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Abstract

A perfect K,-tiling in a graph G is a collection of vertex-disjoint copies of the clique K, in G covering every
vertex of G. The famous Hajnal-Szemerédi theorem determines the minimum degree threshold for forcing
a perfect K,-tiling in a graph G. The notion of discrepancy appears in many branches of mathematics. In
the graph setting, one assigns the edges of a graph G labels from {—1, 1}, and one seeks substructures F of
G that have ‘high’ discrepancy (i.e. the sum of the labels of the edges in F is far from 0). In this paper we
determine the minimum degree threshold for a graph to contain a perfect K,-tiling of high discrepancy.

2020 MSC Codes: 05C35, 05C70

1. Introduction
1.1 Discrepancy of graphs

Classical discrepancy theory, or the study of irregularities of distribution, is concerned with the
following question: given some space, how evenly can one distribute a set of n points in it (where
here evenness is measured with respect to certain subsets)? Perhaps the first significant result in
the area is by Hermann Weyl on the criterion for a sequence to be uniformly distributed in the unit
interval. In the other direction, answering a question by van der Corput, van Aardenne-Ehrenfest
proved that some irregularity of a point sequence in the unit interval is inevitable. Since then
discrepancy theory has become a widely studied area, with lots of ramifications and applications
in ergodic theory, number theory, statistics, geometry, computer science, efc. For more details see
the monograph by Beck and Chen [4], the book by Chazelle [7] and the book chapter by Alexander
and Beck [1].

In this paper we study the discrepancy of graphs, a topic that lies in the wider framework of
hypergraph discrepancy theory (see e.g. [3], [7]). Before we can rigorously discuss this topic we
must introduce some definitions.

TResearch of this author is partially supported by NSF grants DMS-1500121, DMS-1764123, Arnold O. Beckman Research
Award (UIUC) Campus Research Board 18132 and the Langan Scholar Fund (UIUC).

*Research of this author was supported in part by the grant TUDFO/47138-1/2019-ITM of the Ministry for Innovation and
Technology, Hungary, and by NKFIH grant KH_18 129597.

© The Author(s), 2020. Published by Cambridge University Press.

Downloaded from https://www.cambridge.org/core. University of Illinois at Urbana - Champaign Library, on 01 May 2021 at 16:23:57, subject to the =z,
Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/50963548320000516 G) CrossMark



Combinatorics, Probability and Computing 445

Definition 1.1. Suppose G is a graph and f: E(G) — {—1, 1}. We say a subgraph G of a graph G
has discrepancy t (with respect to f) if 3,y f(e) = t and absolute discrepancy t (with respect to

I Y eepen flOl=t.

If G and G are n-vertex graphs, then we say that G contains a copy of G’ of high discrepancy
(with respect to f) if there is a copy of G’ in G with absolute discrepancy €2(n). Note that this
concept also has a natural rephrasing in terms of Ramsey theory: given any 2-colouring of the
edges of G, one seeks a copy of G’ in G whose edge set contains significantly more edges from one
colour class than the other.

A natural question in graph discrepancy is to seek a fixed spanning subgraph H of a graph G
of high discrepancy (or at least discrepancy ‘far’ away from zero). The first result of this type was
obtained by Erdés, Fiiredi, Loebl and Sés [10]: they proved that, for some constant ¢ > 0, given
any labelling f: E(K,) — {—1, 1} of K,, and any fixed spanning tree T,, with maximum degree A,
K, contains a copy of T}, of absolute discrepancy atleast c(n — 1 — A). Note that in [10] this result
was phrased in the equivalent Ramsey setting.

In a previous paper [3], Jing and the first three authors of this paper investigated the graph dis-
crepancy problem of spanning trees, paths and Hamilton cycles for various classes of graphs G. For
example, the following result determines the minimum degree threshold for forcing a Hamilton
cycle of high discrepancy.

Theorem 1.1 (Balogh, Csaba, Jing and Pluhar [3]). Let 0 <c < 1/4 and n € N be sufficiently
large. If G is an n-vertex graph with

83(G) = (3/4+c)n

and f: E(G) — {—1, 1}, then there is a Hamilton cycle in G with absolute discrepancy at least
cn/32 (with respect to f). Moreover, if 4 divides n, there is an n-vertex graph with §(G) =3n/4
and an edge labelling f: E(G) — {—1, 1} for which every Hamilton cycle has discrepancy 0 (with
respect to f).

One can view such results about discrepancy as a measure of how robustly a graph contains a
spanning structure. Indeed, Theorem 1.1 implies that every n-vertex graph G with §(G) > (3/4 +
o(1))n contains a Hamilton cycle that spans an ‘unbalanced’ collection of edges for any partition
A U B of E(G). (See [22] for a survey on other measures of graph robustness.)

After submitting this paper, a multicolour extension of Theorem 1.1 was proved where the
underlying graph is the random graph; see [11].

1.2 Perfect tilings in graphs

An H-tiling in a graph G is a collection of vertex-disjoint copies of H contained in G. An H-tiling
is perfect if it covers all the vertices of G. Perfect H-tilings are also often referred to as H-factors,
perfect H-packings or perfect H-matchings. H-tilings can be viewed as generalizations of both the
notion of a matching (which corresponds to the case when H is a single edge) and the Turan
problem (i.e. a copy of H in G is simply an H-tiling of size one).

Except for the case when H contains no component of size at least 3, the decision problem
of whether a graph contains a perfect H-tiling is NP-complete (see [13]). Thus there have been
substantial efforts to obtain sufficient conditions that force a graph to contain a perfect H-tiling.
In particular, a cornerstone result in extremal graph theory is the Hajnal-Szemerédi theorem [12],
which characterizes the minimum degree threshold that ensures a graph contains a perfect K-
tiling.
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Theorem 1.2 (Hajnal and Szemerédi [12]). Every graph G whose order n is divisible by r and
whose minimum degree satisfies §(G) = (1 — 1/r)n contains a perfect K,-tiling. Moreover, there are
n-vertex graphs G with §(G) = (1 — 1/r)n — 1 that do not contain a perfect K,-tiling.

There has also been much interest in the minimum degree threshold that ensures a perfect
H-tiling for an arbitrary graph H. After earlier work on this topic (see e.g. [2], [18]), Kithn and
Osthus [20, 21] determined, up to an additive constant, the minimum degree that forces a perfect
H-tiling for any fixed graph H. Furthermore, there are now many different generalizations of
the Hajnal-Szemerédi theorem. In particular, Kierstead and Kostochka [15] proved an Ore-type
analogue, Keevash and Mycroft [14] proved a version for r-partite graphs, while there are now
several generalizations of Theorem 1.2 in the setting of directed graphs (see e.g. [8], [9]).

