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1. Introduction
1.1. Background

An independent set in a graph G is a subset of vertices no two of which are adjacent.
Denote by Z(G) the set of all independent sets of G. By convention, we consider the
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empty set to be a member of Z(G). The family of independent sets plays an important
role in modern combinatorics, in particular, independent sets in the discrete hypercube
have received a lot of attention in recent decades, e.g., see [8,13,17,22].

Denote by @, the discrete hypercube of dimension n, that is, the graph defined on
the collection of subsets of [n] := {1,...,n}, where two sets are adjacent if and only if
they differ in exactly one element. Observe that @, is an n-regular bipartite graph with
bipartition classes £ and O of size 27!, where £ is the set of vertices corresponding to
the family of sets with an even number of elements, and O for those with an odd number
of elements. A trivial lower bound on |Z(Q,,)] is 2- 22"7" _ 1, as each of the 22" " subsets
of £ (and similarly of O) is an independent set. Korshunov and Sapozhenko [17] in 1983
proved that this trivial bound is indeed not far off the truth.

Theorem 1.1 ([17]). |Z(Qn)| = 2v/e(1 + 0(1))22" " as n — cc.

An influential proof of Theorem 1.1 was later given by Sapozhenko [22] in 1989, which
depends on a technical lemma that appeared in Sapozhenko [21]. This lemma brings up
an intelligent idea on bounding the number of subsets of a given size whose neighborhood
is also of a given size, and is now known as the Sapozhenko’s graph container lemma.
See [9] for a beautifully written exposition of this proof. Inspired by Sapozhenko’s work,
Galvin [8] generalized Theorem 1.1 to the hard-core models on Q,, with parameter A >
V2 — 1, and gave a systematic study on the behavior of the random independent set
chosen from @,, according to the hard-core model.

Very recently, Jenssen and Perkins [13] reinterpreted Sapozhenko’s proof in terms of
the cluster expansion from statistical physics and refined Korshunov-Sapozhenko’s [17]
and Galvin’s [8] results by computing additional terms in the asymptotic expansion.
Moreover, they determine the asymptotics of hard-core models on @, for all constant A
by using more terms of the cluster expansion. An example of their results on Z(Q,,) is
the following.

Theorem 1.2 (Jenssen and Perkins [13]).

3n2—3n—2 N 243n* — 646n° — 33n2 + 436n + 76
8. 2n 384 - 922n

IZ(Qn)] =2Ve- 22n_1 (1 *

+ O(n® - 2—3")> ;
as n — oQ.

For every k € [n], we say a collection of subsets of [n] is the k-th layer of Q,,, denoted
by Ly, if it consists of all subsets of [n] of size k. Denote by B(n, k) the subgraph of Q,
induced on L U Lj_1.

Duffus, Frankl, and Rodl [3] initiated the study of mis(B(n, k)), the number of maximal

independent sets of B(n, k). The trivial lower bound, 20 ), is based on the observation



J. Balogh et al. / Journal of Combinatorial Theory, Series A 178 (2021) 105341 3

that for any graph G and induced matching M of G, each of the 2/M! sets consisting of one
vertex from each edge of M extends to at least one maximal independent set, and these
extensions are all different. Ilinca and Kahn [11] determined the logarithmic asymptotics
of mis(B(n, k)) and proposed the question of determining its actual asymptotics. Indeed,
Tlinca and Kahn [11] conjectured that mis(B(n, k)) is not far from the trivial lower bound.
However, this conjecture was later disproved by Balogh, Treglown and Wagner [1], who
improved the trivial lower bound by a factor of 207™% for k sufficiently close to n/2.

Although the logarithmic asymptotics of mis(B(n, k)) has been determined, surpris-
ingly, a more fundamental question, that is, determining the asymptotics of Z(B(n, k)),
has not been touched in the literature. Similarly as for independent sets of the hypercube,
a trivial lower bound

9(1) + o(i%) 1 (1)

can be obtained by taking all subsets contained in £; or L;_1. However, one can easily
improve the lower bound by considering all independent sets with exactly one element
in one of the layers, which shows that the truth is indeed far from (1). For the upper
bound, there are several studies of independent sets in general graphs, see [14,20,23]. In
particular, a direct application of Sah, Sawhney, Stoner, and Zhao [20] shows that the
number of independent sets in B(n, k) is at most

(219 + 2n7k+1 o 1)%(%}%1(:)""%(1‘21)) (2)

)

which is far from the trivial lower bound.
1.2. Our results

Let G be a simple bipartite graph with classes X and Y. A set A C X (and similarly
for A CY) is k-linked if A is connected in G*, where G* is a simple graph defined on
V(G), in which two vertices are adjacent if their distance in G is at most k. A k-linked
component of a set B C X (and similarly for B C Y') is a maximal k-linked subset of B.

In this paper, we study the independent sets in the graph B(n,k) when n = 2d — 1 is
an odd number and k = d, that is, the subgraph of @,, induced by the two largest layers.
Let N = (Z) Observe that B(n,d) is a d-regular bipartite graph with bipartition classes
Ly and L4_1, each of size N.

