¢y is the same constant in the definition of IV, i}%l. Note that for each (z,17), t
events

{1 < Npwyea—a}s
{{s{y, N B(R) = 0},

(Vi = R},
{{SUDHEY C ot BR™), cap ({STHEY) > o7}
are independent to each other. At the same time
P ({85032, N B(R) = 0) = epn (@)
while
P (Y = RS ASUDVEY € o+ BR™), cap ({SUDHEY) > coROT)
=q1 (R) > 1/2
for all sufficiently large R. The last inequality is derived from
(1) The PMF estimate of geometric random variable Y;”]ZS.
(2) Hoeffding’s inequality.
(3) Lemma 6, Rath and Sapozhnikov (2011) with Ty = R'*® and e = 1/8.
Thus we have
Nﬁ%l ~ Poisson (ql(R)cap(B(R))u/(Zd - 4))

and the desired result follows from Lemma 4.2 and Lemma 4.5.
O

Given the event Az(llﬁ),ql, one may sample a point uniformly at random from the
random subset

Sins = {1 € B@R).cap (¢ (. FTED7 0 BR+ 1)) > o7}

and denote it by zf&% 1- Moreover, for the random subset

3
Comi, = C(ai . FTYP " 0 B(R + ™))

by definition we have
cap (Comf&%yl) > ¢oR7.
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Now for any k= 2,3,--- ,d — 2 may define
Comify, = ¢ (Com{G D, FTYP " 0 B(R + kR))
4R, 4r1 >/ 1k
together with the event
Ai’%l = {cap(C’omEQJ) > CISRO'”“} .

Note that for any k =2,3,--- ,d — 2, C’omg;ll) is measurable with respect to
on1 = o (FLLCEDI FryPe o Fry @)

which is independent to .7-'1'17
within B(R + (k — 1)R%?) such that

cap(Cék_l)) > clg_lRoj(k*l).

3
“/k(zd_‘l)’R . Let C(()k_l) be a connected component

Given Comfﬁ{ll ) = Cékil), the distribution of Comfﬁ%l is determined by the con-

3
figuration of trajectories in .FI;‘/,C(M_AL)’R

sampled according to Subsection 5.1:

e For each z € Cékil), let Niii/@d_4
independent to o1 with intensity u/(2d — 4).

e Forcachz € C* ", and positive integer 4, let {SL2* 20 and {S57F) o0 |
be independent simple random walks starting from .

e For each z € Cékil) y

, and positive integer 7, let Y;’;’g and Yxl;:;; be indepen-
dent geometric random variables with parameter p = 1/(1 + R?).

traversing Cék_l), which can again be

) be i.i.d. Poisson random variables

Recalling the construction in Subsection 4.1, one has

k k-1 k-1
P<Az(m2,,1’com§u%,1) :C(g )>

zP<cap U {Sﬁlfz”“>}§i‘f)>c§R°‘7’“,

(wi)erf
(STPMYET @+ B(RY), W(a,i) € Ii’;if’)

where

k—1 . in(k—1 . k
IAERJ) :{(3:,1)63 C(g ) x 7T, S't'ZSN;i,J/(Qd—@’

(SUERY el =0, Vi > RUS),

Note that the set [ i’;{ll) has the same law as the set of trajectories in
IR () (2d = 4,657,

By Lemma 4.4, for all sufficiently large R, I ﬁ{ll) has the same law as random

interlacements at level ug/(2d — 4) hitting Cékfl) for some ¢ > 1/2. Recall that
Cék_l) is a fixed set. By Lemmas 7 and Lemma 8 (with s = 1 there) in Rath and

Sapozhnikov (2011),
P (Al 1| ComiG D =) 21— exp(—RY1T)
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for all sufficiently large R. Thus we have proved that

d—2
P(Esp1 #0) > P (m Aﬁ%;) > 1 — exp(—RY'®) (4.1)

k=1

for all sufficiently large R.

4.4. Condition (2*). Again, Condition (2*) can be without loss of generality checked
for byp1(R) and bypy1,1(R). One may follow a similar argument as Subsection 4.3
to check Condition (2*). To be precise, one can pick any two points xg,x; from

E4R71 and E4R+171. Then we can look at the paths in fI;/Q’RS (which is inde-

pendent to ]-'I;J/ 2’Rd) traversing C~4R,1(m0). We keep only those whose backward
part never returning to Cy Rr1(zo) while the forward part is not truncated until the
R?%th step. Then one can apply Lemma 11 and 12 in Rath and Sapozhnikov (2011)
for intensity u/4 to prove that with stretch exponentially high probability, at least
one of the paths we kept in the procedure above has to intersect with Cypy11(21)
before they exit B(4Rei, CR), where C' is the same constant as in Lemma 11 of
Rath and Sapozhnikov (2011).