1.3 Our main result
In this paper we prove the following discrepancy version of the Hajnal-Szemerédi theorem.

Theorem 1.3. Suppose r > 3 is an integer and let n > 0. Then there exists no € N and y > 0 such
that the following holds. Let G be a graph on n > ng vertices where r divides n and where

1
(G =>(1——— .
©) ( r+1+n)n

Given any function f: E(G) — {—1, 1}, there exists a perfect K,-tiling T in G so that

Y f©

ecE(T)

Comparing Theorem 1.3 with Theorem 1.2, we see that having minimum degree just above that
which forces a perfect K, 1 -tiling in fact ensures a perfect K,-tiling of high discrepancy. Moreover,
the minimum degree condition in Theorem 1.3 is essentially best possible for all values of r > 3.
Interestingly, while the underlying extremal graph is the same for all r > 3 (the (r + 1)-partite
Turan graph), the precise labelling of the edges we take is rather different depending on the value
of r modulo 4. In Section 3 we construct extremal labellings in the cases when r= 1,2 (mod 4).
In the case when r =0, 3 (mod 4) the extremal labelling is easy to describe: let K be the complete
graph K, with precisely half of its edges labelled with 1, the remaining edges with —1 (the choice
of r ensures this is possible). Then, for any n € N divisible by r(r 4 1), consider the blow-up G of
K with n/(r + 1) vertices in each class, and where the labellings of each edge in G are induced by
the labelling of E(K). It is easy to see that every perfect K,-tiling in G has discrepancy precisely
0, while §(G) = (1 — 1/(r + 1))n. Moreover, in the case when r(r + 1) does not divide n, the same
construction G is such that every perfect K,-tiling has absolute discrepancy O,(1).

Note that the r =2 case (i.e. perfect matchings) is covered by Theorem 1.1. Indeed, it is easy
to see that since the hypothesis of Theorem 1.1 forces a Hamilton cycle of high discrepancy, this
ensures a perfect matching of high discrepancy. Moreover, consider the 4-partite Turdn graph
G on n vertices (where 4 divides n). Label all edges incident to one of the vertex classes of G
with —1. All remaining edges are labelled 1. Then every perfect matching in G has discrepancy
0. Thus, perhaps surprisingly, this observation and Theorem 1.3 imply that the minimum degree
threshold for forcing a perfect K3-tiling of high discrepancy is the same as the analogous threshold
for perfect matchings.

> yn.

The paper is organized as follows. In the next section we introduce some notation and def-
initions. In Section 3 we give the extremal examples for Theorem 1.3 in the cases when r=
1,2 (mod 4). We introduce a number of tools that will be used in the proof of Theorem 1.3 in
Section 4. In Section 5 we give an outline of the proof of Theorem 1.3 before giving the full proof
in Section 6. Finally, in Section 7 we present a number of open questions.
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2. Notation and definitions

Let G be a graph. We write V(G) for the vertex set of G, E(G) for the edge set of G and define |G| :=
|V(G)| and e(G) := |[E(G)|. Given a subset X C V(G), we write G[X] for the subgraph of G induced
by X and G\ X for the subgraph of G induced by V(G) \ X. The degree of x is denoted by dg(x)
and its neighbourhood by Ng(x). Given a vertex x € V(G) and a set Y C V(G), we write dg(x, Y)
to denote the number of edges xy where y € Y. Given a subgraph F of G, we write dg(x, F) :=
dg(x, V(F)). Given disjoint vertex classes X, Y C V(G), we write G[X, Y] for the bipartite graph
with vertex classes X and Y whose edge set consists of all those edges in G with one endpoint in X
and the other in Y; we write eg(X, Y) for the number of edges in G[X, Y].

Suppose G is a graph and f: E(G) — {—1, 1}. We say that e € E(G) is a 1-edge if f(e) =1 and
a (— 1)-edge if f(e) = —1. The (— 1)-neighbourhood N (x) of a vertex x € V(G) is the set of all
vertices y € V(G) so that xy is a (— 1)-edge in G; the 1-neighbourhood Né;' (x) of a vertex x € V(G)
is the set of all vertices y € V(G) so that xy is a 1-edge in G.

The following notion of a K,-template is crucial for the proof of Theorem 1.3.

Definition 2.1. Let F be a graph. A K,-template of F of size s is a collection {Hj, . .., H;} of not
necessarily distinct copies of K, in F for which there is some s’ € N so that every vertex x € V(F) lies
in precisely s’ of the H;. (In fact, note that we must have s’ = sr/|F|.) Suppose f: E(F) — {—1,1}
and K := {H, ..., Hy} is a K;-template of F. We say that /C has discrepancy t if

N

o> flo=t

i=1 ecE(H;)
The following special labelled copies of K, appear in the proof of Theorem 1.3.

Definition 2.2. We write K;' for a copy of K, whose edges are each assigned 1; define K, to be
a copy of K, whose edges are each assigned —1. The (K, +)-star is a copy of K, whose 1-edges
induce a copy of Kj ,—1. We call the root of this Kj ,_; the head of the (K, +)-star. We define the
(K, —)-star and its head analogously.

We write 0 <o < B < y to mean that we can choose the constants «, 8,y from right to
left. More precisely, there are increasing functions f and g such that, given y, whenever we
choose some B < f(y) and o < g(B), all calculations needed in our proof are valid. Hierarchies
of other lengths are defined in the obvious way. Throughout the paper we omit floors and ceilings
whenever this does not affect the argument.

3. The extremal examples
After its statement, we introduced an extremal example for Theorem 1.3 in the case when r=

0, 3 (mod 4). In this section we first describe an extremal example for the case when r =1 (mod 4)
and then give a construction for the r =2 (mod 4) case.

Proposition 3.1. Let me N, r:=4m+ 1 and n € N be divisible by 2r(r + 1). Let G be the com-
plete balanced (r + 1)-partite graph on n vertices (and so §(G)= (1 —1/(r+ 1))n). There is a
function f: E(G) — {—1, 1} so that for every perfect K.-tiling T in G, T has discrepancy zero (i.e.
2 eerr) () =0).