For the hypercube @,,, a simple probabilistic argument shows that k vertices in £
(and similarly in O) typically have disjoint neighborhoods, for sufficiently small k. By
taking independent sets with such vertices on one side, it is not hard to improve the
trivial lower bound |Z(Q,)| > 22"~ to that given by Theorem 1.1. For more details,
we refer readers to [9]. In other words, an independent set in @,, typically satisfies the
following property: all 2-linked components of I N E or I N O are of size 1.
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However, the phenomenon is no longer true for B(n,d). We will see in Section 3 that
indeed a lot of independent sets in B(n,d) have many pairs of vertices in one of the
classes, which are at distance 2 from each other. Our first main result describes the
typical structure of independent sets in B(n, d).

Theorem 1.3. Almost all independent sets I in B(n,d) have the following property.® There
exists k € {d — 1, d} such that every 2-linked component of I N Ly, is either of size 1 or
2.

Unlike many other similar problems in the field (e.g., the number of K;-free graphs),
even though we have a deep understanding on the structure of sets in Z(B(n, d)), it is still
very hard to estimate the magnitude of Z(B(n, d)) as its typical structure is intrinsically
sophisticated due to the appearance of 2-linked components of size 2. From (1) and (2),
we have the following trivial bounds:

2.9N 1 < |Z(B(n,d))| < (2! —1)a(3) < oN+N/a,

Our second main result describes the precise asymptotics for the number of independent
sets in B(n, d).

Theorem 1.4. As d — oo, the number of independent sets in B(n,d) is
d
IZ(B(n,d))| = 2(1 + o(1))2" exp <N2‘d + <2) N2‘2d> .

An application of Stirling’s formula gives N = (1 + 0(1))22¢!/v/zd. Then we have

d—1 3/2
N27¢ 4 @)Nr?d = (1+o0(1)) New +(1+ 0(1))%,

which measures how far the truth is deviated from the trivial lower bound 2 -2V — 1.
To motivate this complicated formula provided in Theorem 1.4, we describe a collection
of independent sets, whose size is ‘reasonably close’ to |Z(B(n,d))|, see Example 3.1 in
Section 3.

Similarly as in some of the previous work (e.g., see [8,13]), instead of counting the
number of independent sets in B(n, d), we prove a generalization of Theorem 1.4 for in-
dependence polynomials with a wide range of parameters. The statement of this stronger
theorem requires more technical definitions from statistical physics and from [13], and
therefore we postpone it to Section 5.

One of the main approaches to the proof of Theorem 1.4 is the recently developed
method of Jenssen and Perkins [13], which combines Sapozhenko’s graph container

3 That is, the proportion of independent sets that do not have this property goes to zero as d — co.
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lemma, a classical tool from graph theory, with the cluster expansion for polymer models,
a well-studied technique in statistical physics. This method is a powerful tool for obtain-
ing considerably sharper asymptotics and detailed probabilistic information about the
typical structure of independent sets for certain bipartite graphs. For more intuitive
explanations of this method, we refer the readers to the original paper [13].

Surprisingly, the method of Jenssen and Perkins, which was first used for counting
independent sets in @, works smoothly for independent sets in B(n, d), despite the sub-
stantial difference between their typical structures. This perhaps demonstrates that the
method has potential to handle objects with more sophisticated underlying structures. A
closely related problem is the study of proper g-colorings of @,,. The work of Galvin [7]
and Kahn and Park [15] shows that for ¢ = {3,4}, proper g-coloring typically are not
far from the trivial construction, that is, using |g/2] colors for one bipartite class and
the remaining [q/2] colors for the other class. Galvin and Engbers [4], and Kahn and
Park [15] also pointed out that for ¢ > 5, colorings will typically have many ‘flaw’s,
which substantially increases the difficulty of the problem. As we were working on this
project, we heard that Keevash and Jenssen [12] apply this method to study the number
of g-colorings of @,, for ¢ > 5.

The rest of the paper is organized as follows. In Section 2, we first present some
preliminary results, which are crucial for our proofs. Then we discuss the typical behavior
of independent sets in B(n,d) and prove Theorem 1.3 in Section 3. In Section 4, we give
a general introduction on polymer models and cluster expansions using the language of
graph theory. In Section 5, we introduce the specific polymer model used in this paper,
and present a generalization of Theorem 1.4 for counting weighted independent sets in
B(n,d), that is, Theorem 5.1. We then prove Theorem 5.1 in Section 6, and close the
paper with the proof of Lemma 2.1 in Section 7.

2. Preliminaries

The most important tool of this paper is a following variant of Lemma 3.10 in [8]
for B(n,d), which can be viewed as a weighted version of Sapozhenko’s graph container
lemma [21]. The proof involves several technical lemmas, which are essentially built on
the method of Sapozhenko [21], and will be postponed to Section 7.

For D € {L4, L4-1}, and a set A C D, we write N(A) for the set of vertices that are
neighbors of a vertex in A, and let [A] = {v € D: N(v) C N(A)} be the closure of A.

Lemma 2.1. For integers a,b > 1, let
G(a,b) ={ACD: A 2-linked, |[A]| = a,|N(A)| =b}.

Then there exist constants Cy,Cy > 0, such that for all X > Cylnd/d"/?, and all a <

2 ()
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2 A =)\~ '

AEG(ab)

Next we present some isoperimetric inequalities on B(n, d), which can be easily derived
from direct applications of the Kruskal-Katona Theorem [19,16], and the symmetry of
L4 and L4_1. Here we omit the detailed proof.

Lemma 2.2. Let d be sufficiently large and S C Lq (or S C L4—1).