However, since for the finitary random interlacements, one can only guarantee
that the first R?® steps in the forward paths we keep are within ]-"Ig/ 2’R3. So the
only extra estimate needed is the following lower bound on the first exiting time of

B(CR).
Lemma 4.8. There is a ¢ > 0 independent to R such that
Po(HaoutB(CR) > R2'5) < exp(—cRO'5).

Proof: By central limit theorem /invariance principle, there is a constant ¢ > 0 such
that

sup Px(HaoutB(CR) > Rz) < Po(HaoutB(ch) > R2) <l-ec<1. (42)
z€B(CR)

Then for each i = 1,2,--- ,[R%?], consider event
Es; = {Hpoupcr) > i * R*}.
Then by (4.2) and Markov property we have
Py(Es;) <1-—c¢,

and

Po(ESH_l‘ESi) < sup PT(HaaaLtB(CR) > R2) <1-g¢,
z€B(CR)

for all # > 1. Thus
Po(Hpoutp(cry > R*®) < Py(Es|gos)) < (1 —c) LR**) < exp(—cR%®).
([l

Remark 4.9. An alternative argument following (2.9) of Biskup and Procaccia
(2018) derives a slightly weaker result, but also suitable for the use here.
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Suppose U,V C B(CR). Taking ¢ = 1/2 in Lemma 4.4, we know that for
all sufficiently large R, the set of trajectories in fR3>R2'5(u/2,U) stochastically
dominates the ones in Z%/* hitting U. Combining this fact with Lemma 4.8 and
Lemmas 11, 12 of Rath and Sapozhnikov (2011), we have

P(U 7752 (4)2,U)NB(CR) V) > 1= ¢y min{ AN R eap()ean(V)} (4 3)

Replacing U and V by Cyp.1(w0) and Cspi1,1(x1) in (4.3), we prove Condition (2*).

4.5. Condition (1) and (2). We recall the construction of FRI in Definition 2.2. We
first show that with high probz}bility no killed random walks of FZ*% starting in
7%\ B(128R?) intersect with B(R). Define the event

G(u,R) := { No killed random walks of FZ% 5’
starting in Z¢\ B(128R?) reach B(R)}

Lemma 4.10. For all u > 0, we have

lim P(G(u,R)) = 1.

R—o0
Proof: We first fix u > 0 and R > 0. We define a sequence of subsets { A(m, R)}°_,
of Z4. Let
A(1,R) := B((128 + 64)R*) \ B(128R?),
and for all m > 1,
A(m, R) := B((128 + 64m)R?) \ B((128 + 64(m — 1))R?)
Note that {A(m, R)}°_, are pairwise disjoint, and

zd = (B(R) U C) A(m,R)).

Let z € A(m, R) N Z¢ for some m > 1. Recall the construction of FRI in Defini-
tion 2.2. Let N, be the number of killed random walks starting at =, so N, is a
Poisson distribution with parameter 2du/(R* + 1). By Markov inequality, for all
sufficiently large R,

)

2dumR*

P<Nr > RZTZ 1 ) < EleNe]em2dumB/ (P41 < ¢ gmcamB
for some constants ¢1(u), ca(u) > 0. We also need to estimate the probability that
a killed random walk escape from a big box. If Y is a geometric random variable
with parameter 1/(R3 + 1), then for all sufficiently large R and for all m,

P(Y > mR7/2) < ememB?, (4.4)

for some ¢ > 0 independent of R. By Azuma’s inequality and the tail estimate of
geometric distribution in (4.4), for all sufficiently large R and for all z € A(m, R)N
74,

P (Hy < o0) < eomie”,
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Note that the number of vertices in A(m, R) is bounded above by c;m?R??, for
some ¢4 > 0. So by union bound,

- 2dumR*
P(G(’U,7R)C) < mzz:l <C4de2dcle—csz + C4de2d1;;1:I:R;e_c3le/2>’

for all sufficiently large R. Let

= —com 2dumR4 —camRY/2
S(R) := Z <c4de2dcle am By C4de2dR37+1€ am B >
m=1

Note that the sum S(R) converges for all R > 0, and
S(R) £225 0.

