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While the analogous problem for graphs (originally raised by
Granville) is now well-understood, it is not even clear what
the correct general conjecture ought to be; our goal here is
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natural in this context) by adopting the entropic approach of

Kahn.
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1. Introduction

This paper concerns the hypergraph analogue of an old (and now resolved) graph-
theoretic problem of Granville (see [1]). Granville raised the following problem: which
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d-regular graphs on n vertices have the maximum number of independent sets? This
problem was also considered by Kahn [5] in the context of the hard-core model, and
a complete answer is now available owing to the work of Kahn [5] and Zhao [7]: the
extremal graphs are precisely those consisting of disjoint copies of the complete bipartite
graph Ky 4. By now, much more is known; see [4,6,8] for a small sample of the literature.

Here, we shall focus on the more general problem of maximising the number of inde-
pendent sets in r-uniform hypergraphs (or r-graphs, for short). While this is a natural
problem, we emphasise that it is not even apparent what the correct conjectural analogue
of the complete bipartite graph is; our aim in this short note is to remedy this situation.
A brief word about notation: a subset of the vertex set of an r-graph is independent if
it induces no edges, the degree of a vertex is the number of edges containing it, and an
r-graph is d-reqular if each of its vertices has degree d.

The following construction will play a fundamental role in our arguments. For r > 2
and d € N, let H/, be the d-regular r-partite r-graph on rd vertices whose d? edges are
as follows: mark a subset of the vertex set of order d, partition the remaining (r — 1)d
vertices into d sets of r — 1 vertices each, thereby obtaining an (r — 1)-uniform matching,
and then include in the edge set of H], each r-set consisting of a marked vertex and a
matching edge. For example, H2 is the complete bipartite graph K, 4, and H3 is the set
of triangles in the graph on 3d vertices where d vertices are each joined to both ends of
all the edges of a matching covering the other 2d vertices.

Writing ind(G) for the number of independent sets in an r-graph G, an easy compu-
tation tells us that

ind(Hy) = 20794 24 — )27t - ).
Our main reason for writing this note is to make the following conjecture.
Conjecture 1.1. For allr > 2 and d € N, if G is a d-regular r-graph on n vertices, then
ind(G) < ind(H4)"/™.

First, by way of orientation, let us mention that when r > 3, a disjoint union of
copies of H/, has strictly more independent sets than a comparable disjoint union of
copies of a complete r-partite r-graph (the natural first guess), and of an r-partite
transversal design (the natural guess within the class of linear r-graphs); of course,
strictly speaking, we mean this when the numerics allow the latter two constructions
(i.e., when d = t"~! for some t € N for complete r-partite r-graphs, and d sufficiently
large for r-partite transversal designs). Second, as remarked earlier, Conjecture 1.1 for
r = 2 is the aforementioned Kahn—Zhao theorem, but we are unable to verify it for r > 3;
nevertheless, in the spirit of Kahn [5], we shall verify our conjecture for ‘quasi-bipartite’
r-graphs when r > 3.

It is worth mentioning that there has been some recent (independent) interest around
finding a statement in the spirit of Conjecture 1.1; for example, Cohen, Perkins, Sarantis
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and Tetali [3] study an analogue of the problem treated here for regular linear r-graphs,
and raise the question of what one can say about regular r-graphs in general.

This paper is organised as follows. In Section 2, we prove Conjecture 1.1 within the
class of quasi-bipartite r-graphs, and conclude in Section 3 by discussing the main ob-
stacles a proof of Conjecture 1.1 would have to overcome.

2. Quasi-bipartite hypergraphs

Recall that, in an r-graph G, the link L(v) of a vertex v is the (r — 1)-graph whose
edges are precisely those sets S such that S U{v} is an edge of G (and whose vertex set
is precisely the span of these edges). We say that an r-graph G is quasi-bipartite if its
vertices may be partitioned into two sets A and B such that

(I) every edge of G intersects A in exactly one vertex, and
(IT) for each a € A, the link £(a) of a is a matching.

