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Definition 1.1. Suppose G is a graph and f : E(G)→ {−1, 1}. We say a subgraph G′ of a graph G
has discrepancy t (with respect to f ) if

∑

e∈E(G′) f (e)= t and absolute discrepancy t (with respect to

f ) if |
∑

e∈E(G′) f (e)| = t.

If G and G′ are n-vertex graphs, then we say that G contains a copy of G′ of high discrepancy
(with respect to f ) if there is a copy of G′ in G with absolute discrepancy �(n). Note that this
concept also has a natural rephrasing in terms of Ramsey theory: given any 2-colouring of the
edges of G, one seeks a copy of G′ in G whose edge set contains significantly more edges from one
colour class than the other.

A natural question in graph discrepancy is to seek a fixed spanning subgraph H of a graph G
of high discrepancy (or at least discrepancy ‘far’ away from zero). The first result of this type was
obtained by Erdős, Füredi, Loebl and Sós [10]: they proved that, for some constant c> 0, given
any labelling f : E(Kn)→ {−1, 1} of Kn and any fixed spanning tree Tn with maximum degree �,
Kn contains a copy of Tn of absolute discrepancy at least c(n− 1− �). Note that in [10] this result
was phrased in the equivalent Ramsey setting.

In a previous paper [3], Jing and the first three authors of this paper investigated the graph dis-
crepancy problem of spanning trees, paths andHamilton cycles for various classes of graphsG. For
example, the following result determines the minimum degree threshold for forcing a Hamilton
cycle of high discrepancy.

Theorem 1.1 (Balogh, Csaba, Jing and Pluhár [3]). Let 0< c< 1/4 and n ∈N be sufficiently
large. If G is an n-vertex graph with

δ(G)� (3/4+ c)n

and f : E(G)→ {−1, 1}, then there is a Hamilton cycle in G with absolute discrepancy at least
cn/32 (with respect to f ). Moreover, if 4 divides n, there is an n-vertex graph with δ(G)= 3n/4
and an edge labelling f : E(G)→ {−1, 1} for which every Hamilton cycle has discrepancy 0 (with
respect to f ).

One can view such results about discrepancy as a measure of how robustly a graph contains a
spanning structure. Indeed, Theorem 1.1 implies that every n-vertex graph G with δ(G)> (3/4+

o(1))n contains a Hamilton cycle that spans an ‘unbalanced’ collection of edges for any partition
A∪ B of E(G). (See [22] for a survey on other measures of graph robustness.)

After submitting this paper, a multicolour extension of Theorem 1.1 was proved where the
underlying graph is the random graph; see [11].

1.2 Perfect tilings in graphs

An H-tiling in a graph G is a collection of vertex-disjoint copies of H contained in G. An H-tiling
is perfect if it covers all the vertices of G. Perfect H-tilings are also often referred to as H-factors,
perfect H-packings or perfect H-matchings. H-tilings can be viewed as generalizations of both the
notion of a matching (which corresponds to the case when H is a single edge) and the Turán
problem (i.e. a copy of H in G is simply an H-tiling of size one).

Except for the case when H contains no component of size at least 3, the decision problem
of whether a graph contains a perfect H-tiling is NP-complete (see [13]). Thus there have been
substantial efforts to obtain sufficient conditions that force a graph to contain a perfect H-tiling.
In particular, a cornerstone result in extremal graph theory is the Hajnal–Szemerédi theorem [12],
which characterizes the minimum degree threshold that ensures a graph contains a perfect Kr-
tiling.
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Theorem 1.2 (Hajnal and Szemerédi [12]). Every graph G whose order n is divisible by r and
whose minimum degree satisfies δ(G)� (1− 1/r)n contains a perfect Kr-tiling. Moreover, there are
n-vertex graphs G with δ(G)= (1− 1/r)n− 1 that do not contain a perfect Kr-tiling.

There has also been much interest in the minimum degree threshold that ensures a perfect
H-tiling for an arbitrary graph H. After earlier work on this topic (see e.g. [2], [18]), Kühn and
Osthus [20, 21] determined, up to an additive constant, the minimum degree that forces a perfect
H-tiling for any fixed graph H. Furthermore, there are now many different generalizations of
the Hajnal–Szemerédi theorem. In particular, Kierstead and Kostochka [15] proved an Ore-type
analogue, Keevash and Mycroft [14] proved a version for r-partite graphs, while there are now
several generalizations of Theorem 1.2 in the setting of directed graphs (see e.g. [8], [9]).

1.3 Our main result

In this paper we prove the following discrepancy version of the Hajnal–Szemerédi theorem.

Theorem 1.3. Suppose r� 3 is an integer and let η > 0. Then there exists n0 ∈N and γ > 0 such
that the following holds. Let G be a graph on n� n0 vertices where r divides n and where

δ(G)�

(

1−
1

r + 1
+ η

)

n.

Given any function f : E(G)→ {−1, 1}, there exists a perfect Kr-tiling T in G so that
∣

∣

∣

∣

∑

e∈E(T )

f (e)

∣

∣

∣

∣

� γ n.

Comparing Theorem 1.3 with Theorem 1.2, we see that havingminimum degree just above that
which forces a perfectKr+1-tiling in fact ensures a perfectKr-tiling of high discrepancy. Moreover,
the minimum degree condition in Theorem 1.3 is essentially best possible for all values of r� 3.
Interestingly, while the underlying extremal graph is the same for all r� 3 (the (r + 1)-partite
Turán graph), the precise labelling of the edges we take is rather different depending on the value
of r modulo 4. In Section 3 we construct extremal labellings in the cases when r ≡ 1, 2 (mod 4).
In the case when r ≡ 0, 3 (mod 4) the extremal labelling is easy to describe: let K be the complete
graphKr+1 with precisely half of its edges labelled with 1, the remaining edges with−1 (the choice
of r ensures this is possible). Then, for any n ∈N divisible by r(r + 1), consider the blow-up G of
K with n/(r + 1) vertices in each class, and where the labellings of each edge in G are induced by
the labelling of E(K). It is easy to see that every perfect Kr-tiling in G has discrepancy precisely
0, while δ(G)= (1− 1/(r + 1))n. Moreover, in the case when r(r + 1) does not divide n, the same
construction G is such that every perfect Kr-tiling has absolute discrepancy Or(1).

