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Abstract

In this paper, we study properties of the stationary harmonic measure which are unique to the
stationary case. We prove that any subset with an appropriate sub-linear horizontal growth has a non-zero
stationary harmonic measure. On the other hand, we show that any subset with at least linear horizontal
growth will have a 0 stationary harmonic measure at every point. This result is fundamental to any
future study of stationary DLA. As an application we prove that any possible aggregation process with
growth rates proportional to the stationary harmonic measure has non zero measure at all times.
c� 2020 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we present conditions for an infinite subset in the upper half planar lattice to
have non-zero stationary harmonic measure. Stationary harmonic measure is first introduced
in [6], and plays a fundamental role in the study of diffusion limit aggregation (DLA) models
on non-transitive graphs with absorbing boundary conditions. Roughly speaking, the stationary
harmonic measure of a subset is the expected number of random walks hitting each of its
points, when we drop infinitely many random walks from a horizontal line “infinitely high”
and stop once they first hit the subset or the x-axis. The stationary harmonic measure is not a
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probability measure and since this measure is defined on infinite sets it has different attributes
than the classical harmonic measure, some of which was studied in this paper. The stationary
harmonic measure can be used to construct stationary DLA, which plays an equivalent role as
the harmonic measure in Z

d in the construction of the DLA model (see [1–3]). The analysis in
this paper is crucial to the understanding of aggregation phenomenon under absorbing boundary
conditions. Indeed recently the scaling limit of the classical DLA starting from a long line to
a version of Stationary DLA was established [4,5]. An application of this paper is that if an
aggregation process grows too fast it might stop growing but if the growth is moderate it will
keep on growing forever.

For the precise discussions, we first set some notations defined in [6]. Let

H = {(x1, x2) 2 Z
2, x2 � 0}

be the upper half planar lattice (including x-axis), and Sn, n � 0 be a 2-dimensional simple
random walk. For any x 2 Z

2, we will write x = (x1, x2), with xi denoting the i th coordinate
of x . Then define the horizontal line of height n

Ln = {(x, n), x 2 Z}.

For any subset A ⇢ Z
2 abbreviate the first hitting time

⌧̄A = min{n � 0, Sn 2 A}

and the first exit time

⌧A = min{n � 1, Sn 2 A}.

For any subsets A1 ⇢ A2 and B and any y 2 Z
2, by definition one can easily check that

Py
�
⌧A1 < ⌧B

�
 Py

�
⌧A2 < ⌧B

�
, (1)

and that

Py
�
⌧B < ⌧A2

�
 Py

�
⌧B < ⌧A1

�
. (2)

Now we define the stationary harmonic measure on H. For any B ⇢ H, any edge Ee = x ! y
with x 2 B, y 2 H \ B and any N , we define

H̄B,N (Ee) =

X

z2L N \B

Pz

⇣
S⌧̄B[L0

= x, S⌧̄B[L0 �1 = y
⌘

. (3)

Remark 1. As a paper on the nearest neighbor aggregation process, [6] concentrate mostly
on the harmonic measure H̄B and H̄B,N of a subset B that intersects L0 and that B [ L0 is
connected. However, it is clear to see that the definition of H̄B,N (Ee) as well as the convergence
in Proposition 1 is not related to connectivity and thus hold for any B.

By definition, H̄B,N (Ee) > 0 only if y 2 @out B and |x � y| = 1. For all x 2 B, we can also
define

H̄B,N (x) =

X

Ee starting from x

H̄B,N (Ee) =

X

z2L N \B

Pz

⇣
S⌧̄B[L0

= x
⌘

. (4)

And for each point y 2 @out B, we can also define

ĤB,N (y) =

X

Ee starting in B
ending at y

H̄B,N (Ee) =

X

z2L N \B

Pz

⇣
⌧B  ⌧L0 , S⌧̄B[L0 �1 = y

⌘
. (5)

In [6] we prove that,
237



E.B. Procaccia and Y. Zhang Stochastic Processes and their Applications 131 (2021) 236–252

Proposition 1 (Proposition 1 in [6]). For any B and Ee above, there is a finite H̄B(Ee) such that

lim
N!1

H̄B,N (Ee) = H̄B(Ee). (6)

And we call H̄B(Ee) the stationary harmonic measure of Ee with respect to B. We immediately
have that the limits H̄B(x) = limN!1 H̄B,N (x) and ĤB(y) = limN!1 ĤB,N (y) also exist and
we call them the stationary harmonic measure of x and y with respect to B.

Note that the stationary harmonic measure is not a probability measure. When using the
stationary harmonic measure as growth rate, or more precisely, letting ĤB(y) be the Poisson
intensity the state at site y changes from 0 to 1, we defined in [6] the (continuous time) DLA
process in the upper half plane H, starting from any finite initial configuration. For a finite
subset B, it is shown in [6, Theorem 3] that there must be an x 2 B such that H̄B(x) > 0.
This implies that the continuous DLA model will keep growing from any configuration.