Proof. Let Vi,..., V.4 denote the vertex classes of G; so |Vi|=n/(r+ 1) for all i€ [r+1].
Consider a copy K of K; on vertex set [r]. Since r = 4m + 1 we can assign labels from {—1, 1} to
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each edge of K so that the (— 1)-edges induce a spanning 2m-regular subgraph of K; the 1-edges
induce a spanning 2m-regular subgraph of K. Let X, Y be a partition of V,; so that [X| =Y.

We now define f: E(G) — {—1, 1} as follows. The labelling of K induces a labelling of the edges
in G :=G\ V4. Thatis, ifxy € E(G) and x € V;, y € Vi where 1 <i<j<r, thenf(xy)=1ifijis
a l-edge in K; f(xy) = —1 if ijjis a (— 1)-edge in K. Every vertex in X sends 1-edges to each vertex
in V(G'); every vertex in Y sends (— 1)-edges to each vertex in V(G').

There are precisely three types of copies of K, in G: type 1 K, have every vertex in V(G'); type 2
K, have one vertex in X, the remaining vertices in V(G'); type 3 K, have one vertex in Y, the
remaining vertices in V(G’). Note that a type 1 copy of K; has discrepancy 0, a type 2 copy of K;
has discrepancy r — 1, and a type 3 copy of K, has discrepancy —r + 1. Given any perfect K,-tiling
T in G, T must contain precisely the same number of type 2 and type 3 copies of K,. Thus 7 has
discrepancy 0, as desired. O

A similar function f: E(G) — {—1, 1} to that in Proposition 3.1 now resolves the case when
r=2 (mod 4).

Proposition 3.2. Let me N, r:=4m+ 2 and n € N be divisible by 2r(r + 1). Let G be the com-
plete balanced (r + 1)-partite graph on n vertices (and so 8(G) = (1 —1/(r+ 1))n). There is a
function f: E(G) — {—1, 1} so that for every perfect K,-tiling T in G, T has discrepancy zero (i.e.
> ecrr) f(€)=0).

Proof. Let Vi,...,V,;; denote the vertex classes of G; so |V;|=n/(r+1) for all i€ [r+1].
Consider a copy K of K, on vertex set [r] whose edges are assigned labels from {—1, 1} so that
there is precisely one more 1-edge than (— 1)-edge. Let X, Y be a partition of V,4; so that
xj= O =
2r(r+1) 2r

We now define f: E(G) — {—1, 1} as follows. As in Proposition 3.1, the labelling of K induces
a labelling of the edges in G’ := G \ V. Every vertex in X sends 1-edges to each vertex in V(G');
every vertex in Y sends (— 1)-edges to each vertex in V(G).

As before, there are precisely three types of copies of K; in G: type I K, have every vertex in
V(G'); type 2 K, have one vertex in X, the remaining vertices in V(G'); type 3 K; have one vertex
in Y, the remaining vertices in V(G’). Consider any perfect K,-tiling 7 in G. Our aim is to show
that 7 has discrepancy 0.

Note that 7 contains precisely

n n n

r_r—i-l:r(r—i-l)

copies of K; of type 1; each of these K has discrepancy 1. Consider the subtiling 7’ of 7 induced
by the type 2 and type 3 copies of K,. Let 7" be the K,_; -tiling in G’ obtained from 7’ by removing
all those vertices from V,;; = X U Y. Note that 7" covers precisely

n n  (r—1Dn
r+1 rr+1) r(r+1)

vertices in V; for each i € [r]. In total 7" consists of n/(r + 1) copies of K,_1. Moreover, for each
pair (i, j) with 1 <i <j<r, a precisely (r — 2)/r-proportion of the copies of K,_; in 7" contain
an edge xy with x € V;, y € V}. Together, this implies that 7" has discrepancy

r—2 n
X .
r r+1
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Recalling that each edge incident to X is a 1-edge and each edge incident to Y is a (— 1)-edge, we
conclude that 7 has discrepancy

n r—2 n X ) v D n (r—2)n (r—l)n_
r(r+1)+< r Xr+1)+| =1 = 1¥I(r= )_r(r+1) r(r—l—l)_r(r—i—l)_ ’
as required. O

4. Useful results
4.1 The regularity lemma

In the proof of our main result we will use a discrepancy variant of Szemerédi’s regularity lemma
[23]. Before stating this result, we introduce some notation. The density of a bipartite graph G with
vertex classes A and B is defined to be

d(a, B = 4B

|Al|B]

Given any ¢,d > 0, we say that G is (e, d)-regular if d(A, B) > d and, for all sets X C A and
Y € B with |X| > ¢|A| and |Y| > ¢|B|, we have |d(A, B) — d(X, Y)| < &. We say that G is (¢, d)-
superregular if all sets X C A and Y C B with [X| > ¢|A| and |Y| > ¢|B| satisty that d(X,Y) > d,
that dg(a) > d|B| for all a € A and that dg(b) > d|A| for all b € B.

Suppose G is a graph with edge labelling f: E(G) — {—1, 1}. Given disjoint X, Y C V(G) we
write G4 [X, Y] (or (X, Y)g) for the bipartite graph with vertex classes X, Y whose edge set consists
of all those 1-edges between X and Y in G. We define G_[X, Y] and (X, Y) analogously (now with
respect to (— 1)-edges).

We will apply the following variant of Szemerédi’s regularity lemma that can be easily deduced
from the multicoloured version given in [19], for example.

Lemma 4.1. For every ¢ > 0 and £y € N there exists Ly = Lo(&, £o) so that the following holds. Let
d € [0,1] and G be a graph on n > Ly vertices with edge labelling f: E(G) — {—1, 1}. Then there
exists a partition Vo, V1, ..., Vi of V(G) and a spanning subgraph G’ of G such that the following
conditions hold:

(i) €o <€ < Lo,
(ii) de(x) = dg(x) — (2d + &)n for every x € V(G),
(iii) the subgraph G'[V;] is empty for all1 <i< ¥,
(iv) |Vol <en,
) Vil=Val=--- =1V,
(vi) forall1 <i<j<{ either (V;, Vj)g, is an (&, d)-regular pair or G'_[V;, V] is empty,
(vil) forall1<i<j< £ either (Vi, V}), is an (e, d)-regular pair or G_[V; Vil is empty.

