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Abstract
In this paper, we construct an infinite stationary diffusion limited aggregation (SDLA) on the
upper half planar lattice, growing from an infinite line, with local growth rate proportional
to the stationary harmonic measure. This model was suggested by Itai Benjamini. The main
issue is a known problem inDLAmodels, the long range effects of large arms. In this paperwe
overcome this difficulty via a multi-scale argument controlling the dynamical discrepancies
created on all scales while running two coupled SDLA on different starting configurations.

Keywords Diffusion limited aggregation · Stationary harmonic measure · Interacting
particle system

1 Introduction

Diffusion limited aggregation (DLA) is a set-valued process first defined by Witten and
Sander [12] in order to study physical systems where the growth are governed by diffusion.
DLA is defined recursively as a process on subsets of Z2. Starting from A0 = {(0, 0)}, at
each time a new point an+1 sampled from the harmonic probability measure on the outer
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vertex boundary of An is added to An . Intuitively, an+1 is the first place that a random walk
starting from infinity visits ∂out An .

In many experiments and real world phenomena the aggregation grows from some initial
boundary instead of a single point, e.g. ions diffusing in liquid until they connect a charged
container floor (see [2] for numerous examples). Different aggregation processes, such as
Eden and Internal DLA, with boundaries were studied in [1,3], and universal phenomena
such as a.s. non existence of infinite trees were proved.

Motivated by a question from Itai Benjamini (through private communication), in this
paper we construct an infinite stationary DLA (SDLA) on the upper half planar lattice,
growing from an infinite line. Along the way we prove that this infinite stationary DLA can
be seen as a limit of DLA in the upper half plane growing from a long finite line. This allows
one to use themore symmetric and amenablemodel of SDLA to study local behavior of DLA.
In addition SDLA admits new phenomena not observed in the full lattice DLA. One such
interesting conjectured phenomenon, which results from the competition between different
trees in the SDLA, is that eventually (and in finite time) every tree in the SDLA ceases to
grow.

The main difficulties we encountered in this paper are also known problems in the study
of classic DLA model. As has been pointed out in [7]:

“The difficulty comes from the fact that the dynamics is neither monotone nor local, and
that it roughens the cluster.”

In addition, the dynamics of SDLA is generally an infinite measure (the stationary har-
monicmeasure) where themass on each point is unbounded. In contrast, the regular harmonic
measure for each finite set always sums up to 1.

As a result of the facts above, having the proposed growth dynamic of our aggregation (the
stationary harmonic measure), it is not straightforward to assert that an Infinite Interacting
Particle System (IPS) that corresponds to such dynamics will always exist. In [9, Theorem
5], though, a weaker result has been proved that when the initial aggregation is finite, a DLA
in the upper half plane is well defined. However, part of the approach there (applying Poisson
thinning on a “faster” interface model or truncate the space) is clearly inapplicable when we
start from an infinite initial state.

In order to overcome the difficulties above, we consider an approach that couples a
sequence of DLA’s in the upper half plane, starting from increasingly longer line segments
[−n, n] ∩ Z × {0}. For each pair of “neighboring” copies starting from [−n, n] ∩ Z × {0}
and [−n − 1, n + 1] ∩ Z × {0}, a similar non-monotonicity as described in [7] indicates
that there is no stochastic order between the two copies. So the key idea of this paper is a
multi-scale argument that tracks the time-space evolution of discrepancies in this pair, and
showing that, by any finite time, discrepancies are highly unlikely to reach a microscopic
space scale around 0. See Sects. 5 and 6 for details. Thus, we show that such sequence has
an a.s. limit which gives the SDLA model starting from the x-axis.

Through private communication, Paul Jung suggested that one may add some external
growth rate to the stationary harmonic measure and consider a faster growing system where
aggregation is determined by this new rate. The new system may have better regularity, and
thus it is easier to show well-definition. Finally one let the external growth rate goes to zero
and show that SDLA is well-defined.
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Stationary DLA is Well Defined 1091

1.1 Statement of Result

The main result we obtained in the paper is the well-definition of the (infinite) SDLA accord-
ing to its transition rate given by the stationary harmonic measure, starting from the infinite
initial configuration L0:

Definition 1 An interacting particle system ζt is said to be an SDLA if the following condi-
tions hold.

• {ζt }t≥0 is a Markov process on {0, 1}H.
• Starting position: P(ζ0 = L0) = 1.
• Transition rates: For any t > 0, for any s ∈ [0, t] and x, y ∈ H,

lim
#s→0

P
(
ζs+#s(x) = 1|ζs(x) = 0, {ζξ }ξ≤s

)

#s
= HL0∪ζs (x) a.s.

and.

lim
#s→0

P
(
ζs+#s(x) = 1, ζs+#s(y) = 1, |ζs(x) = 0, ζs(y) = 0, {ζξ }ξ≤s

)

#s
= 0 a.s.

Theorem 1 Let t > 0, then there is a well defined SDLA process {A∞
s }s≤t .

Remark 1 The result remains true if one replace the initial state L0 by any subset A0 that can
be seen as a connected forest of logarithmic horizontal growth rate. To be precise, A0 can be
written as ∪∞

n=−∞Treen0 , where Tree
n
0 is connected for each n, with Treen0 ∩ L0 = (n, 0)

and moreover, there is some C < ∞ such that the diameter of all but finite number of the
trees are no more than C log n. In fact, the condition above is satisfied a.s. by A∞

t for each
t > 0.We present the proof for A0 = L0 for simplicity but without loss of (much) generality.

Remark 2 In this paper we do not address the question of uniqueness. Since the transition
rates are unbounded, the standard techniques for proving uniqueness in Interacting Particle
Systems seem to fail.

Remark 3 Since the proofs developed in this paper, particularly for Theorem 5 and Lemma
5.1, are actually insensitive to the choices of different finite time t’s, one may hereby, without
loss of generality focus on the case t = 1 for simplicity.

A major tool one obtains for the study of SDLA is ergodicity of the process.

Theorem 2 For every t > 0, A∞
t is ergodic with respect to shift in Z \ {0} × {0}.

Remark 4 One of the main contributions of the proof of Theorem 1 is the representation of
the SDLA as a local limit of SDLA processes starting from a finite line. This representation
is used in the proof of Theorem 2.

1.2 FutureWorks and Open Problems

One of the main motivations of studying the SDLA from the x-axis is that it may serve as the
local limit of the upper half of DLA (variant) from increasingly longer line segments, after an
appropriate scaling of time. The convergence on the level of dynamics/harmonic measures
has been seen in [11]. For the convergence of aggregation processes, one may first define:
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1092 E. B. Procaccia et al.

Definition 2 Let the edge DLA on Z2 be a stochastic aggregation process defined as follows:

• At each step k a random walk “from infinity” is released and run until it hits the current
aggregation E Ak

• The last step of the random walk is added to E Ak to form E Ak+1.

Now let E At = E ANt be the continuous time version of E Ak , where Nt is a standard
Poisson process independent to E Ak . And let E An

t be the process with initial state E An
0 =

[−n, n] ∩ Z × {0}. Since it is very unlikely for random walk to “go around” a long line
segment without hitting it, the following conjecture says the upper half of E An

t (with itself
forms a process in the whole space) may behave similarly as the DLA restrict in the upper
half plane after some appropriate scaling of time:

Conjecture 1 There is a constant c ∈ (0,∞) such that E An
nt ∩ H converges weakly to A∞

ct
as n → ∞.

