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Stabilization of DLA in a wedge

Eviatar B. Procaccia* Ron Rosenthal† Yuan Zhang‡

Abstract

We consider Diffusion Limited Aggregation (DLA) in a two-dimensional wedge. We
prove that if the angle of the wedge is smaller than ⇡/4, there is some a > 2 such
that almost surely, for all R large enough, after time Ra all new particles attached to
the DLA will be at distance larger than R from the origin. Furthermore, we provide
estimates on the size of R under which this holds. This means that DLA stabilizes in
growing balls, thus allowing a definition of the infinite DLA in a wedge via a finite
time process.
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1 Introduction

Diffusion Limited Aggregation (DLA) was introduced in 1983 by E. Witten and L. M.
Sander [WS83] in order to study the geometry and dynamics of physical aggregation
systems governed by diffusive laws. On the Euclidean lattice Z2, DLA is a random
process (An)n�0 of growing subsets of Z2, which are defined recursively. Typically, one
fixes A0 := {(0, 0)}, and given An, defines An+1 := An [ {an+1}, where an+1 is a point
sampled according to the harmonic measure of @An from infinity. More precisely, an+1 is
the first hitting place of @An (the outer boundary of An) by a simple random walk started
from distance R, in the limit R ! 1 (See Section 3 for the precise definition).

In this paper we study DLA in a two-dimensional wedge

W✓1,✓2 =
�
(x, y) 2 Z2 : arctan(y/x) 2 [✓1, ✓2], x � 0
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where �⇡/2  ✓1 < ✓2  ⇡/2. Here we used the convention that (0, 0) belongs to all
wedges and that arctan(y/0) equals ⇡/2 for y > 0 and �⇡/2 for y < 0. In Appendix A we
prove the existence of the harmonic measure in W✓1,✓2 which is needed for the definition
of the DLA in the wedge.

For R > 0, let BR = {(x, y) 2 Z
2 : x

2 + y
2
< R

2
} be the discrete Euclidean ball

of radius R around the origin, and define W
R
✓1,✓2

= W✓1,✓2 \ BR. Throughout the paper,
we consider W✓1,✓2 and W

R
✓1,✓2

for R > 0 as graphs, with vertices W✓1,✓2 and W
R
✓1,✓2

respectively and edges induced from the graph Z2. We denote by Px
✓1,✓2

the law of a
simple random walk (Sn)n�0 in the graph W✓1,✓2 , starting from x and for D ⇢ W✓1,✓2 ,
denote by ⌧+D = inf{n � 1 : Sn 2 D}, the first return time of the random walk into the
set D. Finally, we set P = P✓1,✓2 to be the law of the DLA (An)n�0 inW✓1,✓2 (see Section 3
for the formal definition). For future use, for n � 1 we denote by an the particle added to
the aggregate at time n, namely the unique vertex in W✓1,✓2 such that An = An�1 [ {an}.

Our main result is the stabilization of the DLA in sufficiently sharp wedges.

Theorem 1.1. Assume�⇡/2  ✓1 < ✓2  ⇡/2 satisfy ✓2�✓1 < ⇡/4 and fix a >
2⇡+4(✓2�✓1)
⇡�4(✓2�✓1)

.
Then P✓1,✓2 -almost surely, for every R > 0 sufficiently large, the random sets (An \

BR)n�Ra are all the same. In other words, for all R sufficiently large, none of the
particles (an)n�Ra added to the system after time R

a will attach to the aggregate inside
W

R
✓1,✓2

. Furthermore, for a fixed a > 2, " > 0, there exists C > 0 such that for all R > 0

P✓1,✓2(9n � R
a such that an 2 BR)  CR

a+1�
�

a
2�1

�⇣
⇡

2(✓2�✓1)�"

⌘

logR . (1.1)

The main tool in proving Theorem 1.1 is a discrete Beurling estimate for random
walk in a wedge, which enables us to control the harmonic measure of finite, connected
subsets of W✓1,✓2 . Unlike in the work of H. Kesten [Kes87b], the proof of the discrete
Beurling estimate here does not rely on Green function calculations. Furthermore, our
discrete version takes the form of penetration probability bounds rather than Kesten’s
maximal harmonic measure bound, which is non trivial to prove for reflected random
walk.

For A ⇢ W✓1,✓2 denote by @A = {y 2 W✓1,✓2 \A : 9x 2 A such that kx� yk1 = 1} the
outer boundary of A.

Theorem 1.2. Fix �⇡/2  ✓1 < ✓2  ⇡/2. For every " > 0, there exists M 2 N and
C 2 (0,1) such that for every r, L 2 N satisfying r � M and L/r � M , every R > 0
sufficiently large (depending on " and L), every connected subset A ⇢ W✓1,✓2 , such that
0 2 A, A \ @W

L
✓1,✓2

6= ; and every x 2 @W
R
✓1,✓2

Px
✓1,✓2

⇣
⌧
+
@W r

✓1,✓2

 ⌧
+
@A

⌘
 C

⇣
r

L

⌘ ⇡
2(✓2�✓1)�"

r logL . (1.2)

2 Discussion and open problems

Since the introduction of DLA in 1983, rigorous understanding of the model was
limited. The main exception being H. Kesten’s upper bound on the growth rate [Kes87b],
see also [BY17]. Lately, similar results were obtained for DLA in the upper half plane with
Dirichlet boundary conditions [PZ19, PZ17]. The main technical difference between this
paper and previous works is that the former does not use any Green function calculations.
The main reason is the lack of control over the discrete Green function in the wedge that
would allow hitting probability calculations (See [GP17] for the best known control in
the case of general Neumann boundary conditions).

There are many interesting open questions regarding DLA. First natural questions
are about the growth rate, the fractal dimension and the relation between the two (see
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[HMP86]). For these important questions our paper does not add to the discussion.
Another natural question is about the number of arms in DLA growing in a wedge (or
in Z2). The physics literature does not provide clear conjectures or even definitions for
the number of arms in a wedge. In [KOO+98], D. A. Kessler, Z. Olami, J. Oz, I. Procaccia,
E. Somfai and L. M. Sander claim evidence for a critical angle ⌫ between 120 and 140
degrees which guarantees coexistence of two arms in a wedge of angle ⌫.