We call Vi, ..., Vg clusters, Vy the exceptional set and the vertices in Vj exceptional vertices.
We refer to G’ as the pure graph. The reduced graph R of G with parameters ¢, d and £ is
the graph whose vertices are Vy,..., Vy and in which V;V; is an edge precisely when at least
one of (V;, Vj)JGr, and (V;, Vj), is (e, d)-regular. Associated with the reduced graph R is an edge
labelling fr: E(R) — {—1, 1}, where fr(V;V}) == 1if (V}, Vj)g, is (¢, d)-regular and fr(V;V}) = —1
otherwise. (So if both (V;, VJ-)JGF, and (V;, V) are (¢, d)-regular, then fg only ‘records’ the former
property.)

We will use the following well-known property of the reduced graph.
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Fact 4.1. Given a constant ¢ > 0, let G be an n-vertex graph with 6(G) > cn that we have applied
Lemma 4.1 to (with parameters ¢, d and £p). Let R be the corresponding reduced graph. Then
8(R) = (c —2d — 2¢)|R|.

The following well-known result allows us to use subgraphs of a reduced graph as ‘templates’
for embedding in the original graph G.

Lemma 4.2 (key lemma [19]). Suppose that 0 < ¢ < d, that q,t € N and that R is a graph with
V(R)={v1,...,vk}. We construct a graph G as follows. Replace every vertex v; € V(R) with a set V;
of q vertices and replace each edge of R with an (g, d)-regular pair. For each v; € V(R), let U; denote
the set of t vertices in R(t) corresponding to v;. Let H be a subgraph of R(t) with maximum degree A
and set h:=|H|. Set 8 :=d — & and g9 :=8%/(2 + A). If e <egp and t — 1 < goq, then there are at
least

(eoq)h labelled copies of H in G,

so that if x € V(H) lies in U; in R(t), then x is embedded into V; in G.

The following fundamental result of Koml6s, Sarkozy and Szemerédi [16], known as the blow-
up lemma, essentially says that (¢, d)-superregular pairs behave like complete bipartite graphs with
respect to containing bounded degree subgraphs.

Lemma 4.3 (blow-up lemma [16])). Given a graph F on vertices {1,...,f} and d, A > 0, there
exists an g9 = eo(d, A, f) > 0 such that the following holds. Given Ly, ...,Ls € N and & < &, let
F* be the graph obtained from F by replacing each vertex i € F with a set V; of L; new vertices and
joining all vertices in V; to all vertices in V; whenever ij is an edge of F. Let G be a spanning subgraph
of F* such that for every edge ij € F the pair (Vi, V})c is (¢, d)-superregular. Then G contains a copy
of every subgraph H of F* with A(H) < A.

4.2 An absorbing lemma
We will apply the following well-known absorbing lemma (which is a special case of [24,

Theorem 4.1], for example). Given a graph G we say a set S C V(G) is a K;-absorbing set for
Q C V(G) if both G[S] and G[S U Q] contain perfect K,-tilings.

Lemma 4.4. Let 0 <1/n <K v &K n<K1/r where n,r € N and r > 2. Suppose that G is a graph on
n vertices with §(G) = (1 — 1/r + n)n. Then V(G) contains a set M so that |M| < vn and M is a
K,-absorbing set for every W C V(G) \ M such that |W| € rN and |W| < v3n.

5. Overview of the proof of Theorem 1.3

In the proof of Theorem 1.3 we will apply the regularity lemma to obtain the reduced graph R
of G with an associated edge labelling fr: E(R) — {—1, 1}. Since the reduced graph R ‘inherits’
the minimum degree condition on G (see Fact 4.1), the Hajnal-Szemerédi theorem implies that R
contains a perfect Ky -tiling 7.

In Claim 6.1 we establish the following crucial property: (a) if 7 has high absolute discrepancy
(with respect to fr), then we can use this structure in R as a framework to build a perfect K,-tiling
in G with high absolute discrepancy (with respect to f). To build this tiling in G we make use of
the absorbing method.

Downloaded from https://www.cambridge.org/core. University of Illinois at Urbana - Champaign Library, on 01 May 2021 at 16:23:57, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/50963548320000516



Combinatorics, Probability and Computing 451

We then establish another vital property of R: (b) if R has a ‘small’ subgraph F so that F has two
K,-templates with different discrepancies (with respect to fr), then we can use this to again build
a perfect K,-tiling in G with high absolute discrepancy (see Claim 6.2).

We may therefore assume neither (a) nor (b) holds. This in turn forces the cliques of size at
most 7+ 2 in R to have some very rigid structure. In particular, we deduce that every copy of
K,11 in R (therefore in our tiling 7") is one of the following: a K;:_l, a K ,a (K1, +)-starora
(Ky41, —)-star (see Claim 6.5).

After this, we then argue that in fact almost all of the tiles in 7 are copies of (K41, +)-stars
and (K41, —)-stars. Finally, we prove that there are two tiles K, K’ in 7 for which (b) must hold
with respect to F:=R[KUK’], and so we do have a perfect K,-tiling in G with high absolute
discrepancy.

6. Proof of Theorem 1.3

It suffices to prove the theorem in the case when n <« 1/r. Define additional constants
¥, &, d,v > 0and ng, £y, Ly € N so that

0<1/n<Ky K1/Li</liKekKd<Ky LKL 1/r. (6.1)

Here L is the constant obtained from Lemma 4.1 on input &, £.

Let G be a graph on n > ng vertices as in the statement of the theorem. Fix an arbitrary edge
labelling f: E(G) — {—1, 1}.

By Lemma 4.4 we obtain a set of vertices Abs C V(G), where | Abs | < vn and where both
G[ Abs ] and G[ Abs UW] contain perfect K,-tilings for any set W C V(G) \ Abs of size at most
v3n, where r divides |W|. Let Gy := G \ Abs. Thus

3(G1) = (1— %—i-?’—n)n (6.2)

6.1 Applying the regularity lemma

Apply the regularity lemma (Lemma 4.1) to G; with parameters ¢, d, £o. We thus obtain clusters
Vi,..., Vg of size m (where £y < £ < Ly), an exceptional set Vy (of size at most en) and a pure
graph G| of G;. We may assume that r 4 1 divides £. (If not, we can achieve this by deleting at
most r of the clusters, and move the vertices in these clusters to the exceptional set Vj.) Further,
we obtain the reduced graph R of G; with an edge labelling fr: E(R) — {—1, 1} ‘inherited’ from f
(as defined in Section 4.1). Note that (6.2) and Fact 4.1 imply that

n
- o [ 6.3
r+1+2> (63)

3(R) = <1

The following two claims will be used several times in our proof. The first implies that to obtain
our desired perfect K,-tiling in G it suffices to find a perfect K,;-tiling in R of high absolute
discrepancy.