A proof of Conjecture 1 has recently been found by Yingxin Mu, Procaccia, and Zhang.
The paper [8] is under preparation. At the same time, using arguments parallel to the proofs
in this paper and in the upcoming paper [8], one may also have the the Corollary that the
local limit of classic DLA’s starting from a long (horizontal) line segment, after appropriate
scaling of time, as a variant of the SDLA

Another open problem is the stabilization of the SDLA. To precisely state the conjecture,
consider dchem the chemical/internal distance on a graph. For each x ∈ l0 = (−∞,∞) ∩
Z × {0}, define

Tx (t) =
{
y ∈ A∞

t : dchem(x, y) = min
z∈l0

dchem(z, y)
}

to be the branch in A∞
t rooted at x . The following conjecture predicts that all branches finally

fall under the shadow of other branches and stop growing:

Conjecture 2 Define

Tx =
⋃

t≥0

Tx (t).

With probability one, |Tx | < ∞ for all x ∈ l0.

2 Preliminaries

We first recall a number of notations and results from a previous paper by two of the authors
[10]: Let H = {(x, y) ∈ Z2, y ≥ 0} be the upper half plane (including the x-axis), and
(Sn)n≥0 be a 2-dimensional simple random walk. For any x ∈ Z2, we will write

x = (x1, x2)

with xi denoting the i th coordinate of x , and ‖x‖ = ‖x‖1 = |x1| + |x2|. Then for each
nonnegative integer n, define

Ln = {(x, n), x ∈ Z}
to be the horizontal line of height n. For each subset A ⊂ Z2, we define the stopping times

τ̄A = min{n ≥ 0, Sn ∈ A}
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Stationary DLA is Well Defined 1093

and

τA = min{n ≥ 1, Sn ∈ A}.
For any subsets A1 ⊂ A2 and B and any y ∈ Z2, by definition one can easily check that

Py
(
τA1 < τB

)
≤ Py

(
τA2 < τB

)
,

Py
(
τ̄A1 < τ̄B

)
≤ Py

(
τ̄A2 < τ̄B

)
, (1)

and that

Py
(
τB < τA2

)
≤ Py

(
τB < τA1

)
,

Py
(
τ̄B < τ̄A2

)
≤ Py

(
τ̄B < τ̄A1

)
, (2)

where Py(·) = P(·|S0 = y). In [10] we defined the stationary harmonic measure onHwhich
will serve as the Poisson intensity in our continuous time DLA model. For any B ⊂ H, any
edge ,e = (x, y) with x ∈ B, y ∈ H \ B and any N , we define

HB,N (,e) =
∑

z∈LN \B
Pz

(
Sτ̄B∪L0

= x, Sτ̄B∪L0−1 = y
)
. (3)

By definition, a necessary condition for HB,N (,e) > 0 is y ∈ ∂out B and |x − y| = 1. For all
x ∈ B, we can also define

HB,N (x) =
∑

y: ,e=(x,y)

HB,N (,e) =
∑

z∈LN \B
Pz

(
Sτ̄B∪L0

= x
)
. (4)

For each point y ∈ ∂out B, we can also define

ĤB,N (y) =
∑

,e=(x,y), x∈B
HB,N (,e) =

∑

z∈LN \B
Pz

(
τB ≤ τL0 , Sτ̄B∪L0−1 = y

)
. (5)

By coupling and the strong Markov property, we showed in [10, Proposition 1] that N →
HA,N (e) is bounded and monotone in N . Thus we proved that

Proposition 1 (Proposition 1, [10]). For any B and ,e as above, there is a finite HB(,e) such
that

lim
N→∞

HB,N (,e) = HB(,e). (6)

HB(,e) is called the stationary harmonic measure of ,e with respect to B. The limits
HB(x) = limN→∞ HB,N (x) and ĤB(y) = limN→∞ ĤB,N (y) also exist [10] and are called
the stationary harmonic measure of x and y with respect to B.

For any connected B ⊂ H such that B ∩ L0 -= ∅, and any x ∈ B, HB(x) was proved to
have the following upper bound that depends only on the height of x :

Theorem 3 (Theorem 1, [10]). There is some constant C < ∞ such that for each connected
B ⊂ H with L0 ⊂ B and each x = (x1, x2) ∈ B \ L0, and any N sufficiently larger than x2

HB,N (x) ≤ Cx1/22 . (7)

Remark 5 The theorem above is sharp and the direction of inequality in (7) can be reversed
when B is L0 plus a vertical line. See Theorem 2, [10] for details.

Remark 6 It is easy to note that for any B ⊂ H such that B ∩ L0 -= ∅ and any x = (x1, x2) ∈
B \ L0,HB(x) = HB∪L0(x). Thus one may without loss of generality assume that L0 ⊂ B.
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1094 E. B. Procaccia et al.

Remark 7 Unless specified otherwise, we use C to represent constant(s) that do not depend
on subset B or point x , or n. However, their specific values may varies according to context.

With the upper bounds of the harmonic measure on the upper half plane, a pure growth
model called the interface processwas introduced in [10] which can be used as a dominating
process for both the DLA model in H and the stationary DLA model that will be introduced
in this paper. Consider an interacting particle system ξ̄t defined on {0, 1}H, with 1 standing
for an occupied site and 0 for a vacant site, with transition rates as follows:

(i) For each occupied site x = (x1, x2) ∈ H, if x2 > 0 it will try to give birth to each of its
nearest neighbors at a Poisson rate of

√
x2. If x2 = 0, it will try to give birth to each of

its nearest neighbors at a Poisson rate of 1.
(ii) If x attempts to give birth to a nearest neighbor y that is already occupied, the birth is

suppressed.

We proved that an interacting particle system determined by the dynamic above is well-
defined.

Proposition 2 (Proposition 3, [10]). The interacting particle system ξ̄t ∈ {0, 1}H satisfying
(i) and (ii) is well defined.

When the initial aggregation V0 is the origin or finite, we defined the DLA process in
H starting from V0 (Theorem 5, [10]), according to the graphic representation (see [5] for
introduction) of the interface process ξ̄t and a procedure of Poisson thinning, see Page 30-
31 of [10] for details. Note that under this construction, the DLA model with finite initial
aggregation is contained in the interface process.

3 Coupling Construction

Now in order to prove Theorem 1, we construct a sequence of processes {An
t }∞n=1, each of

which is the DLA inH with initial aggregation V n
0 = [−n, n]× 0, coupled together with the

same interface process. To be precise, recall the graphic representation in [10]:

• For each x = (x1, x2) and y = (y1, y2) ∈ H such that ‖x − y‖ = 1, we associate
the edge ,e = (x, y) with an independent Poisson process Nx→y

t , t ≥ 0 with intensity
λx→y =

√
x2 ∨ 1.

• For each x = (x1, x2) and y = (y1, y2) ∈ H such that ‖x − y‖ = 1 let {Ux→y
i }∞i=1 be

i.i.d. sequences ofU (0, 1) random variables independent of each other and of the Poisson
processes.