One immediate contribution of our result is to provide a method to sampling the DLA
in W

R
✓1,✓2

, for every finite R > 0, via a finite time random process. By Theorem 1.1 there
is some a > 0 such that for any R large enough almost surely the sets (An \ BR)n�Ra

are all the same. As a result, for all R > 0 sufficiently large, we can define the DLA in
W

R
✓1,✓2

to be ARa \BR, which is a finite time random process. For a fixed R, an estimate
for the probability that no particle will ever penetrate the ball of radius R after time R

a

is presented in (4.1).
Returning to discuss the number of arms, since the sets (ARa \BR) are monotonic

increasing in R, we can define

A1 :=
1[

n=0

An = lim
R!1

(ARa \BR).

Let j be an infinite graph. The number of ends of j is defined to be the supremum
on the number of infinite, connected components of j \K, where we run over all finite
K ⇢ j. Hence, one can define the number of arms of the DLA as the number of ends
of the graph j = A1. Due to the fact that A1 can be written as the limit of the sets
ARa \BR, we can erase a finite set K in finite times and only look on the dynamics after
such times.

Conjecture 2.1. There exists ✓0 2 (0, 2⇡) such that if 0 < ✓2 � ✓1 < ✓0, A1 has one arm.

Remark 2.2. Computer simulations seem to suggest that ✓0 is smaller than ⇡/4. See
Figure 1.

Figure 1: DLA in wedges of angles ⇡/4 and ⇡/40 (angles look larger because of horizontal
stretching for visability).

From our results one can deduce that if in a wedge of angle smaller than ⇡/4, there
are two connected components and one is behind the other by a polynomial order, then
asymptotically the smaller component will cease to grow. However, without a lower
bound on the growth rate this is not enough to prove the conjecture. That being said, we
would like to suggest an open problem for the DLA in a wedge. Define the growth rate
of (An)n�0, denote gr((An)n�0) by

gr((An)n�0) = sup

⇢
� � 1/2 : lim sup

n!1

diam(An)

n�
> 0

�
,

where diam stands for the diameter of the set in the Euclidean distance.
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Conjecture 2.3. For every �
⇡
2 < ✓1 < ✓2 <

⇡
2 , the growth rate is P✓1,✓2 -almost surely a

constant gr✓1,✓2 = gr(✓2 � ✓1). Furthermore lim sup✓2�✓1!0 gr(✓2 � ✓1) < 1.

3 Formal definition of the DLA process in a wedge

This section is devoted to the formal definition of the DLA process in a wedge. In
particular, we state a result regarding the existence of the harmonic measure from
infinity in it, whose proof we postpone to Appendix A.

For x = (x1, x2) 2 Z2 we denote by kxk2 =
p
x2
1 + x2

2 its Euclidean distance from the
origin. Fix �⇡/2  ✓1 < ✓2  ⇡/2. Recall that for x 2 W✓1,✓2 we denote by Px

✓1,✓2
the law

of a simple random walk (Sn)n�0 in W✓1,✓2 staring from x, and for A ⇢ W✓1,✓2 and y 2 Z
2,

define HA(x, y) = Px
✓1,✓2

(S⌧A = y).

Theorem 3.1. For every A ⇢ W✓1,✓2 and y 2 Z
2, the following limit, called the harmonic

measure of A from infinity at y exists

H
1
A (y) := lim

kxk2!1
HA(x, y).

Unlike the analouge problem in the whole plane Z2, c.f. [LL10, Proposition 6.6.1], the
existence of the limiting harmonic measure in a wedge is delicate. The main issue here
is that, as of right now, there seems to be no discrete Green function approximations on
the wedge (or part of it) that is precise enough to match our needs in applying that same
approach. A detailed proof for the existence of the limit can be found in Appendix A.

Remark 3.2. Through private communications with Asaf Nachmias we learned that
there is another approach to Theorem 3.1 using uniform spanning trees. By [BLPS01,
Theorem 14.2] the limit in Theorem 3.1 exists if the uniform spanning tree in the wedge
is one ended. This can be proved using electric network calculations similar to the ones
in this paper. Another approach more similar to the one presented in this paper was
suggested to us by Gregory F. Lawler using similar couplings to the ones presented in
[HLLS18].

Combining Theorem 1.2 and Theorem 3.1 we obtain

Corollary 3.3. Fix �⇡/2  ✓1 < ✓2  ⇡/2. For every " > 0, there exists M 2 N and
C 2 (0,1) such that for all r, L 2 N satisfying r � M and L/r � M and every connected
subset A ⇢ W✓1,✓2 , such that W r

✓1,✓2
⇢ A and A \ @W

L
✓1,✓2

6= ;.

H
1
@A(@W

r
✓1,✓2)  C

⇣
r

L

⌘ ⇡
2(✓2�✓1)�"

r logL. (3.1)

Using the existence of the limit H1
@A(y), we can now formally define the DLA in the

wedge, denoted (An)n�0, to be a sequence of random subsets of W✓1,✓2 such that

A0 = {(0, 0)} and An+1 = An [ {an+1} , (3.2)

where, given An, the vertex an+1 2 W✓1,✓2 is sampled according to H
1
@An

(·). Note
that (An)n�0 is an increasing family of subsets in W✓1,✓2 , and we denote its limit by
A1 =

S1
n=0 An.

4 Proof of Theorem 1.1

Throughout the remainder of the paper we fix �⇡/2  ✓1 < ✓2  ⇡/2. In this section
we assume Corollary 3.3 and turn to prove Theorem 1.1. Let M > 0 and R 2 N such that
R > M . Denote by (Ln)n�0 a sequence such that L0 � R and Ln+1/Ln � M for every
n � 1, and by �i the sequence of successive first exit times of (An)n�0 from BLi , namely,

�i ⌘ �(Li) := inf{n � 0 : An 6⇢ BLi}.
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Lemma 4.1. Let " > 0. For all M sufficiently large (depending only on ") there exists a
constant C = C(M, ") 2 (0,1) such that for all R > 0 sufficiently large

E[|(A1 \A�1) \BR|]  C

1X

i=1

L
2
i+1

✓
R

Li

◆ ⇡
2(✓2�✓1)�"

R logLi.