Meanwhile, such treatment of using stationary harmonic measure as Poisson intensities
rather than probability distribution also opens the possibility to study DLA from an infinite
initial configuration as an infinite interacting particle system. However, before possibly defining
such an infinite growth model, one first has to ask which configuration in H can be “habitable”
for our aggregation. In fact, for infinite B, it is possible for H̄B(·) to be uniformly 0. Thus, for
the possible DLA starting from such configuration, it will freeze forever without any growth.
The intuitive reason for such phenomena is that when B is infinite, each point x 2 B may live
in the shadow of other much higher points, which will block the random walk starting from
“infinity” to visit the former first. In the following counterexample, we see that there can be
a uniformly 0 harmonic measure even when the height of B is finite for each x�coordinate.
We encourage the reader to check the subset here has zero stationary harmonic measure before
reading the proof of the main results.

Counterexample 1. Let

B0
=

1[

n=�1

{(n, k), k = 0, 1, . . . , 2|n|
}.

Then H̄B0 (x) = 0 for all x 2 B0.

In this paper, we will concentrate on characterizing the infinite subsets with zero/nonzero sta-
tionary harmonic measure. Our first result is a much stronger statement than Counterexample 1:
for any (infinite) B ⇢ H, and any x1 2 Z, define

hx1 = sup{x2 � 0, x1 ⇥ [1, x2] ⇢ B}.

Definition 1. We say that B has at least linear horizontal growth if there are constants
c 2 (0, 1), and M < 1 such that

hx1 � |cx1|

for all |x1| � M .

Then we have

Theorem 1. For any B which has at least linear horizontal growth and any x 2 B

H̄B(x) = 0.
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Fig. 1. Example of a big set with zero stationary harmonic measure at any point.

With Theorem 1, Counterexample 1 is immediate. On the other hand, we prove that for
B’s of which the spatial growth rate has (some) sub-linear upper bound, H̄B(·) cannot be 0
everywhere:

Theorem 2. For B ⇢ H if there exists an ↵ > 1 such that
��B \ {x 2 H, x2  |x1|

1/↵
}
�� < 1,

then there must be some x 2 B such that H̄B(x) > 0.

Remark 2. The conditions of Theorem 1 are not essential as any linear stretching of
Counterexample 1 (as can be seen in Fig. 1) will have uniformly zero stationary harmonic
measure. There is also a gap between the conditions of Theorems 1 and 2. It would be
interesting to obtain sharp conditions for sets of zero stationary harmonic measure.

Remark 3. Throughout this paper, we use c, C etc. to denote constants, while their exact
values may vary from place to place.

2. Proof of Theorem 1

For any B with at least linear horizontal growth and any x = (x1, x2) 2 B. We first introduce
some notations which later will be helpful in the proof of this theorem. The notations are
illustrated in Fig. 2. Recall Definition 1 and let

nx = max{|x1|, M, dx2/ce}

and

D1 = [�nx , nx ] ⇥ [�dcnxe, dcnxe].

Then x 2 D1, and by Definition 1,

Ŵc \ D1 ⇢ B \ D1 (7)

where

Ŵc = {x 2 H, x2 < c|x1|}.

Moreover, it is not hard to check that for any N > dcnxe and y 2 L N \ B, a simple
random walk starting from y hits x before hitting any other point in B only if it hits lnx =
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Fig. 2. Illustration of notations: all numbers are assumed to be integers.

[�nx , nx ] ⇥ dcnxe = Ldcnx e \ Ŵc before hitting Ŵc. I.e.,

Py(⌧x = ⌧B)  Py(⌧lnx < ⌧Ŵc
). (8)

Thus by (7) and (8), and noting that a random walk starting from y 2 L N \ B which first visit
B through out fixed point x has to first hit lnx before hitting Ŵc (see also Fig. 2)

H̄B,N (x) =

X

y2L N \B

Py(⌧x = ⌧B)



X

y2L N \Ŵc

Py(⌧lnx < ⌧Ŵc
)

=

X

w2lnx

H̄lnx [Ŵc,N (w).

Then by the proof of Proposition 1 in [6] (which is based on the time reversal argument
used in [2]), for any w 2 lnx

H̄lnx [Ŵc,N (w)

=

X

y2L N \Ŵc

Pw

⇣
⌧L N < ⌧lnx [Ŵc

, S⌧L N
= y

⌘
Ey

h
number of visits to L N in [0, ⌧lnx [Ŵc

)
i



X

y2L N \Ŵc

Pw

⇣
⌧L N < ⌧Ŵc

, S⌧L N
= y

⌘
Ey
⇥
number of visits to L N in [0, ⌧L0 )

⇤

= 4N · Pw

⇣
⌧L N < ⌧Ŵc

⌘
.