At any time t when there is Poisson transition for edge ,e = (x, y), we draw the directed edge
(,e, t) in the phase space H × [0,∞). For any x ∈ L0 and any fixed time t , recall that I xt is
the set of all y’s in H that are connected in the space-time block with x , by a directed path
starting from x , going upwards vertically or following the directed edges, and ending at y in
the graphic representation. In [10], it has been proved that for all V0 ⊂ H,

ξ̄
V0
t =

⋃

x∈V0
I xt

distributed as the interface process with initial state V0. Moreover, it was proven that for
each t < ∞ and all x ∈ H, |I xt | < ∞ with probability one, and there can be only a
finite number of different paths emanating from x by time t , which may only have finite
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Stationary DLA is Well Defined 1095

transitions involved. Now for all finite V0, in [10] we look at the finite set of all the transitions
involved in the evolution of (ξ̄V0s )s∈[0,t], and order them according to the time of occurrence.
The following thinning is applied in order to define a process At = (Vt , Et ) starting at
A0 = (V0,∅). Suppose a new transition involving in the evolution of (ξ̄V0s )s∈[0,t] arrives at
time ti , and it is the j th overall Poisson transition on the edge ,e = (x, y), and one already
knows Ati− := lims↑ti As .

• If x /∈ Vti− or y ∈ Vti−, nothing happens.
• Otherwise:

– If Ux→y
j ≤ HVti−(,e)/λ,e, then Vti = Vti− ∪ {y}, Et = Et− ∪ {,e}.

– Otherwise, nothing happens.

Thus we define the process At up to all time t with Vt identically distributed as our DLA
process starting from A0.Now, for each n define An

t as the processwith An
0 = ([−n, n]×0,∅).

We have coupled all An
t ’s using the same graphic representation and thinning factors. Now in

order to prove Theorem 1, we first show the following theorem which states that for a finite
space-time box, the discrepancy probabilities for our An’s are summable.

Theorem 4 For any compact subset K ⊂ H and any T < ∞, we have
∞∑

n=1

P
(
∃t ≤ T , s.t . An

t ∩ K -= An+1
t ∩ K

)
< ∞. (8)

Here for any A = (V , E), we use the convention that A ∩ K = (V ∩ K , {,e = (x, y) ∈
E, {x, y} ∩ K -= ∅}).

Recalling Remark 3, we may from now on concentrate on T = 1. The proof of Theorem
4 is immediate once one proves that there exist constants α > 0 and C < ∞ such that for all
sufficiently large n

P
(
∃t ≤ 1, s.t . An

t ∩ K -= An+1
t ∩ K

)
≤ C

n1+α
. (9)

The same argument also implies

Corollary 1 Let An,+
t be the process with An,+

0 = ([−n, n+1]×0,∅). Then for all sufficiently
large n

P
(
∃t ≤ 1, s.t . An

t ∩ K -= An,+
t ∩ K

)
≤ C

n1+α
.

The same result holds for An,−
t with An,−

0 = ([−n − 1, n] × 0,∅).

Note that at t = 0, the initial aggregations An
0 and An+1

0 are different only by the two end
points (±(n + 1), 0). Now we want to control the subset of the discrepancies so that they
will not reach K by time 1. Intuitively, the idea we will follow in the detailed proof in the
following sections can be summarized as follows:

(I) Note that the growth of An
t and An+1

t are both dominated by the interface process. So
with very high probability none of An

1 and An+1
1 can reach height log(n).

(II) We can show that for a well coupled pair of An
t and An+1

t , the rate a new discrepancy is
created can be bounded by the stationary harmonic measure of the existing discrepancy
set. With a similar large deviation argument as Step (I), for any α > 0, with very high
probability the two processes will have fewer than nα discrepancies by time 1.
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1096 E. B. Procaccia et al.

(III) We can show that it is very unlikely for a newly created discrepancy to wander far away
form the existing discrepancy set. So for all these discrepancies ever created till time 1,
with very high probability none of them will go far enough from the boundary and ever
find its way to K .

4 Logarithmic Growth of the Interface Process

In this section, we prove the logarithmic growth upper bound for An
t and An+1

t with t ∈ [0, 1].
Note that both are contained in the interface process I [−n−1,n+1]×0

t . Thus it suffices to show
that

Theorem 5 For any C < ∞,

P
(
I [−n,n]×0
1 ! [−n − log n, n + log n] × [0, log n]

)
<

1
nC

for all sufficiently large n.

Proof First note that

I [−n,n]×0
1 =

⋃

x∈[−n,n]×0

I x1 .

By union bound, it suffices to show that for any C < ∞ and all sufficiently large k,

P
(
‖I 01 ‖2 ≥ k

)
< exp(−Ck), (10)

where

‖A‖2 = max
x∈A

‖x‖2

for all finite A ⊂ H.

Lemma 4.1 For any c̃ ∈ (0,∞),

P(‖I 01 ‖2 > k) ≤ exp(−c̃k)

for all sufficiently large k.

Proof Under the event {‖I 01 ‖2 > k}, by definition and the fact that I 01 is a nearest neighbor
growth model, there has to exist a nearest neighbor sequence of points 0 = x0, x1, . . . , xm
with ‖xm‖ ≥ k such that for stopping times

τi = inf{s ≥ 0 : xi ∈ I 0s },
we have that

0 = τ0 < τ1 < · · · < τm < 1.

Noting that x0, x1, . . . , xm is a nearest neighbor path with ‖xm‖ ≥ k, which implies m ≥ k
and we can take the first k steps of it. More precisely, there exists a nearest neighbor sequence
of points 0 = x0, x1, . . . , xk such that for stopping times

τi = inf{s ≥ 0 : xi ∈ I 0s },
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Stationary DLA is Well Defined 1097

we have that

0 = τ0 < τ1 < · · · < τk < 1.

Note that there are no more than 4×3k−1 such different nearest neighbor sequences of points
within H starting at 0. For each given path 0 = x0, x1, . . . , xk , and each 1 ≤ i ≤ k, define

#i = min
y:‖y−xi‖=1

inf
{
s > 0 : N y→xi

τi−1+s = N y→xi
τi−1

+ 1
}
.

By definition and the strong Markov property, #i is an exponential random variable with
rate λ̂i =

∑
y:‖y−xi‖=1 λy→xi ≤ 4

√
i + 1, independent to Fτi−1 . At the same time, note that

by definition #i ≤ τi − τi−1, which implies that #i ∈ Fτi , and that {#i }ki=1 is a sequence
of independent random variables. Let {Ti }ki=1 be independent exponential random variables
with parameters λi = 4

√
i + 1. Thus

P(τ0 < τ1 < · · · < τk < 1) ≤ P

(
k∑

i=1

#i < 1

)

≤ P

(
k∑

i=1

Ti < 1

)

,

and

P(‖I 01 ‖2 > k) ≤ 4 × 3k−1P

(
k∑

i=1

Ti < 1

)

. (11)

For some constants c1, c2 > 0 (to be chosen later), define the event

G =
{∣∣∣∣

{
1 ≤ i ≤ k : Ti ≥ c2√

i + 1

}∣∣∣∣ > c1k
}
.