Claim 6.1. Suppose that R contains a perfect K,i1-tiling Tr with absolute discrepancy t > n*¢
(with respect to fr). Then G contains a perfect K,-tiling with absolute discrepancy at least yn (with
respect to f).

Proof. Consider any copy H of K, in Tg. Suppose that H has discrepancy ty € Z (with respect
to fr). The vertices Wy, ..., W,41 in H are clusters in G. Write Gy for the (r 4 1)-partite graph
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G)[W1U---UW,41]. Through repeated applications of the key lemma (Lemma 4.2) we obtain
that there is a K;-tiling 7y in Gy so that:

(i) All but precisely eY/2m vertices in W; are covered by T for each i € [r+ 1].
(ii) Given any edge xy € E(Tg), if x € W; and y € W; then f(xy) = fR(W; W)).
(iii) Each copy of K; in Ty contains at most one vertex from every cluster W;. Furthermore,
given any 1 <i<j<r+1,a(r—1)/(r+ 1)-proportion of the K, in 7y contain an edge
from G} [W;, W;].

Note that (ii) follows from the definition of fg; (iii) simply states that we embed copies of K, in
Gy in a balanced way, alternating which cluster W; is ‘uncovered by a copy of K,’. Since H has
discrepancy tgy, (ii) and (iii) imply that 7 has discrepancy

r—1 (r—1)

ty = 1—&'2)ymt
H_1><|7}1|><H (1—¢"/")mty

(with respect to f).

Consider the K;-tiling 7" in G| obtained by taking the union of the 7 for each H in 7. By (i),
T contains all but | Vo| 4+ £1/2me < 2e1/2n of the vertices in G. Noting that ZHG% ty € {t, —t},
we deduce that 77 has absolute discrepancy

—1 2
Q(l — e ymt > 5(1 — e nPme = n*n)2

(with respect to f). Let W be the set of vertices in G; uncovered by 7'; so |W| < 2612 <3,
Thus G[ Abs UW] has a perfect K,-tiling 7”. As | AbsUW| < 2vn, T'U T" is a perfect K,-tiling
in G with absolute discrepancy at least n?n/2 — (;)21)}’1 > yn, as desired. O

The next claim gives us a useful condition that guarantees our desired perfect K,-tiling in G; it
will be used repeatedly through the proof.

Claim 6.2. Let F be a subgraph of R on p vertices where r + 1 < p < 2r + 2. Given some s < r'%,
suppose that F has two K,-templates K ={H,, ..., H} and K' ={H, ..., H,}, both of size s. If
K and K' have different discrepancies (with respect to fr), then G contains a perfect K,-tiling with
absolute discrepancy at least y n.

Proof. Let Wy,..., W, denote the clusters of G/1 that correspond to the vertices of F. So if
W;W; € E(F) and fr(W;W;) =1 then (W}, Wj)+ is (&, d)-regular; otherwise if W;W; € E(F) and

G
fR(W;W;) = —1 then (W;, W)) ., is (¢, d)-regular. A well-known property of regular pairs implies

G}

that we can delete £1/2m vertices from each of these clusters to obtain subclusters Wi, RN W;;
with the following properties: if W;W; € E(F) and fr(W;W;) =1 then (W], W;)g, is (2¢,d/2)-
1

superregular; if W;W; € E(F) and fr(W;W;) = —1 then (W}, Wj’)&1 is (2¢, d/2)-superregular.
Write m’ == (1 — ¢Y/%)m; so |Wi|=m'forallie [p].

Let F* be the p-partite graph with vertex classes Wi, e WI/” and where for each i # j, there
are all possible edges between W and W]/ precisely if W;W; € E(F); that is, F* is a blow-up of F.
Define fp+: E(F*) — {—1, 1} so that fp«(xy) = 1ifx € W],y € W]’ and fR(W;W)) = 1; fp= (xy) = —1
ifxeW,,ye W]’ and fR(W;W)) = —1.

Write ¢ for the discrepancy of K and ¢’ for the discrepancy of K'; by the assumption in the

claim, t # t'. Note that we can use K as a ‘framework’ to find a perfect K,-tiling 7 in F* as follows:
consider any Hy in K and let Wj,, .. ., W;,_ be the vertices of Hy; in 7 there are m’p/sr copies of K,
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corresponding to Hy which contain precisely one vertex from each of W; ..., W; . Thus T has
discrepancy m'pt/sr (with respect to fp+).

Similarly, we can use K’ as a framework to find a perfect K,-tiling 7’ in F* of discrepancy
m'pt’ /sr (with respect to fpx).

Now applying the blow-up lemma, this ensures Go := G} [W; U - - - U Wf’] contains two perfect
K;-tilings 77 and 7 with discrepancy m'pt/sr and m'pt’ /sr respectively (with respect to f). Note
that

n (6.1)

m
\m'pt/sr —m/pt’ [sr| > (1 — 81/2)? > 2Ly > 2yn.

Further, G \ Gy comfortably satisfies
8(G\ Go) = (1 —1/r)n,

so contains a perfect K,-tiling 73 by the Hajnal-Szemerédi theorem. Therefore both 7; U 73 and
T2 U T3 are perfect K,-tilings in G, whose discrepancies differ by at least 2y n; thus one of these
perfect K,-tilings has absolute discrepancy at least yn, as desired. O

From now on we may assume that the hypotheses of Claims 6.1 and 6.2 fail; this will eventually
lead to a contradiction, thereby proving the theorem.

6.2 Properties of cliques in R
The minimum degree condition on R ensures the following easy observation.

Claim 6.3. Let 1 < k<r+ 1. Every copy of Ki in R lies in a copy of Ky4».

We now use Claim 6.2 to prove that the copies of K1, in R have a limited number of possible

edge labellings.

Claim 6.4. Every copy K of K,» in R is one of the following: a Kr++2, aK_ 5 a(Kpy2,+)-star ora
(Kys2, —)-star.

Proof. Consider an arbitrary Hamilton cycle C in K. We obtain a K,-template K¢ of K of size
r + 2 by going around the Hamilton cycle as follows: take each copy of K, whose vertices are r
consecutive vertices along C and add it to KCc.

