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1. Introduction

1.1. Background

An independent set in a graph G is a subset of vertices no two of which are adjacent. 

Denote by I(G) the set of all independent sets of G. By convention, we consider the 
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empty set to be a member of I(G). The family of independent sets plays an important 

role in modern combinatorics, in particular, independent sets in the discrete hypercube 

have received a lot of attention in recent decades, e.g., see [8,13,17,22].

Denote by Qn the discrete hypercube of dimension n, that is, the graph defined on 

the collection of subsets of [n] := {1, . . . , n}, where two sets are adjacent if and only if 

they differ in exactly one element. Observe that Qn is an n-regular bipartite graph with 

bipartition classes E and O of size 2n−1, where E is the set of vertices corresponding to 

the family of sets with an even number of elements, and O for those with an odd number 

of elements. A trivial lower bound on |I(Qn)| is 2 ·22n−1 −1, as each of the 22n−1

subsets 

of E (and similarly of O) is an independent set. Korshunov and Sapozhenko [17] in 1983 

proved that this trivial bound is indeed not far off the truth.

Theorem 1.1 ([17]). |I(Qn)| = 2
√

e(1 + o(1))22n−1

as n → ∞.

An influential proof of Theorem 1.1 was later given by Sapozhenko [22] in 1989, which 

depends on a technical lemma that appeared in Sapozhenko [21]. This lemma brings up 

an intelligent idea on bounding the number of subsets of a given size whose neighborhood

is also of a given size, and is now known as the Sapozhenko’s graph container lemma. 

See [9] for a beautifully written exposition of this proof. Inspired by Sapozhenko’s work, 

Galvin [8] generalized Theorem 1.1 to the hard-core models on Qn with parameter λ >√
2 − 1, and gave a systematic study on the behavior of the random independent set 

chosen from Qn according to the hard-core model.

Very recently, Jenssen and Perkins [13] reinterpreted Sapozhenko’s proof in terms of 

the cluster expansion from statistical physics and refined Korshunov-Sapozhenko’s [17]

and Galvin’s [8] results by computing additional terms in the asymptotic expansion. 

Moreover, they determine the asymptotics of hard-core models on Qn for all constant λ

by using more terms of the cluster expansion. An example of their results on I(Qn) is 

the following.

Theorem 1.2 (Jenssen and Perkins [13]).

|I(Qn)| =2
√

e · 22n−1

(

1 +
3n2 − 3n − 2

8 · 2n
+

243n4 − 646n3 − 33n2 + 436n + 76

384 · 22n

+ O(n6 · 2−3n)

)

,

as n → ∞.

For every k ∈ [n], we say a collection of subsets of [n] is the k-th layer of Qn, denoted 

by Lk, if it consists of all subsets of [n] of size k. Denote by B(n, k) the subgraph of Qn

induced on Lk ∪ Lk−1.

Duffus, Frankl, and Rödl [3] initiated the study of mis(B(n, k)), the number of maximal 

independent sets of B(n, k). The trivial lower bound, 2(n−1

k−1
), is based on the observation 
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that for any graph G and induced matching M of G, each of the 2|M | sets consisting of one 

vertex from each edge of M extends to at least one maximal independent set, and these 

extensions are all different. Ilinca and Kahn [11] determined the logarithmic asymptotics 

of mis(B(n, k)) and proposed the question of determining its actual asymptotics. Indeed, 

Ilinca and Kahn [11] conjectured that mis(B(n, k)) is not far from the trivial lower bound. 

However, this conjecture was later disproved by Balogh, Treglown and Wagner [1], who 

improved the trivial lower bound by a factor of 2Cn3/2

for k sufficiently close to n/2.

Although the logarithmic asymptotics of mis(B(n, k)) has been determined, surpris-

ingly, a more fundamental question, that is, determining the asymptotics of I(B(n, k)), 

has not been touched in the literature. Similarly as for independent sets of the hypercube, 

a trivial lower bound

2(n
k) + 2( n

k−1
) − 1 (1)

can be obtained by taking all subsets contained in Lk or Lk−1. However, one can easily 

improve the lower bound by considering all independent sets with exactly one element 

in one of the layers, which shows that the truth is indeed far from (1). For the upper 

bound, there are several studies of independent sets in general graphs, see [14,20,23]. In 

particular, a direct application of Sah, Sawhney, Stoner, and Zhao [20] shows that the 

number of independent sets in B(n, k) is at most

(2k + 2n−k+1 − 1)
1
2

(

1
n−k+1

(n
k)+ 1

k ( n
k−1

)
)

, (2)

which is far from the trivial lower bound.

1.2. Our results

Let G be a simple bipartite graph with classes X and Y . A set A ⊆ X (and similarly 

for A ⊆ Y ) is k-linked if A is connected in Gk, where Gk is a simple graph defined on 

V (G), in which two vertices are adjacent if their distance in G is at most k. A k-linked 

component of a set B ⊆ X (and similarly for B ⊆ Y ) is a maximal k-linked subset of B.

In this paper, we study the independent sets in the graph B(n, k) when n = 2d − 1 is 

an odd number and k = d, that is, the subgraph of Qn induced by the two largest layers. 

Let N =
(

n
d

)

. Observe that B(n, d) is a d-regular bipartite graph with bipartition classes 

Ld and Ld−1, each of size N .

For the hypercube Qn, a simple probabilistic argument shows that k vertices in E
(and similarly in O) typically have disjoint neighborhoods, for sufficiently small k. By 

taking independent sets with such vertices on one side, it is not hard to improve the 

trivial lower bound |I(Qn)| ≥ 22n−1 to that given by Theorem 1.1. For more details, 

we refer readers to [9]. In other words, an independent set in Qn typically satisfies the 

following property: all 2-linked components of I ∩ E or I ∩ O are of size 1.
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However, the phenomenon is no longer true for B(n, d). We will see in Section 3 that 

indeed a lot of independent sets in B(n, d) have many pairs of vertices in one of the 

classes, which are at distance 2 from each other. Our first main result describes the 

typical structure of independent sets in B(n, d).

Theorem 1.3. Almost all independent sets I in B(n, d) have the following property.3 There 

exists k ∈ {d − 1, d} such that every 2-linked component of I ∩ Lk is either of size 1 or 

2.

Unlike many other similar problems in the field (e.g., the number of Kt-free graphs), 

even though we have a deep understanding on the structure of sets in I(B(n, d)), it is still 

very hard to estimate the magnitude of I(B(n, d)) as its typical structure is intrinsically 

sophisticated due to the appearance of 2-linked components of size 2. From (1) and (2), 

we have the following trivial bounds:

2 · 2N − 1 ≤ |I(B(n, d))| ≤ (2d+1 − 1)
1
d (n

d) ≤ 2N+N/d.

Our second main result describes the precise asymptotics for the number of independent 

sets in B(n, d).