Proof. We rewrite E[|(A1 \A�1) \BR|] as

E[|(A1 \A�1) \BR|] =
1X

i=1

E
⇥��(A�i+1 \A�i) \BR

��⇤ ,

and turn to bound each of the terms on the right hand side.
Fix i � 1. Note that |WLi+1

✓1,✓2
|  |BLi+1 |  ⇡L

2
i+1 and therefore �i+1  ⇡L

2
i+1. For every

�i  j  �i+1, denote Gj = Aj [W
R
✓1,✓2

and note that the random set Gj is a connected

set containing W
R
✓1,✓2

such that Gj \ @W
Lj

✓1,✓2
6= ;. Therefore, by Corollary 3.3, for every

�i  j < �i+1,

H
1
@Aj

(WR
✓1,✓2)  H

1
@Gj

(@WR
✓1,✓2)  C

✓
R

Li

◆ ⇡
2(✓2�✓1)�"

R logLi ,

where for the first inequality we used the fact that a particle starting from a sufficiently
far point must hit @WR

✓1,✓2
before hitting W

R
✓1,✓2

.
Consequently, the random variable |(A�i+1 \ A�i) \ BR| is stochastically dominated

by a sum of ⇡L2
i+1 independent Bernoulli random variables with success probability

C(R/Li)
⇡

2(✓2�✓1)�"
R logLi, whose expectation is CL

2
i+1(R/Li)

⇡
2(✓2�✓1)�"

R logLi.

Fix some b > 1 and choose the sequence Li := M
i
R

b. By Lemma 4.1, for every " > 0
and M,R > 0 sufficiently large

E[|(A1 \A�1) \BR|]

 C

1X

i=1

L
2
i+1

✓
R

Li

◆ ⇡
2(✓2�✓1)�"

R log(Li) (4.1)

= CR
2b+1�(b�1)

�
⇡

2(✓2�✓1)�"
� 1X

i=1

M
2(i logM + b logR)M

�
2+"� ⇡

2(✓2�✓1)

�
i
.

Since " > 0 can be chosen to be arbitrary small, if ✓2 � ✓1 < ⇡/4, then the sum on the
right hand side is finite and equals

E[|(A1 \A�1) \BR|]  CR
2b+1�(b�1)

�
⇡

2(✓2�✓1)�"
�
(logM + b logR)M

�
4+"� ⇡

2(✓2�✓1)

�
. (4.2)

Furthermore, for every fixed b > 1, the expectation goes to zero as R ! 1 as soon as

✓2 � ✓1 <
⇡(b� 1)

4b+ 2
. (4.3)

As b ! 1, this assumption coincides with the previous one, namely ✓2� ✓1 < ⇡/4. In fact,
for ✓1, ✓2 such that ✓2 � ✓1 < ⇡/4, the power of R on the right hand side can be made
arbitrarily small by increasing b, and in particular, if

✓2 � ✓1 <
⇡(b� 1)

4(b+ 1)
(4.4)
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the power is strictly smaller than �1. Assuming (4.4) it follows that from the Markov
inequality that

1X

R=1

P✓1,✓2(|A1 \A�(MRb) \BR| � 1) < 1 ,

and therefore, using the Borel Cantelli lemma, that P✓1,✓2 -almost surely, for all R > 0
sufficiently large, there are no particles hitting BR after time �1 = �(MR

b), namely, after
the aggregate reaches distance MR

b. Taking a > 2b and noting that for sufficiently large
R we have �1  |BL1 |  ⇡L

2
1 = ⇡M

2
R

2b
< R

a the result follows.
Finally, estimate (1.1) follows from Markov’s inequality and (4.2).

5 Discrete Beurling estimate in a wedge

The goal of this section is to prove Theorem 1.2. We start by describing the proof
strategy.

1. Applying the strong Markov property, and the fact that for r < L < R a random
walk starting from radius R must hit radius L before r, we conclude that it suffices
to consider random walks starting from radius L.

2. Using time reversibility of the random walk, we rewrite the hitting probability as
the ratio between the escape probability from radius r to radius L while avoiding A,
and the probability starting from radius L to hit A before returning to the starting
point.

3. We bound the probability to hit A before returning to the starting point from below
using the theory of electrical networks.

4. Finally, we bound the escape probability from radius r to radius L from above with
the help of the invariance principle and geometric observations on the set A for
which the escape probability is maximal.

5.1 Proof of Theorem 1.2 – Reversibility and key lemmas

Recall that for a set D ⇢ W✓,✓2 we denote by ⌧+D = inf{n � 1 : Sn 2 D} the first
return time to D and let ⌧D = inf{n � 0 : Sn 2 D} be the first hitting time of D. Also,
define D = D [ @D to be the closure of D.

We start our proof by rewriting the hitting probabilities from a far away point
appearing in (1.2) as escaping probabilities. First, note that for all y 2 W

r
✓1,✓2

and
x 2 @W

R
✓1,✓2

and A ⇢ W✓1,✓2 as in Theorem 1.2, the hitting probability Px
✓1,✓2

(S⌧A
= y),

can only increase if we replace A with A \W
L
✓1,✓2

. Thus, without loss of generality, we

can assume that A ⇢ W
L
✓1,✓2

and hence A ⇢ W
L
✓1,✓2 .

For any R > L+ 1 and x 2 @W
R
✓1,✓2

, observe that a random walk starting at x must hit

@W
L
✓1,✓2

before hitting A. Thus, by the strong Markov property, for any y 2 W
r
✓1,✓2

Px
✓1,✓2(⌧A = ⌧y) =

X

u2@WL
✓1,✓2

Px
✓1,✓2

�
S⌧

@WL
✓1,✓2

= u
�
Pu

✓1,✓2(⌧A = ⌧y)

 sup
u2@WL

✓1,✓2
\A

Pu
✓1,✓2(⌧A = ⌧y).

(5.1)

For any u 2 @W
L
✓1,✓2

\A, we now rewrite the hitting probability from u to y as the escaping
probabiity from y to u. This is done using the reversibility property of simple random
walk on graphs. The method of replacing the hitting probability with the escaping
probability was used in H. Kesten [Kes87a] work on the DLA (see also [PZ19] for the
case of a domain with a boundary).
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First, note that for each u 2 @W
L
✓1,✓2

\A and y 2 @W
r
✓1,✓2

,

Pu
✓1,✓2(⌧A = ⌧y) =

1X

n=1

Pu
✓1,✓2(⌧A = ⌧y = n)

=
1X

n=1

Pu
✓1,✓2(S1 /2 A, · · · , Sn�1 /2 A,Sn = y).

(5.2)

Here we used the fact that A is a connected set and that u /2 A. As a result, the whole
path must stay outside of the set A until it first hit y.