(9)

Now let N1 = dcnxe and N2 = 2N1. For any z 2 lnx define the rectangular region

D1,z =
⇥
z1 � 4dN2/ce, z1 + 4dN2/ce

⇤
⇥ [0, N2].

Moreover, we define the four sides on the boundary of D1,z

@1 D1,z =
⇥
z1 � 4dN2/ce, z1 + 4dN2/ce

⇤
⇥ N2,

@2 D1,z =
�
z1 + 4dN2/ce

�
⇥ [0, N2],

@3 D1,z =
⇥
z1 � 4dN2/ce, z1 + 4dN2/ce

⇤
⇥ 0,

@4 D1,z = �
�
z1 + 4dN2/ce

�
⇥ [0, N2]

.
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Fig. 3. Escaping probability for each step.

Note that if a random walk starting at z hits @2 D1,z [ @3 D1,z [ @4 D1,z before hitting @1 D1,z , it
must have already hit Ŵc before reaching L N2 . Thus

Pz

⇣
⌧L N2

< ⌧Ŵc

⌘
 Pz

⇣
⌧@1 D1,z

= ⌧@ D1,z

⌘
.

Then by translation invariance we have

Pz

⇣
⌧@1 D1,z

= ⌧@ D1,z

⌘
= P0

⇣
⌧@1 D1,0

= ⌧@ D1,0

⌘
.

And by symmetry

P(0,N1)

⇣
⌧@1 D1,0

= ⌧@ D1,0

⌘
=

1
2

�
1
2

· P0

⇣
⌧@2 D1,0

^ ⌧@4 D1,0
< ⌧@1 D1,0

^ ⌧@3 D1,0

⌘
. (10)

Note that the last term in (10) is the probability a random walk first reaches the two vertical
sides of D1,z before the horizontal sides. By invariance principle, there is a constant c > 0
independent of N1 such that

P(0,N1)

⇣
⌧@1 D1,0

= ⌧@ D1,0

⌘


1 � c
2

. (11)

In general, define Nk = 2k�1 N1 for all k � 2, and let

lNk = L Nk \ Ŵc,

Dk,z =
⇥
z1 � 4dNk+1/ce, z1 + 4dNk+1/ce

⇤
⇥ [0, Nk+1],

with @1 Dk,z - @4 Dk,z as its four sides defined as before. Using exactly the same argument as
for k = 1, we have for any z 2 lNk (see Fig. 3),

Pz

⇣
⌧L Nk+1

< ⌧Ŵc

⌘
 P(0,Nk )

⇣
⌧@1 Dk,0

= ⌧@ Dk,0

⌘


1 � c
2

. (12)

Noting that the upper bound in (12) is uniform for all z 2 L Nk \ Ŵc, by strong Markov
property we have for any w 2 lnx

Pw

⇣
⌧L Nk

< ⌧Ŵc

⌘


✓
1 � c

2

◆k�1

= 2�(k�1)(1+� ) (13)

where � = � log2(1 � c) > 0. Recalling that Nk = 2k�1 N1, (10) and (13) give us

H̄lnx [Ŵc,Nk
(w)  2k+1�(1+� )(k�1) N1 = 2�� (k�1)+2 N1 ! 0 (14)

as k ! 1. Thus the proof of Theorem 1 is complete. ⇤
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Fig. 4. Illustration of the subsets B, D0, Uh0 and W .

3. Proof of Theorem 2

Recall that for B in Theorem 2 there exists an ↵ > 1 such that

|B̂| =
��B \ {x 2 H, x2  |x1|

1/↵
}
�� < 1.

Let Q be all rational numbers. For technical reasons, consider

Q1 =

⇢
log(n1)
log(n2)

, n1, n2 2 Z, n1, n2 � 2
�

and

Q2 =

⇢
b � dx
cx � a

2 R, x 2 Q1, a, b, c, d 2 Z

�
� Q1

which are both countable by definition. Now one can without loss of generality assume that
↵ /2 Q [ Q2. Thus for any a, b, c, d 2 Z, and ↵0 = (a↵ + b)/(c↵ + d), as long as
a2 + b2, c2 + d2 > 0, we always have ↵0 /2 Q [ Q1, which implies that for all integers
m 6= n � 1, m↵0

6= n.
Then we define B̄ = B \ B̂, and

h0 =

8
<

:

max
x2B̂

{x2}, if B̂ 6= ;

min
�
h 2 Z : B \

⇥
�dh↵

e, dh↵
e
⇤
⇥ [0, h] 6= ;

 
, if B̂ = ;.

Note that if B̂ 6= ;, for each N > h0 and |i |  bN↵c, note that |i |  bN↵c < N↵ by the
definition of ↵, and that N > h0 = maxx2B̂{x2}. We have

{(i, N ), |i |  bN↵
c} \ B = ;.