Theorem 1.4. As d → ∞, the number of independent sets in B(n, d) is

|I(B(n, d))| = 2(1 + o(1))2N exp

(

N2−d +

(

d

2

)

N2−2d

)

.

An application of Stirling’s formula gives N = (1 + o(1))22d−1/
√

πd. Then we have

N2−d +

(

d

2

)

N2−2d = (1 + o(1))
2d−1

√
πd

+ (1 + o(1))
d3/2

4
√

π
,

which measures how far the truth is deviated from the trivial lower bound 2 · 2N − 1. 

To motivate this complicated formula provided in Theorem 1.4, we describe a collection 

of independent sets, whose size is ‘reasonably close’ to |I(B(n, d))|, see Example 3.1 in 

Section 3.

Similarly as in some of the previous work (e.g., see [8,13]), instead of counting the 

number of independent sets in B(n, d), we prove a generalization of Theorem 1.4 for in-

dependence polynomials with a wide range of parameters. The statement of this stronger 

theorem requires more technical definitions from statistical physics and from [13], and 

therefore we postpone it to Section 5.

One of the main approaches to the proof of Theorem 1.4 is the recently developed 

method of Jenssen and Perkins [13], which combines Sapozhenko’s graph container 

3 That is, the proportion of independent sets that do not have this property goes to zero as d → ∞.
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lemma, a classical tool from graph theory, with the cluster expansion for polymer models, 

a well-studied technique in statistical physics. This method is a powerful tool for obtain-

ing considerably sharper asymptotics and detailed probabilistic information about the 

typical structure of independent sets for certain bipartite graphs. For more intuitive 

explanations of this method, we refer the readers to the original paper [13].

Surprisingly, the method of Jenssen and Perkins, which was first used for counting 

independent sets in Qn, works smoothly for independent sets in B(n, d), despite the sub-

stantial difference between their typical structures. This perhaps demonstrates that the 

method has potential to handle objects with more sophisticated underlying structures. A 

closely related problem is the study of proper q-colorings of Qn. The work of Galvin [7]

and Kahn and Park [15] shows that for q = {3, 4}, proper q-coloring typically are not 

far from the trivial construction, that is, using �q/2� colors for one bipartite class and 

the remaining 
q/2� colors for the other class. Galvin and Engbers [4], and Kahn and 

Park [15] also pointed out that for q ≥ 5, colorings will typically have many ‘flaw’s, 

which substantially increases the difficulty of the problem. As we were working on this 

project, we heard that Keevash and Jenssen [12] apply this method to study the number 

of q-colorings of Qn for q ≥ 5.

The rest of the paper is organized as follows. In Section 2, we first present some 

preliminary results, which are crucial for our proofs. Then we discuss the typical behavior 

of independent sets in B(n, d) and prove Theorem 1.3 in Section 3. In Section 4, we give 

a general introduction on polymer models and cluster expansions using the language of 

graph theory. In Section 5, we introduce the specific polymer model used in this paper, 

and present a generalization of Theorem 1.4 for counting weighted independent sets in 

B(n, d), that is, Theorem 5.1. We then prove Theorem 5.1 in Section 6, and close the 

paper with the proof of Lemma 2.1 in Section 7.

2. Preliminaries

The most important tool of this paper is a following variant of Lemma 3.10 in [8]

for B(n, d), which can be viewed as a weighted version of Sapozhenko’s graph container 

lemma [21]. The proof involves several technical lemmas, which are essentially built on 

the method of Sapozhenko [21], and will be postponed to Section 7.

For D ∈ {Ld, Ld−1}, and a set A ⊆ D, we write N(A) for the set of vertices that are 

neighbors of a vertex in A, and let [A] = {v ∈ D : N(v) ⊆ N(A)} be the closure of A.

Lemma 2.1. For integers a, b ≥ 1, let

G(a, b) = {A ⊆ D : A 2-linked, |[A]| = a, |N(A)| = b}.

Then there exist constants C0, C1 > 0, such that for all λ ≥ C0 ln d/d1/3, and all a ≤
1
2

(

n
d

)

,
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∑

A∈G(a,b)

λ|A|

(1 + λ)b
≤
(

n

d

)

exp

(

−C1(b − a) ln d

d2/3

)

.

Next we present some isoperimetric inequalities on B(n, d), which can be easily derived 

from direct applications of the Kruskal-Katona Theorem [19,16], and the symmetry of 

Ld and Ld−1. Here we omit the detailed proof.

Lemma 2.2. Let d be sufficiently large and S ⊆ Ld (or S ⊆ Ld−1).

(i) If |S| ≤ d/4, then |N(S)| ≥ d|S| − |S|2/2.

(ii) If |S| ≤ d4, then |N(S)| ≥ d|S|/6.

(iii) If |S| ≤ 1
2

(

n
d

)

, then |N(S)| ≥
(

1 + 1
2d−1

)

|S|.

We also use the following lemma from [8] that bounds the number of k-linked subsets 

of a d-regular graph.

Lemma 2.3 (Galvin [8]). Let Σ = (V, E) be a d-regular graph with d ≥ 2. The number of 

k-linked subsets of V of size t which contain a fixed vertex is at most exp(3kt ln d).

Corollary 2.4. The number of 2-linked subsets of S ⊆ Ld (or S ⊆ Ld−1) of size t, which 

contain a given vertex v is at most exp(6t ln d).

3. The typical structure of independent sets in B(n, d)

Let t = N2−d. Since ω(1) = t = o(
√

N), we have

(

N

t

)

= (1 + o(1))
1√
2πt

(

Ne

t

)t

,

and therefore

(

N

t

)

2N−dt = (1 + o(1))
1√
2πt

(

Ne

t

)t

2N−dt = (1 + o(1))
1√
2πt

(

e2d
)t

2N−dt

≥ (1 + o(1))2N exp
(

N2−d
)

exp(−d/2).

(3)

Take a t-element subset T of Ld uniformly at random. It is not hard to show that

E(|N(T )|) =
∑

v∈Ld−1

P (v ∈ N(T )) =
∑

v∈Ld−1

P (|N(v) ∩ T | ≥ 1)

= N

(

d

(

N − 1

t − 1

)

/

(

N

t

)

−
(

d

2

)(

N − 2

t − 2

)

/

(

N

t

)

+ o

(

1

N

))

= dt −
(

d

2

)

t2

N
+ o(1),
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which goes to infinity as d increases. Applying standard probabilistic methods (with 

ε = o(dt/N)), one can show that there are (1 − o(1))
(

N
t

)

number of t-element subsets of 

Ld with

|N(T )| ≥ (1 − ε)E(|N(T )|) ≥ (1 − ε)

(

dt −
(

d

2

)

t2

N
+ o(1)

)

= dt − (1 + o(1))

(

d

2

)

t2

N

= dt − (1 + o(1))

(

d

2

)

N2−2d.