Therefore,
R—o0

P(G(u,R)°) —= 0.

Lemma 4.11. Let u > 0. Consider the FRI FIT"® . Then
lim P(C’onditz’ons (1) and (2) are satz’sﬁed) =1.

R—o0

Proof: The result follows by the discussions in Subsections 4.3 and 4.4, and
Lemma 4.10. (|

4.6. Condition (3). By translation invariance and symmetry, it suffices to show the
following lemma.

Lemma 4.12. Let u > 0, then there are constants c(u),C(u) > 0 such that for all
sufficiently large R > 0, we have

P(E a killed random walk starting in AT (R) reach By (R)) < cR+1—CR'?,

Proof: One can easily adapt the calculations in the proof of Lemma 4.10. The
result follows from Definition 2.2, and tail estimates of geometric and Poisson dis-
tributions, and Azuma’s inequality. (]

5. Renormalization and proof of Theorem 1.1

Recall the family {Y,},cze of {0,1}-valued random variables defined in (3.1).
In this section, we show that {Y,} stochastically dominates an i.i.d. supercritical
site percolation when R is sufficiently large and thus it has an infinite open cluster
almost surely.

Remark 5.1. Note that {Y,},cz« themselves form a finitely dependent percolation,
and that the probability that each edge is open is high enough. An alternative
“block construction" approach according to Durrett and Griffeath (1983) can also
give us the desired result.

Lemma 5.2. For any u > 0 and for all R > 0 that is sufficiently large (depending

on u), the random field {Yy }peza generated by Fruk stochastically dominates an
i.i.d. site percolation {Z;},4cza such that P(Zy = 1) > p.(Z%), where p.(Z2) is the
critical probability of site percolation on Z°.
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Proof: By the definition of good boxes in Section 3 and Remark 3.2, the random
field {Y; },cza is 9-dependent. The stochastic domination over an i.i.d supercritical
site percolation follows from the domination by product measures result by Liggett,
Schonmann, and Stacey (Liggett et al., 1997) (or Theorem 7.65 in Grimmett, 1999)
and Theorem 4.1. (]

Corollary 5.3. For anyu > 0 and for all R > 0 that is sufficiently large (depending

on u), FI*® has an infinite cluster almost surely.

Proof: We can choose the same R as in Lemma 5.2. By the definition of good
3
boxes and Remark 3.3, FZ* has an infinite cluster if {Y,},cz« has one. O

Now back to the proof of Theorem 1.1, for any v > 0 and sufficiently large T,
one may let R = |T"'/3] and the proof is complete. O

6. Uniqueness of Infinite Cluster

We have shown that the FRI FZ%® has an infinite cluster almost surely if
R > Ry(u), for some Ry(u) > 0. In this section, we show that the infinite cluster

of FT*F i unique almost surely. Let € Z¢, we define the canonical lattice shift
T, : {0,1}%" = {0,1}*

by (T:(€))(y) = E(y + ), for any € € {0,1}%" and y € Z%. We will first show that
FRI is ergodic with respect to lattice shifts.

Lemma 6.1. Let P*“T be the probability law for FIT defined in Section 2. For
any € Z¢ and any u, T > 0, the map T, preserves P“T.

Proof: Fix x € Z*. By Dynkin’s 7-\ Lemma, it suffices to show that for any finite
subset K C Z¢,

P(FT*T (K —2) = 0) = P(FIT*T N K = () = e~weor' " (09,
Note that
P(FT*T 0 (K — ) = 0) = e~wear'” (K=w) — gmuweap!™(K),
The proof is complete. O

Let « € Z%, define the evaluation map
&, : {0,1}%" = {0,1}

by ®,(§) = &(x). We write o(-) for the product o-algebra generated by a set or
the o-algebra generated by a set of functions. The following lemma is a classical
approximation result.

Lemma 6.2. Let ({O,I}Zd,a({O,l}Zd),Q) be a probability space, and let B €

o ({0, 1}Zd), then for any € > 0, there is a finite subset K C Z and B. € o(®, :
x € K) such that

Q(BABE) <e.

We need one more auxiliary lemma.
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Lemma 6.3. Let K C Z% be a finite subset, and K1 C K, and Ko = K\ K;. Then
for all uw, T >0,

P(fI“’T NK = K1) — Z (,1)|K/|6*u-0ap(T)(K'UK0).
K'CK,

Proof: This follows from inclusion-exclusion formula (see Equation 2.1.3 of Drewitz
et al., 2014a for a similar result in RI). O

Proposition 6.4. For any u,T > 0 and any 0 # = € Z¢, the measure preserving
map Ty is ergodic with respect to P“T .