Let �A,n
u,y be the collection of all paths � = (x0, x1, x2, · · · , xn) of length n in W✓1,✓2

such that x0 = u, xn = y and x1, · · · , xn�1 /2 A. For � = (x0, . . . , xn) 2 �A,n
u,y denote by

b� = (xn, . . . , x0) 2 �A,n
y,u the path in the reverse direction. Then, the reversibility of simple

random walk implies

Pu
✓1,✓2((S0, . . . , Sn) = �) =

deg(y)

deg(u)
Py

✓1,✓2
((S0, . . . , Sn) = b�) 8� 2 �A,n

u,y ,

where for z 2 W✓1,✓2 we denote by deg(z) its degree in the graph W✓1,✓2 . Since deg(z) 2
{1, 2, 3, 4} for every z 2 W✓1,✓2 , we conclude that

Pu
✓1,✓2((S0, . . . , Sn) = �)  4Py

✓1,✓2
((S0, . . . , Sn) = b�) 8� 2 �A,n

u,y . (5.3)

Combining (5.2) and (5.3),

Pu
✓1,✓2(⌧A = ⌧y) =

1X

n=1

Pu
✓1,✓2(S1 /2 A, · · · , Sn�1 /2 A,Sn = y)

 4
1X

n=1

Py
✓1,✓2

(S1 /2 A, · · · , Sn�1 /2 A,Sn = u)

= 4Ey
✓1,✓2

⇥
|{n 2 [0, ⌧+

A
) : Sn = u}|

⇤
.

(5.4)

By the strong Markov property for the stopping time ⌧+
A
^ ⌧

+
u

Ey
✓1,✓2

⇥
|{n 2 [0, ⌧+

A
) : Sn = u}|

⇤

=Py
✓1,✓2

(⌧+u < ⌧
+
A
) ·Eu

✓1,✓2

⇥
|{n 2 [0, ⌧+

A
) : Sn = u}|

⇤
=

Py
✓1,✓2

(⌧+u < ⌧
+
A
)

Pu
✓1,✓2

(⌧+
A

 ⌧
+
u )

,
(5.5)

where in the last step we used the fact that the number of visits to u before hitting A

when starting from u is a geometric random variables with parameter Pu
✓1,✓2

(⌧+
A

< ⌧
+
u ).

Combining (5.1), (5.4) and (5.5) together with the fact that |@W r
✓1,✓2

|  Cr for some
universal constant C 2 (0,1) gives

Px
✓1,✓2

�
⌧@W r

✓1,✓2
= ⌧A

�
=

X

y2@W r
✓1,✓2

Px
✓1,✓2(⌧y = ⌧A)



X

y2@W r
✓1,✓2

sup
u2@WL

✓1,✓2
\A

Pu
✓1,✓2(⌧A = ⌧y)

 Cr sup
y2@W r

✓1,✓2

sup
u2@WL

✓1,✓2
\A

Pu
✓1,✓2(⌧A = ⌧y)

 Cr sup
y2@W r

✓1,✓2

sup
u2@WL

✓1,✓2
\A

Py
✓1,✓2

(⌧+u < ⌧
+
A
)

Pu
✓1,✓2

(⌧+
A

 ⌧
+
u )

.
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Stabilization of DLA in a wedge

Consequently, in order to prove Theorem 1.2, it suffices to show that there is a
constant C < 1 such that for every " > 0, y 2 @W

r
✓1,✓2

and every u 2 @W
L
✓1,✓2

\A,

Py
✓1,✓2

(⌧+u < ⌧
+
A
)

Pu
✓1,✓2

(⌧+
A

 ⌧
+
u )

 C

⇣
r

L

⌘ ⇡
2(✓2�✓1)�"

logL , (5.6)

for sufficiently large L. The last inequality is an immediate corollary of the following two
lemmas.

Lemma 5.1. There exists a constant c 2 (0,1) independent of r and L such that

Pu
✓1,✓2(⌧

+
A

 ⌧
+
u ) �

c

logL

uniformly for all A ⇢ W
L
✓1,✓2

as in Theorem 1.2 and all u 2 @W
L
✓1,✓2

\A.

Lemma 5.2. For every " > 0, there exists a constant C 2 (0,1) such that for every r, L

sufficiently large, every y 2 @W
r
✓1,✓2

, everyA ⇢ W
L
✓1,✓2

satisfyingW
r
✓1,✓2

⇢ A, A\@W
L
✓1,✓2

6=

0 and every u 2 @W
L
✓1,✓2

\A

Py
✓1,✓2

(⌧+u < ⌧
+
A
)  Py

✓1,✓2
(⌧+

@WL
✓1,✓2

< ⌧
+
A
)  C

⇣
r

L

⌘ ⇡
2(✓2�✓1)�"

.

The proof of Lemma 5.1 is presented in Subsection 5.2 and the proof of Lemma 5.2
can be found in Subsection 5.3.

5.2 Proof of Lemma 5.1

We will use the theory of electrical networks in order to estimate the effective
resistance from u to 0 in the graph W✓1,✓2 . Since 0 2 W

r
✓1,✓2

⇢ A it follows that ⌧+
A

 ⌧0,
and therefore

Pu
✓1,✓2(⌧

+
A

< ⌧
+
u ) � Pu

✓1,✓2(⌧0 < ⌧
+
u ).

Recall that the effective resistance from a vertex v 2 W✓1,✓2 to Z ⇢ W✓1,✓2 is given by

R(v ! Z) =
1

deg(v)Pv
✓1,✓2

(⌧+v < ⌧Z)
.

Repeating the argument in [LP17][Proposition 2.15] for the graph W✓1,✓2 instead of
Z

2 shows that for every �⇡/2  ✓1 < ✓2  ⇡/2, there exists a constant C 2 (0,1) so that

R(0 ! x) 2 [C�1 log kxk2, C log kxk2], 8x 2 W✓1,✓2 .

Noting that deg(x) 2 {1, 2, 3, 4} for every x 2 W✓1,✓2 , the result follows.

5.3 Proof of Lemma 5.2 – Escaping probability to distance L

Having completed the proof of Lemma 5.1, we turn to the proof of Lemma 5.2. The
proof of the latter contains several sub-claims: (i) Finding the set A that maximizes the
escape probability, (ii) explicit calculation for the continuous counterpart of the upper
bound obtained in step (i) and (iii) using the invariance principle to compare the discrete
and the continuous probabilities. We now turn to implement this strategy.