(4)

Let T be the family of t-element subsets of Ld satisfying (4), and we have |T | ≥
(1 − o(1))

(

N
t

)

. Then the number of independent sets I with |I ∩ Ld| = t is at least

∑

T ∈T

2N−|N(T )| ≥ (1 − o(1))

(

N

t

)

2N−dt exp

(

(ln 2 + o(1))

(

d

2

)

N2−2d

)

≥ (1 + o(1))2N exp

(

N2−d + (ln 2 + o(1))

(

d

2

)

N2−2d

)

.

By symmetry, we obtain the same lower bound for the number of independent sets I

with |I ∩ Ld−1| = t. Since the number of independent sets I with both |I ∩ Ld| = t and 

|I ∩ Ld−1| = t is tiny, we obtain the following.

Example 3.1. Let t = N2−d. The number of independent sets I of B(n, d) with either 

|I ∩ Ld| = t or |I ∩ Ld−1| = t is at least

2(1 + o(1))2N exp

(

N2−d + (ln 2 + o(1))

(

d

2

)

N2−2d

)

.

We believe that a very careful analysis on these independent sets might give a matching 

lower bound for Theorem 1.4. In other words, we expect that a typical independent set in 

B(n, d) have about N2−d vertices in one of the classes, and most of them are at distance 

at least 4 from each other, except for about Θ(d3/2) pairs, which are at distance 2 from 

each other. As we did not see an easy argument justifying this sharper claim, we did not 

push our argument further.

Proof of Theorem 1.3. Let I be the set of independent sets I in B(n, d) with |I ∩ Ld| ≤
N/2. For each I ∈ I, let

LC(I) = {B ⊆ I ∩ Ld | B is a 2-linked component, and |B| ≥ 3},

and m(I) :=
∑

B∈LC(I) |N(B)|. For each 0 ≤ i ≤ N , let Ui be the collection of I ∈ I
with m(I) = i. Clearly, we have I = U0 ∪ ⋃N

i=3d−3 Ui. From this and the symmetry of 

Ld and Ld−1, to prove Theorem 1.3, it is sufficient to show that
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N
∑

i=3d−3

|Ui| = o(|U0|).

For each 3d − 3 ≤ i ≤ N , we define a bipartite graph Gi with classes U0 and Ui in 

the following way. For I ∈ Ui and J ∈ U0, two sets I, J are adjacent if J could be 

obtained from I by removing all its vertices in 
⋃

B∈LC(I) B, and adding some subset of 
⋃

B∈LC(I) N(B). Observe that by definition

dGi
(I) = 2m(I) = 2i for all I ∈ Ui. (5)

On the other side, the degree of a set in U0 is determined by the number of large 2-

linked components. For 3d −3 ≤ j ≤ N/2, let α(j) be the number of 2-linked components 

B of Ld with |N(B)| = j. If j ≤ d4, then by Lemma 2.2(ii), we have |B| ≤ 6j/d. Using 

Corollary 2.4, we obtain that

α(j) ≤ N exp(36j ln d/d) for j ≤ d4.

If j ≥ d4, then by Lemma 2.2(iii) we have j −|B| ≥ j/(2d). Using Lemma 2.1 with λ = 1, 

we obtain that

α(j) ≤
∑

j−a≥j/(2d)

|G(a, j)| ≤
∑

j−a≥j/(2d)

2jN exp

(

−C1(j − a) ln d

d2/3

)

≤ 2jN
∑

a≤N/2

exp

(

−C1j ln d

2d5/3

)

≤ 2jN2 exp

(

−C1j ln d

2d5/3

)

≤ 2j exp

(

−C1j ln d

4d5/3

)

for j ≥ d4,

where the last inequality follows from N ≤ 22d and j ln d/d5/3 ≥ d7/3 ln d � d.

Hence, for i ≥ 3d − 3, the number of disjoint 2-linked components B1, . . . , B�, . . ., for 

which |B�| ≥ 3 for every � ≥ 1 and 
∑

� |N(B�)| = i, is

β(i) ≤
∑

i=i1+i2

⎛

⎜

⎜

⎜

⎝

∑

∑

� j�=i1

3d−3≤j�≤d4

∏

�

α(j�)

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

∑

∑

� k�=i2

k�≥d4

∏

�

α(k�)

⎞

⎟

⎟

⎠

≤
∑

i=i1+i2

⎛

⎜

⎜

⎜

⎝

∑

∑

� j�=i1

3d−3≤j�≤d4

N
i1

3d−3 exp(36i1 ln d/d)

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

∑

∑

� k�=i2

k�≥d4

2i2 exp

(

−C1i2 ln d

4d5/3

)

⎞

⎟

⎟

⎠

≤
∑

i=i1+i2

(

2O(i1 ln d/d)20.7i1 exp

(

36i1 ln d

d

))(

2O(i2 ln d/d4)2i2 exp

(

−C1i2 ln d

4d5/3

))
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≤
∑

i=i1+i2

20.8i1 · 2i2 exp
(

−C ′i2 ln d/d5/3
)

,

for some constant C ′ > 0. Since N ≤ 22d, we further obtain that

β(i) ≤
{

20.8i for i < d4,

20.8i + N2i exp
(

−C ′d4 ln d/d5/3
)

= o(2i/N) for i ≥ d4.
(6)

Note that for every set J ∈ U0, we have dGi
(J) ≤ β(i). Therefore by (5) and (6), we 

obtain that

N
∑

i=3d−3

|Ui| ≤
N
∑

i=3d−3

|U0|β(i)2−i ≤ |U0|

⎛

⎝

d4

∑

i=3d−3

2−0.2i +

N
∑

i=d4

o(1/N)

⎞

⎠ = o(|U0|),

which completes the proof. �

4. Polymer models and cluster expansions

In this section, we introduce polymer models and cluster expansion in the language 

of graph theory. For more general information and applications on polymer models, 

see [5,13,18].

Consider a finite set P, and an unoriented graph HP defined on P, in which every 

vertex has a loop edge and there is no multiple edge. The vertices S ∈ P are called 

polymers for historical reasons in physics. Two polymers S, S′ are adjacent, denoted by 

S ∼ S′, if there is an edge SS′ in HP . In particular, every polymer is adjacent to itself. 

We equip each polymer S with a complex-valued weight w(S). Such a weighted graph 

(HP , w) is referred as the polymer model. For convenience, sometimes we simply write 

(P, w) or P for the polymer model. Let ΩP be the collection of independent sets, where 

loops are allowed, of HP , including the empty set. The polymer model partition function

Ξ(P, w) =
∑

Λ∈ΩP

∏

S∈Λ

w(S) (7)

is essentially a weighted independent polynomial of the polymer model (HP , w).