And if B̂ = ;, h0 is always finite since B is nonempty. Then define

D0 =
⇥
�dh↵

0 e, dh↵
0 e
⇤
⇥ [0, h0],

and

B0 = B \ D0.

An illustration of the definitions above can be seen in Fig. 4. And we have 1  |B0| < 1

and B̂ ⇢ B0. Now to prove Theorem 2, we only need to show that there is a constant c > 0
(only a function of ↵) such that for all sufficiently large N ,

H̄B,N (B0) � c. (15)
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Let ln = [�bn↵c, bn↵c] ⇥ n. We first prove that

Lemma 3.1. There is a constant c > 0 such that for any sufficiently large N

H̄B[lh0 ,N (lh0 ) � c.

Proof. Recall that

D0 =
⇥
�dh↵

0 e, dh↵
0 e
⇤
⇥ [0, h0].

Now define

Uh0 = {x 2 H, |x1| � dh↵
0 e, x2  |x1|

1/↵
}

and

Ŵ = D0 [ Uh0 , W = H \ (D0 [ Uh0 ).

Note that (±dh↵
0 e, h0) 2 Uh0 , which implies that Ŵ is connected, and that

W = {x 2 H, |x2| > h0, x2 � |x1|
1/↵

}.

Again, we recommend the reader to refer to Fig. 4 for an illustration of the subsets above.
At the same time, recall that

B̄ ⇢ {x 2 H, x2  |x1|
1/↵

}.

Combining this with the fact that B̂ ⇢ D0 shown above, one has B [ lh0 ⇢ Ŵ , which implies
that

H̄B[lh0 ,N (lh0 ) � H̄Ŵ ,N (lh0 ) � H̄Ŵ ,N (⇠0),

where ⇠0 = (0, h0). So for Lemma 3.1, it suffices to prove that, there is a constant c > 0,
independent of N such that for all sufficiently large N ,

H̄Ŵ ,N (⇠0) � c. (16)

The rest of this proof will concentrate on showing (16). First, by the existence of the limit [6,
Proposition 1], the limit

lim
N!1

H̄Ŵ ,N (⇠0)

always exists. Thus in order to show (16), it suffices to show the inequality holds for a
subsequence Nk " 1, say Nk = 2k , i.e., for all sufficiently large k,

H̄Ŵ ,2k (⇠0) � c. (17)

Moreover, for each sufficiently large k, noting that all x 2 L2k such that |x1| > 2↵k is in Ŵ ,

H̄Ŵ ,2k (⇠0) =

X

z=(i,2k ), |i |b2↵kc

Pz(⌧⇠0  ⌧Ŵ )

=

X

z2l2k

P⇠0

⇣
⌧L2k < ⌧Ŵ , S⌧L2k

= z
⌘

Ez[# of visits to l2k in [0, ⌧Ŵ )].
(18)

Consider stopping times �k = ⌧L2k . Intuitively speaking, we find a middle section s ⇢ l2k ,
whose formal definition will be presented in the later arguments (see (20) for details), and
construct an event A such that

A ⇢
�
�k < ⌧Ŵ , S�k 2 s

 
, P(A) � c2�k .
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At the same time, we show that for each z 2 s,

Ez[# of visits to l2k in [0, ⌧Ŵ )] � c2k .

In order to achieve this, one can put the trajectory between each L2i and L2i+1 within
appropriately chosen linear wedges such that

(i) The slope of these wedges flatten out to 0, which make the success probability from L2i

to L2i+1 close to 1/2.
(ii) The flattening out rate is slower than 2i(↵�1) so all the linear wedges are still confined

within the middle section of l2i+1 .

To carry out this outline, we first define several parameters needed later in the construction.
Recalling that ↵ > 1, let � = 4/(↵ + 3) 2 (0, 1), and � = 2(↵ � 1)/(↵ + 3) 2 (0, 2). Note that

�↵ � 1 =
4↵

↵ + 3
� 1 =

3↵ � 3
↵ + 3

> � > 0,

while at the same time

� + � =
2↵ + 2
↵ + 3

=: ↵1 > 1.

Let

k0 = min{k : 2�k > 2h0} _ 2
⇠

↵ + 3
↵ � 1

⇡
_

⇠
3

↵1 � 1

⇡
.

For now, the restrictions above may look mysterious, but we will show the meaning of each
of them along our proof.