Under the event G,

k∑

i=1

Ti ≥
∑

i : Ti≥ c2√
i

Ti ≥ c1k
c2√
k + 1

= 1
2
c1c2

√
k ≥ 1, (12)

where the last inequality holds for any sufficiently large k. Therefore,

P

(
k∑

i=1

Ti < 1

)

≤ P(Gc) (13)

for all sufficiently large k depending on the choices of c1 and c2. Define

Xi = 1{
Ti≥ c2√

i+1

},

thus
∑k

i=1 Xi is a binomial random variable with parameters k and

p = P
(
Ti ≥ c2√

i + 1

)
= e−4c2 ,

which converges to 1 when c2 → 0. By the large deviation principle for the binomial
distribution,

P(Gc) = P

(
k∑

i=1

Xi < c1k

)

≤ e−I (c1,p)k . (14)
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1098 E. B. Procaccia et al.

For p close enough to 1, we have I (c1, p) > c̃+ log(4) (see [4] for the exact rate function).
The result follows from combining (11), (13), and (14) and choosing appropriate c1 and c2.
34

Theorem 5 follows from Lemma 4.1 and union bound. 34

5 Truncated Processes and Number of Discrepancies

In this sectionwe complete Step (II) in the outline. Prior to that, wewould like to use Theorem
5 to define a truncated version of coupled process (An

t , A
n+1
t ). Define the stopping time

( = inf
{
t ≥ 0 : V n

t ∪ V n+1
t ! [−n − log n, n + log n] × [0, log n]

}

to be the first time An
t or A

n+1
t grows outside the box [−n − log n, n + log n] × [0, log n].

Remark 8 It is easy to see that V n
t or V n+1

t grows outside our box if and only if En
t or En+1

t
does so.

Now we can define the truncated processes

( Ân
t , Â

n+1
t ) =

(
An
t∧(, A

n+1
t∧(

)
.

I.e., we have the coupled processes stopped once either of them goes outside the box [−n −
log n, n + log n] × [0, log n]. By definition, we have

(An
t , A

n+1
t ) = ( Ân

t , Â
n+1
t )

for all t ∈ [0,(]. At the same time, note that

V n
t ∪ V n+1

t ⊂
⋃

x∈[−n−1,n+1]×0

I xt

for all t ≥ 0. Thus for all C < ∞ and all sufficiently large n,

1 − P
(
An
t ≡ Ân

t , A
n+1
t ≡ Ân+1

t , ∀t ∈ [0, 1]
)

≤ P
(
I [−n−1,n+1]×{0}
1 ! [−n − 1 − log(n + 1), n + 1+ log(n + 1)] × [0, log(n + 1)]

)

<
1
nC

. (15)

Thus in order to show Theorem 4, it suffices to prove that there exists constants α > 0 and
C < ∞ such that for all sufficiently large n

P
(
∃t ≤ 1, s.t . Ân

t ∩ K -= Ân+1
t ∩ K

)
≤ C

n1+α
. (16)

Nowwe formally define the set of discrepancies for the coupled process ( Ân
t , Â

n+1
t ). For any

t < ∞, define

V D,n
t =

{
x ∈ H, s.t . ∃s ≤ t, x ∈ V̂ n

s 8V̂ n+1
s

}

as the set of vertex discrepancies, and

ED,n
t =

{
,e = (x, y), x, y ∈ H, s.t . ∃s ≤ t, ,e ∈ Ên

s 8Ên+1
s

}
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Stationary DLA is Well Defined 1099

as the set of edge discrepancies, where 8 stands for the symmetric difference of sets. From
their definitions, we list some basic properties of the sets of discrepancies as follows:

• V D,n
0 = {(±(n + 1), 0)}, ED,n

0 = ∅.
• Both V D,n

t and ED,n
t are non-decreasing with respect to time.

• For any x ∈ V D,n
t , either x = (±(n+1), 0) or there has to be an edge ,ex ∈ ED,n

t ending
at x .

• For any ,e = (a, x) ∈ ED,n
t , x has to be in x ∈ V D,n

t .
• Whenever a new vertex is added in V D,n

t , there has to be a new edge added to ED,n
t .

However, when a new edge is added to ED,n
t , there may or may not be a a new vertex

added in V D,n
t .

From the observations above, it is immediate to see that V D,n
t is the same as the collection

of all ending points in ED,n
t , which also implies that |V D,n

t | ≤ |ED,n
t | + 2.

Moreover, for the event of interest, we have
{
∃t ≤ 1, s.t . Ân

t ∩ K -= Ân+1
t ∩ K

}
=

{
V D,n
1 ∩ K -= ∅

}
. (17)

As we outlined in the previous section, in order to prove the event in (17) has a super-linearly
decaying probability as n → ∞, we first control the growth of |ED,n

t |. I.e., by time 1 there
cannot be too many discrepancies created in the coupled systems. To be precise, we prove
that

Lemma 5.1 For any α > 0, there is a c > 0 such that

P
(
|ED,n

1 | ≥ nα
)

≤ exp(−nc)

for all sufficiently large n.

Proof Note that |ED,n
0 | = 0. For i = 1, 2, . . ., define the stopping time #i = inf{t ≥

0, |ED,n
t | = i}, with the convention inf ∅ = ∞. Given the configuration of ( Ân

t , Â
n+1
t ), we

first discuss the rate at which a new discrepancy is created. If t > (, each such rate is equal
to zero by definition. Otherwise, each edge ,e = (x, y) in H can be classified according to
the configuration as follows: define the indicator matrix

I( Ân
t , Â

n+1
t )(,e) =

(
1x∈V̂ n

t
1y∈V̂ n

t
1,e∈Ên

t
1x∈V̂ n+1

t
1y∈V̂ n+1

t
1,e∈Ên+1

t

)

.

By definition, the only edges that contribute to the increasing rate of ED,n
t are those with

indicator matrices as one of the following:

I1 =
(
1 0 0
1 0 0

)
, I2 =

(
1 1 0
1 0 0

)
,

I3 =
(
1 0 0
0 0 0

)
, I4 =

(
1 0 0
0 1 0

)
,

I5 =
(
1 0 0
1 1 0

)
, I6 =

(
0 0 0
1 0 0

)
,

I7 =
(
0 1 0
1 0 0

)
,

and we will denote the collections of such edges E1, E2, . . . , E7.
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1100 E. B. Procaccia et al.