Let Γ = (S1, S2, . . . , Sk) be a non-empty ordered tuple of polymers, where repetitions 

are allowed. Denote by HP(Γ) the simple graph defined on the multiset {S1, S2, . . . , Sk}
with edge set E = {SiSj : Si ∼ Sj in HP}. We say such a tuple Γ is a cluster if the 

graph HP(Γ) is connected. For example, for two adjacent polymers S, S′, the 3-tuple 

Γ = (S, S′, S) is a cluster with HP(Γ) = K3, where Km denotes the complete graph on 

m vertices. For a simple graph H, let

φ(H) =
1

|V (H)|!
∑

(−1)e(F ),
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where the sum is over all connected subgraphs F of H such that F contains all the 

vertices of H. The function φ(H) is often referred as the Ursell function. The weight 

function of a cluster Γ is defined as follows:

w(Γ) := φ(HP(Γ))
∏

S∈Γ

w(S). (8)

Let C be the set of all clusters. The cluster expansion is the formal power series of the 

logarithm of the partition function Ξ(P, w), which takes the form4

ln Ξ(P, w) =
∑

Γ∈C

w(Γ). (9)

Note that many copies of the same polymer may appear in a cluster. As a consequence, 

the cluster expansion is an infinite series even for a finite polymer model. A sufficient 

condition for the convergence of the cluster expansion is given by Kotecký and Preiss [18].

Theorem 4.1 (Convergence of the cluster expansion [18]). Let f : P → [0, ∞) and g :

P → [0, ∞) be two functions. Suppose that for all polymers S0 ∈ P,

∑

S∼S0

|w(S)| exp (f(S) + g(S)) ≤ f(S0), (10)

then the cluster expansion (9) converges absolutely. Moreover, if we let g(Γ) =
∑

S∈Γ g(S)

and write Γ ∼ S if there exists S′ ∈ Γ so that S ∼ S′, then for all polymers S,

∑

Γ∈C,Γ∼S

|w(Γ)| exp (g(Γ)) ≤ f(S). (11)

5. Main theorem

The independence polynomial of a graph G is

ZG(λ) :=
∑

I∈I(G)

λ|I|.

When the underlying graph is clear, we simply write it as Z(λ). The independence 

polynomial can be viewed as the partition function of the hard-core model from statistical 

physics: a probability distribution on independent sets of G weighted by the fugacity 

parameter λ, in which each independent set I is chosen with probability λ|I|/Z(λ). 

The hard core model plays a vital role in the study of independent sets and has been 

extensively studied by many researchers in recent years. For example, Davies, Jenssen, 

4 For details of the cluster expansion, we refer readers to Chapter 5 of [6].
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Perkins, and Roberts [2], strengthening a classical result for independent sets of d-regular 

graphs, showed that a union of copies of Kd,d maximizes the independence polynomial of 

a d-regular graph; Galvin [8] and Jenssen and Perkins [13] studied the typical structure 

of independent sets of the hypercube drawn from the hard-core model for a wide range 

of parameters λ.

Recall that n = 2d − 1. We define a polymer model on B(n, d) as follows. For D ∈
{Ld, Ld−1}, let

PD :=

{

S ⊆ D : S is non-empty and 2-linked, |[S]| ≤ 1

2

(

n

d

)}

(12)

be the set of polymers. Two polymers S, S′ are adjacent if S ∪ S′ is a 2-linked set. For 

a given λ > 0, we equip the elements of P with the weight function

w(S) =
λ|S|

(1 + λ)|N(S)|
. (13)

By symmetry, the polymer models PLd
and PLd−1

have the same properties. For conve-

nience, we omit the subscript whenever it is not crucial, and in most cases one should 

think of PLd
as P.

The cluster expansion of the polymer model (P, w) is defined as in (9). Denote by

‖Γ‖ :=
∑

S∈Γ

|S|

the size of a cluster Γ. For k ≥ 1, let

Lk :=
∑

Γ∈C, ‖Γ‖=k

w(Γ) (14)

be the k-th term of the cluster expansion, and

Tk :=
k−1
∑

i=1

Li (15)

be the k-th truncated cluster expansion.

The following theorem, extending Theorem 1.4 to the independence polynomial Z(λ)

with a wide range of λ, is one of the main contributions of this paper.

Theorem 5.1. Suppose that λ ≥ C0 ln d/d1/3, where C0 is a sufficiently large constant 

and λ is bounded as d → ∞. Then for all fixed k ≥ 1,

Z(λ) = 2(1 + λ)N exp

⎛

⎝

k
∑

j=1

Lj + εk

⎞

⎠ ,
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in which Lk is the k-th term of the cluster expansion of the polymer model (P, w), and 

the error term εk is of size

|εk| = O

(

Nd11k+9

(1 + λ)d(k+1)−3(k+1)2/2

)

as d → ∞.

To derive a sharp asymptotic on the number of independent sets from Theorem 5.1, 

we need to compute L1 and L2 explicitly.

Polymers. Every polymer of size 1 is a single vertex of Ld. There are 
(

n
d

)

of them, and 

each has weight λ
(1+λ)d . Every polymer of size 2 is a set of two vertices of Ld sharing a 

common neighbor. There are 
(

n
d

)(

d
2

)

of them and each has weight λ2

(1+λ)2d−1 .

Clusters. There is only one type of cluster of size 1, which consists of a polymer of size 

1, with Ursell function 1. Then we have

L1 =

(

n

d

)

λ

(1 + λ)d
.

There are two types of clusters of size 2. The first type is an ordered pair of adjacent 

polymers of size 1, whose Ursell function is −1/2 and whose weight is − λ2

2(1+λ)2d . The 

number of such clusters is 
(

n
d

)

+
(

n
d

)

d(d − 1), where the first term counts for the pairs 

with repeated polymers, and the second term counts for the ordered pairs with distinct 

polymers. The second type is a single polymer of size 2, of which there are 
(

n
d

)(

d
2

)

, with 

Ursell function 1 and weight λ2

(1+λ)2d−1 . Then we have

L2 = −1

2

(

n

d

)

(d2 − d + 1)
λ2

(1 + λ)2d
+

(

n

d

)(

d

2

)

λ2

(1 + λ)2d−1
.

Proof of Theorem 1.4. When λ = 1, we have L1 = N2−d and L2 = N(d2−d −1)2−(2d+1). 

Applying Theorem 5.1, we obtain that

Z(1) = 2 · 2N exp
(

N2−d + N2−2d(d2 − d − 1)/2 + ε2

)

= 2(1 + o(1))2N exp

(

N2−d +

(

d

2

)

N2−2d

)

,

where the last equality follows from ε2 = O
(

Nd312−3d
)

= o(2−d/2), and N2−2d =

Θ(d−1/2). �

6. Proof of Theorem 5.1

Throughout this section, we fix λ ≥ C0(ln d)/d1/3, where C0 is a sufficiently large 

constant and λ is bounded as d → ∞.
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6.1. Convergence of the polymer model

For integers d, k ≥ 1, let

γ(d, k) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(dk − 3k2/2) ln(1 + λ) − 11k ln d if k ≤ d/4,

(dk/12) ln(1 + λ) if d/4 < k ≤ d4,

k/d2 if d4 < k.