5.3.1 Proof of Lemma 5.2 part (i) – The worst choice for A

We start by showing that the worst choice for A, namely the set which maximizes the
probability Py

✓1,✓2
(⌧+

@WL
✓1,✓2

< ⌧
+
A
) among all sets A ⇢ W

L
✓1,✓2

as in Theorem 1.2 is given by

one of the lines along the wedge boundary.
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r

L

Figure 2: Illustration of proof argument for Lemma 5.3

To this end we define the discrete upper and lower boundaries of W✓1,✓2 by

�u
✓1,✓2 =

n
x 2 W✓1,✓2 : 9y 2 Z

2 satisfying ky � xk1 = 1 and arctan(y2/y1) > ✓2

o

and

�l
✓1,✓2 =

n
x 2 W✓1,✓2 : 9y 2 Z

2 satisfying ky � xk1 = 1 and arctan(y2/y1) < ✓1

o
,

where we use the same convention regarding the function arctan as in the introduction.
Also, for 0 < r < L and ↵ 2 {u, l}, we denote

�↵,r,L = �↵,r,L
✓1,✓2

:= W r
✓1,✓2

[ (�↵
✓1,✓2 \W

L
✓1,✓2).

Lemma 5.3. For all sufficiently large r, all sufficiently large L > r, every set A as in
Lemma 5.2 and every y 2 @W

r
✓1,✓2

Py
✓1,✓2

(⌧+
@WL

✓1,✓2

< ⌧
+
A
)

 max
�
Py

✓1,✓2

�
⌧
+
@WL

✓1,✓2

< ⌧
+
�u,r,L

�
,Py

✓1,✓2

�
⌧
+
@WL

✓1,✓2

< ⌧
+
�l,r,L

� 
.

(5.7)

Proof. Recall that W r
✓1,✓2

⇢ A, @WL
✓1,✓2

\A 6= ; and that A is a connected subset within
the wedge W✓1,✓2 . Therefore there exists a connected path � = (x0

, x
1
, . . . , x

k) within
A from W

r
✓1,✓2

to @WL
✓1,✓2

. Without loss of generality we can assume that xk
2 @W

L
✓1,✓2

,

x
0
2 @W

r
✓1,✓2

and that x1
, x

2
, · · · , x

k�1
2 W✓1,✓2 \ (W

r
✓1,✓2 [ @W

L
✓1,✓2

)c.

Let A0 = W r
✓1,✓2

[ �. Since A
0
⇢ A we know that ⌧+

A
 ⌧

+
A0 and therefore

Py
✓1,✓2

(⌧+
@WL

✓1,✓2

< ⌧
+
A
)  Py

✓1,✓2
(⌧+

@WL
✓1,✓2

< ⌧
+
A0).

Next, we turn to compare the hitting probability in A
0 to the hitting probability in

�u,r,L and �l,r,L. We separate the proof into three cases according to the position of y
with respect to the path �:

(1) The point y satisfies arctan(y2/y1) > arctan(x0
2/x

0
1).

(2) The point y satisfies arctan(y2/y1) < arctan(x0
2/x

0
1).

(3) The point y satisfies y = x
0.
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We start with case (1), since W✓1,✓2 is a connected, planar graph and � is a connected
path in it from @W

r
✓1,✓2

to @WL
✓1,✓2

, every path from y to �l,r,L must hit A0. In particular,
paths starting in y that hit �l,r,L before hitting @WL

✓1,✓2
must hit A0 before hitting @WL

✓1,✓2
.

This implies that Py
✓1,✓2

(⌧+�l,r,L  ⌧
+
@WL

✓1,✓2

)  Py
✓1,✓2

(⌧+A0  ⌧
+
@WL

✓1,✓2

) and therefore the

required inequality. Similarly, in case (2), every path from y to �u,r,L must hit A0 and
therefore paths hitting �u,r,L before @WL

✓1,✓2
must also hit A0 before @WL

✓1,✓2
. Hence

Py
✓1,✓2

(⌧+
@WL

✓1,✓2

 ⌧
+
A0)  Py

✓1,✓2
(⌧+

@WL
✓1,✓2

 ⌧
+
�u,r,L).

Finally, we turn to deal with case (3). Using the Markov property, after one step of the
random walk we have Py

✓1,✓2
(⌧+

@WL
✓1,✓2

 ⌧
+
A0) = 1

deg(y)

P
z2W✓1,✓2 s.t.kz�yk1=1 P

z
✓1,✓2

(⌧@WL
✓1,✓2

 ⌧A0). Since for z 2 A
0 we have Pz

✓1,✓2
(⌧@WL

✓1,✓2
 ⌧A0) = 0 and for z /2 A

0 we can repeat

the argument in (1) and (2) we conclude that

Py
✓1,✓2

(⌧+
@WL

✓1,✓2

 ⌧
+
A0)


1

deg(y)

X

z2W✓1,✓2
kz�yk1=1

max
�
Pz

✓1,✓2

�
⌧
+
@WL

✓1,✓2

< ⌧
+
�u,r,L

�
,Pz

✓1,✓2

�
⌧
+
@WL

✓1,✓2

< ⌧
+
�l,r,L

� 

= max
�
Py

✓1,✓2

�
⌧
+
@WL

✓1,✓2

< ⌧
+
�u,r,L

�
,Py

✓1,✓2

�
⌧
+
@WL

✓1,✓2

< ⌧
+
�l,r,L

� 

 max
�
Py

✓1,✓2

�
⌧
+
@WL

✓1,✓2

< ⌧
+
�u,0,L

�
,Py

✓1,✓2

�
⌧
+
@WL

✓1,✓2

< ⌧
+
�l,0,L

� 
,

as required.

Due to the last lemma it is enough to obtain bounds on

Py
✓1,✓2

(⌧+
@WL

✓1,✓2

 ⌧
+
�l,0,L) and Py

✓1,✓2
(⌧+

@WL
✓1,✓2

 ⌧
+
�u,0,L)

for all y 2 @W
r
✓1,✓2

and all sufficiently large r and L. We focus here on the estimation for
�l,r,L, the bound for �u,r,L is obtained in the same manner.

Let K be a constant to be chosen later on, for i � 0, define Mi = rK
i and let

N = N(r, L,K) be the largest integer such that MN  L. Then

Py
✓1,✓2

⇣
⌧
+
@WL

✓1,✓2

 ⌧
+
�l,0,L

⌘
 Py

✓1,✓2

⇣
⌧
+

@W
MN
✓1,✓2

 ⌧
+
�l,0,L

⌘
,

and by strong Markov property

Py
✓1,✓2

⇣
⌧
+

@W
MN
✓1,✓2

 ⌧
+
�l,0,L

⌘


N�1Y

i=0

sup
z2@W

Mi
✓1,✓2

Pz
✓1,✓2

⇣
⌧
@W

Mi+1
✓1,✓2

 ⌧�l,Mi,Mi+1

⌘
. (5.8)

In order to estimate each of the probabilities on the right hand side we first turn to
evaluate their continuous counterpart.