Consider any two Hamilton cycles C= Wy - -« W;W;1 1 Wi, Wiis - - - Wi and C’ obtained
from C by reordering W;Wi 1 Wi, Wiy3 as W;Wi Wiy 1 Witz (ie. we just swap the order of
Wit1 and Wiy,). Since we are assuming the hypothesis of Claim 6.2 does not hold, we must have
that K¢ and K¢ have the same discrepancy with respect to fz.

This implies that fRIW;Wit1) 4+ frR(Wir2 Wiy3) =fR(WiWit2) + frR(Wip1 Wigs). (The left-
hand side considers the contribution to the discrepancy of K¢ not ‘present’ in the discrepancy
of K¢; the right-hand side considers the contribution to the discrepancy of K¢ not ‘present” in

the discrepancy of K¢.)
The choice of the Hamilton cycle C in K was arbitrary. So this implies that
fr(ab) + fr(cd) = fr(ac) + fr(bd) for all distinct a, b, ¢, d € V(K). (6.4)

Consider any a € V(K). Suppose [Ny (a)| > 3. Given any distinct b, ¢, d € N (a), (6.4) implies that
fr(bd) = fr(cd). This implies that the edges in Ny (a) are either all 1-edges or all (— 1)-edges. A
similar argument holds if |Ng(a)| > 3.

In particular, this implies that if one of Ny (a) and N;(a) is empty then K is one of the fol-
lowing: a K;trz, aK , a (Ky42, +)-star or a (Ky1, —)-star. We may therefore assume that both
Ni (a) and N;(a) are non-empty, and without loss of generality assume that |N;(a)| >2.
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Choose any distinct ¢, d € N;(a) and b € Ng (a). Noting that ac is a 1-edge and ab is a (— 1)-
edge, (6.4) implies cd is a 1-edge and bd is a (— 1)-edge. The choice of ¢, d € N;g(a) and b € Ny (a)
was arbitrary so this implies all edges between N;(a) and Ny (a) are (— 1)-edges.

If [INg (a)| = 1 we are immediately done now: indeed, we have just argued that b € Ny (a) sends
out (— 1)-edges to everything else, and as |NIJ<r(a)| > 3 in this case, all edges in N;(a) are 1-edges.
That is, K is a (Ky42, —)-star.

Thus we may now additionally assume [N (a)| > 2. Choose any distinct ¢, d’ € Ng (a) and
b e Nl'g(a). Then (6.4) implies that b'd’ is a 1-edge. This is a contradiction, as we already proved
that all edges between N;g(a) and Ny (a) are (— 1)-edges. Thus this case does not occur, and we
are done. O

Combining Claims 6.3 and 6.4 we obtain the following.

Claim 6.5. Let 1 < k < r+ 2. Every copy of K in R is one of the following: a KZ‘, akK,a (K, +)-
star or a (K, —)-star.

6.3 Using a perfect K, ,-tiling in R

Note that (6.3) and Theorem 1.2 imply that R contains a perfect K;4-tiling 7. By Claim 6.5, there
are only four types of K;1 in 7. Let A denote the set of K;:_l in 7’ let B denote the set of K |
in T; let C denote the set of (K41, +)-stars in 7; let D denote the set of (K11, —)-stars in 7T.

Without loss of generality we may assume that

|Bl + [C| = |Al + |D|. (6.5)

6.3.1 Assume that A is non-empty

Claim 6.6. Consider any vertex V, € V(A) and any copy K € B of K |. Then we may assume
dr(V,, K) <r—2 ifris even, and dp(V,, K) <r — L ifris odd.
Proof. Write Ky for the clique in 7 that contains V,. Let F:= R[K4 UK].

First consider the case when r is even, and suppose V, sends r — 1 edges to K in R. Suppose i of
these edges are 1-edges (and so r — 1 — i of them are (— 1)-edges). Let X, Y € V(K) be the vertices
in K that are not incident to one of these r — 1 edges. We will prove that F satisfies the hypothesis
of Claim 6.2.

Write Ky for the set of all copies of K, in K4, and K for the set of all copies of K, in K; so
IK|=|Kal=r+1.

Define K; to be the K,-template for F of size 2r(r + 1) that contains precisely r copies of each
of the cliques in K4 U K. Note that indeed K is a K,-template for F as each vertex V € V(F) is
contained in precisely r? of the cliques in K. Since K4 € A, K € B, and K contains the same
number of copies of cliques from K4 and /C, K; has discrepancy 0 (with respect to fr).

We define another K,-template K, for F of size 2r(r + 1) as follows:

(i) for the clique H € K4 that does not contain Vy4, add 2r — 1 copies of H to /3,
(ii) for each clique H € K4 that contains V4, add r — 1 copies of H to Ky,

(iii) add to /C; r copies of the clique in F that contains V4 and the r — 1 verticesin V(K) \ {X, Y},
(iv) add r 4 1 copies of each clique H € K that contains both X and Y,

(v) add one copy of each clique H € K that avoids one of X and Y.

To prove that K, is a K,-template for F of size 2r(r 4 1) it suffices to prove that every vertex
V € V(F) lies in precisely r? of the cliques in KCy: if V € V(Ky) \ {Va} then (i) and (ii) give that V
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lies in (2r — 1) + (r — 1)(r — 1) = r? such cliques; (ii) and (iii) imply V4 liesin (r — I)r 4+r= r?
such cliques; if V € V(K) \ {X, Y} then (iii)-(v) imply that V liesinr + (r + 1)(r —2) + 1-2 =712
such cliques; if V € {X, Y} then (iv) and (v) imply that V lies in (r + 1)(r — 1) + 1- 1 =2 such
cliques.

To compute the discrepancy of K, note that, compared to K; it has one fewer clique from Ky,
r — 1 fewer cliques from K, and an additional r cliques (from (iii)) that each have discrepancy
2i— (;) As K has discrepancy 0 this implies that K, has discrepancy

_<;> +(r— 1)(;) +r<2i— (;)) =2ir—r(r—1)#0

asi7# (r — 1)/2 (recall we assumed that r is even). So F satisfies the hypothesis of Claim 6.2.

Now suppose r is odd and V; sends at least r edges to K in R. We can fix r — 1 such edges so that
i# (r—1)/2 of them are 1-edges and r — 1 — i of them are (— 1)-edges. Now, arguing precisely as
before, we conclude that F satisfies the hypothesis of Claim 6.2, as desired. O

Claim 6.7. Consider any V, € V(A) and any K € C. Then we may assume dr(V,, K) <r —2ifris
even, and dr(V,, K) <r — lifris odd.