(16)

For a constant C ≥ 1, we introduce a more general weight function w̃ on P (recall P
from (12)), as

w̃(S) = w(S) exp((C − 1)|S|/d2), (17)

where w(S) is defined in (13) and for brevity we omit the dependency of w̃(S) on C. 

Moreover, let f, g : P → [0, ∞) be two functions defined as

f(S) = |S|/d2 and g(S) = γ(d, |S|). (18)

The following lemma implies that the polymer model (P, w) defined in Section 5 has 

a convergent cluster expansion.

Lemma 6.1. Let w̃, f , and g be as in (17) and (18). Then for all polymers S0 ∈ P,

∑

S∼S0

|w̃(S)| exp (f(S) + g(S)) ≤ f(S0).

Proof. For a vertex u in Ld, denote by N2(u) the second neighborhood of u, i.e. the set 

of all vertices at distance two from u. By the definition of functions w̃, f and g, we have 

that for every polymer S0,

∑

S∼S0

w̃(S) exp (f(S) + g(S)) =
∑

S∼S0

w(S) exp
(

C|S|/d2 + g(S)
)

≤
∑

u∈S0

∑

v∈N2(u)

∑

S
v

w(S) exp
(

C|S|/d2 + g(S)
)

.

Together with the fact that B(n, d) is d-regular, it is sufficient to prove that for every 

v ∈ Ld,

∑

S
v

w(S) exp
(

C|S|/d2 + g(S)
)

≤ 1/d4, (19)

as it would imply that
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∑

S∼S0

w̃(S) exp (f(S) + g(S)) ≤ |S0|d2(1/d4) ≤ |S0|/d2 = f(S0).

Fix an arbitrary vertex v ∈ Ld. To prove (19), we will split the sum into three parts. 

We also omit writing the assumptions S � v everywhere, as all polymers we consider 

here contain v.

Case 1: |S| ≤ d/4. By Lemma 2.2 (i), we have |N(S)| ≥ d|S| − |S|2/2 > 0. Moreover, 

Corollary 2.4 indicates that the number of S ∈ P with |S| = k and v ∈ S is at most 

exp (6k ln d). Together with definitions of w(S) and g(S), we then obtain

∑

|S|≤d/4

w(S) exp

(

C|S|
d2

+ g(S)

)

≤
d/4
∑

k=1

∑

|S|=k

λk

(1 + λ)dk−k2/2
exp

(

Ck

d2
+

(

dk − 3k2

2

)

ln (1 + λ) − 11k ln d

)

≤
d/4
∑

k=1

λk

(1 + λ)dk−k2/2
exp

(

Ck

d2
+

(

dk − 3k2

2

)

ln(1 + λ) − 5k ln d

)

=

d/4
∑

k=1

exp
(

k ln λ − k2 ln (1 + λ) + Ck/d2 − 5k ln d
)

≤
d/4
∑

k=1

exp
(

Ck/d2 − 5k ln d
)

≤ d−5

d/4
∑

k=1

exp
(

Ck/d2
)

≤ 1

3d4
.

Case 2: d/4 < |S| ≤ d4. By Lemma 2.2 (ii), we have N(S) ≥ d|S|/6. Similarly as in 

Case 1, we obtain

∑

d/4≤|S|≤d4

w(S) exp

(

C|S|
d2

+ g(S)

)

=
d4

∑

k=d/4

∑

|S|=k

λk

(1 + λ)dk/6
exp

(

Ck

d2
+

dk

12
ln (1 + λ)

)

≤
d4

∑

k=d/4

exp

(

k ln λ +
Ck

d2
− dk

12
ln (1 + λ) + 6k ln d

)

.

Note that for λ ≥ C0(ln d)/d1/3 and d sufficiently large, we have that ln λ + C/d2 �
(d/12) ln(1 + λ), and d ln (1 + λ) ≥ O(d2/3 ln d). Then we further have

∑

d/4≤|S|≤d4

w(S) exp

(

C|S|
d2

+ g(S)

)

≤
d4

∑

k=d/4

exp

(

−dk

24
ln (1 + λ) + 6k ln d

)

≤ d4 exp(−O(d2/3 ln d)) ≤ 1

3d4
.
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Case 3: |S| ≥ d4. Recall that for S ∈ P we have |S| ≤ 1
2

(

n
d

)

. By Lemma 2.2 (iii), we have 

N(S) ≥ (1 + 1
2d )|S|. Then we have

∑

d4≤|S|≤ 1
2
(n

d)

w(S) exp

(

C|S|
d2

+ g(S)

)

=
∑

d4≤|S|≤ 1
2
(n

d)

λ|S|

(1 + λ)|N(S)|
exp

(

C|S| + |S|
d2

)

≤
∑

d4≤a≤ 1
2
(n

d)

∑

(

a+ a
2d

)

≤b≤(n
d)

∑

S∈G(a,b)

λ|S|

(1 + λ)|N(S)|
exp

(

aC + a

d2

)

≤
∑

d4≤a≤ 1
2
(n

d)

∑

(

a+ a
2d

)

≤b≤(n
d)

(

n

d

)

exp

(

aC + a

d2
− C1(b − a) ln d

d2/3

)

,

where the second inequality follows from Lemma 2.1. Since all pairs (a, b) satisfy b − a ≥
a/2d, we further obtain

∑

d4≤|S|≤ 1
2
(n

d)

w(S) exp

(

C|S|
d2

+ g(S)

)

≤
∑

d4≤a≤ 1
2
(n

d)

∑

(

1+ 1
2d

)

a≤b≤(n
d)

(

n

d

)

exp

(

(C + 1)a

d2
− C1a ln d

2d5/3

)

≤
(

n

d

)2
∑

a≥d4

exp

(

−O

(

a ln d

d5/3

))

≤
(

n

d

)3

exp
(

−d7/3
)

≤ 1

3d4
.

The sum of the upper bounds in these three cases gives (19). �

Lemma 6.2. Let P and w̃ be as in Lemma 6.1. Then for k ≤ d
48 , we have

∑

Γ∈C, ‖Γ‖≥k

|w̃(Γ)| ≤
(

n

d

)

d−2 exp (−γ(d, k)) .

Proof. Recall the definitions of f, g : P → [0, ∞) as f(S) = |S|/d2 and g(S) = γ(d, |S|). 
It follows from Lemma 6.1 that such f, g, w̃ satisfy the assumption (10) of Theorem 4.1. 