The following lemma from calculus is used repeatedly in our arguments:

Lemma 3.2. For all x, y � 0 and ↵ > 1,

(x + y)↵ � x↵
+ ↵x↵�1 y. (19)

Proof. Note that (19) is clearly true when xy = 0. Assuming x, y > 0, by mid value theorem
and the fact that x↵�1 is increasing, we have

(x + y)↵ = x↵
⇣

1 +
y
x

⌘↵

� x↵
⇣

1 + ↵
y
x

⌘
= x↵

+ ↵x↵�1 y. ⇤

Lower bounds for the escaping probabilities: Now back to the proof of Lemma 3.1.
Recalling that the definition of Ŵ and k0 is independent of the choice of k in (17), consider
the event

A0 =

n
�k0 < ⌧Ŵ0

, S�k0
= (0, 2k0 )

o
.

One has that the probability of A0 is also a positive number independent of k. I.e.,

P⇠0 (A0) = c > 0,

Now for X1 = (0, 2k0 ), consider a new wedge

W0 =
�

x = (x1, x2) 2 H, x2 � d2�k0e � |x1| · 2�� k0
 
.
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Note that x2 � d2�k0e � 2h0, x /2 D0. At the same time, by Lemma 3.2,

x↵
2 �

�
d2�k0e + |x1| · 2�� k0

�↵

� d2�k0e
↵

+ ↵d2�k0e
(↵�1)

|x1|2�� k0

� d2�k0e
↵

+ ↵2[�(↵�1)�� ]k0 |x1|.

Since �(↵ � 1) �� � �↵ � 1 �� > 0, we have that x↵
2 � d2�k0e↵ +|x1| > |x1|, which implies

that W0 ⇢ W .
For k1 = k0 + 1, and probability

p0 = P⇠0

⇣
�k1 < ⌧W c

0

⌘
,

one can see that

p0  P⇠0 (�k1 < ⌧Ŵ ).

Moreover, we have that

W0 \ L2k1 ⇢ s1 := {(x1, 2k1 ), |x1|  2k1(1+� )
}.

Then for each y = (y1, y2) 2 s1, we can always define a wedge

W1,y =
�
(x1, x2) 2 H, x2 � d2�k1e � |x1 � y1| · 2�� k1

 
.

The following lemma is technical and the proof is exported to the Appendix.

Lemma 3.3. For every y 2 s1, W1,y ⇢ W .

Then for k2 = k1 + 1 define the probability

p1,y = Py

⇣
�k2  ⌧W c

1,y

⌘
.

By translation invariance, we have p1,y = p1 for all such y’s. In general, for all i � 1 let
ki = k0 + i . And for all

y 2 si =

8
<

:(y1, 2ki ), |y1| 

iX

j=1

2(1+� )k j

9
=

; (20)

we define wedge

Wi,y =
�
(x1, x2) 2 H, x2 � d2�ki e � |x1 � y1| · 2�� ki

 
.

The following lemma is technical and the proof is exported to the Appendix.

Lemma 3.4. For all i � 1 and y 2 si , Wi,y ⇢ W .

Also for each y 2 si , and z 2 Wi,y \ L2ki+1 ,

|z1|  |y1| + 2ki+1+� ki 

i+1X

j=1

2(1+� )k j

which implies that
 
[

y2si

Wi,y

!

\ L2ki+1 ⇢ si+1 =

8
<

:(y1, 2ki+1 ), |y1| 

i+1X

j=1

2(1+� )k j

9
=

; .
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Fig. 5. Escaping probability from L2k j to L2k j+1 .

And for all y 2 si by translation invariance, define (see Fig. 5)

pi = Py(�ki+1  ⌧W c
i,y

).

With the constructions above and strong Markov property, one can see that for each i

P⇠0

⇣
�ki < ⌧Ŵ

⌘
� P⇠0

⇣
⌧si < ⌧Ŵ

⌘
�

i�1Y

j=0

p j . (21)

Now to find lower bounds for the success probability pi , we need to the following simple
lemma (easily proved with the invariance principle) showing that it is highly unlikely for a
simple random walk starting from the middle of a very wide but short rectangular box to exit
from the vertical sides:

Lemma 3.5. For any integers n, k � 1, let rectangle

Rk,n = [�nk, nk] ⇥ [�k, k]

with

lvk,n = {�nk, nk} ⇥ [�k, k]

as its two vertical sides and

lh
k,n = [�nk, nk] ⇥ {�k, k}

as its two horizontal sides. Then there is a � 2 (0, 1) such that for any n, k � 1 and any integer
x 2 {0} ⇥ [�k, k],

Px

⇣
⌧lvk,n

< ⌧lh
k,n

⌘
 (1 � �)n.

With Lemma 3.5 we can bound from below the probabilities pi . Recalling that by translation
invariance, for each i , yi,0 = (0, 2ki ) and

Wi,0 =
�
(x1, x2) 2 H, x2 � d2�ki e � |x1| · 2�� ki

 
,

we have

pi = Pyi,0

⇣
�ki+1  ⌧W c

i,0

⌘
.
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Then consider the rectangle

Ri =

h
�b2↵1ki c, b2↵1ki c

i
⇥

h
2d2�ki e, 2ki +1

i
.