Note that the r = 2 case (i.e. perfect matchings) is covered by Theorem 1.1. Indeed, it is easy
to see that since the hypothesis of Theorem 1.1 forces a Hamilton cycle of high discrepancy, this
ensures a perfect matching of high discrepancy. Moreover, consider the 4-partite Turán graph
G on n vertices (where 4 divides n). Label all edges incident to one of the vertex classes of G
with −1. All remaining edges are labelled 1. Then every perfect matching in G has discrepancy
0. Thus, perhaps surprisingly, this observation and Theorem 1.3 imply that the minimum degree
threshold for forcing a perfectK3-tiling of high discrepancy is the same as the analogous threshold
for perfect matchings.

The paper is organized as follows. In the next section we introduce some notation and def-
initions. In Section 3 we give the extremal examples for Theorem 1.3 in the cases when r ≡

1, 2 (mod 4). We introduce a number of tools that will be used in the proof of Theorem 1.3 in
Section 4. In Section 5 we give an outline of the proof of Theorem 1.3 before giving the full proof
in Section 6. Finally, in Section 7 we present a number of open questions.
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2. Notation and definitions

LetG be a graph.We writeV(G) for the vertex set ofG, E(G) for the edge set ofG and define |G| :=
|V(G)| and e(G) := |E(G)|. Given a subset X ⊆V(G), we write G[X] for the subgraph of G induced
by X and G \ X for the subgraph of G induced by V(G) \ X. The degree of x is denoted by dG(x)
and its neighbourhood by NG(x). Given a vertex x ∈V(G) and a set Y ⊆V(G), we write dG(x, Y)
to denote the number of edges xy where y ∈ Y . Given a subgraph F of G, we write dG(x, F) :=
dG(x,V(F)). Given disjoint vertex classes X, Y ⊆V(G), we write G[X, Y] for the bipartite graph
with vertex classes X and Y whose edge set consists of all those edges in G with one endpoint in X
and the other in Y ; we write eG(X, Y) for the number of edges in G[X, Y].

Suppose G is a graph and f : E(G)→ {−1, 1}. We say that e ∈ E(G) is a 1-edge if f (e)= 1 and
a (− 1)-edge if f (e)= −1. The (− 1)-neighbourhood N−

G (x) of a vertex x ∈V(G) is the set of all

vertices y ∈V(G) so that xy is a (− 1)-edge in G; the 1-neighbourhood N+
G (x) of a vertex x ∈V(G)

is the set of all vertices y ∈V(G) so that xy is a 1-edge in G.
The following notion of a Kr-template is crucial for the proof of Theorem 1.3.

Definition 2.1. Let F be a graph. A Kr-template of F of size s is a collection {H1, . . . ,Hs} of not
necessarily distinct copies ofKr in F for which there is some s′ ∈N so that every vertex x ∈V(F) lies
in precisely s′ of the Hi. (In fact, note that we must have s′ = sr/|F|.) Suppose f : E(F)→ {−1, 1}
and K := {H1, . . . ,Hs} is a Kr-template of F. We say that K has discrepancy t if

s
∑

i=1

∑

e∈E(Hi)

f (e)= t.

The following special labelled copies of Kr appear in the proof of Theorem 1.3.

Definition 2.2. We write K+
r for a copy of Kr whose edges are each assigned 1; define K−

r to be
a copy of Kr whose edges are each assigned −1. The (Kr,+)-star is a copy of Kr whose 1-edges
induce a copy of K1,r−1. We call the root of this K1,r−1 the head of the (Kr ,+)-star. We define the
(Kr ,−)-star and its head analogously.

We write 0< α 	 β 	 γ to mean that we can choose the constants α, β , γ from right to
left. More precisely, there are increasing functions f and g such that, given γ , whenever we
choose some β � f (γ ) and α � g(β), all calculations needed in our proof are valid. Hierarchies
of other lengths are defined in the obvious way. Throughout the paper we omit floors and ceilings
whenever this does not affect the argument.

3. The extremal examples

After its statement, we introduced an extremal example for Theorem 1.3 in the case when r ≡

0, 3 (mod 4). In this section we first describe an extremal example for the case when r ≡ 1 (mod 4)
and then give a construction for the r ≡ 2 (mod 4) case.

Proposition 3.1. Let m ∈N, r := 4m+ 1 and n ∈N be divisible by 2r(r + 1). Let G be the com-
plete balanced (r + 1)-partite graph on n vertices (and so δ(G)= (1− 1/(r + 1))n). There is a
function f : E(G)→ {−1, 1} so that for every perfect Kr-tiling T in G, T has discrepancy zero (i.e.
∑

e∈E(T ) f (e)= 0).

Proof. Let V1, . . . ,Vr+1 denote the vertex classes of G; so |Vi| = n/(r + 1) for all i ∈ [r + 1].
Consider a copy K of Kr on vertex set [r]. Since r = 4m+ 1 we can assign labels from {−1, 1} to
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each edge of K so that the (− 1)-edges induce a spanning 2m-regular subgraph of K; the 1-edges
induce a spanning 2m-regular subgraph of K. Let X, Y be a partition of Vr+1 so that |X| = |Y|.

We now define f : E(G)→ {−1, 1} as follows. The labelling of K induces a labelling of the edges
in G′ :=G \Vr+1. That is, if xy ∈ E(G) and x ∈Vi, y ∈Vj where 1� i< j� r, then f (xy)= 1 if ij is
a 1-edge in K; f (xy)= −1 if ij is a (− 1)-edge in K. Every vertex in X sends 1-edges to each vertex
in V(G′); every vertex in Y sends (− 1)-edges to each vertex in V(G′).

There are precisely three types of copies of Kr in G: type 1 Kr have every vertex in V(G′); type 2
Kr have one vertex in X, the remaining vertices in V(G′); type 3 Kr have one vertex in Y , the
remaining vertices in V(G′). Note that a type 1 copy of Kr has discrepancy 0, a type 2 copy of Kr

has discrepancy r − 1, and a type 3 copy of Kr has discrepancy−r + 1. Given any perfect Kr-tiling
T in G, T must contain precisely the same number of type 2 and type 3 copies of Kr . Thus T has
discrepancy 0, as desired.

A similar function f : E(G)→ {−1, 1} to that in Proposition 3.1 now resolves the case when
r ≡ 2 (mod 4).

Proposition 3.2. Let m ∈N, r := 4m+ 2 and n ∈N be divisible by 2r(r + 1). Let G be the com-
plete balanced (r + 1)-partite graph on n vertices (and so δ(G)= (1− 1/(r + 1))n). There is a
function f : E(G)→ {−1, 1} so that for every perfect Kr-tiling T in G, T has discrepancy zero (i.e.
∑

e∈E(T ) f (e)= 0).