Then for every vertex v ∈ Ld, Theorem 4.1 indicates that

∑

Γ∈C, Γ∼v

|w̃(Γ)| exp(g(Γ)) ≤ d−2.

Summing over all v ∈ Ld, we obtain
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∑

Γ∈C

|w̃(Γ)| exp(g(Γ)) ≤
(

n

d

)

d−2.

Recall that g(Γ) =
∑

S∈Γ g(S). Since γ(d, k)/k is a non-increasing function of k, we 

obtain that

g(Γ) =
∑

S∈Γ

g(S) =
∑

S∈Γ

γ(d, |S|)
|S| |S| ≥ γ(d, ‖Γ‖)

‖Γ‖
∑

S∈Γ

|S| = γ(d, ‖Γ‖).

For a fixed k ≤ d/48, observe that γ(d, s) is an increasing function of s in the range 

[0, d/4], and for every s > d/4 we have γ(d, s) ≥ γ(d, k). Then it follows that

∑

Γ∈C
‖Γ‖≥k

|w̃(Γ)| exp(γ(d, k)) ≤
∑

Γ∈C
‖Γ‖≥k

|w̃(Γ)| exp(γ(d, ‖Γ‖)) ≤
∑

Γ∈C
‖Γ‖≥k

|w̃(Γ)| exp(g(Γ))

≤
(

n

d

)

d−2,

which completes the proof. �

In particular, for w̃ = w (by taking C = 1), together with the definitions of γ(d, k)

and Tk, we obtain the following corollary.

Corollary 6.3. For a fixed integer k, as d → ∞, the polymer model (P, w) defined in 

Section 5 satisfies

|Tk − ln Ξ(P, w)| ≤
(

n

d

)

d11k−2(1 + λ)−dk+3k2/2.

6.2. Independent sets in B(n, d)

Recall that P is a polymer model defined as in (12) and ΩP is the collection of 

independent sets, ignoring loops, of P. For an independent set Λ ∈ ΩP , we set

‖Λ‖ :=
∑

S∈Λ

|S| and N(Λ) := ∪S∈ΛN(S). (20)

Define a probability measure ν on ΩP as follows

ν(Λ) :=

∏

S∈Λ w(S)

Ξ(P, w)
=

1

Ξ(P, w)
· λ‖Λ‖

(1 + λ)|N(Λ)|
. (21)

Lemma 6.4. Let Λ be a random independent set drawn with distribution ν. Then with 

probability at least 1 − exp(− 1
d5

(

n
d

)

), we have

‖Λ‖ ≤ 1

d2

(

n

d

)

.
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Proof. Taking C = 2 in the function w̃ defined in (17), we get w̃(S) = w(S)e|S|d−2

, 

where w(S) is defined in (13). For the auxiliary polymer model Ξ(P, w̃), we obtain that

ln Ξ(P, w̃) =
∑

Γ∈C

w̃(Γ) ≤
∑

Γ∈C

|w̃(Γ)| ≤
(

n

d

)

d−2 exp(−γ(d, 1)) =

(

n

d

)

d9(1 + λ)3/2−d,

(22)

where the last inequality follows from Lemma 6.2 with C = 2 and k = 1. Using the 

definition of Ξ(P, w) from (7) and the definition of ‖Λ‖ from (20) we get

ln Ξ(P, w̃) − ln Ξ(P, w) = ln
Ξ(P, w̃)

Ξ(P, w)
= ln

⎛

⎝

∑

Λ∈ΩP

∏

S∈Λ w(S) exp(|S|/d2)

Ξ(P, w)

⎞

⎠

= ln

⎛

⎝

∑

Λ∈ΩP

exp

(‖Λ‖
d2

)
∏

S∈Λ w(S)

Ξ(P, w)

⎞

⎠ = ln E
(

exp(‖Λ‖/d2)
)

.

For every λ > 0, since we always include the empty set in ΩP , we have Ξ(P, w) ≥ 1. 

From this fact and inequality (22), we have

ln E
(

exp(‖Λ‖/d2)
)

≤ ln Ξ(P, w̃) ≤
(

n

d

)

d9(1 + λ)3/2−d.

Using Markov’s inequality we get

P

(

exp

(‖Λ‖
d2

)

> exp

(

1

d4

(

n

d

)))

≤ exp

(

− 1

d4

(

n

d

)

+

(

n

d

)

d9

(1 + λ)d−3/2

)

.

Since (1 + λ)d− 3
2 grows much faster than d9, when λ ≥ C0 ln(d)/d1/3 and d tends to 

infinity, we conclude that

P

(

‖Λ‖ >
1

d2

(

n

d

))

≤ exp

(

− 1

d5

(

n

d

))

. �

For an independent set I ∈ I(B(n, d)), we say Ld is the minority side of I, denoted 

by M, if |I ∩Ld| < |I ∩Ld−1| and the majority side otherwise. Respectively we say Ld−1

is the minority side if |I ∩ Ld| ≤ |I ∩ Ld−1| and the majority side otherwise. We define a 

probability measure μ̂ on I(B(n, d)) by constructing an independent set I of B(n, d) in 

the following manner:

1. First, choose D ∈ {Ld, Ld−1} uniformly at random, and we call the layer D as the 

defect side of I5;

5 These terms minority side, majority side and defect side are borrowed from [13].
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2. Let Λ be a random independent set of the polymer model PD drawn with distribution 

ν (see (21)), and assign I ∩ D = ∪S∈ΛS;

3. Let N be the non-defect side. For each v ∈ N \ N(Λ), we add v to the set I

independently with probability λ
1+λ .

Lemma 6.5. Let I be a random independent set drawn from the distribution μ̂. Then with 

probability at least 1 − 2 exp
(

− 1
d5

(

n
d

))

, the minority side of I is the defect side.

Proof. Let M be the minority side, D be the defect side, and N be the non-defect side 

of I. By taking components of I ∩ D as polymers, there exists a unique independent set 

Λ of PD such that I ∩ D = ∪S∈ΛS. Splitting the probability into two cases we get

P (M �= D) =P

(

M �= D, ‖Λ‖ ≤ 1

d2

(

n

d

))

+ P

(

M �= D, ‖Λ‖ >
1

d2

(

n

d

))

.

From Lemma 6.4, we get

P

(

M �= D, ‖Λ‖ >
1

d2

(

n

d

))

≤ exp

(

− 1

d5

(

n

d

))

.

Using conditional probability we get

P

(

M �= D, ‖Λ‖ ≤ 1

d2

(

n

d

))

=
∑

‖Λ‖≤ 1

d2 (n
d)

P (Λ = Λ)P (M �= D | Λ = Λ) .