Recalling that k0 > 2(↵ + 3)/(↵ � 1) = 2/(1 � �), we have

2d2�ki e < 2�ki +2
 2ki

and Ri 6= ;. We claim that Ri ⇢ Wi,0. To show this, it suffices to check that the two corners
at the bottom are within Wi,0. I.e.,

�
b2↵1ki c, 2d2�ki e

�
2 Wi,0.

To see this, note that by the definition of ↵,

2� ki
⇣

2d2�ki e � d2�ki e

⌘
> 2(�+� )ki

and that ↵1 = � + � . Now let

topi =

h
�b2↵1ki c, b2↵1ki c

i
⇥ 2ki +1

bottomi =

h
�b2↵1ki c, b2↵1ki c

i
⇥ 2d2�ki e

lefti = �b2↵1ki c ⇥

h
2d2�ki e, 2ki +1

i

righti = b2↵1ki c ⇥

h
2d2�ki e, 2ki +1

i
.

Note that
b2↵1ki c

2ki +1 > 2(↵1�1)ki �2
" +1,

and that k0 � d3/(↵1 � 1)e, which implies 2(↵1�1)ki �2 � 2 for all i . Let

m = �2d2�ki e + 2ki +1, n =

�
b2↵1ki c

m

⌫
.

One can apply Lemma 3.5 to a translation of the box Rm,n within Ri and have

Pyi,0

�
⌧lefti [righti < ⌧topi [bottomi

�
 (1 � �)2(↵1�1)ki �2

. (22)

Moreover, we have

Pyi,0

⇣
�ki+1 < ⌧L

2d2�ki e

⌘
=

2ki � 2d2�ki e

2ki +1 � 2d2�ki e
�

1
2

� 2(��1)ki +1. (23)

Now note that
�
⌧topi = ⌧@ in Ri

 
=

n
�ki+1 < ⌧L

2d2�ki e

o
\
�
⌧lefti [righti < ⌧topi [bottomi

 
.

We have by (22) and (23),

pi � Pyi,0

�
⌧topi = ⌧@ in Ri

�

�
1
2

� 2(��1)ki +1
� (1 � �)2(↵1�1)ki �2

.
(24)

Now recalling (21), we have

P⇠0

⇣
�ki < ⌧Ŵ

⌘
�

i�1Y

j=0

p j � 2�i
i�1Y

j=0

h
1 � 2(��1)ki +2

� 2(1 � �)2(↵1�1)ki �2
i
.
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Noting that
1X

i=0

2(��1)ki +2
+ 2(1 � �)2(↵1�1)ki �2

< 1,

there is a constant c > 0 such that for all i � 0,

P⇠0

⇣
⌧si < ⌧Ŵ

⌘
� c2�ki . (25)

Lower bounds for the returning times: Now recall that

si =

8
<

:(y1, 2ki ), |y1| 

iX

j=1

2(1+� )k j

9
=

; ⇢ l2ki ,

and that since � = 2(↵ �1)/(↵ +3), 1+� = (3↵ +1)/(↵ +3) < ↵. For any y = (y1, 2ki ) 2 si ,
by the upper bound found in (36) (see Appendix for details), we have

|y1| + 2(1+� )ki +1
 2(1+� )ki +2. (26)

Now note that

k0 � 2
⇠

↵ + 3
↵ � 1

⇡
>

(↵ + 3)(↵ + 2)
↵2 � 1

=
↵ + 2

↵ � � � 1
,

which implies that, (ki � 1)↵ > (1 + � )ki + 2 for all i � 0 and that
�
2ki �1�↵

= 2(ki �1)↵ > 2(1+� )ki +2. (27)

Combining (26) and (27) gives us for all y 2 si ,

N i
y = y +

⇥
�b2(1+� )ki +1

c, b2(1+� )ki +1
c
⇤
⇥
⇥
�2ki �1, 2ki �1⇤

⇢ W.

And thus

Ey
⇥
# of visits to L2ki in [0, ⌧Ŵ ]

⇤
� Ey

h
# of visits to L2ki in [0, ⌧@ in Ni

y
]
i
.

Now let �i,1 = �ki = ⌧L
2ki

and for each j

�i, j = inf
�
n > �i, j�1, Sn 2 L2ki

 

be the j th time a random walk returns to L2ki . We have

Ey

h
number of visits to L2ki in [0, ⌧@ in Ni

y
]
i

= 1 +

1X

j=1

Py

⇣
�i, j  ⌧@ in Ni

y

⌘

� 1 +

2kiX

j=1

Py

⇣
�i, j  ⌧@ in Ni

y

⌘
.