Proof. Let V1, . . . ,Vr+1 denote the vertex classes of G; so |Vi| = n/(r + 1) for all i ∈ [r + 1].
Consider a copy K of Kr on vertex set [r] whose edges are assigned labels from {−1, 1} so that
there is precisely one more 1-edge than (− 1)-edge. Let X, Y be a partition of Vr+1 so that

|X| =
(r − 1)n

2r(r + 1)
and |Y| =

n

2r
.

We now define f : E(G)→ {−1, 1} as follows. As in Proposition 3.1, the labelling of K induces
a labelling of the edges in G′ :=G \Vr+1. Every vertex in X sends 1-edges to each vertex in V(G′);
every vertex in Y sends (− 1)-edges to each vertex in V(G′).

As before, there are precisely three types of copies of Kr in G: type 1 Kr have every vertex in
V(G′); type 2 Kr have one vertex in X, the remaining vertices in V(G′); type 3 Kr have one vertex
in Y , the remaining vertices in V(G′). Consider any perfect Kr-tiling T in G. Our aim is to show
that T has discrepancy 0.

Note that T contains precisely

n

r
−

n

r + 1
=

n

r(r + 1)

copies of Kr of type 1; each of these Kr has discrepancy 1. Consider the subtiling T
′ of T induced

by the type 2 and type 3 copies ofKr . Let T
′′ be theKr−1-tiling inG

′ obtained from T ′ by removing
all those vertices from Vr+1 = X ∪ Y . Note that T ′′ covers precisely

n

r + 1
−

n

r(r + 1)
=

(r − 1)n

r(r + 1)

vertices in Vi for each i ∈ [r]. In total T ′′ consists of n/(r + 1) copies of Kr−1. Moreover, for each
pair (i, j) with 1� i< j� r, a precisely (r − 2)/r-proportion of the copies of Kr−1 in T ′′ contain
an edge xy with x ∈Vi, y ∈Vj. Together, this implies that T ′′ has discrepancy

r − 2

r
×

n

r + 1
.
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Recalling that each edge incident to X is a 1-edge and each edge incident to Y is a (− 1)-edge, we
conclude that T has discrepancy

n

r(r + 1)
+

(

r − 2

r
×

n

r + 1

)

+ |X|(r − 1)− |Y|(r − 1)=
n

r(r + 1)
+

(r − 2)n

r(r + 1)
−

(r − 1)n

r(r + 1)
= 0,

as required.

4. Useful results

4.1 The regularity lemma

In the proof of our main result we will use a discrepancy variant of Szemerédi’s regularity lemma
[23]. Before stating this result, we introduce some notation. The density of a bipartite graphGwith
vertex classes A and B is defined to be

d(A, B) :=
e(A, B)

|A||B|
.

Given any ε, d > 0, we say that G is (ε, d)-regular if d(A, B)� d and, for all sets X ⊆A and
Y ⊆ B with |X|� ε|A| and |Y|� ε|B|, we have |d(A, B)− d(X, Y)| < ε. We say that G is (ε, d)-
superregular if all sets X ⊆A and Y ⊆ B with |X|� ε|A| and |Y|� ε|B| satisfy that d(X, Y)> d,
that dG(a)> d|B| for all a ∈A and that dG(b)> d|A| for all b ∈ B.

Suppose G is a graph with edge labelling f : E(G)→ {−1, 1}. Given disjoint X, Y ⊆V(G) we
writeG+[X, Y] (or (X, Y)

+
G ) for the bipartite graph with vertex classesX, Y whose edge set consists

of all those 1-edges betweenX andY inG.We defineG−[X, Y] and (X, Y)
−
G analogously (nowwith

respect to (− 1)-edges).
We will apply the following variant of Szemerédi’s regularity lemma that can be easily deduced

from the multicoloured version given in [19], for example.

Lemma 4.1. For every ε > 0 and 
0 ∈N there exists L0 = L0(ε, 
0) so that the following holds. Let
d ∈ [0, 1] and G be a graph on n� L0 vertices with edge labelling f : E(G)→ {−1, 1}. Then there
exists a partition V0,V1, . . . ,V
 of V(G) and a spanning subgraph G′ of G such that the following
conditions hold:

(i) 
0 � 
� L0,
(ii) dG′(x)� dG(x)− (2d + ε)n for every x ∈V(G),
(iii) the subgraph G′[Vi] is empty for all 1� i� 
,
(iv) |V0|� εn,
(v) |V1| = |V2| = · · · = |V
|,
(vi) for all 1� i< j� 
 either (Vi,Vj)

+
G′ is an (ε, d)-regular pair or G′

+[Vi,Vj] is empty,

(vii) for all 1� i< j� 
 either (Vi,Vj)
−
G′ is an (ε, d)-regular pair or G′

−[Vi,Vj] is empty.

We call V1, . . . ,V
 clusters, V0 the exceptional set and the vertices in V0 exceptional vertices.
We refer to G′ as the pure graph. The reduced graph R of G with parameters ε, d and 
0 is
the graph whose vertices are V1, . . . ,V
 and in which ViVj is an edge precisely when at least

one of (Vi,Vj)
+
G′ and (Vi,Vj)

−
G′ is (ε, d)-regular. Associated with the reduced graph R is an edge

labelling fR : E(R)→ {−1, 1}, where fR(ViVj) := 1 if (Vi,Vj)
+
G′ is (ε, d)-regular and fR(ViVj) := −1

otherwise. (So if both (Vi,Vj)
+
G′ and (Vi,Vj)

−
G′ are (ε, d)-regular, then fR only ‘records’ the former

property.)
We will use the following well-known property of the reduced graph.
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Fact 4.1. Given a constant c> 0, let G be an n-vertex graph with δ(G)� cn that we have applied
Lemma 4.1 to (with parameters ε, d and 
0). Let R be the corresponding reduced graph. Then
δ(R)� (c− 2d − 2ε)|R|.

The following well-known result allows us to use subgraphs of a reduced graph as ‘templates’
for embedding in the original graph G.

Lemma 4.2 (key lemma [19]). Suppose that 0< ε < d, that q, t ∈N and that R is a graph with
V(R)= {v1, . . . , vk}. We construct a graph G as follows. Replace every vertex vi ∈V(R) with a set Vi

of q vertices and replace each edge of R with an (ε, d)-regular pair. For each vi ∈V(R), let Ui denote
the set of t vertices in R(t) corresponding to vi. Let H be a subgraph of R(t) with maximum degree �

and set h := |H|. Set δ := d − ε and ε0 := δ�/(2+ �). If ε � ε0 and t − 1� ε0q, then there are at
least

(ε0q)
h labelled copies of H in G,

so that if x ∈V(H) lies in Ui in R(t), then x is embedded into Vi in G.