(i) If |S| < d/4, then |N(S)| > d|S| — |S|2/2.
(i) If |S| < d?*, then |N(S)| > d|S|/6.

(iii) If S| < (%), then |N(S)| > (1 + Tl—l) [5]-

We also use the following lemma from [8] that bounds the number of k-linked subsets
of a d-regular graph.

Lemma 2.3 (Galvin [8]). Let ¥ = (V, E) be a d-regular graph with d > 2. The number of
k-linked subsets of V' of size t which contain a fixed vertex is at most exp(3ktInd).

Corollary 2.4. The number of 2-linked subsets of S C Lq (or S C L4—1) of size t, which
contain a given vertex v is at most exp(6tInd).

3. The typical structure of independent sets in B(n, d)

Let t = N27%. Since w(1) = t = o(v/N), we have

(3) = e 5 (%)

and therefore

(f)zN—dt el +0(1))\/% (%) DNt _ (1 4 o(1)) o (e27)" 2V~
> (14 0(1))2N exp (NQ_d) exp(—d/2).

Take a t-element subset T of L4 uniformly at random. It is not hard to show that

E(IN(T))= Y PweNT)= Y P(IN@)NT|=1)

L)) ()

Ca (0)E
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which goes to infinity as d increases. Applying standard probabilistic methods (with
e = o(dt/N)), one can show that there are (1 —o(1)) (J;[) number of t-element subsets of
Ld with

N 2 (L RN = (1 - ) (41 - @% Folh)) =i (1 o) <;l)%

=dt — (14 0o(1)) (g) N2~2d,
(4)

Let T be the family of t-element subsets of £, satisfying (4), and we have |T| >
(1- 0(1))(];/) Then the number of independent sets I with |I N Ly| =t is at least

> 2NN (1 - 0(1)) (JD 2N~ exp <(1n2 +o(1)) (g) N2—2d)

TeT

> (1+0(1))2" exp (NQd + (In2 +o(1)) (g) N22d) :

By symmetry, we obtain the same lower bound for the number of independent sets I
with |[I N L4—1| = t. Since the number of independent sets I with both |I N L4 = ¢ and
|I N Ly_q1| =t is tiny, we obtain the following.

Example 3.1. Let ¢ = N27¢. The number of independent sets I of B(n,d) with either
[INLygl=tor|INLi_1|=1is at least

2(1 4 0(1))2" exp <N2—d + (In2 + o(1)) (‘;) N2‘2d> .

We believe that a very careful analysis on these independent sets might give a matching
lower bound for Theorem 1.4. In other words, we expect that a typical independent set in
B(n,d) have about N2~ vertices in one of the classes, and most of them are at distance
at least 4 from each other, except for about @(d3/ 2) pairs, which are at distance 2 from
each other. As we did not see an easy argument justifying this sharper claim, we did not
push our argument further.

Proof of Theorem 1.3. Let Z be the set of independent sets I in B(n,d) with |[I N Ly] <
N/2. For each I € Z, let

LC(I)={B CINCLy| B isa 2linked component, and |B| > 3},

and m(I) := Y g IN(B)|. For each 0 < i < N, let U; be the collection of I € 7
with m(I) = i. Clearly, we have Z = Uy U~ 4,_4U;. From this and the symmetry of
L4 and L4_1, to prove Theorem 1.3, it is sufficient to show that
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N

S il = oflth]).

1=3d—3

For each 3d — 3 < i < N, we define a bipartite graph G; with classes Uy and U; in
the following way. For I € U; and J € Uy, two sets I, J are adjacent if J could be
obtained from I by removing all its vertices in |Jpz cen B, and adding some subset of
Upecer NV (B). Observe that by definition

dg, (I =21 =2 forall I € U;. (5)
On the other side, the degree of a set in Uy is determined by the number of large 2-
linked components. For 3d—3 < j < N/2, let a(j) be the number of 2-linked components

B of L4 with [N(B)| = j. If j < d*, then by Lemma 2.2(ii), we have |B| < 6;/d. Using
Corollary 2.4, we obtain that

a(j) < Nexp(36jlnd/d) for j < d*.

If j > d*, then by Lemma 2.2(iii) we have j —|B| > j/(2d). Using Lemma 2.1 with A = 1,
we obtain that

SUEND SENCOUEND S Gy

j—a>j/(2d) j—a>j/(2d)
. Ci1jlnd o Chjlnd ; _ Cijlnd
j _ J _ Y
S¥N D eXp( 2d°73 ) =N mpm ) ST e T
a<N/2
for j > d*,

where the last inequality follows from N < 22¢ and jInd/d®/® > d"/?Ind > d.
Hence, for i > 3d — 3, the number of disjoint 2-linked components By, ..., By, ..., for
which |By| > 3 for every £ > 1 and ), |N(By)| =i, is

B < > > Haje > etk

i=11+1i2 Do Je=i1 Yo ke=iz £
3d—3<j,<d* ke>d*

e ' CiizInd
< Z Z N33-3 exp(36i1 Ind/d) Z 2 exp (_ ;;5/3 >

i=11+12 oo Je=t1 Yoo ke=ia
3d—3<j,<d* ke>d*

; ; 3671 Ind ; 4y ChizInd
O(i11nd/d)50.7i1 1 O(izInd/d*)oia V12
< 3 (o (SRRE)) (200 o (-SER) )

=11 +12
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< Z 20-8i1 . 9tz axpy (—C"ig In d/d5/3) ,
i=1i1+12
for some constant C’ > 0. Since N < 22¢. we further obtain that
) 0.8 for i < d*,
Ali) < 0.8 i /74 5/3 ' . 4 (6)
2087 4 N2%exp (—C'd*Ind/d*/3) = 0(2'/N) for i > d*.