Again we define

ˆtopy,i =
⇥
y1 � b2(1+� )ki +1

c, y1 + b2(1+� )ki +1
c
⇤
⇥ (2ki + 2ki �1)

ˆbottomy,i =
⇥
y1b2(1+� )ki +1

c, y1 + b2(1+� )ki +1
c
⇤
⇥ (2ki � 2ki �1)

ˆlefty,i =
�
y1 � b2(1+� )ki +1

c
�
⇥ [2ki � 2ki �1, 2ki + 2ki �1]

ˆrighty,i =
�
y1 + b2(1+� )ki +1

c
�
⇥ [2ki � 2ki �1, 2ki + 2ki �1]
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as the four sides of @ in N i
y . Note that for any 1  j  2ki ,

Py

⇣
�i, j  ⌧ ˆtopy,i

^ ⌧ ˆbottomy,i

⌘
� Py

⇣
�i, j  ⌧L

2ki +2ki �1 ^ ⌧L
2ki �2ki �1

⌘

=
�
1 � 2�ki

� j
.

Moreover,

Py

⇣
�i, j  ⌧@ Ni

y

⌘
= Py

⇣
�i, j  ⌧ ˆtopy,i

^ ⌧ ˆbottomy,i

⌘

� Py

⇣
⌧ ˆlefty,i

^ ⌧ ˆrighty,i
< �i, j  ⌧ ˆtopy,i

^ ⌧ ˆbottomy,i

⌘

�
�
1 � 2�ki

� j
� Py

⇣
⌧ ˆlefty,i

^ ⌧ ˆrighty,i
< ⌧ ˆtopy,i

^ ⌧ ˆbottomy,i

⌘
.

Note that

b2(1+� )ki +1c

2ki �1 > 2� ki .

Again by Lemma 3.5, we have

Py

⇣
⌧ ˆlefty,i

^ ⌧ ˆrighty,i
< ⌧ ˆtopy,i

^ ⌧ ˆbottomy,i

⌘
 (1 � �)2� ki

.

Thus,

Ey

h
number of visits to L2ki in [0, ⌧@ in Ni

y
]
i

�

2kiX

j=1

Py

⇣
�i, j  ⌧@ in Ni

y

⌘

�

0

@
2kiX

j=1

�
1 � 2�ki

� j

1

A� 2ki (1 � �)2� ki

� 2ki
�
1 � 2�ki

� 
1 �

�
1 � 2�ki

�2ki
�

� C

� c2ki

(28)

for some c > 0 independent of i and y 2 si .
Now combining (18), (25) and (28)

H̄Ŵ ,2ki (⇠0) =

X

z2l
2ki

P⇠0

⇣
�ki < ⌧Ŵ , S�ki

= z
⌘

Ez
⇥
number of visits to l2ki in [0, ⌧Ŵ )

⇤

�

X

y2si

P⇠0

⇣
�ki < ⌧Ŵ , S�ki

= y
⌘

Ey

h
number of visits to L2ki in [0, ⌧@ Ni

y
]
i

� P⇠0

⇣
�ki < ⌧Ŵ

⌘
inf
y2si

Ey

h
number of visits to L2ki in [0, ⌧@ Ni

y
]
i

� c.
(29)

And thus we have shown (17) and the proof of Lemma 3.1 is complete. ⇤
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Now back to finish the proof of Theorem 2, note that both lh0 and B0 = B \ D0 are finite
and not depending on N . There is a c > 0 such that for any z 2 lh0 ,

Pz(⌧̄B0 = ⌧̄B) � c.

Thus by strong Markov property,

H̄B,2ki (B0) =

X

z2L
2ki \B

Pz(⌧B0 = ⌧B)

� H̄B[lh0 ,2ki (lh0 ) inf
z2lh0

Pz(⌧̄B0 = ⌧̄B)

� c.

Then taking i ! 1, Proposition 1 completes the proof of Theorem 2. ⇤

4. Discussions

Now let us look back at the possible aggregation model. With Theorem 2, consider an
interacting particle system first introduced in Proposition 3 of [6]: Let ⇠̄t defined on {0, 1}H

with 1 standing for a site occupied while 0 for vacant, with transition rates as follows:

(i) For each occupied site x = (x1, x2) 2 H, if x2 > 0 it will try to give birth to each of its
nearest neighbors at a Poisson rate of

p
x2. If x2 = 0, it will try to give birth to each of

its nearest neighbors at a Poisson rate of 1.
(ii) When x attempts to give birth to its nearest neighbors y already occupied, the birth is

suppressed.

In [6] we prove that ⇠̄t with transition rates above is a well defined infinite interacting particle
system. And let

Bt = {x 2 H, ⇠̄t (x) = 1}.

Moreover, recalling that in the proof of Lemma 6.2 in [6], for any x 2 H, x 2 L0 and 0  t ,
we define subset I0,t (x) as the collection of all possible offsprings of the particle at x when at
time t , and let

It,T (x) = sup
y2It,T (x)

|x � y|.