The following fundamental result of Komlós, Sárközy and Szemerédi [16], known as the blow-
up lemma, essentially says that (ε, d)-superregular pairs behave like complete bipartite graphs with
respect to containing bounded degree subgraphs.

Lemma 4.3 (blow-up lemma [16])). Given a graph F on vertices {1, . . . , f } and d,� > 0, there
exists an ε0 = ε0(d,�, f )> 0 such that the following holds. Given L1, . . . , Lf ∈N and ε � ε0, let
F∗ be the graph obtained from F by replacing each vertex i ∈ F with a set Vi of Li new vertices and
joining all vertices in Vi to all vertices in Vj whenever ij is an edge of F. Let G be a spanning subgraph
of F∗ such that for every edge ij ∈ F the pair (Vi,Vj)G is (ε, d)-superregular. Then G contains a copy
of every subgraph H of F∗ with �(H)��.

4.2 An absorbing lemma

We will apply the following well-known absorbing lemma (which is a special case of [24,
Theorem 4.1], for example). Given a graph G we say a set S⊆V(G) is a Kr-absorbing set for
Q⊆V(G) if both G[S] and G[S∪Q] contain perfect Kr-tilings.

Lemma 4.4. Let 0< 1/n	 ν 	 η 	 1/r where n, r ∈N and r� 2. Suppose that G is a graph on
n vertices with δ(G)� (1− 1/r + η)n. Then V(G) contains a set M so that |M|� νn and M is a
Kr-absorbing set for every W ⊆V(G) \M such that |W| ∈ rN and |W|� ν3n.

5. Overview of the proof of Theorem 1.3

In the proof of Theorem 1.3 we will apply the regularity lemma to obtain the reduced graph R
of G with an associated edge labelling fR : E(R)→ {−1, 1}. Since the reduced graph R ‘inherits’
the minimum degree condition on G (see Fact 4.1), the Hajnal–Szemerédi theorem implies that R
contains a perfect Kr+1-tiling T .

In Claim 6.1 we establish the following crucial property: (a) if T has high absolute discrepancy
(with respect to fR), then we can use this structure in R as a framework to build a perfect Kr-tiling
in G with high absolute discrepancy (with respect to f ). To build this tiling in G we make use of
the absorbing method.
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We then establish another vital property of R: (b) if R has a ‘small’ subgraph F so that F has two
Kr-templates with different discrepancies (with respect to fR), then we can use this to again build
a perfect Kr-tiling in G with high absolute discrepancy (see Claim 6.2).

We may therefore assume neither (a) nor (b) holds. This in turn forces the cliques of size at
most r + 2 in R to have some very rigid structure. In particular, we deduce that every copy of
Kr+1 in R (therefore in our tiling T ) is one of the following: a K+

r+1, a K
−
r+1, a (Kr+1,+)-star or a

(Kr+1,−)-star (see Claim 6.5).
After this, we then argue that in fact almost all of the tiles in T are copies of (Kr+1,+)-stars

and (Kr+1,−)-stars. Finally, we prove that there are two tiles K,K′ in T for which (b) must hold
with respect to F := R[K ∪K ′], and so we do have a perfect Kr-tiling in G with high absolute
discrepancy.

6. Proof of Theorem 1.3

It suffices to prove the theorem in the case when η 	 1/r. Define additional constants
γ , ε, d, ν > 0 and n0, 
0, L0 ∈N so that

0< 1/n0 	 γ 	 1/L0 � 1/
0 	 ε 	 d 	 ν 	 η 	 1/r. (6.1)

Here L0 is the constant obtained from Lemma 4.1 on input ε, 
0.
Let G be a graph on n� n0 vertices as in the statement of the theorem. Fix an arbitrary edge

labelling f : E(G)→ {−1, 1}.
By Lemma 4.4 we obtain a set of vertices Abs⊆V(G), where |Abs |� νn and where both

G[ Abs ] and G[ Abs∪W] contain perfect Kr-tilings for any set W ⊆V(G) \Abs of size at most
ν3n, where r divides |W|. Let G1 :=G \Abs. Thus

δ(G1)�

(

1−
1

r + 1
+

3η

4

)

n. (6.2)

6.1 Applying the regularity lemma

Apply the regularity lemma (Lemma 4.1) to G1 with parameters ε, d, 
0. We thus obtain clusters
V1, . . . ,V
 of size m (where 
0 � 
� L0), an exceptional set V0 (of size at most εn) and a pure
graph G′

1 of G1. We may assume that r + 1 divides 
. (If not, we can achieve this by deleting at
most r of the clusters, and move the vertices in these clusters to the exceptional set V0.) Further,
we obtain the reduced graph R of G1 with an edge labelling fR : E(R)→ {−1, 1} ‘inherited’ from f
(as defined in Section 4.1). Note that (6.2) and Fact 4.1 imply that

δ(R)�

(

1−
1

r + 1
+

η

2

)


. (6.3)

The following two claims will be used several times in our proof. The first implies that to obtain
our desired perfect Kr-tiling in G it suffices to find a perfect Kr+1-tiling in R of high absolute
discrepancy.

Claim 6.1. Suppose that R contains a perfect Kr+1-tiling TR with absolute discrepancy t� η2


(with respect to fR). Then G contains a perfect Kr-tiling with absolute discrepancy at least γ n (with
respect to f ).

Proof. Consider any copy H of Kr+1 in TR. Suppose that H has discrepancy tH ∈Z (with respect
to fR). The vertices W1, . . . ,Wr+1 in H are clusters in G. Write GH for the (r + 1)-partite graph
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G′
1[W1 ∪ · · · ∪Wr+1]. Through repeated applications of the key lemma (Lemma 4.2) we obtain

that there is a Kr-tiling TH in GH so that:

(i) All but precisely ε1/2m vertices inWi are covered by TH for each i ∈ [r + 1].
(ii) Given any edge xy ∈ E(TH), if x ∈Wi and y ∈Wj then f (xy)= fR(WiWj).
(iii) Each copy of Kr in TH contains at most one vertex from every cluster Wi. Furthermore,

given any 1� i< j� r + 1, a (r − 1)/(r + 1)-proportion of the Kr in TH contain an edge
from G′

1[Wi,Wj].