5.3.2 Proof of Lemma 5.2 part (ii) – Calculating the continuous analogue of
the probability

Define the continuous wedge between the angles �⇡/2  ✓1 < ✓2  ⇡/2 by

W✓1,✓2 = {(x1, x2) 2 R
2 : arctan(x2/x1) 2 [✓1, ✓2]} ,

with the same convention as in the discrete case regarding arctan. Furthermore, define
the intersection of W✓1,✓2 with the ball of radius K around the origin by

W
K
✓1,✓2 = W✓1,✓2 \ {x 2 R

2 : kxk2  K}
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Stabilization of DLA in a wedge

and the lower, upper and front boundaries of WK
✓1,✓2

respectively, by

@
l
W

K
✓1,✓2 = {x 2 W

K
✓1,✓2 : arctan(x2/x1) = ✓1},

@
u
W

K
✓1,✓2 = {x 2 W

K
✓1,✓2 : arctan(x2/x1) = ✓2},

and
@
f
W

K
✓1,✓2 = {x 2 W

K
✓1,✓2 : kxk2 = K} .

Let (B(t))t�0 = (BK
✓1,✓2

(t))t� denote a reflected Brownian motion in W
K
✓1,✓2

and denote

by TK the hitting time of @lWK
✓1,✓2

[@
f
W

K
✓1,✓2

and by Px
✓1,✓2

= P
x,K
✓1,✓2

the law of (BK
✓1,✓2

(t))t�0

with starting point x as well. In this subsection, our goal is to estimate the continuous
analogue of the discrete probability

Pz
✓1,✓2

�
⌧@WKL

✓1,✓2
 ⌧�l,L,KL

�
, 8z 2 @W

L
✓1,✓2 ,

given by
P

x
✓1,✓2(|B(TK)| = K) ,

for all x of the form (cos ✓, sin ✓) with ✓ 2 [✓1, ✓2].
Due to the rotation invariance of (reflected) Brownian motion we can replace the

angles ✓1, ✓2 by the angles �(✓2 � ✓1), 0. Furthermore, using the reflection principle (see
Figure 3 for an illustration), denoting by bTK the hitting time of @WK

✓1,✓2
= @W

l
✓1,✓2

[

@W
u
✓1,✓2

[ @W
f
✓1,✓2

and by ' = ✓2 � ✓1, the difference of the angles, we conclude that

P
(cos ✓,sin ✓)
✓1,✓2

(|B(TK)| = K) = P
(cos(�✓+✓1),sin(�✓+✓1))
�',' (|B(bTK)| = K) .

1 K
'

1 K
'
'

Figure 3: Reflecting the Dirichlet boundary conditions

The probability on the right hand side was calculated in [MP10] for the case ✓ = ✓1

Lemma 5.4 ([MP10] Theorem 7.24). Let ' 2 (0,⇡] and K > 1. Then

P
(1,0)
�','(|B(bTK)| = K) =

2

⇡
arctan

✓
2K⇡/2'

K⇡/' � 1

◆
.

In addition, using conformal maps (or alternatively the Beurling estimation) one can
verify that

P
x
�','(|B(bTK)| = K)  P

(1,0)
�','(|B(bTK)| = K), (5.9)

for all x of the form (cos , sin ) with  2 [�','].
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5.3.3 Proof of Lemma 5.2 part (iii) – from continuous to discrete and comple-
tion of the proof

In this subsection, we use Lemma 5.4 in order to find an upper bound on the discrete
probability

Pz
✓1,✓2

⇣
⌧@WKL

✓1,✓2
 ⌧�l,L,KL

⌘
, 8z 2 @W

L
✓1,✓2

Lemma 5.5. Let K > 0. For every " > 0, there exists a constant L0 2 (0,1) such that
for all L � L0, and all z 2 @W

L
✓1,✓2

Pz
✓1,✓2

⇣
⌧@WKL

✓1,✓2
 ⌧�l,L,KL

✓1,✓2

⌘
 P

(1,0)
�','(|B(bTK)| = K) + ", (5.10)

where ', B and bTK are defined as in the previous subsection.

The main ingredient in the proof of lemma 5.5 is the invariance principle for simple
random walk in a wedge.

Lemma 5.6 (Lemma 2.1 in [BQ06], Theorem 6.3 of [SV71]). Let D be a bounded con-
nected open set with an analytic (smooth) boundary in Rd, d � 2 and let D" = "Z

d
\D.

Suppose that x" 2 D" and x" ! x0 2 D as " ! 0. Let {W "
t , t � 0} be continuous time

simple random walk on D" with W
"
0 = x". Then (W "

t )t�0 converge weakly to reflected
Brownian motion on D starting from x0 as "! 0 (in the weak topology on the space of
continuous functions).

Remark 5.7. In [BQ06], it was assumed throughout the paper that D is a bounded,
connected, open set with analytic boundary. The analyticity assumption is made for
technical reason, needed in proving their main result. However, it is noted in the paper
that the lemma above is derived from Theorem 6.3 of [SV71], which holds also for non
analytic domains.

Proof of Lemma 5.5. Suppose the lemma does not hold. Then, there exists "0 > 0 and an
increasing sequence (Ln)n�1 going to infinity together with a sequence of points (zn)n�1

such that zn 2 @W
Ln
✓1,✓2

for all n � 1 such that

Pzn
✓1,✓2

⇣
⌧@WKLn

✓1,✓2

 ⌧�l,Ln,KLn
✓1,✓2

⌘
� P

(1,0)
�','(|B(bTK)| = K) + "0. (5.11)

Noting that |zn/Ln| ! 1 as n ! 1, it follows that there exists a subsequence kn such
that

lim
n!1

zkn/Lkn = z0 2 {x 2 W✓1,✓2 : kxk2 = 1}.

Consequently, by Lemma 5.6 and (5.9) we have

lim
n!1

P
zkn
✓1,✓2

⇣
⌧
@W

KLkn
✓1,✓2

 ⌧
�
l,Lkn

,KLkn
✓1,✓2

⌘
= P

z0
✓1,✓2

���B✓1,✓2
k (bTK)

�� = K
�

 P
(1,0)
�','(|B(bTK)| = K)

(5.12)

contradicting (5.11).