Proof. Write K4 for the clique in 7 that contains V,,. Let F := R[K4 U K]. Write KC4 for the set of
all copies of K, in Ky, and K for the set of all copies of K, in K; so || = [a| =71+ 1.

The proof proceeds similarly to the previous claim. If r is even, suppose V, sends r — 1 edges
to K in R; if r is odd, suppose V, sends r edges to K in R. If all these edges avoid the head® Vg of
K, then we can argue precisely as in Claim 6.6 to obtain two K,-templates K; and K, of F, both
with the same size but different discrepancy. Note that how we construct Xy and K, is identical
to the proof of Claim 6.6, though the discrepancies will differ from that claim since now K € C.

Next suppose r is even and V,; sends r — 1 edges to K in R, one of the endpoints being the head
Vi Suppose i of these edges are 1-edges and r — 1 — i of them are (— 1)-edges. Let X, Y € V(K) be
the vertices in K that are not endpoints of such edges. Again, we choose K} and /C; as in Claim 6.6.

That is, we define K’; to be the K,-template for F of size 2r(r + 1) that contains precisely r
copies of each of the cliques in K4 U K. We define K, as follows:

(i) for the clique H € K4 that does not contain V4, add 2r — 1 copies of H to /3,

(ii) for each clique H € K4 that contains V4, add r — 1 copies of H to K,
(iii) addto /C; r copies of the clique in F that contains V4 and the r — 1 vertices in V(K) \ {X, Y},
(iv) add r 4 1 copies of each clique H € K that contains both X and Y,

(v) add one copy of each clique H € K that avoids one of X and Y.

The same argument as in Claim 6.6 implies that both K; and K, are K,-templates for F of size
2r(r +1).

To complete the proof we again have to show that the discrepancies of X' and I, are different.
Note that (i) and (ii) imply that K, has one fewer copy of K from K4 compared to K1; compared
to K1, Ky has an additional r cliques arising from (iii); from (iv) and (v) we conclude that K,
has r fewer (K, +)-stars from XC compared to Cy; by (iv) K has one more copy of a K~ from K
compared to K;. Thus the difference in discrepancy between /C; and /K, is precisely

Var(2it20—2— (")) =r(=(")+20=0)) = (") =2ri - =~
- i —-2)— —r|— - - =2ri—1r"—r.
2 2 2 2
2K is a copy of a (K, +)-star; the head of such a star was defined in Definition 2.2.
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As r is even, this term is non-zero (since i # (r + 1)/2 in this case). Therefore K; and K, are
K,-templates for F of different discrepancies; that is, the hypothesis of Claim 6.2 holds.

Next suppose r > 5 is odd, and V, has at least r neighbours in K, including the head V. We can
choose r — 1 such neighbours, including Vp, so that i of the corresponding edges incident to V,
are 1-edges (and r — 1 — i of them are (— 1)-edges), where vitally i # (r + 1) /2. In particular, here
we are using that (r +1)/2 < r — 1 to guarantee that we can choose i as desired. Then, arguing as
in the previous case, we obtain two K,-templates for F of different discrepancies. This argument
also resolves the case when r = 3 unless all the edges from V, to K are 1-edges, in which case we
would be forced to ‘choose’ i =2 = (r 4+ 1) /2. However, in this case we have that V,; sends two
1-edges to vertices in V(K) \ {Vg}. In this case we can argue precisely as in Claim 6.6 to obtain
two K,-templates for F of different discrepancies. This completes the proof of the claim. O

By the last two claims we have that each V,; € V(A) has average degree of at most r — 1 into
each K € BU C. Trivially V, has average degree of at most r + 1 into each K € A U D. So by (6.5),
each V,; € V(A) has average degree at most r into each K € AU BU CU D. This is a contradiction
as R has minimum degree 6(R) > (1 — 1/(r + 1) 4+ n/2)£. Thus we conclude that A is empty.

Further, this implies B is small. Indeed, if |B| > n*¢ then (6.5) implies that the perfect K, ;-
tiling 7~ of R has absolute discrepancy at least n?¢. Thus the hypothesis of Claim 6.1 holds,
contradicting our assumption.

Therefore assume A = @ and |B| < n*¢. We now split into cases.

6.3.2 Casel:.r > 4.

Note that in this case we have |D| — n*¢ < |C| < |D| + n*¢. Indeed, otherwise (6.5) implies that
the perfect K, 1-tiling 7~ of R has absolute discrepancy at least n>¢.

Together with the fact that 6(R) > (1 — 1/(r + 1) 4+ n/2)¢, this implies that every V. € V(C)
has at least (1 — 2/(r + 1) + n/3)|C| neighbours in D. This immediately implies the following.

Claim 6.8. Given any V. € V(C), there is some K € D such that dr(V,, K) >r.

Fix V. € V(C) to be the head of some tile K¢ in 7. So V, sends at least r — 1 edges to K \ {Vy}
where Vg is the head of K. Fix r — 1 of these edges. Call the endpoints of these edges in K good.
Write X for the vertex in K \ {Vg} that is not good. Write IC¢ for the set of all copies of K, in K¢,
and K for the set of all copies of K; in K; so |[K| = |[K¢| =7+ 1.

Set F:= R[K¢ UK]. Define K; to be the K,-template for F of size 2r(r 4 1) that contains pre-
cisely r copies of each of the cliques in K¢ U K. Note that indeed K; is a K,-template for F as each
vertex V € V(F) is contained in precisely r* of the cliques in K.

We define another K,-template /C, for F of size 2r(r + 1) as follows:

(i) for the clique H € K¢ that does not contain V,, add 2r — 1 copies of H to K5,
(ii) for each clique H € K¢ that contains V, add r — 1 copies of H to K,

) add to IC; r copies of the clique in F that contains V. and the good vertices,

)

)

)

(iii
(iv) for each clique H € K that contains both X and Vi, add r 4 1 copies of H to /s,
(v) add one copy of the clique H € K that avoids X,

(vi) add one copy of the clique H € K that avoids V.