Note that (ii) follows from the definition of fR; (iii) simply states that we embed copies of Kr in
GH in a balanced way, alternating which cluster Wi is ‘uncovered by a copy of Kr ’. Since H has
discrepancy tH , (ii) and (iii) imply that TH has discrepancy

r − 1

r + 1
× |TH| × tH =

(r − 1)

r
(1− ε1/2)mtH

(with respect to f ).
Consider the Kr-tiling T

′ in G′
1 obtained by taking the union of the TH for eachH in TR. By (i),

T ′ contains all but |V0| + ε1/2m
� 2ε1/2n of the vertices in G1. Noting that
∑

H∈TR
tH ∈ {t,−t},

we deduce that T ′ has absolute discrepancy

(r − 1)

r
(1− ε1/2)mt�

2

3
(1− ε1/2)η2m
� η2n/2

(with respect to f ). Let W be the set of vertices in G1 uncovered by T ′; so |W|� 2ε1/2n� ν3n.
Thus G[ Abs∪W] has a perfect Kr-tiling T ′′. As |Abs∪W|� 2νn, T ′ ∪ T ′′ is a perfect Kr-tiling
in G with absolute discrepancy at least η2n/2−

(r
2

)

2νn� γ n, as desired.

The next claim gives us a useful condition that guarantees our desired perfect Kr-tiling in G; it
will be used repeatedly through the proof.

Claim 6.2. Let F be a subgraph of R on p vertices where r + 1� p� 2r + 2. Given some s� r100,
suppose that F has two Kr-templates K = {H1, . . . ,Hs} and K′ = {H′

1, . . . ,H
′
s}, both of size s. If

K and K′ have different discrepancies (with respect to fR), then G contains a perfect Kr-tiling with
absolute discrepancy at least γ n.

Proof. Let W1, . . . ,Wp denote the clusters of G′
1 that correspond to the vertices of F. So if

WiWj ∈ E(F) and fR(WiWj)= 1 then (Wi,Wj)
+
G′
1
is (ε, d)-regular; otherwise if WiWj ∈ E(F) and

fR(WiWj)= −1 then (Wi,Wj)
−
G′
1
is (ε, d)-regular. A well-known property of regular pairs implies

that we can delete ε1/2m vertices from each of these clusters to obtain subclusters W′
1, . . . ,W

′
p

with the following properties: if WiWj ∈ E(F) and fR(WiWj)= 1 then (W′
i ,W

′
j )

+
G′
1
is (2ε, d/2)-

superregular; if WiWj ∈ E(F) and fR(WiWj)= −1 then (W′
i ,W

′
j )

−
G′
1
is (2ε, d/2)-superregular.

Writem′ := (1− ε1/2)m; so |W′
i | =m′ for all i ∈ [p].

Let F∗ be the p-partite graph with vertex classes W′
1, . . . ,W

′
p, and where for each i 
= j, there

are all possible edges between W′
i and W′

j precisely if WiWj ∈ E(F); that is, F∗ is a blow-up of F.

Define fF∗ : E(F∗)→ {−1, 1} so that fF∗(xy)= 1 if x ∈W′
i , y ∈W′

j and fR(WiWj)= 1; fF∗(xy)= −1

if x ∈W′
i , y ∈W′

j and fR(WiWj)= −1.

Write t for the discrepancy of K and t′ for the discrepancy of K′; by the assumption in the
claim, t 
= t′. Note that we can useK as a ‘framework’ to find a perfect Kr-tiling T in F∗ as follows:
consider anyHk inK and letWi1 , . . . ,Wir be the vertices ofHk; in T there arem′p/sr copies of Kr
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corresponding to Hk which contain precisely one vertex from each of W′
i1
, . . . ,W′

ir
. Thus T has

discrepancym′pt/sr (with respect to fF∗).
Similarly, we can use K′ as a framework to find a perfect Kr-tiling T ′ in F∗ of discrepancy

m′pt′/sr (with respect to fF∗).
Now applying the blow-up lemma, this ensures G0 :=G′

1[W
′
1 ∪ · · · ∪W′

f
] contains two perfect

Kr-tilings T1 and T2 with discrepancy m′pt/sr and m′pt′/sr respectively (with respect to f ). Note
that

|m′pt/sr −m′pt′/sr|� (1− ε1/2)
m

s
�

n

2L0r100

(6.1)
� 2γ n.

Further, G \G0 comfortably satisfies

δ(G \G0)� (1− 1/r)n,

so contains a perfect Kr-tiling T3 by the Hajnal–Szemerédi theorem. Therefore both T1 ∪ T3 and
T2 ∪ T3 are perfect Kr-tilings in G, whose discrepancies differ by at least 2γ n; thus one of these
perfect Kr-tilings has absolute discrepancy at least γ n, as desired.

From now on we may assume that the hypotheses of Claims 6.1 and 6.2 fail; this will eventually
lead to a contradiction, thereby proving the theorem.

6.2 Properties of cliques in R

The minimum degree condition on R ensures the following easy observation.

Claim 6.3. Let 1� k� r + 1. Every copy of Kk in R lies in a copy of Kr+2.

We now use Claim 6.2 to prove that the copies of Kr+2 in R have a limited number of possible
edge labellings.

Claim 6.4. Every copy K of Kr+2 in R is one of the following: a K+
r+2, a K

−
r+2, a (Kr+2,+)-star or a

(Kr+2,−)-star.

Proof. Consider an arbitrary Hamilton cycle C in K. We obtain a Kr-template KC of K of size
r + 2 by going around the Hamilton cycle as follows: take each copy of Kr whose vertices are r
consecutive vertices along C and add it to KC.

Consider any two Hamilton cycles C =W1 · · ·WiWi+1Wi+2Wi+3 · · ·Wr+2 and C′ obtained
from C by reordering WiWi+1Wi+2Wi+3 as WiWi+2Wi+1Wi+3 (i.e. we just swap the order of
Wi+1 andWi+2). Since we are assuming the hypothesis of Claim 6.2 does not hold, we must have
that KC and KC′ have the same discrepancy with respect to fR.

This implies that fR(WiWi+1)+ fR(Wi+2Wi+3)= fR(WiWi+2)+ fR(Wi+1Wi+3). (The left-
hand side considers the contribution to the discrepancy of KC not ‘present’ in the discrepancy
of KC′ ; the right-hand side considers the contribution to the discrepancy of KC′ not ‘present’ in
the discrepancy of KC.)