Note that for every set J € Uy, we have dg,(J) < B(i). Therefore by (5) and (6), we
obtain that

N N 44 N
Sl < D> lB@2T <ol [ Y 27%% + > o(1/N) | = ol|U]),
1=3d—3 1=3d—3 1=3d—3 i=d4

which completes the proof. O
4. Polymer models and cluster expansions

In this section, we introduce polymer models and cluster expansion in the language
of graph theory. For more general information and applications on polymer models,
see [5,13,18].

Consider a finite set P, and an unoriented graph Hp defined on P, in which every
vertex has a loop edge and there is no multiple edge. The vertices S € P are called
polymers for historical reasons in physics. Two polymers S, S’ are adjacent, denoted by
S ~ S’ if there is an edge SS’ in Hp. In particular, every polymer is adjacent to itself.
We equip each polymer S with a complex-valued weight w(S). Such a weighted graph
(Hp,w) is referred as the polymer model. For convenience, sometimes we simply write
(P,w) or P for the polymer model. Let Qp be the collection of independent sets, where
loops are allowed, of Hp, including the empty set. The polymer model partition function

EPw) = Y [ w(s) (7)

AEQp SEA

is essentially a weighted independent polynomial of the polymer model (Hp,w).

Let T' = (S1, Sa, . .., Sk) be a non-empty ordered tuple of polymers, where repetitions
are allowed. Denote by Hp(T') the simple graph defined on the multiset {S7, S2,..., Sk}
with edge set E = {S;S; : S; ~ S; in Hp}. We say such a tuple I' is a cluster if the
graph Hp(T') is connected. For example, for two adjacent polymers S,S’, the 3-tuple
I'=(S,5,95) is a cluster with Hp(T') = K3, where K,, denotes the complete graph on
m vertices. For a simple graph H, let

1 F
o(H) = V! Z(—l)e( ),
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where the sum is over all connected subgraphs F' of H such that F' contains all the
vertices of H. The function ¢(H) is often referred as the Ursell function. The weight
function of a cluster T' is defined as follows:

w(l) := ¢(Hp (D)) [T w(s). (8)

Serl

Let C be the set of all clusters. The cluster expansion is the formal power series of the
logarithm of the partition function Z(P,w), which takes the form*

InZE(P,w) = Zw(F) (9)

rec

Note that many copies of the same polymer may appear in a cluster. As a consequence,
the cluster expansion is an infinite series even for a finite polymer model. A sufficient
condition for the convergence of the cluster expansion is given by Kotecky and Preiss [18].

Theorem 4.1 (Convergence of the cluster expansion [18]). Let f : P — [0,00) and g :
P — [0,00) be two functions. Suppose that for all polymers Sy € P,

Y lw(S)lexp (f(S) +9(5)) < f(So), (10)

S~So

then the cluster expansion (9) converges absolutely. Moreover, if we let g(T') = > g 9(S)
and write T' ~ S if there exists S’ € T so that S ~ S’, then for all polymers S,

> fw(D)]exp (g(I) < £(S). (11)

rec,r~S

5. Main theorem

The independence polynomial of a graph G is

Za(\) = Y AL

I€Z(G)

When the underlying graph is clear, we simply write it as Z(A). The independence
polynomial can be viewed as the partition function of the hard-core model from statistical
physics: a probability distribution on independent sets of G weighted by the fugacity
parameter )\, in which each independent set I is chosen with probability A ‘/Z (N).
The hard core model plays a vital role in the study of independent sets and has been
extensively studied by many researchers in recent years. For example, Davies, Jenssen,

4 For details of the cluster expansion, we refer readers to Chapter 5 of [6].
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Perkins, and Roberts [2], strengthening a classical result for independent sets of d-regular
graphs, showed that a union of copies of K4 4 maximizes the independence polynomial of
a d-regular graph; Galvin [8] and Jenssen and Perkins [13] studied the typical structure
of independent sets of the hypercube drawn from the hard-core model for a wide range
of parameters \.

Recall that n = 2d — 1. We define a polymer model on B(n,d) as follows. For D €
{Ed, ﬁdfl}, let

1
Pp = {S C D : S is non-empty and 2-linked, |[S]| < 3 (Z)} (12)

be the set of polymers. Two polymers S, S’ are adjacent if S U S’ is a 2-linked set. For
a given A > 0, we equip the elements of P with the weight function

AlSI

By symmetry, the polymer models P, and P, , have the same properties. For conve-
nience, we omit the subscript whenever it is not crucial, and in most cases one should
think of P, as P.

The cluster expansion of the polymer model (P, w) is defined as in (9). Denote by

I =18

Ser

the size of a cluster I'. For k > 1, let

L= >  w) (14)

rec, |T|=k

be the k-th term of the cluster expansion, and

k—1
Tp:=Y L (15)
=1

be the k-th truncated cluster expansion.
The following theorem, extending Theorem 1.4 to the independence polynomial Z(\)
with a wide range of )\, is one of the main contributions of this paper.