Proof: One can easily adapt the proof of ergodicity for random interlacements, e.g.
see Theorem 2.1 of Sznitman (2010).
O

Theorem 6.5. For any u > 0 and for all sufficiently large R > 0 (depending on

u), FI"® has a unique infinite open cluster almost surely.

Proof: We adapt the proof of uniqueness in percolation model by Burton and Keane
Burton and Keane (1989) (see Theorem 8.1 in Grimmett, 1999 and Theorem 12.2
in Haggstrom and Jonasson, 2006). Fix w > 0. Let N be the number of infinite

open clusters in FI"®  Since N is translation-invariant, N is constant almost
surely by Proposition 6.4. By Corollary 5.3, there is a Rg(u) > 0 such that for

all R > Ry, FT" has an infinite open cluster almost surely. We fix R > Ry, so
P(N =0) =0. Suppose P(N = k) =1 for 2 < k < oo. Let Mpg(y) be the number

of infinite open clusters in FIWR intersecting B(n). Noting that

n—oo

P(MB(n) > 2) ——= P(N>2)=1,
there has to be a n such that

Recall Definition 2.2. Let Fy ¢ be the subgraph in Z¢ generated by paths starting
from B(n—1), Fy 1 be the subgraph in Z¢ generated by paths starting from 9" B(n),
and Iy = Fy o U Fy ;. Moreover, let Fjy be the subgraph in Z¢ generated by paths
starting from B¢(n).

Note that F; o and F7,; may only have countable many configurations, there has
to be a pair of (finite) configurations F7 ¢ and Fi 1, and a j > 2 such that

P(Mpy =j, Fio=Fi0, Fip=Fi1) >0,
which implies that
P(FOU]-'LO U F1,1 has k infinite components,
among which j components intersect B (n)) > 0.

We denote the last event by Ay and note that Ay is measurable with respect to Fj
and thus independent to Fj o and Fj ;.
Now let F11 = FioUFi1\ B(n—1), and let

.7:"1,02{a:iej, r€Bn-1), j=12,---,d}
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be the collection of all edges starting from B(n — 1) (or all the edges within B(n)).
One can immediately see that

P(Ag, Fi = FioFig= ﬁm) = P(Ag)P(Fip = Fio Fig= ﬁ1,1) > 0.
However, given the event above, note that
FoUF = FoUF0UFi1UF.

Since ]:—LO contains all the edges within B(n), all the j components in FoUF; oUF7 1
intersecting B(n) merge to one, and the FRI with positive probability only has
k — j + 1 infinite components. This contradicts with P(N = k) = 1.

Now suppose P(N = o0) = 1. We say a point « € Z? is a trifurcation if:

(1) « is in an infinite open cluster of FIWR,

(2) there exist exactly three open edges incident to z;

(3) removing the three open edges incident to x will split this infinite open
cluster of z into exactly three disjoint infinite open clusters.

Define the event A, := {z is a trifurcation}. By translation invariance, P(A,) is
constant for all € Z?. Therefore,

1
|B<n>E[ 2,

z€B(n)

= P(Ao).

Recall that Mp,) is the number of infinite open clusters in FIuR intersecting
B(n). Note that

P(Mpy >3) === P(N > 3) = 1.
Define the event

E, = {No killed random walks starting in Z? \ B(2n) intersects B(n)}

By Lemma 4.10, the probability of event E¢ decays stretch exponentially. We can
choose n large enough such that

P(MB(n) > 3,En) > 1/2

Similarly, let Fy and F, be the random subgraphs in Z¢ generated by the trace of
all killed random walks starting in B(n) and B(2n) \ B(n), respectively. Note that
Fy and F, are independent. Since there are only countably many choices for Fy
and Fy, there exist two finite subgraphs F; and F; in Z% such that

P(Mp(n) > 3,Ey, Fy = Fi, F» = F3) > 0.

