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Dimension of diffusion-limited aggregates grown on a line

Eviatar B. Procaccia

4 and Itamar Procaccia®?

! Faculty of Industrial Engineering and Management, The Technion, Haifa 32000, Israel

2Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

3Center for Optical Imagery Analysis and Learning, Northwestern Polytechnical University, Xi’an 710072, China
4Departmem of Mathematics, Texas A&M University, College Station, Texas 77840, USA

® | (Received 12 October 2020; accepted 25 January 2021; published 9 February 2021)

Diffusion-limited aggregation (DLA) has served for 40 years as a paradigmatic example for the creation of
fractal growth patterns. In spite of thousands of references, no exact result for the fractal dimension D of DLA
is known. In this Letter we announce an exact result for off-lattice DLA grown on a line embedded in the plane
D = 3/2. The result relies on representing DLA with iterated conformal maps, allowing one to prove self-affinity,
a proper scaling limit, and a well-defined fractal dimension. Mathematical proofs of the main results are available
in N. Berger, E. B. Procaccia, and A. Turner, Growth of stationary Hastings-Levitov, arXiv:2008.05792.

DOI: 10.1103/PhysRevE.103.L020101

The diffusion-limited aggregation (DLA) model was intro-
duced in 1981 by Witten and Sander [1]. The model has been
shown to underlie many pattern forming processes including
dielectric breakdown [2], two-fluid flow [3], and electrochem-
ical deposition [4]. The model begins with fixing one particle
at the center of coordinates in d dimensions, and follows
the creation of a cluster by releasing a random walker from
infinity, allowing it to walk around until it hits any particle
belonging to the cluster. Once there, the incoming particle is
attached to the growing cluster and a new one is released from
infinity. The model was studied on and off lattice in several
dimensions d > 2; DLA has attracted enormous interest over
the years since it is a remarkable example of the spontaneous
creation of fractal objects. It is believed that asymptotically
(when the number of particles N — 00) the dimension D of
the off-lattice cluster is very close to 1.71 [5,6], although there
exists to date no rigorous proof for this fact. In addition, the
model has attracted interest since it was among the first [7]
to offer a true multifractal measure: The harmonic measure
(which determines the probability that a random walker from
infinity will hit a point at the boundary) exhibits singularities
that are usefully described using the multifractal formalism
[8,9]. Nevertheless, DLA still poses more unsolved problems
than answers. It is obvious that a new language is needed in
order to allow fresh attempts to explain the growth patterns,
the fractal dimension, and the multifractal properties of the
harmonic measure. In this Letter we announce an exact result
on the fractal dimension of DLA grown on a fiber. This model
was simulated on the lattice by Meakin in 1983 [10] with the
numerical result that a typical tree with N particles reaches a
height (radius of gyration) of the order of N with

8 ~ 0.665 £ 0.03. (1)

Rewritten in terms of the fractal dimension of the clusters, this
translates to D = 1.50 &= 0.01. Here, we show that the DLA
grown on a line off lattice has an exact dimension D = 3/2.
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The method used to establish this result is based on iterated
conformal maps to grow a DLA cluster in a controlled fashion.
Introduced by Hastings and Levitov in Ref. [11], the idea is to
employ a mapping ¢, ¢(w) that maps the exterior of the unit
circle to the exterior of unit circle with and added “bump” or
“strike.” This addition, whose linear size is A, is placed on
the unit circle at a uniformly distributed angle 6. Iterating this
mapping one defines a conformal map ®"(w) according to

D" (@) = 1,6, © P16, © - O Pa, 6, 2)

A major difficulty associated with the creation of the map
for the classical example of DLA in two dimensions has pre-
cluded so far the use of this method to determine exactly the
fractal dimension of the growing cluster. The first difficulty is
that the linear size A has to be judiciously chosen in each step
to grow a fixed size addition to the cluster,

Ao

= ———i.
|q>(n71) (e’en)l

3
Note the originally in Ref. [11] the size of A, was allowed
to vary, by taking the denominator in Eq. (3) to the power of
a/2. Thus the classical DLA model corresponds to o = 2. A
related difficulty lies in the monotonicity of the logarithmic
capacity ¢,. As @ — oo, the Laurent expansion of ®" starts
as

D" (w) = o+ 0(1), (C)]

with ¢, > 0 and is monotonic increasing in n. In fact, one can
show that ¢, = (logn)/D [6,12]. Thus one needs to normalize
the size of A more and more as the cluster grows.

Growing a DLA cluster on a fiber removes these difficulties
altogether. One can map the upper half plane to the upper half
plane with a strike of size 1 above x using the map ¢, (w),

Px(w) =x+ V(0 —x)?— 1. &)
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FIG. 1. Computer simulation of cluster growth in a window of
the real axis. This simulation employed 1000 particles of size A =
0.3, accreted on the base of a cylinder of size 100, and see below the
discussion on cylinder growth.