Now the rate that a new edge is added to ED,n
t can be written as follows:

λD( Ân
t , Â

n+1
t ) =

∑

,e∈E1

∣∣∣HV̂ n
t
(,e) − HV̂ n+1

t
(,e)

∣∣∣

+
∑

,e∈E2

HV̂ n+1
t

(,e)+
∑

,e∈E3

HV̂ n
t
(,e)+

∑

,e∈E4

HV̂ n
t
(,e)

+
∑

,e∈E5

HV̂ n
t
(,e)+

∑

,e∈E6

HV̂ n+1
t

(,e)+
∑

,e∈E7

HV̂ n+1
t

(,e). (18)

For any ,e ∈ ∪7
i=2Ei , note that at least one end point of ,e has to be within V̂ n

t 8V̂ n+1
t ⊂ V D,n

t .
Moreover, recall that for each point inH, there can be nomore than 4 directed edges emanating
from it and 4 edges going towards it. Thus, | ∪7

i=2 Ei | ≤ 8|V D,n
t | ≤ 8(|ED,n

t | + 2). Now
recalling t < (, Ân

t ∪ Ân+1
t ⊂ [−n − log n, n + log n] × [0, log n], which implies that for

each ,e ∈ ∪7
i=2Ei , the corresponding harmonic measure in (18) is bounded from above by

2
√
log n. Thus

∑

,e∈E2

HV̂ n+1
t

(,e)+
∑

,e∈E3

HV̂ n
t
(,e)+

∑

,e∈E4

HV̂ n
t
(,e)

+
∑

,e∈E5

HV̂ n
t
(,e)+

∑

,e∈E6

HV̂ n+1
t

(,e)+
∑

,e∈E7

HV̂ n+1
t

(,e) ≤ 16(|ED,n
t | + 2)

√
log n. (19)

Now for each ,e = (x, y) ∈ E1, by definition x has to be in the inner boundary of V̂ n
t ∩ V̂ n+1

t ,
while y is in the complement of V̂ n

t ∪ V̂ n+1
t . Moreover, we have

∣∣∣HV̂ n
t
(,e) − HV̂ n+1

t
(,e)

∣∣∣ ≤ HV̂ n
t ∩V̂ n+1

t
(,e) − HV̂ n

t ∪V̂ n+1
t

(,e). (20)

Using a similar method as in Section 5 of [10] and recalling the definition of stationary
harmonic measure,

HV̂ n
t ∩V̂ n+1

t
(,e) − HV̂ n

t ∪V̂ n+1
t

(,e)

= lim
N→∞

(
HV̂ n

t ∩V̂ n+1
t ,N (,e) − HV̂ n

t ∪V̂ n+1
t ,N (,e)

)

= lim
N→∞

∑

w∈LN

Pw

(
Xτ

(V̂ n
t ∩V̂ n+1

t )∪L0
= x, Xτ

(V̂ n
t ∩V̂ n+1

t )∪L0
−1 = y

)

− lim
N→∞

∑

w∈LN

Pw

(
Xτ

(V̂ n
t ∪V̂ n+1

t )∪L0
= x, Xτ

(V̂ n
t ∪V̂ n+1

t )∪L0
−1 = y

)

= lim
N→∞

∑

w∈LN

Pw

(
Xτ

(V̂ n
t ∩V̂ n+1

t )∪L0
= x, Xτ

(V̂ n
t ∩V̂ n+1

t )∪L0
−1 = y, Xτ

(V̂ n
t ∪V̂ n+1

t )∪L0
∈ V̂ n

t 8V̂ n+1
t

)

= lim
N→∞

∑

w∈LN

∑

z∈V̂ n
t 8V̂ n+1

t

Pw

(
Xτ

(V̂ n
t ∪V̂ n+1

t )∪L0
= z

)
Pz

(
Xτ

(V̂ n
t ∩V̂ n+1

t )∪L0
= x, Xτ

(V̂ n
t ∩V̂ n+1

t )∪L0
−1 = y

)
.

Taking the summation over all ,e ∈ E1, and note that for all z ∈ V̂ n
t 8V̂ n+1

t ,

∑

,e=x→y∈E1

Pz

(
Xτ

(V̂ n
t ∩V̂ n+1

t )∪L0
= x, Xτ

(V̂ n
t ∩V̂ n+1

t )∪L0
−1 = y

)
≤ 1
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since the summation above are over disjoint events. We have
∑

,e∈E1

HV̂ n
t ∩V̂ n+1

t
(,e) − HV̂ n

t ∪V̂ n+1
t

(,e) ≤ HV̂ n
t ∪V̂ n+1

t
(V̂ n

t 8V̂ n+1
t ).

Moreover, noting that by definition V̂ n
t ∪ V̂ n+1

t is connected in H, and that

|V̂ n
t 8V̂ n+1

t | ≤ |V D,n
t | ≤ |ED,n

t | + 2,

by Theorem 3 we have,
∑

,e∈E1

HV̂ n
t ∩V̂ n+1

t
(,e) − HV̂ n

t ∪V̂ n+1
t

(,e) ≤ (|ED,n
t | + 2)

√
log n. (21)

Now combining (19)–(21) and plugging them back to (18) gives us

λD( Ân
t , Â

n+1
t ) ≤ 17(|ED,n

t | + 2)
√
log n. (22)

Recalling the definition of #i , by Poisson thinning and the strong Markov property again we
have

P
(
|ED,n

1 | ≥ nα
)
= P

(
nα−1∑

i=0

#i ≤ 1

)

≤ P

(
nα−1∑

i=0

σi ≤ 1

)

,

where {σi }n
α−1

i=0 is an independent sequence of exponential random variables with λ̃i =
17(i + 2)

√
log n.

Thus, in order to prove Lemma 5.1, it suffices to prove the following result:

Lemma 5.2 Let σi be defined as above. For all α < 1, β < α, and any c3 > 0, for all n large
enough

P

(
nα−1∑

i=0

σi ≤ 1

)

< e−c3nβ
.

Proof For β < α defined in the lemma and some constants c1, c2 > 0 (to be chosen later)
define the events for j ∈ [1, nα/nβ ] ∩ N,

G j =
{∣∣∣∣

{
( j − 1)nβ ≤ i < jnβ : σi ≥ c2

(i + 2)
√
log n

}∣∣∣∣ > c1nβ

}
.

Define Ni = 1{
σi≥ c2

(i+2)
√
log n

}, thus Mj =
∑ jnβ−1

i=( j−1)nβ Ni is a binomial random variable

with parameters nβ and p = P
(
σi ≥ c2

(i+2)
√
log n

)
= e−17c2 , which converges to 1 when

c2 → 0. By the large deviation principle for binomial random variable,

P(Gc
j ) = P

(
Mj ≤ c1nβ

)
≤ e−I (c1,p)nβ ≤ e−c3nβ

,

where the last inequality follows by taking p close enough to 1 such that I (c1, p) > c′
3 (see

[4] for the exact rate function). Since c′
3 was arbitrary, for a slightly smaller c3 we can obtain

for large enough n,

P




⋃

j∈[1,...,nα/nβ ]∩N
Gc

j



 ≤ nα−βe−c′
3n

β ≤ e−c3nβ
.
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1102 E. B. Procaccia et al.

But under the event
{⋂

j∈[1,...,nα/nβ ]∩N G j

}
,

nα∑

i=1

σi =
nα−β∑

j=1

jnβ−1∑

( j−1)nβ

σi ≥ c2√
log n

(
c1nβ

nβ + 1
+ c1nβ

2nβ + 1
+ · · · + c1nβ

nα−βnβ + 1

)

>
1
2
c1c2(α − β)

√
log n > 1,

where the last two inequalities require taking a large enough n. 34

Thus the proof of Lemma 5.1 completes. 34

6 Locations of Discrepancies and Proof of Theorem 4

In the previous section, we have shown that, for any α > 0, by time 1 with stretch-
exponentially high probability, there will be no more than nα discrepancies. Now we show
that it is highly unlikely that the first nα possible discrepancies may ever reach our finite
subset K .