At this point we have all the ingredients needed in order to complete the proof of
Theorem 1.2. Recalling Lemma 5.4, we observe that there exists a universal constant
C 2 (0,1) such that

P
(1,0)
�','(|B(bTK)| = K) =

2

⇡
arctan

✓
2K⇡/2'

K⇡/' � 1

◆


C

K⇡/2'
, 8K � 2. (5.13)
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Furthermore, since limK!1 logK(C + 1) ! 0, there exists K0 2 (1,1) such that

0 < logK0
(C + 1) <

"

4
. (5.14)

Taking "K0 = K
�⇡/2'
0 in Lemma 5.5, we conclude that exists R0 2 (0,1) such that

for all r � R0 and all z 2 @W
r
✓1,✓2

Pz
✓1,✓2

⇣
⌧
@W

rK0
✓1,✓2

 ⌧�l,r,rK0

⌘
 P

(1,0)
�','(|B(bTK0)| = K0) + "K0 

C + 1

K
⇡/2'
0

. (5.15)

Next, recall that NK0 was defined to be the largest integer n such that rKn
0  L,

which implies that NK0 = blogK0
(L/r)c. Consequently, for all r � R0, and L sufficiently

large so that ✓
L

r

◆"/2

� K
⇡/2'
0 ,

we have

Py
✓1,✓2

⇣
⌧
@W

MN(K0)
✓1,✓2

 ⌧Bl,0,L
✓1,✓2

⌘


N�1Y

i=0

sup
z2@W

Mi
✓1,✓2

Pz
✓1,✓2

✓
⌧
@W

Mi+1
✓1,✓2

 ⌧�l,Mi,Mi+1

◆



✓
C + 1

K
⇡/2'
0

◆logK0
(L/r)�1

 K
⇡/2'
0

✓
r

L

◆⇡/2'�logK0
(C+1)

 K
⇡/2�
0

✓
r

L

◆⇡/2'� 1
4 "



✓
r

L

◆⇡/2'�"

.

(5.16)

Thus, the proof of Lemma 5.2 is complete.

A Existence of infinite harmonic measure

In this section, we prove Theorem 3.1. The convergence is proved by showing that
for any y 2 W✓1,✓2 and any sequence (xn)n�1 in W✓1,✓2 such that limn!1 kxnk2 = 1, the
sequence (HA(xn, y))n�1 is Cauchy.

Let (xn)n�1 be a sequence as above. Since A is finite one can find r > 0 such that
A ⇢ W

r
✓1,✓2

and thus HA(x, y) = 0 for all y /2 W
r
✓1,✓2

and x 2 W✓1,✓2 . Hence, we can
restrict attention to y 2 W

r
✓1,✓2

. Since limn!1 kxnk2 = 1, we can assume without loss of
generality that kxnk2 > r for all n � 1

Note that for any m,n 2 N such that kxnk2 < kxmk2, a random walk starting in xm

must hit @W kxnk2

✓1,✓2
before hitting A. Thus it is enough to prove that for every y 2 W

r
✓1,✓2

lim
R!1

max
x1,x22@WR

✓1,✓2

|HA(x1, y)�HA(x2, y)| = 0. (A.1)

As mentioned in Section 3, there is no discrete Green function approximation on the
wedge which is accurate enough to allow us to follow the proof outline of H. Kesten in
Z

2. Instead, we will prove the result using the following strategy

1. Show that the number of steps needed for a random walk, starting from @W
R
✓1,✓2

, to
reach A is asymptotically bigger than R

2.
2. Show that the mixing time for a random walk started from x 2 @W

R
✓1,✓2

is much
smaller than the hitting time of A and therefore, using a coupling argument, that
two random walks starting from x1 and x2 in @WR

✓1,✓2
respectively, will coincide

with high probability before hitting A.

Note that carrying out the strategy above requires careful choices of parameters in the
proof. This is the content of the following subsections.
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A.1 Coupling, two key propositions and the proof of Theorem 3.1

For R > 0 and x1, x2 2 @W
R
✓1,✓2

, denote by Px1,x2

R a coupling of two continuous
time Markov processes (BR

1 (t), B
R
2 (t))t�0 each with state space W✓1,✓2/R := {x/R : x 2

W✓1,✓2} defined as follows:

1. B
R
1 (t) is a continuous time, simple random walk on W✓1,✓2/R, starting at x1/R, with

fixed jump rate 2R2.
2. B

R
2 (t) is a continuous time, simple random walk on W✓1,✓2/R, starting at x2/R, with

fixed jump rate 2R2.
3. (BR

1 (t))t�0 and (BR
2 (t))t�0 are coupled according to the maximum coupling, see

[LL10, Appendix A.4.2].

For i 2 {1, 2}, we define (SR
i (n))n�0 to be the embedded, discrete time, simple

random walk in (BR
i (t))t�0, and for s � 0, denote by N

R
i (s), the number of jumps made

by the Markov process (BR
i (t))t�0 up to time s. It follows from the definitions above that

B
R
i (s) = S

R
i (NR

i (s)) for i 2 {1, 2}, R > 0 and s � 0. Denoting by ⌧ iA = inf{t � 0 : B
R
i (t) 2

A/R}, the hitting time of (BR
i (n))n�0 in A/R, it follows from the definition of HA(·, ·) and

the relation between B
R
i and S

R
i that for every y 2 W

r
✓1,✓2

HA(xi, y) = Pxi
�
Si(⌧A) = y

�
= Px1,x2

R

�
B

R
i (⌧

i
A) = y

�
, 8i 2 {1, 2}.

Define the stopping time

T = inf{t � 0 : B
R
1 (t) = B

R
2 (t)} ,

and note that from the definition of the coupling and the stopping time B1(s) = B2(s) for
all s � T.