Theorem 5.1. Suppose that A > Colnd/d*/?, where Cy is a sufficiently large constant
and \ is bounded as d — co. Then for all fized k > 1,

k
200 =201+ )V esp | 3oLy +er |
j=1
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in which Ly, is the k-th term of the cluster expansion of the polymer model (P,w), and
the error term €y is of size

0 Nl1k+9
|€k‘ - (1 I )\)d(k+1)—3(k+1)2/2

as d — oo.

To derive a sharp asymptotic on the number of independent sets from Theorem 5.1,
we need to compute Ly and Lo explicitly.

Polymers. Every polymer of size 1 is a single vertex of £4. There are (Z) of them, and

each has weight ﬁ Every polymer of size 2 is a set of two vertices of L4 sharing a
)\2

common neighbor. There are (Z) (‘21) of them and each has weight ATT

Clusters. There is only one type of cluster of size 1, which consists of a polymer of size
1, with Ursell function 1. Then we have

n= (e

There are two types of clusters of size 2. The first type is an ordered pair of adjacent
polymers of size 1, whose Ursell function is —1/2 and whose weight is —ﬁ. The
number of such clusters is (7}) + (7})d(d — 1), where the first term counts for the pairs
with repeated polymers, and the second term counts for the ordered pairs with distinct
polymers. The second type is a single polymer of size 2, of which there are (Z) (g), with

Ursell function 1 and weight % Then we have

14X

ra= =3 () -0 () (e

Proof of Theorem 1.4. When A = 1, we have L; = N2=% and Ly = N (d?—d—1)2~2d+1),
Applying Theorem 5.1, we obtain that

Z(1)=2-2Vexp (N279+ N2724(d® —d — 1)/2 + &)

—2(1 4 0(1))2" exp (Nz—d + (g) N2‘2d) 7

where the last equality follows from e, = O (Nd*'2734) = 0(27%2), and N272¢ =
0d1?). o

6. Proof of Theorem 5.1

Throughout this section, we fix A\ > Cy(Ind)/d'/?, where Cy is a sufficiently large
constant and A is bounded as d — oo.
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6.1. Convergence of the polymer model
For integers d, k > 1, let

(dk —3k2/2)In(1 + \) — 11kInd if k < d/4,
Y(d, k) = { (dk/12)In(1 + \) if d/4 < k < d4, (16)
k) d? if d* < k.

For a constant C' > 1, we introduce a more general weight function @ on P (recall P
from (12)), as

w(S) = w(S) exp((C — 1)|S|/d?), (17)

where w(S) is defined in (13) and for brevity we omit the dependency of w(S) on C.
Moreover, let f, g: P — [0,00) be two functions defined as

f(8)=1Sl/d* and g(S)=~(d,|S]). (18)

The following lemma implies that the polymer model (P, w) defined in Section 5 has
a convergent cluster expansion.

Lemma 6.1. Let @, f, and g be as in (17) and (18). Then for all polymers Sy € P,

Y [@(S)]exp (£(5) +g(5)) < f(So).

S~So

Proof. For a vertex u in L4, denote by N?(u) the second neighborhood of u, i.e. the set
of all vertices at distance two from u. By the definition of functions w, f and g, we have
that for every polymer Sy,

Y @(S)exp (F(S) +9(5) = D w(S)exp (CIS|/d* + g(5))

S~Sp S~So

<30 3 S w(S)exp (C18]/d% + g(S)) .

uESo vEN2(u) S3v

Together with the fact that B(n,d) is d-regular, it is sufficient to prove that for every
NS ,Cd,

Zw(S)eXp (CIS|/d* + g(S)) < 1/d*, (19)

S>v

as it would imply that
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> @(S)exp (f(S) +9(5)) < [Sold*(1/d*) < [Sol/d* = f(So)-

S~So

Fix an arbitrary vertex v € L4. To prove (19), we will split the sum into three parts.
We also omit writing the assumptions S 3 v everywhere, as all polymers we consider
here contain v.

Case 1: |S| < d/4. By Lemma 2.2 (i), we have |N(S)| > d|S| — |S|?/2 > 0. Moreover,
Corollary 2.4 indicates that the number of S € P with |S| = k and v € S is at most
exp (6kInd). Together with definitions of w(S) and ¢(S), we then obtain

> ws)en (G +als))

|S|<d/4
dja
Ck 3k
<ZZ 1+)\dk k2/zeXp<d2 (dk—T)ln(l-f—)\)—llklnd)
k=1|S|= k
d/a . ,
A Ck 3k
SEWGXI’(CQ (dk—T)ln(1+/\)—5k‘lnd>
dja
=> exp (kln X — k*In(1+ A) + Ck/d* — 5kInd)
k=1
2 -5 2
SkZZIeXP (Ck/d* — 5kInd) < d ;exp (Ck/d?) < T

Case 2: d/4 < |S| < d*. By Lemma 2.2 (ii), we have N(S) > d|S|/6. Similarly as in
Case 1, we obtain

3 w(S)exp<Cdf|+g(5))= Z Z +A (1 + A)dR/6 © (ifJF%l (1+A)>

d/4<|S|<d* k=d/4|S|= k
& Ck  dk
< k%:/4exp <kln)\+ =+ +6klnd> .