The choice of the Hamilton cycle C in K was arbitrary. So this implies that

fR(ab)+ fR(cd)= fR(ac)+ fR(bd) for all distinct a, b, c, d ∈V(K). (6.4)

Consider any a ∈V(K). Suppose |N−
K (a)|� 3. Given any distinct b, c, d ∈N−

K (a), (6.4) implies that

fR(bd)= fR(cd). This implies that the edges in N−
K (a) are either all 1-edges or all (− 1)-edges. A

similar argument holds if |N+
K (a)|� 3.

In particular, this implies that if one of N−
K (a) and N+

K (a) is empty then K is one of the fol-

lowing: a K+
r+2, a K

−
r+2, a (Kr+2,+)-star or a (Kr+2,−)-star. We may therefore assume that both

N−
K (a) and N+

K (a) are non-empty, and without loss of generality assume that |N+
K (a)|� 2.
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454 J. Balogh, B. Csaba, A. Pluhár and A. Treglown

Choose any distinct c, d ∈N+
K (a) and b ∈N−

K (a). Noting that ac is a 1-edge and ab is a (− 1)-

edge, (6.4) implies cd is a 1-edge and bd is a (− 1)-edge. The choice of c, d ∈N+
K (a) and b ∈N−

K (a)

was arbitrary so this implies all edges between N+
K (a) and N−

K (a) are (− 1)-edges.

If |N−
K (a)| = 1 we are immediately done now: indeed, we have just argued that b ∈N−

K (a) sends

out (− 1)-edges to everything else, and as |N+
K (a)|� 3 in this case, all edges in N+

K (a) are 1-edges.
That is, K is a (Kr+2,−)-star.

Thus we may now additionally assume |N−
K (a)|� 2. Choose any distinct c′, d′ ∈N−

K (a) and

b′ ∈N+
K (a). Then (6.4) implies that b′d′ is a 1-edge. This is a contradiction, as we already proved

that all edges between N+
K (a) and N−

K (a) are (− 1)-edges. Thus this case does not occur, and we
are done.

Combining Claims 6.3 and 6.4 we obtain the following.

Claim 6.5. Let 1� k� r + 2. Every copy of Kk in R is one of the following: a K+
k
, a K−

k
, a (Kk,+)-

star or a (Kk,−)-star.

6.3 Using a perfect Kr+1-tiling in R

Note that (6.3) and Theorem 1.2 imply that R contains a perfect Kr+1-tiling T . By Claim 6.5, there
are only four types of Kr+1 in T . Let A denote the set of K+

r+1 in T ; let B denote the set of K−
r+1

in T ; let C denote the set of (Kr+1,+)-stars in T ; let D denote the set of (Kr+1,−)-stars in T .
Without loss of generality we may assume that

|B| + |C|� |A| + |D|. (6.5)

6.3.1 Assume that A is non-empty

Claim 6.6. Consider any vertex Va ∈V(A) and any copy K ∈ B of K−
r+1. Then we may assume

dR(Va,K)� r − 2 if r is even, and dR(Va,K)� r − 1 if r is odd.

Proof. Write KA for the clique in T that contains Va. Let F := R[KA ∪K].
First consider the case when r is even, and suppose Va sends r − 1 edges to K in R. Suppose i of

these edges are 1-edges (and so r − 1− i of them are (− 1)-edges). Let X, Y ∈V(K) be the vertices
in K that are not incident to one of these r − 1 edges. We will prove that F satisfies the hypothesis
of Claim 6.2.

Write KA for the set of all copies of Kr in KA, and K for the set of all copies of Kr in K; so
|K| = |KA| = r + 1.

Define K1 to be the Kr-template for F of size 2r(r + 1) that contains precisely r copies of each
of the cliques in KA ∪K. Note that indeed K1 is a Kr-template for F as each vertex V ∈V(F) is
contained in precisely r2 of the cliques in K1. Since KA ∈A, K ∈ B, and K1 contains the same
number of copies of cliques from KA and K, K1 has discrepancy 0 (with respect to fR).

We define another Kr-template K2 for F of size 2r(r + 1) as follows:

(i) for the clique H ∈KA that does not contain VA, add 2r − 1 copies of H to K2,
(ii) for each clique H ∈KA that contains VA, add r − 1 copies of H to K2,
(iii) add toK2 r copies of the clique in F that containsVA and the r − 1 vertices inV(K) \ {X, Y},
(iv) add r + 1 copies of each clique H ∈K that contains both X and Y ,
(v) add one copy of each clique H ∈K that avoids one of X and Y .

To prove that K2 is a Kr-template for F of size 2r(r + 1) it suffices to prove that every vertex
V ∈V(F) lies in precisely r2 of the cliques in K2: if V ∈V(KA) \ {VA} then (i) and (ii) give that V
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lies in (2r − 1)+ (r − 1)(r − 1)= r2 such cliques; (ii) and (iii) imply VA lies in (r − 1)r + r = r2

such cliques; if V ∈V(K) \ {X, Y} then (iii)–(v) imply that V lies in r + (r + 1)(r − 2)+ 1 · 2= r2

such cliques; if V ∈ {X, Y} then (iv) and (v) imply that V lies in (r + 1)(r − 1)+ 1 · 1= r2 such
cliques.

To compute the discrepancy of K2 note that, compared to K1 it has one fewer clique from KA,
r − 1 fewer cliques from K, and an additional r cliques (from (iii)) that each have discrepancy
2i−

(r
2

)

. As K1 has discrepancy 0 this implies that K2 has discrepancy

−

(

r

2

)

+ (r − 1)

(

r

2

)

+ r

(

2i−

(

r

2

))

= 2ir − r(r − 1) 
= 0

as i 
= (r − 1)/2 (recall we assumed that r is even). So F satisfies the hypothesis of Claim 6.2.
Now suppose r is odd andVa sends at least r edges toK in R. We can fix r − 1 such edges so that

i 
= (r − 1)/2 of them are 1-edges and r − 1− i of them are (− 1)-edges. Now, arguing precisely as
before, we conclude that F satisfies the hypothesis of Claim 6.2, as desired.

Claim 6.7. Consider any Va ∈V(A) and any K ∈ C. Then we may assume dR(Va,K)� r − 2 if r is
even, and dR(Va,K)� r − 1 if r is odd.

Proof. Write KA for the clique in T that contains Va. Let F := R[KA ∪K]. Write KA for the set of
all copies of Kr in KA, and K for the set of all copies of Kr in K; so |K| = |KA| = r + 1.