Two remarks about this definition are worth recording: first, when r = 2, this is easily
seen to be precisely the definition of a bipartite graph, and second, we note that H], is
quasi-bipartite for all » > 2 and d € N. Following Kahn [5], we prove Conjecture 1.1 for
quasi-bipartite hypergraphs.

Theorem 2.1. If G is a d-reqular quasi-bipartite r-graph on n vertices, then
ind(G) < ind(H5)"/.

Proof. Denote by AU B the vertex partition associated with G. Let X be the character-
istic vector of a randomly chosen independent set of G. For a set .S of vertices, we write
X for the subvector of X indexed by the vertices in S, and abbreviate X, by X,.
Now, representing X = (X4, Xp) and writing H(X) for the entropy of X, we note that

log(ind(9)) = H(X) = H (Xp) + H (Xa| X5),
and observe that {V(L(a)) : a € A} is a d-covering of B; this fact follows from Condi-
tion (IT). Hence, by Shearer’s lemma (see [2]), we have
1
H(Xp) < 5 > H (Xvcy) -
acA

Next, note also that

H(Xa|Xp) <Y H(Xq|Xp)=Y H(Xo|Xy(c))-
acA acA

Finally, putting these estimates together, we conclude that
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<ZH Xvicy) +d-H (Xalew(a)))) :

a€A

Now, fix an arbitrary a € A and consider a set I C V(£L(a)) that is independent in G.
We write p(I) for the probability that Xy () = I, and A(I) for the number of ways
that a can be added to I (which is either 1 or 2) whilst preserving independence in G.
In this language, we have

H (Xv(z(a)))+d-H (Xa|XV([,(a))):EI:p(I) (10g <l%> +d- H (X, | {XV(L(a)):I})) :

Since H(X, [{Xv(z(a)) = I}) <log(A(I)), the right hand side of the above inequality is
bounded above by

Zp (log ) +d-log(A ) Zp ) log (;({r)d) <log (2[: /\(I)d> )

where the last inequality is a consequence of Jensen’s inequality. Noting that I ranges

over the subsets of V(L(a)) that are independent in G, we have

S oAt < 2VE 4 (27 — 1) ind(L(a)) < 20744 (27 - 1)(27 7 — 1)4 = ind(HY).

For the first inequality above, notice that each subset of V(L£(a)) contributes at most
1 to the sum on the left, unless it happens to be independent in L(a), in which case
it contributes an additional 2¢ — 1. To see why the second inequality above holds, first
observe that we trivially have |V (£(a))| < (r — 1)d. Then, observe that we may bound
ind(£L(a)) again using the subadditivity of entropy (the trivial case of Shearer’s lemma):
writing Si,S3,...,S5g for the d edges of the (r — 1)-graph L(a), consideration of the
characteristic vector Y of a randomly chosen independent set of £(a) leads us to conclude
that H(Y) < Z?:l H(Ys,), and observing that H(Ys,) < log(2""1—1) foreach 1 <i < d
yields the required bound.

Finally, putting these estimates together, and using the fact that |A| = n/r since G is
d-regular, allows us to conclude that

H(X) < % log(ind(H3)),

and the result follows. O
3. Conclusion

There seem to be two major obstacles in adapting our arguments here for quasi-
bipartite r-graphs to deal with general r-graphs; we outline these below briefly.
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First, while any entropic approach would seem to demand something like Condi-
tion (I), Condition (II) appears to be an artefact of our proof; this latter condition
allows us to apply Shearer’s inequality, and while Shearer’s inequality itself cannot be
strengthened in its full generality to deal with non-uniform covers (in that entropy may
concentrate on the vertices covered the fewest number of times), some variant of Shear-
er’s inequality tailored to the situation at hand might nevertheless be an ingredient that
we are presently missing.

Second, a significant difference between r = 2 and r > 3 is that HJ, is no longer vertex
transitive when r > 3. Any analogue of the swapping trick of Zhao [7] for r-graphs with
r > 3 would necessarily have to account for this lack of symmetry; in particular, the
appropriate ‘lift’ would have to map HJ; to disjoint copies of H, and, in the absence of
symmetry, this seems difficult to accomplish.
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