Note that for A > Cy(Ind)/d"/? and d sufficiently large, we have that In X 4+ C/d?> <
(d/12)In(1 + X), and dIn (1 4+ A) > O(d*/?Ind). Then we further have

4
C|S| ¢ dk
< -
Z w(S) exp ( p + g(S)) < Z exp ( 54 In (14 \) 4+ 6kln d)
d/4<|S|<d k=d/4

< d*exp(—O(d*?Ind)) < 31
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Case 3: |S| > d*. Recall that for S € P we have |S| < (7). By Lemma 2.2 (iii), we have
N(S) > (1+ 55)|S|. Then we have

> wsen (G as)

S C|S| + 15|
o T NETEET e

AlS| C +
< Z Z Z 1+ NN €xp (a FP) a)

d4<a<3(3) (ot £7) <b<(5) 59 (e 2

n aC+a Ci(b—a)lnd
= Z <d> exP( P2z 2273 )

dt<a<§(3) (ot 55)<b<(3)

where the second inequality follows from Lemma 2.1. Since all pairs (a, b) satisfy b—a >
a/2d, we further obtain

> wen (S as)
ar<1s1<5(3)
<d4<a§( ) (HmEK( ) <Z> exp ((C 25_2 Da 021351265)

) Bl () o) <

a>d*

The sum of the upper bounds in these three cases gives (19). O

Lemma 6.2. Let P and W be as in Lemma 6.1. Then for k < we have

48’

> )= () e (ot ).

rec, T>k

Proof. Recall the definitions of f, g: P — [0,00) as f(S) = |S|/d? and g(S) = v(d,|S]).
It follows from Lemma 6.1 that such f, g, satisfy the assumption (10) of Theorem 4.1.
Then for every vertex v € L4, Theorem 4.1 indicates that

Y. e exp(g(I) <d .

I'eC, I'mv

Summing over all v € L, we obtain
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ny ,_

S ()] exp(g(T)) < (d)d 2

rec

Recall that g(I') = > gcp g(S5). Since v(d, k)/k is a non-increasing function of k, we
obtain that

o) = 0 0(8) = ¥ st = LG S 51 = ot .

ser Serl Ser

For a fixed k < d/48, observe that v(d, s) is an increasing function of s in the range
[0, d/4], and for every s > d/4 we have v(d, s) > v(d, k). Then it follows that

Z [@(T)| exp(y Z [@(T)|exp(v(d, [T'])) Z |@(T)| exp(g(T))

\|F|\>k HFII>k HFH>k

n
< —2
< (4)a

which completes the proof. O

In particular, for @w = w (by taking C = 1), together with the definitions of v(d, k)
and Ty, we obtain the following corollary.

Corollary 6.3. For a fized integer k, as d — oo, the polymer model (P,w) defined in
Section 5 satisfies

[T — InZ(P,w)| < (Z)dllk—Q(l + )\)_dk+3k2/2-

6.2. Independent sets in B(n,d)

Recall that P is a polymer model defined as in (12) and Qp is the collection of
independent sets, ignoring loops, of P. For an independent set A € Qp, we set

1Al =) 1S] and  N(A) = UseaN(5). (20)
SeA

Define a probability measure v on Qp as follows

H c w(s) 1 )\||AH
N =2 )~ B T T .

Lemma 6.4. Let A be a random independent set drawn with distribution v. Then with
n

probability at least 1 — exp(—d—l5 (d)), we have

1 /n
< — .
e ( d)
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Proof. Taking C' = 2 in the function @ defined in (17), we get @(S) = w(S)elSld "
where w(S) is defined in (13). For the auziliary polymer model Z(P,w), we obtain that

W E(P,w) = > @(T) <y [w(I)] < (Z) d=? exp(—(d, 1)) = (Z) do(1+ N3/,

rec rec
(22)
where the last inequality follows from Lemma 6.2 with C' = 2 and k& = 1. Using the
definition of Z(P,w) from (7) and the definition of ||A| from (20) we get

(1]

(ISI/d2)

In=Z(P,w) — InZ(P,w) =1n

(1]

('P,’ID) —In HSGA
(P,w) =1 Z =

AeQp

S)ex
(P,w
| 3 e (1)) H_SGA ) I E (exp(J|A]l/))

AEQp =
For every A > 0, since we always include the empty set in Qp, we have Z(P,w) > 1.

From this fact and inequality (22), we have

InE (exp(||All/d?)) < InE(P, @) < @ P14 A

Using Markov’s inequality we get

(e (130 > e (3 (3) <o (e (3) + () )

Since (1 + A\)4~2 grows much faster than d?, when A\ > Cyln(d)/d/® and d tends to
infinity, we conclude that

(i (0) = (50)

For an independent set I € Z(B(n,d)), we say Ly is the minority side of I, denoted
by M, if |[INLy| < |INLy—1] and the majority side otherwise. Respectively we say L4_1
is the minority side if |INLy| < |[INLg—1] and the majority side otherwise. We define a
probability measure i on Z(B(n,d)) by constructing an independent set I of B(n,d) in
the following manner:

1. First, choose D € {L4, L4—1} uniformly at random, and we call the layer D as the
defect side of I°;

5 These terms minority side, majority side and defect side are borrowed from [13].
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2. Let A be arandom independent set of the polymer model Pp drawn with distribution
v (see (21)), and assign I N'D = UgeaS;

3. Let N be the non-defect side. For each v € N\ N(A), we add v to the set I
independently with probability 1-%\

Lemma 6.5. Let I be a random independent set drawn from the distribution fi. Then with
probability at least 1 — 2 exp (—d%(Z)), the minority side of 1 is the defect side.