To prove that IC; is a K,-template for F of size 2r(r 4 1) it suffices to prove that every vertex V €
V(F) lies in precisely r? of the cliques in KC: if V € V(K¢) \ {V,} then (i) and (ii) give that V lies
in(2r—1)+(r— 1)(r — 1) = ? such cliques; (i) and (iii) imply V¢ liesin (r — I)r +r = % such
cliques; if V € V(K) \ {X, Vy} then (iii)-(vi) imply that V lies in r + (r + 1)(r —2) + 1 + 1 =r?
such cliques; if V = X then (iv) and (vi) imply that V liesin (r + 1)(r — 1) + 1= r? such cliques;
it V.= Vg then (iv) and (v) imply that Vliesin (r + 1)(r — 1) + 1 = r? such cliques.
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We will now complete this case by showing that I’y and K, have different discrepancies with
respect to fr; that is, the hypothesis of Claim 6.2 holds, as desired.

Write i for the number of (— 1)-edges in F with one endpoint V¢, the other a good vertex. So
there are r — 1 — i 1-edges between V. and the good vertices. Note that (i) implies that /C; has
r — 1 more copies of K.~ from ICc compared to K1; compared to K, (ii) implies that C; has r
fewer copies of (K;, +)-stars from K¢; the r cliques from (iii) are contained in K, but not y;
from (iv) and (v) we conclude that /C; has the same number of (K, —)-stars as K;; by (vi) KC; has
r — 1 fewer copies of K, from K compared to K;. Thus the difference in discrepancy between K
and IC; is precisely

r r r . ™o
—(r—1)<2)—r<—<2>+2(r—1)>+r(<2)—21)—(r—1)<2>— r(r—1)—2ri<0.

Therefore I and IC; are K,-templates for F of different discrepancies; that is, the hypothesis of
Claim 6.2 holds, as required.

6.3.3 Case2:r=3.
As 8(R) > (3/4 + n/2)¢ and | B| < n?{ we obtain the following.

Claim 6.9. Given any V. € V(C) there is some K € CU D such that dr(V,, K) = 4.

Fix V. € V(C) to be the head of some tile K¢ in 7. Write IC¢ for the set of all copies of K3 in
K¢, and K for the set of all copies of K3 in K; so || = |K¢| = 4. Set F:= R[Kc UK].

Subcase 2a: K € D. Note that V. together with K forms a copy of K5 in R. As K € D, Claim 6.4 tells
us that the edge between V. and the head Vi of K is a (— 1)-edge; all other edges between V. and
K are 1-edges.

Define K; to be the K3-template for F of size 24 that contains precisely three copies of each
of the cliques in K¢ U K. Note that indeed K is a K,-template for F as each vertex V € V(F) is
contained in precisely nine of the cliques in /C;.

We define another K3-template XC; for F of size 24 as follows:

(i) for the clique H € K¢ that does not contain V,, add five copies of H to 5,
(ii) for each clique H € K¢ that contains V,, add two copies of H to K,
(iii) add to /C; one copy of each clique in F that contains V. and precisely two of the vertices in
V(K)\ {Vir),
(iv) for each clique H € K that contains V, add three copies of H to /s,
(v) add one copy of the clique H € K that avoids V.

It is easy to check that every V € V(F) lies in precisely nine cliques in Ky; so indeed IC; is
K3-template for F of size 24. Further, K; has discrepancy 0, K, has discrepancy —6. Thus the
hypothesis of Claim 6.2 holds, as desired.

Subcase 2b: K € C. Note that V. together with K forms a copy of K5 in R. As K € C, Claim 6.4 tells
us that the edge between V. and the head Vg of K is a 1-edge; all other edges between V. and K
are (— 1)-edges.

We define K; and K, precisely as in Subcase 2a. That is, define K; to be the K3-template for
F of size 24 that contains precisely three copies of each of the cliques in K¢ U K. Define K, as
follows:

(i) for the clique H € K¢ that does not contain V,, add five copies of H to Ky,
(ii) for each clique H € K¢ that contains V,, add two copies of H to Ky,
(iil) add to /C; one copy of each clique in F that contains V. and precisely two of the vertices in
VK)\ {Vu},
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(iv) for each clique H € K that contains V, add three copies of H to /5,
(v) add one copy of the clique H € K that avoids Vg.

In this subcase, IC; has discrepancy 0, K, has discrepancy —12. Thus the hypothesis of Claim 6.2
holds, as desired. This completes the proof of Theorem 1.3.

7. Open problems

The rth power of a Hamilton cycle C is obtained from C by adding an edge between every pair
of vertices of distance at most 7 on C. The Pésa-Seymour conjecture states that every n-vertex
graph G with minimum degree §(G) > (1 — 1/(r + 1))n contains the rth power of a Hamilton
cycle. Komlos, Sarkozy and Szemerédi [17] proved this conjecture for sufficiently large n.

Itis natural to seek a discrepancy analogue of the Pésa—-Seymour conjecture. We believe that the
hypothesis of Theorem 1.3 additionally ensures that the host graph G contains the (r — 1)th power
of a Hamilton cycle with high discrepancy. Furthermore, the minimum degree in such a result
should be best possible (in the same sense Theorem 1.3 is best possible). We believe the proof of
such a result can be obtained via the connecting-absorbing method, and using Theorem 1.3 as
a black-box (applied to the reduced graph of the host graph G); this would be a suitable project
for a strong Master’s student. Note that such a result (combined with Theorem 1.1) would show
that 8(G) = (3/4 + o(1))n is the threshold for a graph G to contain both a Hamilton cycle of high
discrepancy and the square of a Hamilton cycle of high discrepancy.

It is also natural to seek an extension of Theorem 1.3 to perfect H-tilings for any graph H.

Question 7.1. Given any graph H, what is the minimum degree threshold that forces a perfect
H-tiling of high discrepancy in a graph G (with respect to any edge labelling f: E(G) — {—1, 1})?

A famous conjecture of Bollobas and Eldridge [5], and Catlin [6] asserts that every n-vertex
graph G with 6(G) > (rn — 1)/(r + 1) contains every n-vertex graph H with A(H) =r.

Question 7.2. Given any n > 0 and r > 2, does there exist an #ny € N so that the following holds
for all n > ny? Let G, H be n-vertex graphs, and assume that

(G20 —-1/(r+2)+n)n,

where r:= A(H). Then G contains a copy of H of high discrepancy (with respect to any edge
labelling f: E(G) — {—1, 1}).

Note that the Bollobas—Eldridge—Catlin conjecture has still not been fully resolved, so it seems
extremely challenging to answer Question 7.2 in general. However, our main result (Theorem 1.3)
resolves Question 7.2 in the affirmative when H is a perfect K,-tiling. It would be interesting to
resolve Question 7.2 in cases for which the Bollob4s-Eldridge-Catlin conjecture is known to be
true (in particular the case when r < 3).
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