To represent the growth of a cluster on a fiber, one considers
the whole upper half plane and orders the arrival times of par-
ticles according to a homogeneous Poisson point process of
intensity 1. Focus on a window of the real axis of length R and
mark the arrivals to particles into positions xi, X3, . .., Xg . . . in
this window, at times 0 < #; <t < --- < f; - - -. Define

forO0 <t <#t,
fory, <t < Tg+1-

FP() = {g . ©)

¢y (2)
The wanted process is finally defined by taking the limit
F(w) = limg_, o F,(R)(w), This process was proven to exist in
Ref. [13], was denoted “stationary Hastings-Levitov(0),” and
shown to define a conformal map. In addition, this process is
invariant to horizontal shifts. See Fig. 1 for a computer sim-
ulation of the process. Note that this limit must be employed
to define the process, as a uniform distribution on the infinite
line does not exist. In other words, as the window increases in
size, so does the number of arrivals.

The relative simplicity of the resulting process is demon-
strated by the Laurent expansion of F;(w). By a tedious but
straightforward calculation one shows that in the limit @ —
o0,

F(w)=ow+ igt-l—O(l/w). (7

This is important since it implies that no repeated normal-
ization of the strike sizes is necessary in this process. Thus
employing the power o = 0 is sufficient to generate a cluster
growth in which the added particles to the physical domain
remain of fixed size. Moreover, it implies that redefining the
map by inverting the order of iterations in Eq. (6) results, in
a fixed time ¢, in an inverted growth where the last particles
grown normally appear first, and further particles push them
up in the half plane to end up with a cluster sharing the same
distribution as the original one.

Another immediate consequence of Eq. (7) is that the av-
erage height /. of the growth sites (known as the half-place
capacity) can be determined from the second term in the
Laurent expansion [14],

he = —i lim [F(@) — o] = ~1. 8)
w—>00 2

In other words, the positions in which random walkers coming

from infinity meet the growing cluster increase on the average
linearly with time.

Having control on the average height of the arrivals along

the imaginary axis, we next focus on the fluctuations of these

arrivals along the real axis. To this aim we first consider the

complex integral

/ dx| (@) — o

where C is a constant independent of w and the last inequality
stems from the fact that we work in the upper half plane.
Using this we can immediately derive a sharp estimate for the
expectation of the fluctuations of the real part of the arrival
points E(|F;(w) — w — Zt[?):

i 2
E( —w— Et’ )
2
= E( / ds f " i [p(@)Fy(w) — Fx(w>|2) < Cr.
0 —00

10)
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We can deduce from Eq. (7) that the fluctuations in the real
position of the arrival of new particles grow as /7. One should
know, however, that this is an estimate of the global fluctuation
over the whole real axis rather than on a single growing tree.
To achieve a statement about the fractal dimension requires a
local result on the fluctuations.

In order to find the number of particles added to a given tree
in the cluster we consider the harmonic measure of an interval
on the real axis. Since particles are being added according to a
homogeneous Poisson process, the harmonic measure must be
proportional to the length of the interval. Denote the harmonic
measure of the interval [a, b] at time ¢ as Hi, 4 (?),

Hian(t) = F'(b) — F(a). (11)

We will demonstrate now that for any chosen a and b the
preimages F,’1 (a) and F,’1 (b) are diffusion processes for
times of the order ¢ < (b — a)®. At time of the order of
(b — a)* these diffusion processes collide, at which point in
time the harmonic measure H, ;(t) becomes so small that in
later times no particles can reach this interval [15]. Physically
this means that all the trees that grow out of the interval [a, b]
become shadowed by higher and broader trees and eventually
no new particle can ever reach these trees. We note in passing
that this result means that any set of trees that starts to grow
from any finite-size interval will eventually get shadowed and
stop growing. This is a warning that simulating on a fiber
with periodic boundary conditions is different, and will result
in a single tree occupying all of the harmonic measure. It is
remarkable that Meakin [10] had the intuition to terminate
his simulation at the “right” time to get the correct result for
this growth process. Note that this distinguishes the present
process from standard DLA growth in which there is a part of
every tree that keeps growing forever.