Proof. Let M be the minority side, D be the defect side, and A be the non-defect side
of I. By taking components of IN D as polymers, there exists a unique independent set
A of Pp such that IND = UgeaS. Splitting the probability into two cases we get

P(M # D) =P (M £D, |A] < %(Z)) +P (M £D, ||A] > %(Z)) .

From Lemma 6.4, we get

(oo 3 () o (50

Using conditional probability we get

P(M;AD, ||A||§%<Z)>: Y PA=APM£D|A=A).

Ial< 2 (%)

By the definition of i, if we fix a A with [|[A|| < (%), then for each v € L\ N(A)
we have P(v € I N Ly) = A(1+ A). Then [I N N| follows a binomial distri-
bution Bin (K, A/(1+ A)), for some K = (3) — [N(A)] > (1—3) (7). Recall that
A > Cyln(d)/d'/? and it is bounded as d goes to infinity. Using the Chernoff bound,
we obtain that

(o123 (3)) =2 (o (o ) = 20)) =0 (s ()

Therefore

P(Mﬂ, ||A||§%(Z))s > P<A=A>QXP<‘d1—1/3<Z>>

Finally, we conclude that

a0y <o (1 (7)) o (5 (1)) <20 (- (1)) <
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Lemma 6.6. Suppose A\ > CoIn(d)/d*/3 and X is bounded as d — co. Then

In Z(\) —In (21 + ) @=(P, w))‘ -0 (exp (‘als <Z>)) .

Proof. Let My be the collection of sets I in Z(B(n,d)) such that every 2-linked com-
ponent S of I N Ly satisfies |[S]| < (7). We define My_; similarly. A simple counting
argument indicates that

(5)-
SRUEDS XJ\:{(A)l((d)|.N(A)|)/\|A||+i: S AL 4 )N
IeMgy AEQp =0 ! AEQp

= 1+ N D=P,w).

We first claim that every independent set I of B(n,d) is in MgU My_1. Assume that
this is not true for some set I. Then there exist a set S; C INLgand aset So CINLy 1
such that both of them are 2-linked sets, and |[S1]],|[S2]| = 3 (7). Since B(n,d) is d-
regular, we have that |[N(S1)| = |N([S1])] > |[S1]| = 5 (7). This implies that there exists
a vertex v € [S2] N N(S7). Then there is a vertex u € S; with u ~ v. Moreover, since
v € [S2], we have u € N([S2]) = N(S2), and therefore there is a vertex v’ € Sy with
u ~ v’. Since both u, v’ belong to I and they are adjacent, it contradicts the assumption
that I is independent.

Let B= M ;N My4_1. We then obtain that

21+ NWEPw) = ST A4 ST A=z + 30l (23)

IeMgy IeMg_1 IeB

Take a random independent set I drawn from fi. Then we have

PAeBAM#D) =Y PI=IAM#D)

IeB
1 \ A\ =D N ()= INUND) = (1] |10 D))
=S - w(InD) (_) <_>
IeB 2 1+A 1+ A
1 1 AHIND| A\lI=11nD]
=2 E(va)( + NINEPIT (1 4 ) ()-IvenD)]

= Z)\U\

(1+>\) E(P ’LU IeB

Together with Lemma 6.5, we have

Z AT <201+ )\)(Z)E(P,w) P(M#D) <2(1+ )\)(Z)E(P,w) - 2exp (—% <Z>> .

IeB
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This and (23) complete the proof. O
Now we have all ingredients for the proof of Theorem 5.1.

Proof of Theorem 5.1. By Corollary 6.3, we have

n JLL(k+1)
= (d) (1 + N)dR+D=3G+1)7/2"

k
> Li—-mEP,w)| <
=1

Together with Lemma 6.6, we obtain that

Z(\) = 204+0) D=(P, w) exp [0 (exp (—% (Z)))] 2(14+2)(#) exp <ZL + 5k>

i=1

where

\ A

n 1L (k+1)—2 1 /n

d) (1 + N)dR+D=3(+1)%/2 +O | exp AW
d11k+9

0 (( ) (1 + M)A+ —3(k+1)? /2) =

7. Proof of Lemma 2.1

The proof of Lemma 2.1 relies on the following three lemmas from Galvin [8] and
Galvin and Tetali [10], which are essentially built on Sapozhenko’s graph container
method [21]. We also use the notation (}) as a shorthand for Yo, (7).

Lemma 7.1. [8] Let ¥ be a d-regular bipartite graph with bipartition classes X andY . Let
G={AC X : A is 2-linked, |[A]| = a, [IN(A)| = b}, and sett =b—a. Fix1 < p <d—1.
Let

my, =min{|N(K)|:y € Y, K C N(y), |K[> ¢}

Let C > 0 be an arbitrary number such that Clnd/(pd) < 1. Then there is a family
Ap C2Y x 2% with

A | < |Y]e CI*d | T8blnd | T8tIn’d SCind "
X
R N A AL CCRD)

(24)
and a map m1 : G — Ay for which w1 (A) := (F*, S*) satisfies F* C N(A), S* D [4], and

N\ FH| <td/(d =), [ST\[A]] < td/(d = ¢).
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Lemma 7.2. [/ Let ¥, G and t be as in Lemma 7.1. Let (F*,S*) € 2¥ x 2% and z > 0
be given. Let

¢ ={A€G:F*CN(A), S"2[A4], INA\F'| <z, and |S"\ [4]| < z}.