To show this, note that now the truncated model ( Ân
t , Â

n+1
t ) forms a finite state Markov

process. In this section, it is more convenient to concentrate on the embedded chain

( Ân
k , Â

n+1
k ), k = 0, 1, 2, . . .

where all configuration ( Ân
k , Â

n+1
k ) with

V̂ n
k ∪ V̂ n+1

k ! [−n − log n, n + log n] × [0, log n]

are absorbing states. It worth notice that the embedded chain here is a discrete time Markov
chain.

Remark 9 Without causing further confusion, in this section wewill use the parallel notations
such as ( Ân

k , Â
n+1
k ), V D,n

k and ED,n
k etc., for the embedded chain without more specification.

Recall the stopping times for the creation of new discrepancies:

#i = inf{k ≥ 0, |ED,n
k | = i},

with the convention inf ∅ = ∞. In order to show Step (III), we only need to prove the lemma
as follows:

Lemma 6.1 There exists an α > 0 whose value will be specified later such that for any
compact K ⊂ H,

P
(
ED,n

#nα
∩ K -= ∅

)
≤ n−1−α

for all sufficiently large n.

Proof We define

,ei =
{
ED,n

#i
\ ED,n

#i−1
, if #i < ∞

∅ otherwise
.
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Note that ,ei is either an empty set or a singleton with one edge. When it is a singleton, we
do not distinguish between the singleton set and its unique element.

Now we are ready to introduce classifications on discrepancies as follows: Let 0 < α <

1/5.

• For any i = 1, we say ,e1 is good if either ,e1 = ∅ or

d(,e1, (±(n + 1), 0)) < n1−5α.

Here d(·, ·) is defined as the minimum distance over all endpoints.
• For any i ≥ 1, we say ,ei is good if either ,ei = ∅ or

d(,ei , ED,n
#i−1

) < n1−5α .

Otherwise, we will say ,ei is bad.
• If an ,ei is bad, we call it devastating if and only if ,ei intersects with [−n1−3α, n1−3α]×

[0, log n].
Moreover, one can also define

κ = inf{i ≥ 1, s.t . ,ei is bad}.
By definition, one may see that for all sufficiently large n, ED,n

#nα
∩ K -= ∅ only if either of

the following two events happens:

• Event A: κ < nα , and ,eκ is devastating.
• Event B: κ < nα , ,eκ is bad but not devastating, and there is at least one bad event within

κ + 1, κ + 2, . . . , nα .

To see the above assertion, one can from the definition of A and B see that (A∪ B)c can also
be written as the union of C ∪ D, where the events are defined as follows:

• Event C : ,ei are good for all i = 1, 2, . . . , nα .
• Event D: κ < nα , ,eκ is bad but not devastating, and there are no bad events within

κ + 1, κ + 2, . . . , nα .

Moreover, for each i , we define

l+i = min
{
x1 > 0 : s.t . ∃x2 with x = (x1, x2) a vertex for some edge within ED,n

#i

}
,

and

r−
i = max

{
x1 < 0 : s.t . ∃x2 with x = (x1, x2) a vertex for some edge within ED,n

#i

}
.

Thus under event C or D,

l+i ≥ n1−3α − nα × n1−5α ≥ n1−3α/2,

and

r−
i ≤ −n1−3α + nα × n1−5α ≤ −n1−3α/2,

which implies no discrepancy may be within [−n1−3α/2, n1−3α/2] × [0, log n] ⊃ K for all
sufficiently large n.

Now we only need to find the desired upper bounds for the probabilities of events A and
B. For any k, define the event

Gk = {,ei is good for i = 1, . . . , k − 1}.
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1104 E. B. Procaccia et al.

6.1 Upper Bound on P(A)

For event A, by definition and the strong Markov property one has

P(A) =
nα∑

k=1

P (Gk , ,ek is devastating)

=
nα∑

k=1

∞∑

j=0

∑

( Ā0, Ã0)

P
(
Gk , #k−1 < ∞, #k − #k−1 > j, ( Ân

#k−1+ j , Â
n+1
#k−1+ j ) = ( Ā0, Ã0)

)

P( Ā0, Ã0)
(#1 = 1, ,e1 is devastating) , (23)

where P( Ā0, Ã0)
stands for the distribution of the truncated embedded process ( Ân

k , Â
n+1
k )

starting from initial condition ( Ā0, Ã0).
At the same time, with similar calculation we have for any k = 1, 2, . . . , nα ,

P(Gk,#k < ∞)

=
∞∑

j=0

∑

( Ā0, Ã0)

P
(
Gk,#k−1 < ∞,#k − #k−1 > j, ( Ân

#k−1+ j , Â
n+1
#k−1+ j ) = ( Ā0, Ã0)

)

P( Ā0, Ã0)
(#1 = 1) ≤ 1. (24)

Note that for any configuration ( Ā0, Ã0) such that

P
(
Gk, #k−1 < ∞, #k − #k−1 > j, ( Ân

#k−1+ j , Â
n+1
#k−1+ j ) = ( Ā0, Ã0)

)
-= 0,

one must have |Ē08Ẽ0| ≤ k − 1. Now recalling the transition dynamic of the embedded
chain, one has for all feasible ( Ā0, Ã0) such that V̄0∪Ṽ0 ⊂ [−n−log n, n+log n]×[0, log n],

P( Ā0, Ã0)
(#1 = 1) = λD( Ā0, Ã0)

λT ( Ā0, Ã0)
,

where λD(·, ·) was defined in (18) and

λT ( Ā0, Ã0) =
∑

,e
max{HV̄0(,e),HṼ0

(,e)}.

Otherwise P( Ā0, Ã0)
(#1 = 1) = 0. Now for

P( Ā0, Ã0)
(#1 = 1, ,e1 is devastating) ,

recall that in (18) we have

λD( Ā0, Ã0) =
∑

,e∈E1

∣∣∣HV̄0(,e) − HṼ0
(,e)

∣∣∣

+
∑

,e∈E2

HṼ0
(,e)+

∑

,e∈E3

HV̄0(,e)+
∑

,e∈E4

HV̄0(,e)

+
∑

,e∈E5

HV̄0(,e)+
∑

,e∈E6

HṼ0
(,e)+

∑

,e∈E7

HṼ0
(,e).
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For any ,e ∈ ∪7
i=2Ei , recall that at least one of the endpoints of ,e has to be in V̄0#Ṽ0. Thus

it is easy to see

d(,e, ED,n
#k−1

) = 0.