The way that the Poisson process is defined it is clear that
the number of particles arriving into any given area in the
upper half plane is proportional to that area. We know now that
if we choose trees that start growing from an interval [a, b] of
the order of unity, and the condition on the harmonic measure
not vanishing before or at time ¢, their typical height will be
of the order of . Moreover, tracing the area bounded between
the curves defined by Fs_'(a) and F;l(b) for s € [0, t], we
know that this area scales as t x /7, and therefore the number
of incoming particles belonging to the trees that survives until
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FIG. 2. Computer simulation of cluster growth on lattice in a
cylinder of circumference 8000 at ¢ = 30 (i.e., 240 000 particles).

time ¢ is indeed proportional to #*/2. This provides the desired
result that the height scales as N*/3, or

F=2]. a2

To discuss the dimension of the cluster we stress that the
growing trees are not self-similar but rather self-affine. The
Hausdorff dimension therefore requires covering the set with
different rescaling in the real and the imaginary directions.
The scaling is the natural one of a random walk, i.e., rescaling
by ¢ in the imaginary direction and by +/7 in the real direction.
The result then, in the limit 1 — oo, under the above affine
scaling, is that D = 3/2. A rigorous proof of this result is
Theorem 7.6 in Ref. [13].

All the results presented above pertain to growth in all
the upper half plane, and the relation to growth on a finite
fiber as executed in Ref. [10] must be discussed. Moreover,
the simulations presented in Ref. [10] were done on lattice
whereas the considerations above were all for random walks
off lattice. Consider then a cylinder of circumference of length
N (in units of the lattice constant) and infinite height. The
process then involves sending off # x N random walkers from
infinity (the random walkers are periodic with period N in the
direction of the x axis). To proceed we invoke the rigorous
proof (cf. Refs. [16,17]) that in the limit N — oo the cluster
that includes ¢ x R particles grown over any finite interval
of length R < N is equivalent in all properties to a cluster
grown over an interval of length R belonging to the infinite
real axis. Accordingly, Meakin’s simulation can be considered
relevant for DLA on-lattice growth on an infinite line. Since
for the off-lattice growth we could show that trees that contain
t particles are of height of the order of 2/3, we now elaborate
on Meakin’s simulations and show an equivalent result for the
on-lattice simulation for large enough trees.

The result of computer simulations on a cylinder of cir-
cumference 8000 at 1 = 30 (i.e., 240 000 particles) is shown
in Fig. 2. The figure shows the cluster growth in the interval
[3000,6000]. Contrary to Meakin who considered the radius
of gyration of the whole cluster, we compute the height ver-
sus the number of particles belonging to individual trees. To
accomplish this we identify each tree by the location of its
root, paying attention to the particles added to the same tree
starting from this root. A log-log plot of the heights versus
the logarithm of the number of particles belonging to indi-
vidual trees is shown in Fig. 3. The expected slope of 2/3 is
obtained asymptotically for large trees. Thus we can conclude
from the present simulation that the on-lattice model has the
same Brownian fluctuations for the width of the growing
trees. A tree will arrive to a given height having a width that
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FIG. 3. Measurement of the logarithm of the heights & vs the
logarithm of the number of particles belonging to individual trees
n, using the data from Fig. 2. The line is a guide to the eye showing
the convergence to slope 2/3 for large trees.

is determined by the distance between two Brownian paths
conditioned on nonintersection.

Finally, we should note that the pure Brownian scaling will
fail in a finite cylinder when the simulation time gets too long.
When a given tree reaches the height of /N then particles that
might typically attach to this tree will already feel the periodic
boundary conditions. One expects that such a tree will occupy
eventually the entire harmonic measure and all the other trees
will not be able to increase their width in subsequent times.
Similar caution should be exercised for a growth on a finite-
sized fiber (without boundary conditions). There the edges of
the fiber will act as singular attracting points, and the growth
far away from the edges will exhibit Brownian scaling only
for a finite time. An example of a simulation of growth on a
finite fiber is shown in Fig. 4.

In summary, the DLA process over the real axis provides a
relatively transparent example for the employment of iterated
conformal maps to represent the cluster growth. The reason
for the relative ease is that the size of the strike does not
depend on the order of iteration, in contrast to the classi-
cal off-lattice DLA in two dimensions where the strike size
changes in every iteration to conform with the addition of a
fixed size particle in the physical domain. As a consequence,
one can derive in the present case an exact result for the

FIG. 4. A typical cluster grown on a finite fiber embedded in a
two-dimensional lattice. Here, 1000 particles accreted to a line of
length 300. Only far away from the edges the growing trees exhibit
Brownian scaling.
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growth rate and fractal dimension of the whole cluster or
of individual trees. We note in passing that the dimension
3/2 was offered by Kesten as a rigorous lower bound to
the dimension of DLA grown on the square lattice in two
dimensions [18,19]. It is known that DLA grown on the square
lattice in two dimensions looks asymptotically as a cross with

four long arms [20-22]. While the fractal dimension of the
whole cluster appears to exceed 3/2, it is not impossible that
further analysis might lead to the possibility that the Brow-
nian scaling is appropriate for individual trees growing far
away from the tips, for reasons akin to the discussion offered
above.
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