The proof proceeds similarly to the previous claim. If r is even, suppose Va sends r − 1 edges
to K in R; if r is odd, suppose Va sends r edges to K in R. If all these edges avoid the heada VH of
K, then we can argue precisely as in Claim 6.6 to obtain two Kr-templates K1 and K2 of F, both
with the same size but different discrepancy. Note that how we construct K1 and K2 is identical
to the proof of Claim 6.6, though the discrepancies will differ from that claim since now K ∈ C.

Next suppose r is even and Va sends r − 1 edges to K in R, one of the endpoints being the head
VH . Suppose i of these edges are 1-edges and r − 1− i of them are (− 1)-edges. Let X, Y ∈V(K) be
the vertices inK that are not endpoints of such edges. Again, we chooseK1 andK2 as in Claim 6.6.

That is, we define K1 to be the Kr-template for F of size 2r(r + 1) that contains precisely r
copies of each of the cliques in KA ∪K. We define K2 as follows:

(i) for the clique H ∈KA that does not contain VA, add 2r − 1 copies of H to K2,
(ii) for each clique H ∈KA that contains VA, add r − 1 copies of H to K2,
(iii) add toK2 r copies of the clique in F that containsVA and the r − 1 vertices inV(K) \ {X, Y},
(iv) add r + 1 copies of each clique H ∈K that contains both X and Y ,
(v) add one copy of each clique H ∈K that avoids one of X and Y .

The same argument as in Claim 6.6 implies that both K1 and K2 are Kr-templates for F of size
2r(r + 1).

To complete the proof we again have to show that the discrepancies ofK1 andK2 are different.
Note that (i) and (ii) imply thatK2 has one fewer copy of K

+
r fromKA compared toK1; compared

to K1, K2 has an additional r cliques arising from (iii); from (iv) and (v) we conclude that K2

has r fewer (Kr ,+)-stars from K compared to K1; by (iv) K2 has one more copy of a K−
r from K

compared to K1. Thus the difference in discrepancy between K1 and K2 is precisely

−

(

r

2

)

+ r

(

2i+ 2(r − 2)−

(

r

2

))

− r

(

−

(

r

2

)

+ 2(r − 1)

)

−

(

r

2

)

= 2ri− r2 − r.

aK is a copy of a (Kk,+)-star; the head of such a star was defined in Definition 2.2.
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As r is even, this term is non-zero (since i 
= (r + 1)/2 in this case). Therefore K1 and K2 are
Kr-templates for F of different discrepancies; that is, the hypothesis of Claim 6.2 holds.

Next suppose r� 5 is odd, andVa has at least r neighbours inK, including the headVH . We can
choose r − 1 such neighbours, including VH , so that i of the corresponding edges incident to Va

are 1-edges (and r − 1− i of them are (− 1)-edges), where vitally i 
= (r + 1)/2. In particular, here
we are using that (r + 1)/2< r − 1 to guarantee that we can choose i as desired. Then, arguing as
in the previous case, we obtain two Kr-templates for F of different discrepancies. This argument
also resolves the case when r = 3 unless all the edges from Va to K are 1-edges, in which case we
would be forced to ‘choose’ i= 2= (r + 1)/2. However, in this case we have that Va sends two
1-edges to vertices in V(K) \ {VH}. In this case we can argue precisely as in Claim 6.6 to obtain
two Kr-templates for F of different discrepancies. This completes the proof of the claim.

By the last two claims we have that each Va ∈V(A) has average degree of at most r − 1 into
each K ∈ B∪ C. Trivially Va has average degree of at most r + 1 into each K ∈A∪D. So by (6.5),
each Va ∈V(A) has average degree at most r into each K ∈A∪ B∪ C ∪D. This is a contradiction
as R has minimum degree δ(R)� (1− 1/(r + 1)+ η/2)
. Thus we conclude that A is empty.

Further, this implies B is small. Indeed, if |B|� η2
 then (6.5) implies that the perfect Kr+1-
tiling T of R has absolute discrepancy at least η2
. Thus the hypothesis of Claim 6.1 holds,
contradicting our assumption.

Therefore assume A= ∅ and |B|� η2
. We now split into cases.

6.3.2 Case 1: r� 4.

Note that in this case we have |D| − η2
� |C|� |D| + η2
. Indeed, otherwise (6.5) implies that
the perfect Kr+1-tiling T of R has absolute discrepancy at least η2
.

Together with the fact that δ(R)� (1− 1/(r + 1)+ η/2)
, this implies that every Vc ∈V(C)
has at least (1− 2/(r + 1)+ η/3)|C| neighbours in D. This immediately implies the following.

Claim 6.8. Given any Vc ∈V(C), there is some K ∈D such that dR(Vc,K)� r.

Fix Vc ∈V(C) to be the head of some tile KC in T . So Vc sends at least r − 1 edges to K \ {VH}

where VH is the head of K. Fix r − 1 of these edges. Call the endpoints of these edges in K good.
Write X for the vertex in K \ {VH} that is not good. Write KC for the set of all copies of Kr in KC,
and K for the set of all copies of Kr in K; so |K| = |KC| = r + 1.

Set F := R[KC ∪K]. Define K1 to be the Kr-template for F of size 2r(r + 1) that contains pre-
cisely r copies of each of the cliques inKC ∪K. Note that indeedK1 is a Kr-template for F as each
vertex V ∈V(F) is contained in precisely r2 of the cliques in K1.

We define another Kr-template K2 for F of size 2r(r + 1) as follows:

(i) for the clique H ∈KC that does not contain Vc, add 2r − 1 copies of H to K2,
(ii) for each clique H ∈KC that contains Vc, add r − 1 copies of H to K2,
(iii) add to K2 r copies of the clique in F that contains Vc and the good vertices,
(iv) for each clique H ∈K that contains both X and VH , add r + 1 copies of H to K2,
(v) add one copy of the clique H ∈K that avoids X,
(vi) add one copy of the clique H ∈K that avoids VH .

To prove that K2 is a Kr-template for F of size 2r(r + 1) it suffices to prove that every vertex V ∈

V(F) lies in precisely r2 of the cliques in K2: if V ∈V(KC) \ {Vc} then (i) and (ii) give that V lies
in (2r − 1)+ (r − 1)(r − 1)= r2 such cliques; (ii) and (iii) imply Vc lies in (r − 1)r + r = r2 such
cliques; if V ∈V(K) \ {X,VH} then (iii)–(vi) imply that V lies in r + (r + 1)(r − 2)+ 1+ 1= r2

such cliques; if V = X then (iv) and (vi) imply that V lies in (r + 1)(r − 1)+ 1= r2 such cliques;
if V =VH then (iv) and (v) imply that V lies in (r + 1)(r − 1)+ 1= r2 such cliques.
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We will now complete this case by showing that K1 and K2 have different discrepancies with
respect to fR; that is, the hypothesis of Claim 6.2 holds, as desired.