By the definition of μ̂, if we fix a Λ with ‖Λ‖ < 1
d2

(

n
d

)

, then for each v ∈ LN \ N(Λ)

we have P (v ∈ I ∩ LN ) = λ/(1 + λ). Then |I ∩ N | follows a binomial distri-

bution Bin (K, λ/(1 + λ)), for some K =
(

n
d

)

− |N(Λ)| >
(

1 − 1
d

) (

n
d

)

. Recall that 

λ ≥ C0 ln(d)/d1/3 and it is bounded as d goes to infinity. Using the Chernoff bound, 

we obtain that

P

(

|I ∩ N | ≤ 1

d2

(

n

d

))

= P

(

Bin

(

K,
λ

1 + λ

)

≤ 1

d2

(

n

d

))

≤ exp

(

− 1

d1/3

(

n

d

))

.

Therefore

P

(

M �= D, ‖Λ‖ ≤ 1

d2

(

n

d

))

≤
∑

‖Λ‖≤ 1

d2 (n
d)

P (Λ = Λ) exp

(

− 1

d1/3

(

n

d

))

≤ exp

(

− 1

d1/3

(

n

d

))

.

Finally, we conclude that

P (M �= D) ≤ exp

(

− 1

d1/3

(

n

d

))

+ exp

(

− 1

d5

(

n

d

))

≤ 2 exp

(

− 1

d5

(

n

d

))

. �
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Lemma 6.6. Suppose λ ≥ C0 ln(d)/d1/3 and λ is bounded as d → ∞. Then

∣

∣

∣
ln Z(λ) − ln

(

2(1 + λ)(
n
d)Ξ(P, w)

)∣

∣

∣
= O

(

exp

(

− 1

d5

(

n

d

)))

.

Proof. Let Md be the collection of sets I in I(B(n, d)) such that every 2-linked com-

ponent S of I ∩ Ld satisfies |[S]| ≤ 1
2

(

n
d

)

. We define Md−1 similarly. A simple counting 

argument indicates that

∑

I∈Md

λ|I| =
∑

Λ∈ΩP

(n
d)−|N(Λ)|
∑

i=0

(
(

n
d

)

− |N(Λ)|
i

)

λ‖Λ‖+i =
∑

Λ∈ΩP

λ‖Λ‖(1 + λ)(
n
d)−|N(Λ)|

= (1 + λ)(
n
d)Ξ(P, w).

We first claim that every independent set I of B(n, d) is in Md ∪ Md−1. Assume that 

this is not true for some set I. Then there exist a set S1 ⊆ I ∩Ld and a set S2 ⊆ I ∩Ld−1

such that both of them are 2-linked sets, and |[S1]|, |[S2]| ≥ 1
2

(

n
d

)

. Since B(n, d) is d-

regular, we have that |N(S1)| = |N([S1])| ≥ |[S1]| ≥ 1
2

(

n
d

)

. This implies that there exists 

a vertex v ∈ [S2] ∩ N(S1). Then there is a vertex u ∈ S1 with u ∼ v. Moreover, since 

v ∈ [S2], we have u ∈ N([S2]) = N(S2), and therefore there is a vertex v′ ∈ S2 with 

u ∼ v′. Since both u, v′ belong to I and they are adjacent, it contradicts the assumption 

that I is independent.

Let B = Md ∩ Md−1. We then obtain that

2(1 + λ)(
n
d)Ξ(P, w) =

∑

I∈Md

λ|I| +
∑

I∈Md−1

λ|I| = Z(λ) +
∑

I∈B

λ|I|. (23)

Take a random independent set I drawn from μ̂. Then we have

P (I ∈ B ∧ M �= D) =
∑

I∈B

P (I = I ∧ M �= D)

=
∑

I∈B

1

2
· ν(I ∩ D)

(

λ

1 + λ

)|I|−|I∩D|(
1

1 + λ

)(n
d)−|N(I∩D)|−(|I|−|I∩D|)

=
∑

I∈B

1

2
· 1

Ξ(P, w)

λ|I∩D|

(1 + λ)|N(I∩D)|

λ|I|−|I∩D|

(1 + λ)(
n
d)−|N(I∩D)|

=
1

2(1 + λ)(
n
d)Ξ(P, w)

∑

I∈B

λ|I|.

Together with Lemma 6.5, we have

∑

I∈B

λ|I| ≤ 2(1 + λ)(
n
d)Ξ(P, w) · P (M �= D) ≤ 2(1 + λ)(

n
d)Ξ(P, w) · 2 exp

(

− 1

d5

(

n

d

))

.
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This and (23) complete the proof. �

Now we have all ingredients for the proof of Theorem 5.1.

Proof of Theorem 5.1. By Corollary 6.3, we have

∣

∣

∣

∣

∣

k
∑

i=1

Li − ln Ξ(P, w)

∣

∣

∣

∣

∣

≤
(

n

d

)

d11(k+1)−2

(1 + λ)d(k+1)−3(k+1)2/2
.

Together with Lemma 6.6, we obtain that

Z(λ) = 2(1+λ)(
n
d)Ξ(P, w) exp

[

O

(

exp

(

− 1

d5

(

n

d

)))]

= 2(1+λ)(
n
d) exp

(

k
∑

i=1

Li + εk

)

,

where

εk ≤
(

n

d

)

d11(k+1)−2

(1 + λ)d(k+1)−3(k+1)2/2
+ O

(

exp

(

− 1

d5

(

n

d

)))

= O

((

n

d

)

d11k+9

(1 + λ)d(k+1)−3(k+1)2/2

)

. �

7. Proof of Lemma 2.1

The proof of Lemma 2.1 relies on the following three lemmas from Galvin [8] and 

Galvin and Tetali [10], which are essentially built on Sapozhenko’s graph container 

method [21]. We also use the notation 
(

n
≤k

)

as a shorthand for 
∑

0≤i≤k

(

n
i

)

.

Lemma 7.1. [8] Let Σ be a d-regular bipartite graph with bipartition classes X and Y . Let 

G = {A ⊆ X : A is 2-linked, |[A]| = a, |N(A)| = b}, and set t = b −a. Fix 1 ≤ ϕ ≤ d −1. 

Let

mϕ = min{|N(K)| : y ∈ Y, K ⊆ N(y), |K| > ϕ}.

Let C > 0 be an arbitrary number such that C ln d/(ϕd) < 1. Then there is a family 

A1 ⊆ 2Y × 2X with

|A1| ≤ |Y | exp

(

78bC ln2 d

ϕd
+

78b ln d

dCmϕ/(ϕd)
+

78t ln2 d

d − ϕ

)( 3bC ln d
ϕ

≤ 3tC ln d
ϕ

)(

db

≤ dt/(ϕ(d − ϕ))

)

(24)

and a map π1 : G → A1 for which π1(A) := (F ∗, S∗) satisfies F ∗ ⊆ N(A), S∗ ⊇ [A], and

|N(A) \ F ∗| ≤ td/(d − ϕ), |S∗ \ [A]| ≤ td/(d − ϕ).
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Lemma 7.2. [8] Let Σ, G and t be as in Lemma 7.1. Let (F ∗, S∗) ∈ 2Y × 2X and x > 0

be given. Let

G′ = {A ∈ G : F ∗ ⊆ N(A), S∗ ⊇ [A], |N(A) \ F ∗| ≤ x, and |S∗ \ [A]| ≤ x}.