When B0 = L0, for any x 0 2 Bt , one can easily check by definition there must be an x 2 L0
such that x 0 2 I0,t (x), which implies that

Bt =

[

x2L0

I0,t (x).

Moreover, by (horizontal) translation invariance, we have I0,t (x) are identically distributed for
all x .

Then by Theorem 6 in [6], we have for any n � 1

E
⇥
I0,t (x)2n⇤ < 1,

which implies that
X

x2L0

P
�
I0,t (x)2n

� |x1|
�

< 1.
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Then by Borel–Cantelli Lemma, with probability one for all x 2 L0 sufficiently far away from
0, I0,t (x) < |x1|

1/2n , which implies that
��Bt \ {x 2 H, x2  |x1|

1/n
}
�� < 1. (30)

Combining Theorem 2 and (30),

Corollary 1. For any t � 0 and Bt defined above, there must be some x 2 Bt such that
H̄Bt (x) > 0.

By Theorem 1 of [6], for any (infinite) A ⇢ H, and any x 2 A, H̄A(x)  C
p

x2 for some
uniform constant C < 1. Thus, from any configuration, the transition rates of ⇠̄Ct are always
larger than the stationary harmonic measure. Thus, when one defines an infinite Stationary
DLA model in H (this question was recently addressed by Procaccia, Ye and Zhang, in [5]), it
will be dominated by ⇠̄Ct and Corollary 1 shows that the infinite stationary DLA model starting
from L0 never hits an absorbing state and stop growing globally. The interesting thing here is,
in order to show the model grows, we actually need to show it grows slowly .
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Appendix

Proof of Lemma 3.3. By Lemma 3.2 and the fact that �↵ � 1 > � , for any y 2 s1 and any
x 2 W1,y , if x1 = y1, then

x↵
2 � 2�↵k1 > 2k1(1+� )

� |y1| = |x1|. (31)

Otherwise, note that for any a, b � 1,

ab � (a + b � 1) = (a � 1)(b � 1) � 0. (32)

Thus
x↵

2 �
�
d2�k1e + |x1 � y1| · 2�� k1

�↵

� d2�k1e
↵

+ ↵d2�k1e
(↵�1)

|x1 � y1|2�� k1

� d2�k1e
↵

+ ↵2[�(↵�1)�� ]k1 |x1 � y1|

� d2�k1e
↵

+ ↵2[�(↵�1)�� ]k1 + |x1 � y1| � 1
� d2�k1e

↵
+ ↵2[�(↵�1)�� ]k1 + |x1| � |y1| � 1.

(33)

It is known in (31) that 2�↵k1 � 2k1(1+� ) � |y1|. At the same time, since �(↵ � 1) � � > 0,
↵2[�(↵�1)�� ]k1 > 1. Thus

x↵
2 � |x1| +

�
d2�k1e

↵
� |y1|

�
+
�
↵2[�(↵�1)�� ]k1 � 1

�
> |x1| (34)

which implies that W1,y ⇢ W for all y 2 s1. ⇤
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Proof of Lemma 3.4. For x = (x1, x2) 2 Wi,y , one first assumes x1 6= y1. Then

x↵
2 �

�
d2�ki e + |x1 � y1| · 2�� ki

�↵

� d2�ki e
↵

+ ↵d2�ki e
(↵�1)

|x1 � y1|2�� k1

� d2�ki e
↵

+ ↵2[�(↵�1)�� ]ki |x1 � y1|

� d2�ki e
↵

+ ↵2[�(↵�1)�� ]ki + |x1 � y1| � 1
� d2�ki e

↵
+ ↵2[�(↵�1)�� ]ki + |x1| � |y1| � 1.

(35)

Similar to when i = 1, we have ↵2[�(↵�1)�� ]ki > 1 while at the same time,

|y1| 

iX

j=1

2(1+� )k j 

kiX

j=0

2(1+� ) j


2(1+� )(ki +1) � 1
2(1+� ) � 1

.

Note that � > 0, which implies that 2(1+� ) � 1 � 2� . Thus

|y1| 
2(1+� )(ki +1) � 1

2(1+� ) � 1


2(1+� )(ki +1)

2�
= 2(1+� )ki +1. (36)

Now recall that

�↵ � 1 � � =
↵ � 1
↵ + 3

> 0,

while

ki > k0 �

⇠
↵ + 3
↵ � 1

⇡
.

We have (�↵)ki � (1 + � )ki + 1, which implies d2�ki e↵ > |y1| by the definition of ↵, and that
x↵

2 > |x1|. And if x1 = y1, one can also have

x↵
2 � d2�ki e

↵ > |y1| = |x1|.

Thus we have Wi,y ⇢ W . ⇤
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