Combining this with the fact that for all feasible ( Ā0, Ã0), Ē08Ẽ0 ⊂ (−∞,−n+2n1−4α)∪
(n−2n1−4α,∞)× [0, log n], which is disjoint with [−2n1−3α, 2n1−3α]× [0, log n], we have

P( Ā0, Ã0)
(#1 = 1, ,e1 is devastating) ≤

∑
,e=(x,y)∈E1,|x1|≤2n1−3α

∣∣∣HV̄0(,e) − HṼ0
(,e)

∣∣∣

λT ( Ā0, Ã0)
(25)

when V̄0 ∪ Ṽ0 ⊂ [−n− log n, n+ log n]× [0, log n] and equals to 0 otherwise. Thus for any
configuration ( Ā0, Ã0) such that

P
(
Gk, #k−1 < ∞, #k − #k−1 > j, ( Ân

#k−1+ j , Â
n+1
#k−1+ j ) = ( Ā0, Ã0)

)
-= 0,

and that

P( Ā0, Ã0)
(#1 = 1, ,e1 is devastating) -= 0,

we have

P( Ā0, Ã0)
(#1 = 1, ,e1 is devastating)
P( Ā0, Ã0)

(#1 = 1)
≤

∑
,e=(x,y)∈E1,|x1|≤2n1−3α

∣∣∣HV̄0(,e) − HṼ0
(,e)

∣∣∣

λD( Ā0, Ã0)
. (26)

Now for the numerator of (26), again we have
∑

,e=(x,y)∈E1,|x1|≤2n1−3α

∣∣∣HV̄0(,e) − HṼ0
(,e)

∣∣∣

≤
∑

,e=(x,y)∈E1,|x1|≤2n1−3α

[
HV̄0∩Ṽ0(,e) − HV̄0∪Ṽ0(,e)

]

=
∑

,e=(x,y)∈E1,|x1|≤2n1−3α

∑

z∈V̄0#Ṽ0

HV̄0∪Ṽ0(z)Pz

(
Xτ(V̄0∩Ṽ0)∪L0

−1 = y, Xτ(V̄0∩Ṽ0)∪L0
= x

)

≤ HV̄0∪Ṽ0(V̄08Ṽ0) sup
z∈V̄08Ṽ0

Pz
(
τBox < τL0

)
, (27)

where

Box = [−2n1−3α, 2n1−3α] × [0, log n].
At the same time, note that for any feasible configuration ( Ā0, Ã0),

V̄08Ṽ0 ⊂ Box0 = [n − 2n1−4α, n + log n] ∪ [−n − log n,−n + 2n1−4α] × [0, log n]
which implies that

sup
z∈V̄08Ṽ0

Pz
(
τBox < τL0

)
≤ sup

z∈Box0
Pz

(
τBox < τL0

)
. (28)

Moreover, for each edge ,e = (z, w) such that z ∈ V̄08Ṽ0 and w /∈ V̄0 ∪ Ṽ0, by definition it
has to belong to E3 ∪ E6 and thus by (18)

λD( Ā0, Ã0) ≥ HV̄0∪Ṽ0(V̄08Ṽ0). (29)
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1106 E. B. Procaccia et al.

Now combining (23)–(29) we have

P(A) ≤ nα sup
x∈Box0

Px
(
τBox < τL0

)
. (30)

Now we prove the following lemma:

Lemma 6.2 For all α < 1/5 and all sufficiently large n,

sup
x∈Box0

Px
(
τBox < τL0

)
≤ n−1−2.5α.

Proof The proof of Lemma 6.2 follows a similar argument as in [11]. Note that for any
x ∈ Box0,

Px
(
τBox < τL0

)
≤

∑

y∈∂ in Box

Px (τy < τL0).

Let Vn = {n/2} × [0,∞), V 1
n = n/2 × [0, n4), and V 2

n = n/2 × (n4,∞). By a similar
argument as in [11] we have

Px
(
τVn < τL0

)
≤ n−1+α/5, (31)

while

Px

(
τVn < τL0 , τVn = τV 2

n

)
≤ 1

n3
.

Thus by the strong Markov property,

Px (τy < τL0) =
∑

z∈Vn
Px

(
τVn < τL0 , τVn = τz

)
Pz(τy < τL0)

≤ 1
n3

+
∑

z∈V 1
n

Px
(
τVn < τL0 , τVn = τz

)
Pz(τy < τL0). (32)

Moreover, for each z ∈ V 1
n , by reversibility of random walk ([6]), we have

Pz(τy < τL0) ≤ Py(τz < τL0)Ez[# of visits to z in [0, τL0)]. (33)

For the first term in (33), the same argument for (31) implies that

Py(τz < τL0) ≤ Py(τVn < τL0) ≤ n−1+α/5.

While for the second term in (33), by [11] there is a constant C < ∞ independent of n such
that for all z ∈ V 1

n

Ez[# of visits to z in [0, τL0)] ≤ C log n.

Thus we have
Pz(τy < τL0) ≤ Cn−1+α/5 log n. (34)

Combining (31)–(34), we have for any x ∈ Box0, y ∈ ∂ in Box ,

Px (τy < τL0) ≤ Cn−2+2α/5 log n.

Finally, noting that |∂ in Box | ≤ 5n1−3α , we have

sup
x∈Box0

Px
(
τBox < τL0

)
≤ Cn−2+2α/5 log n · n1−3α ≤ n−1−2.5α

for all sufficiently large n. 34
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Combining (30) and Lemma 6.2, we have

P(A) ≤ nα sup
x∈Box0

Px
(
τBox < τL0

)
≤ n−1−1.5α . (35)

6.2 Upper Bound on P(B)

Now we find the upper bound for P(B). Recall that

• Event B: κ < nα , ,eκ is bad but not devastating, and there is at least one bad event within
κ + 1, κ + 2, . . . , nα .

For any k ≥ 1 define the event

Bk = {,e1, . . . , ,ek−1 are good, ,ek is bad} .

By the Markov property, we have

P(B) =
nα−1∑

k=1

∑

( Ā0, Ã0)

P
(
Bk , ,ek is not devastating, ( Ân

#k
, Ân−1

#k
) = ( Ā0, Ã0)

)



nα−k∑

j=1

P( Ā0, Ã0)
(Bj )



 .

(36)
Using the argument in Subsection 6.1, we have for all k + j ≤ nα and any feasible configu-
ration ( Ā0, Ã0) such that

P
(
Bk, ,ek is not devastating, ( Ân

#k
, Ân−1

#k
) = ( Ā0, Ã0)

)
-= 0

and such that P( Ā0, Ã0)
(Bi ) > 0 for some i ≤ nα − k, we have

P( Ā0, Ã0)
(Bj ) ≤ P( Ā0, Ã0)

(G j ,# j < ∞)P(0,log n)
(
τUn < τL0

)
≤ P(0,log n)

(
τUn < τL0

)
,

where Un = {−n1−5α/2, n1−5α/2} × [0,∞). Again from [11], we have

P(0,log n)
(
τUn < τL0

)
≤ n−1+6α. (37)

Thus by (36) and (37),

P(B) ≤ n−1+7α

(
nα−1∑

k=1

P(Bk)

)

. (38)

Again using the same argument, we have for any k ≤ nα − 1,

P(Bk) ≤ P(Gk,#k < ∞)P(0,log n)
(
τUn < τL0

)
≤ n−1+6α

which implies that
P(B) ≤ n−2+14α. (39)

Letting α = 1/16, Lemma 6.1 follows from Lemma 6.2 and (39). 34

Proof of Theorem 4 At this point, Theorem 4 follows from the combination of Lemma 5.1
and Lemma 6.1. 34
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7 Proof of Theorem 1: Existence of the SDLA

Theorem 1 follows immediately once we show that the limiting process obtained by Theorem
4 has the desired property.