Write i for the number of (− 1)-edges in F with one endpoint Vc, the other a good vertex. So
there are r − 1− i 1-edges between Vc and the good vertices. Note that (i) implies that K2 has
r − 1 more copies of K−

r from KC compared to K1; compared to K1, (ii) implies that K2 has r
fewer copies of (Kr,+)-stars from KC; the r cliques from (iii) are contained in K2 but not K1;
from (iv) and (v) we conclude that K2 has the same number of (Kr ,−)-stars as K1; by (vi) K2 has
r − 1 fewer copies of K+

r fromK compared toK1. Thus the difference in discrepancy betweenK1

and K2 is precisely

−(r − 1)

(

r

2

)

− r

(

−

(

r

2

)

+ 2(r − 1)

)

+ r

((

r

2

)

− 2i

)

− (r − 1)

(

r

2

)

= −r(r − 1)− 2ri< 0.

Therefore K1 and K2 are Kr-templates for F of different discrepancies; that is, the hypothesis of
Claim 6.2 holds, as required.

6.3.3 Case 2: r= 3.

As δ(R)� (3/4+ η/2)
 and |B|� η2
 we obtain the following.

Claim 6.9. Given any Vc ∈V(C) there is some K ∈ C ∪D such that dR(Vc,K)= 4.

Fix Vc ∈V(C) to be the head of some tile KC in T . Write KC for the set of all copies of K3 in
KC, and K for the set of all copies of K3 in K; so |K| = |KC| = 4. Set F := R[KC ∪K].

Subcase 2a: K ∈D. Note that Vc together with K forms a copy of K5 in R. As K ∈D, Claim 6.4 tells
us that the edge between Vc and the head VH of K is a (− 1)-edge; all other edges between Vc and
K are 1-edges.

Define K1 to be the K3-template for F of size 24 that contains precisely three copies of each
of the cliques in KC ∪K. Note that indeed K1 is a Kr-template for F as each vertex V ∈V(F) is
contained in precisely nine of the cliques in K1.

We define another K3-template K2 for F of size 24 as follows:

(i) for the clique H ∈KC that does not contain Vc, add five copies of H to K2,
(ii) for each clique H ∈KC that contains Vc, add two copies of H to K2,
(iii) add to K2 one copy of each clique in F that contains Vc and precisely two of the vertices in

V(K) \ {VH},
(iv) for each clique H ∈K that contains VH , add three copies of H to K2,
(v) add one copy of the clique H ∈K that avoids VH .

It is easy to check that every V ∈V(F) lies in precisely nine cliques in K2; so indeed K2 is
K3-template for F of size 24. Further, K1 has discrepancy 0, K2 has discrepancy −6. Thus the
hypothesis of Claim 6.2 holds, as desired.

Subcase 2b: K ∈ C. Note that Vc together with K forms a copy of K5 in R. As K ∈ C, Claim 6.4 tells
us that the edge between Vc and the head VH of K is a 1-edge; all other edges between Vc and K
are (− 1)-edges.

We define K1 and K2 precisely as in Subcase 2a. That is, define K1 to be the K3-template for
F of size 24 that contains precisely three copies of each of the cliques in KC ∪K. Define K2 as
follows:

(i) for the clique H ∈KC that does not contain Vc, add five copies of H to K2,
(ii) for each clique H ∈KC that contains Vc, add two copies of H to K2,
(iii) add to K2 one copy of each clique in F that contains Vc and precisely two of the vertices in

V(K) \ {VH},
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(iv) for each clique H ∈K that contains VH , add three copies of H to K2,
(v) add one copy of the clique H ∈K that avoids VH .

In this subcase, K1 has discrepancy 0, K2 has discrepancy −12. Thus the hypothesis of Claim 6.2
holds, as desired. This completes the proof of Theorem 1.3.

7. Open problems

The rth power of a Hamilton cycle C is obtained from C by adding an edge between every pair
of vertices of distance at most r on C. The Pósa–Seymour conjecture states that every n-vertex
graph G with minimum degree δ(G)� (1− 1/(r + 1))n contains the rth power of a Hamilton
cycle. Komlós, Sárközy and Szemerédi [17] proved this conjecture for sufficiently large n.

It is natural to seek a discrepancy analogue of the Pósa–Seymour conjecture.We believe that the
hypothesis of Theorem 1.3 additionally ensures that the host graphG contains the (r − 1)th power
of a Hamilton cycle with high discrepancy. Furthermore, the minimum degree in such a result
should be best possible (in the same sense Theorem 1.3 is best possible). We believe the proof of
such a result can be obtained via the connecting–absorbing method, and using Theorem 1.3 as
a black-box (applied to the reduced graph of the host graph G); this would be a suitable project
for a strong Master’s student. Note that such a result (combined with Theorem 1.1) would show
that δ(G)= (3/4+ o(1))n is the threshold for a graph G to contain both a Hamilton cycle of high
discrepancy and the square of a Hamilton cycle of high discrepancy.

It is also natural to seek an extension of Theorem 1.3 to perfect H-tilings for any graph H.

Question 7.1. Given any graph H, what is the minimum degree threshold that forces a perfect
H-tiling of high discrepancy in a graph G (with respect to any edge labelling f : E(G)→ {−1, 1})?

A famous conjecture of Bollobás and Eldridge [5], and Catlin [6] asserts that every n-vertex
graph G with δ(G)� (rn− 1)/(r + 1) contains every n-vertex graph H with �(H)= r.

Question 7.2. Given any η > 0 and r� 2, does there exist an n0 ∈N so that the following holds
for all n� n0? Let G, H be n-vertex graphs, and assume that

δ(G)� (1− 1/(r + 2)+ η)n,

where r := �(H). Then G contains a copy of H of high discrepancy (with respect to any edge
labelling f : E(G)→ {−1, 1}).

Note that the Bollobás–Eldridge–Catlin conjecture has still not been fully resolved, so it seems
extremely challenging to answer Question 7.2 in general. However, our main result (Theorem 1.3)
resolves Question 7.2 in the affirmative when H is a perfect Kr-tiling. It would be interesting to
resolve Question 7.2 in cases for which the Bollobás–Eldridge–Catlin conjecture is known to be
true (in particular the case when r� 3).
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