If we {Mpw > 3,E,, 1 = F1,F>, = Fa}, then there exist z(w),y(w), z(w) €
0" B(n) lying in three distinct infinite open clusters in Z?¢ \ B(n). There are three
paths connecting the origin and =z, y, z, respectively, in the following way:

(1) 0 is the unique common vertex in any two paths;
(2) each path touches exactly one vertex in 9" B(n).
Let D, 4 . n be the event that:
(1) there are exactly three killed random walks starting at the origin;
(2) these three killed random walk paths end at z,y, z, respectively, and they
satisfy the conditions above;
(3) no killed random walks start at any vertices in B(n) \ {0}.
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It is easy to see that P(Dy , .,) > 0 for all n > 0 and all distinct z,y, 2 € 9" B(n).
Since F; and F» are fixed and finite,

P(F2 — FLUF \B(n)) > 0.

Forw € {Mp,) > 3, By, F1 = F1, Iy = F3}, we can resample all N, for z € B(2n),
and then we resample all killed random walk paths starting in B(2n) accordingly.
Note that the resulting graph is still distributed as FRI FT"®  If the events
Dy .y »m and {Fy = F1 UF2\ B(n)} occur after the resample, then 0 is a trifucation.
Therefore,

P(Ao) = P(Dyy2m) P(Fo = FLUFR\B(n))P(Mp(n) > 3, En, Fy = F1,Fy = F?)

> 0.

Now we can adapt the proof of Theorem 12.2 in Higgstrom and Jonasson (2006)
(or the proof of Burton and Keane, 1989 if one considers a site percolation on
]-"I"’Rs). For each trifurcation ¢ € B(n), there is a one-to-one corresponding point
y: € 9™ B(n). However, the number of trifurcation points grow in B(n) as n¢, but
0" B(n) grows as n?~!. We have a contradiction. O

7. Subcritical Phase

In this section we present the proof of Theorem 1.2.

Proof of Theorem 1.2: We use the Peierls argument (Peierls, 1936). Fix u > 0.
Let C be the connected component that contains the origin in the FRI, FZ%7T. It
suffices to show that there is a constant Tp(u) > 0 such that for all 0 < T < Ty,

P(IC| = o0) =0.

We say a path is self-avoiding if it does not visit the same edge twice. Note that
the number of self-avoiding paths in Z¢ which have length n and start at the origin
is bounded above by (2d)™. Let N(n) be the number of such paths which are open.
If the origin belongs to an infinite open cluster, then there are open self-avoiding
paths starting at the origin of all lengths. So for all n > 0,

P(c] = o) < P(N(n) > 1) < E[N(m)].

Let v be a self-avoiding path that has length n and starts at the origin. We want
to estimate the probability that v is open. Let IV, be the number of killed random
walks that traverse . Recall that IV, is a Poisson random variable with parameter
u - cap(™) (7). Since the path 7 has length n, it has n + 1 vertices. Note that the
killed equilibrium measure is always less than or equal to 2d, so

cap™(7) < 2d(n+ 1),
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for all T > 0. By exponential Markov inequality,
P(N7 > eu(2d)(n+1) + (n+1) 1og(3d))
E[eM]
<
exp (eu(2d)(n + 1) + (n + 1)log(3d))
exp (u(e — 1) - cap™ (7)) (7.1)

exp (eu(2d)(n + 1) 4 (n + 1) log(3d))

IA

= (3d)~""1.

exp (ew(2d)(n + 1) — eu(2d)(n + 1) — (n + 1) log(3d))

If the path ~ is open in FZ%T, then the N, killed random walks that traverse vy
must travel more than n steps in total after they first enter v. Assume 0 < 7T < 1.
Note that the survival rate for killed random walks at each step is T/(T + 1),
which is smaller than T'. Let Y7, Y5, -+ be i.i.d. geometric random variables with

parameter 1 — 7. Let
L :=[eu(2d)(n+ 1) + (n + 1) log(3d)].
Then,

L
P(fy is open|N,y §L) §P<ZY¢ ZL+n>.

=1

By Chernoff bound,

i=1

L A\ L
Z —t(L+ (1-T)e _ -t

for all ¢ > 0 such that Te’ < 1. Take ¢y = log(6d). We choose 0 < Typ(u) < 1 such

that
Toet® = 6dTp < 1,

and

<2.

eu(2d)+log(3d
( 1T, )f (2d)+log(3d)]

Then for all 0 < T < T,

1-T

P('y is open|NAY < L) < e ton (1—Tet0

So,

L
) < (6d)" 2" =2(3d) ™.

P(v is open) < P(v is open|N, < L) + P(N, > L) < 2(3d)™" + (3d)™ 1.

Since 7 is arbitrary,

P(C] = o) < B[N(n)] < (24)" (2(30) ™" + (30) "~1) “==5 0.

The proof is complete.
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