Lemma 7.1 Fix a finite set K , t > 0 and some ε > 0. ∃N finite a.s., such that for all n > N,
for all 0 ≤ s ≤ t and any x ∈ K,

|HL0∪An
s
(x) − HL0∪As (x)| < ε. (40)

Proof By [11, Lemma 2.6] and the sub-linear growth of the interface model proved in The-
orem 5 and the fact we constructed all An

s to be subsets of the interface model, there exists
some m > 0 such that for every n ∈ N ∪ {∞} and x ∈ K ,

∣∣∣∣∣∣

∑

|y|<m1.1

P(y,m)

(
SτL0∪Ans

= x
)

− HL0∪An
s
(x)

∣∣∣∣∣∣
< ε/2. (41)

Let K ′ ⊂ H be a large finite subset such that

2m1.1 max
|y|<m1.1

P(y,m)(τK ′c < τK ) < ε/2.

By Theorem 4we know that there is some N ∈ N large enough such that for every n > N ,

An
s ∩ K ′ = AN

s ∩ K ′ = As ∩ K ′.

Thus
∣∣∣∣∣∣

∑

|y|<m1.1

P(y,m)

(
SτL0∪Ans

= x
)

−
∑

|y|<m1.1

P(y,m)

(
SτL0∪As

= x
)
∣∣∣∣∣∣
< ε/2.

Together with (41) we obtain (40). 34

It remains to prove that {As}s≤t is Markov with the correct stationary harmonic measure
as the transition rate.

Lemma 7.2 For any t > 0, for any s ∈ [0, t] and x, y ∈ H,

lim
#s→0

P
(
As+#s(x) = 1

∣∣∣As(x) = 0, {Aξ }ξ≤s

)

#s
= HL0∪As (x) a.s.

and.

lim
#s→0

P
(
As+#s(x) = 1, As+#s(y) = 1

∣∣∣As(x) = 0, As(y) = 0, {Aξ }ξ≤s

)

#s
= 0 a.s.

Proof Let ε > 0 and Gn be the event that for all s ≤ t and for all x ∈ K , An
s (x) = As(x)

and in addition,

|HL0∪An
s
(x) − HL0∪As (x)| < ε.
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By Lemma 7.1 and Theorem 4, limn→∞ P(Gc
n) = 0. Now uniformly for all s < t and #s

small enough, there is an n ∈ N such that

P
(
As+#s(x) = 1|As(x) = 0, {Aξ }ξ≤s

)

∈ P
(
As+#s(x) = 1|As(x) = 0, {Aξ }ξ≤s,Gn

)
+ (−ε, ε)

= P
(
An
s+#s(x) = 1|An

s (x) = 0, {Aξ }ξ≤s,Gn
)
+ (−ε, ε)

∈ P
(
An
s+#s(x) = 1|An

s (x) = 0, |HL0∪An
s
(x) − HL0∪As (x)| < ε, As

)
+ (−2ε, 2ε)

∈ (1 − e−#s(HL0∪As (x)+ε), 1 − e−#s(HL0∪As (x)−ε))+ (−2ε, 2ε),

where we use the dominated convergence theorem for the first and second approximations.
Now taking ε → 0 and then #s → 0 we obtain the first result. The second result follows a
similar proof by noting that for An

s one can order distinct arrival times. 34
Lemma 7.3 {As}s is a Markov process i.e. For all finite K ⊂ H and any J ∈ {0, 1}K ,
P
(
As+t ∩ K = J

∣∣∣{Aξ }ξ≤s

)
= P

(
As+t ∩ K = J

∣∣∣As

)
.

Proof This proof follows a similar scheme as the previous one. Let G̃n be the event that for
all ξ ≤ t + s and for all x ∈ K , An

ξ (x) = Aξ (x). By the proof of Theorem 4, with high
probability the dynamics up to time t + s inside K does not depend on the configuration in
the complement of Km := [−m,m] × [0,∞) for large enough m ∈ N i.e. for any ε > 0 we
can find an m ∈ N such that

P
(
As+t ∩ K = J

∣∣∣{Aξ }ξ≤s

)

∈ P
(
As+t ∩ K = J

∣∣∣{Aξ ∩ Km}ξ≤s

)
+ (−ε, ε)

∈ P
(
An
s+t ∩ K = J

∣∣∣{An
ξ ∩ Km}ξ≤s, G̃n

)
+ (−2ε, 2ε)

∈ P
(
An
s+t ∩ K = J

∣∣∣An
s ∩ Km, G̃n

)
+ (−3ε, 3ε)

= P
(
As+t ∩ K = J

∣∣∣As ∩ Km, G̃n

)
+ (−3ε, 3ε)

= P
(
As+t ∩ K = J

∣∣∣As ∩ Km

)
+ (−4ε, 4ε)

= P
(
As+t ∩ K = J

∣∣∣As

)
+ (−5ε, 5ε),

where the first equality uses the Markovity of An
· , and the second equality uses the condi-

tioning on G̃n for n large enough (and larger than m). 34
Proof of Theorem 1 By Lemmas 7.2 and 7.3 we obtain that the almost sure limit {As}s≤t :=
limm→∞{Am

s }s≤t obtained in Theorem 4 is a SDLA. 34

8 Proof of Theroem 2: Ergodocity of the SDLA

Proof By Lemma 7.2 and the fact that the stationary harmonic measure is (well...) stationary,
we obtain that A∞

t is stationary with respect to the translation λn(A∞
t ) = A∞

t + n, for any
n ∈ Z. It is enough to prove that A∞

t is strongly mixing. Let t > 0 and K1, K2 be two finite
subsets of H of horizontal distance

min{|x1 − x2| : ∃y1, y2 ∈ N ∪ {0}, (x1, y1) ∈ K1, (x2, y2) ∈ K2} > 4n
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(n will be chosen big enough). Choose arbitrary x1, x2 ∈ Z such that ∃y1, y2 ∈ N ∪ {0},
satisfying (x1, y1) ∈ K1, (x2, y2) ∈ K2. We now consider two copies of An

t constructed
according to Poisson thinning of the same interface model. An

t (1) is centered around x1 and
An
t (2) is centered around x2 i.e. for i ∈ {1, 2} the initial aggregation of An

t (i) is V
n
0 (i) =

[xi − n, xi + n] × 0 . For i ∈ {1, 2} and configurations ξi ∈ {0, 1}Ki , define the events:

Bi = {A∞
t ∩ Ki = ξi }, (42)

Ci = {An
t (i) ∩ Ki = ξi }, (43)

Di = { max
x∈An

t (i)
|x − xi | < 3n/2}. (44)

Under the event D1 ∩ D2, the events C1 and C2 are independent. This follows from the
independence of Poisson processes on non intersecting domains. Moreover we know by
Theorem 5 that

lim
n→∞P

(
Dc
1 ∪ Dc

2
)
= 0,

and by Theorem 4 that

lim
n→∞P (B1 \ C1 ∪ B2 \ C2) = 0.

Thus

lim
n→∞P(B1 ∩ B2) = lim

n→∞P(C1 ∩ C2|D1 ∩ D2) = lim
n→∞P(C1|D1 ∩ D2) · P(C2|D1 ∩ D2)

(45)

= lim
n→∞P(B1) · P(B2) = P(B1) · P(B2), (46)

where in the last equality we used stationarity and abused notations to clarify that the limit
is actually a constant sequence. 34
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