Fiz 0 < v < d. Then there is a constant ¢ > 0 (independent of d,t,x), a family Ay C
2V x 2X with

cx ctln d> (25)

< htd
A2|exp(d+ ”

and a map wa : G' — Ag for which wa(A) := (F,S) satisfies F C N(A), S D [A] and
S| < [Fl+2t¢/(d = 9). (26)

Lemma 7.3. [10] Let ¥, G and t be as in Lemma 7.1. Let ¢ and ~y satisfy 1 < ¢ < d/2

and 1>~y > %. Fiz (F,S) € 2¥ x 2% satisfying (26), and X\ > Colnd/d"/?, where Cy

is a sufficiently large constant. Then we have

A4l 3db
— < -t —t
E (1+/\)bmax{(l+)\) ) (S;“fb-&-’yt)(l—’_)\) }»
where the sum is over all A € G satisfying F C N(A) and S D [4].

We also use the following basic binomial estimate for k = o(n):

<§"k> < exp ((1 +o(1))kIn (%)) . (27)

Proof of Lemma 2.1. Fix a,b with a < %(Z) By Lemma 2.2(iii), we have

t:=(b—a)>b/(2d). (28)
Set
Y =B(n,d), e=d/2, C=12, =d*>? z=td/(d- ). (29)
Lemma 2.2(ii) implies that
my > d?/12. (30)

Applying Lemmas 7.1 and 7.2 on ¥ with the given ¢, b and x, we associate each
A € G with a pair of sets (F,S) € 254 x 2£4-1_ which satisfies I C N(A), S D [4]
and (26). Moreover, the number of such set pairs is at most |4;] - | 42|, where the upper
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bounds on the sizes of Aj, Ay are given in Lemmas 7.1 and 7.2. Substituting (27), (28),
(29), and (30) into (24) and (25), we have

n bIn%d bind tin’d tlnd. b
< i i i Z
|A1|_<d>exp(0< i >+O<d2)+0< g >+O< ¥ In )
t bd?
+0(—1 _>)
d 4t
n tin%d tind tin?d tin?d tind
= (3o (o(FF) ro () ro(Brt) vo (B vo ()
n tin?d
= 6]
(2) e (o(%5)):

and
t tind tlnd
dizen(0(g) o () =oe (0 (7))

Fix a pair of set (F,S) € 254 x 2541 satisfying (26). Set

N - (Cof3) -3
7T A+ N +3lnd = 4B

where the inequality follows from A > Colnd/d'/? for sufficiently large Cy and d. To-
gether with (28), we have

2ty 24°/3 (Co/3) =3\, _ /43
er vt > (d—d2/3+ di/3 t=Q(d b),

and therefore,

3db 2t 3db
(2, ) o (v (25 ) )

< exp (3 (% + t) lnd> = (1+ At

with the equality following from the definition of «. Finally, by Lemma 7.3 and the above
discussion, we obtain that

AlAl 3db
. —t —t
Z a +/\)b < Ayl - | A2 max{(l—i—)\) , << ;tﬁ,""ﬂ)(l—’—)\) }

A€G(a,b)

n tind n Citlnd
< <d> eXp< ytin(1+A) +0 <d2/3 )) - (d) P (_W) ’

for some Cy > 0, as () is sufficiently large. O
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8. Future directions

There are many interesting problems along this line. The most natural question is to
determine the number of independent sets in B(n, k) for every k. As the ground graph is
no longer regular, but biregular, proving the corresponding container theorem requires
generalizations of Lemmas 7.1, 7.2, 7.3 for biregular graphs, which could be done by a
slight variation of the proof of Sapozhenko [22], also see in [9].

We believe that when k is sufficiently close to n/2, Theorem 1.3 can be extended to
B(n, k), that is, typical independent sets only have ‘defects’ of size 1 or 2 comparing to
the trivial construction. It would be interesting to determine the range of k for which it
works. We decided not to work out the details, as we wanted to avoid extra technicality
in this paper.

Another important open problem is to determine the precise asymptotics for the
number of maximal independent sets of B(n, k), which is often denoted by mis(B(n, k)) in
the literature. As we mentioned in Section 1, Balogh, Treglown and Wagner [1] disproved
a conjecture of Ilinca and Kahn [11] on mis(B(n, k)) by improving the trivial lower bound
construction, and since then no further result is known. After doing analysis on some
special polymer model and its cluster expansion, we propose the following conjecture for
the middle two layers, jointly with Adam Zsolt Wagner.

Conjecture 8.1 (Balogh, Garcia, Li, Wagner). Let n =2d — 1. As d — oo,

mis(B(n, d))| = (1 + o(1))n20i=1) exp ((Z B i) (d;#) .

Moreover, almost all mazimal independent set in B(n,d) can be obtained from the BTW
construction in [1].

Just as for hypercube @Q,,, it is also natural to study the number of proper g-colorings
for the middle two layers. Moreover, one might ask the above questions for other in-
teresting graphs with good expansion properties. This polymer method of Jenssen and
Perkins is especially useful in estimating the number of ‘defects’ from some ‘ground state’
structure, and we expect that there are more problems for which the method is naturally
applicable.
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