Fix 0 < ψ < d. Then there is a constant c > 0 (independent of d, t, x), a family A2 ⊆
2Y × 2X with

|A2| ≤ exp

(

cx

d
+

ct ln d

ψ

)

(25)

and a map π2 : G′ → A2 for which π2(A) := (F, S) satisfies F ⊆ N(A), S ⊇ [A] and

|S| ≤ |F | + 2tψ/(d − ψ). (26)

Lemma 7.3. [10] Let Σ, G and t be as in Lemma 7.1. Let ψ and γ satisfy 1 ≤ ψ ≤ d/2

and 1 ≥ γ > −2ψ
d−ψ . Fix (F, S) ∈ 2Y × 2X satisfying (26), and λ ≥ C0 ln d/d1/3, where C0

is a sufficiently large constant. Then we have

∑ λ|A|

(1 + λ)b
≤ max

{

(1 + λ)−γt,

(

3db

≤ 2tψ
d−ψ + γt

)

(1 + λ)−t

}

,

where the sum is over all A ∈ G satisfying F ⊆ N(A) and S ⊇ [A].

We also use the following basic binomial estimate for k = o(n):

(

n

≤ k

)

≤ exp
(

(1 + o(1))k ln
(n

k

))

. (27)

Proof of Lemma 2.1. Fix a, b with a ≤ 1
2

(

n
d

)

. By Lemma 2.2(iii), we have

t := (b − a) ≥ b/(2d). (28)

Set

Σ = B(n, d), ϕ = d/2, C = 12, ψ = d2/3, x = td/(d − ϕ). (29)

Lemma 2.2(ii) implies that

mϕ ≥ d2/12. (30)

Applying Lemmas 7.1 and 7.2 on Σ with the given ϕ, ψ and x, we associate each 

A ∈ G with a pair of sets (F, S) ∈ 2Ld × 2Ld−1 , which satisfies F ⊆ N(A), S ⊇ [A]

and (26). Moreover, the number of such set pairs is at most |A1| · |A2|, where the upper 
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bounds on the sizes of A1, A2 are given in Lemmas 7.1 and 7.2. Substituting (27), (28), 

(29), and (30) into (24) and (25), we have

|A1| ≤
(

n

d

)

exp

(

O

(

b ln2 d

d2

)

+ O

(

b ln d

d2

)

+ O

(

t ln2 d

d

)

+ O

(

t ln d

d
ln

b

t

)

+ O

(

t

d
ln

bd2

4t

))

=

(

n

d

)

exp

(

O

(

t ln2 d

d

)

+ O

(

t ln d

d

)

+ O

(

t ln2 d

d

)

+ O

(

t ln2 d

d

)

+ O

(

t ln d

d

))

=

(

n

d

)

exp

(

O

(

t ln2 d

d

))

,

and

|A2| ≤ exp

(

O

(

t

d

)

+ O

(

t ln d

d2/3

))

≤ exp

(

O

(

t ln d

d2/3

))

.

Fix a pair of set (F, S) ∈ 2Ld × 2Ld−1 satisfying (26). Set

γ :=
ln(1 + λ) − 6ψ ln d

d−ψ

ln(1 + λ) + 3 ln d
≥ (C0/3) − 3

d1/3
,

where the inequality follows from λ ≥ C0 ln d/d1/3 for sufficiently large C0 and d. To-

gether with (28), we have

2tψ

d − ψ
+ γt ≥

(

2d2/3

d − d2/3
+

(C0/3) − 3

d1/3

)

t = Ω(d−4/3b),

and therefore,

(

3db

≤ 2tψ
d−ψ + γt

)

≤ exp

(

(1 + o(1))

(

2tψ

d − ψ
+ γt

)

ln
3db

2tψ
d−ψ + γt

)

≤ exp

(

3

(

2tψ

d − ψ
+ γt

)

ln d

)

= (1 + λ)(1−γ)t,

with the equality following from the definition of γ. Finally, by Lemma 7.3 and the above 

discussion, we obtain that

∑

A∈G(a,b)

λ|A|

(1 + λ)b
≤ |A1| · |A2| · max

{

(1 + λ)−γt,

(

3db

≤ 2tψ
d−ψ + γt

)

(1 + λ)−t

}

≤
(

n

d

)

exp

(

−γt ln(1 + λ) + O

(

t ln d

d2/3

))

=

(

n

d

)

exp

(

−C1t ln d

d2/3

)

,

for some C1 > 0, as C0 is sufficiently large. �
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8. Future directions

There are many interesting problems along this line. The most natural question is to 

determine the number of independent sets in B(n, k) for every k. As the ground graph is 

no longer regular, but biregular, proving the corresponding container theorem requires 

generalizations of Lemmas 7.1, 7.2, 7.3 for biregular graphs, which could be done by a 

slight variation of the proof of Sapozhenko [22], also see in [9].

We believe that when k is sufficiently close to n/2, Theorem 1.3 can be extended to 

B(n, k), that is, typical independent sets only have ‘defects’ of size 1 or 2 comparing to 

the trivial construction. It would be interesting to determine the range of k for which it 

works. We decided not to work out the details, as we wanted to avoid extra technicality 

in this paper.

Another important open problem is to determine the precise asymptotics for the 

number of maximal independent sets of B(n, k), which is often denoted by mis(B(n, k)) in 

the literature. As we mentioned in Section 1, Balogh, Treglown and Wagner [1] disproved 

a conjecture of Ilinca and Kahn [11] on mis(B(n, k)) by improving the trivial lower bound 

construction, and since then no further result is known. After doing analysis on some 

special polymer model and its cluster expansion, we propose the following conjecture for 

the middle two layers, jointly with Adam Zsolt Wagner.

Conjecture 8.1 (Balogh, Garcia, Li, Wagner). Let n = 2d − 1. As d → ∞,

|mis(B(n, d))| = (1 + o(1))n2(n−1

d−1
) exp

((

n − 1

d − 1

)

(d − 1)2

2n

)

.

Moreover, almost all maximal independent set in B(n, d) can be obtained from the BTW 

construction in [1].

Just as for hypercube Qn, it is also natural to study the number of proper q-colorings 

for the middle two layers. Moreover, one might ask the above questions for other in-

teresting graphs with good expansion properties. This polymer method of Jenssen and 

Perkins is especially useful in estimating the number of ‘defects’ from some ‘ground state’ 

structure, and we expect that there are more problems for which the method is naturally 

applicable.
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