For t0 > 0 and R > 0, define the event

It0,R = {⌧
1
A > t0, ⌧

2
A > t0, T  t0}.

Then, by the Markov property

{B
R
1 (⌧

1
A) = y} \ It0,R = {B

R
2 (⌧

2
A) = y} \ It0,R ,

and therefore

|HA(x1, y)�HA(x2, y)|

=
���Px1,x2

R

�
{B

R
1 (⌧

1
A) = y} \ I

c
t0,R

�
� P

x1,x2

R

�
{B

R
2 (⌧

2
A) = y} \ I

c
t0,R

����

 P
x1,x2

R (Ict0,R)  P
x1,x2

R (⌧1A  t0) + P
x1,x2

R (⌧2A  t0) + P
x1,x2

R (T > t0)

(A.2)

Also, note that for i 2 {1, 2}

P
x1,x2

R (⌧ iA  t0)  P
x1,x2

R (Ni(t0) � 4t0R
2) + Px1,x2

R (Ni(⌧
i
A)  4t0R

2)

 e
�2(log(4)�1)t0R

2

+ Pxi
✓1,✓2

(⌧A  4t0R
2) ,

(A.3)

where in the last inequality we used large deviation estimate for the random variable
N1(t0) ⇠ Pois(2t0R2), the fact that the paths of (BR

i ) and (SR
i ) are the same and that

(SR
i ) as the same law as a simple random walk in the wedge started in xi, i.e., the its law

is given by Pxi
✓1,✓2

.
Combining all of the above, we conclude that for every t0 > 0, R > 0, x1, x2 2 W

R
✓1,✓2

and y 2 W
r
✓1,✓2

|HA(x1, y)�HA(x2, y)|  2 max
x2WR

✓1,✓2

Px
✓1,✓2(⌧A  4t0R

2) + Px1,x2

R (T > t0)

+ 2e�2(log(4)�1)t0R
2

.
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Stabilization of DLA in a wedge

Consequently, the proof of Theorem 3.1 is an immediate consequence of the following
two propositions:

Proposition A.1. For every finite set A 2 W✓1,✓2 and every t 2 (0,1)

lim
R!1

max
x2@WR

✓1,✓2

Px
✓1,✓2(⌧A  tR

2) = 0 .

Proposition A.2. It holds that

lim
t0!1

lim
R!1

max
x1,x22@WR

✓1,✓2

P
x1,x2

R (T > t0) = 0 .

Proof of Theorem 3.1. Let A ⇢ W✓1,✓2 be a finite set. The discussion above combined
with Proposition A.1 and Proposition A.2 implies that (A.1) holds. As a result, the limit
limkxk2!1 HA(x, y) exists for every y 2 W✓1,✓2 and thus the existence of the Harmonic
measure follows.

A.2 Lower bound on the hitting time – Proof of Proposition A.1

We start with some results for the continuous analogue of reflected Brownian motion
in the continuous wedge W✓1,✓2 , whose law when starting in u 2 W✓1,✓2 we denote by
P

u
✓1,✓2

. For L > 0 denote by SL the hitting time of the reflected Brownian motion in
@W

L
✓1,✓2

.

Lemma A.1. For every " > 0, C > 1 and u 2 W✓1,✓2 such that kuk2 = 1

P
u
✓1,✓2(SC�1 < SC") =

"

1 + "
. (A.4)

Proof. The proof follows from the fact that log |x| is the Green function in R2 and
therefore, if (B(t))t�0 is a standard two-dimensional Brownian motion, then (log |B(t)|)t�0

is a martingale.
Indeed, note that the reflected Brownian motion in a smooth region is conformally

invariant up to a time change, c.f. Theorem 9.3 of [LSW03]. By the conformal mapping
theorem we can map the wedge into C \ [0,1), which transforms the Brownian motion
in W✓1,✓2 to a Brownian motion in C reflected on the line {(x, 0) : x � 0}. Note
that the original event {SC�1 < SC"} is mapped under this transformation to the event
{ bSC�2⇡/(✓2�✓1) < bSC2⇡"/(✓2�✓1)}, where bSL is the first time that a Brownian motion reflected
on the link {(x, 0) : x � 0} is at distance L from the origin. Next, observe that by
the reflection principle, the reflection on the line {(x, 0) : x � 0} does not change the
probability of the event { bSC�2⇡/(✓2�✓1) < bSC2⇡"/(✓2�✓1)}.

Due to the fact that (log(|B(t)|))t�0 is a martingale, where (B(t))t�0 is a standard
two-dimensional Brownian motion. It follows from the optional stopping theorem for the
stopping time bS = min{ bSC�2⇡/(✓2�✓1) , bSC2⇡"/(✓2�✓1)} that

�
2⇡

✓2 � ✓1
P

u
✓1,✓2(SC�1 < SC") log(C) +

2⇡"

✓2 � ✓1
(1� bPu

✓1,✓2(SC�1 < SC")) logC = 0

which proves the result.

Lemma A.2. For every " > 0, there is a constant C" 2 (0,1) such that for all u 2 W✓1,✓2

satisfying kuk2 = 1 and all t0 > 0

P
u
✓1,✓2(St1/2+"

0
 t0) 

C"

t0
.
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Stabilization of DLA in a wedge

Proof. It suffices to prove the result for all sufficiently large t. Let ' := (✓2 � ✓1)/⇡
and define f(z) = z

', be the conformal map from the upper half plane H = {z 2

C : Im(z) > 0} onto the wedge W✓1,✓2 . Recall that by Ito’s formula, if (BH(t))t�0 is a
reflected Brownian motion in H, then (f(BH(t)))t�0 is a time changed reflected Brownian
motion in the wedge W✓1,✓2 , and that the time change of the process is given by

⇣(t) =

Z t

0
|f

0(BH(s))|2ds ,

We denote the law of BH(s) starting from u by P
u,H.

For t0 > 0, define
S
H

t0 = inf{t � 0 : kB
H(t)k2 = t0}.

Then
P

u
✓1,✓2(St1/2+"

0
 t0)

 P
u1/',H(SH

t(1/2+")/'
0

 t
(1+"/2)/'
0 ) + P

u1/',H(⇣(t(1+"/2)/'
0 )  t0).

(A.5)

Starting from the first term on the right hand side of (A.5), note that ku1/'
k2 = 1 for

every u = (u1, u2) such that kuk2 = 1. Also, observe that a reflected Brownian motion
in the upper half plane can be constructed by replacing the y-coordinate of a standard
2-dimensional Brownian motion by its absolute value. Since, kBH(t)k2 � t0 implies that
at least one of the coordinates of BH(t) is bigger than t0/2 it follows that

P
u1/',H(SH

t(1/2+")/'
0

 t
(1+"/2)/'
0 )

 2 sup
|a|1

P
a
⇣

max
tt(1+"/2)/'

0

|B
1(t)| � t

(1/2+")/'
0 /2

⌘
,

(A.6)

where B(t) is a one-dimensional Brownian motion started at a, whose law is denoted by
P

a. By reflection principle for one dimensional Brownian motion

P
a
⇣

max
tt(1+"/2)/'

0

|B(t)| � t
(1/2+")/'
0 /2

⌘

 4Pa(B(t(1+"/2)/'
0 ) � t

(1/2+")/'
0 /2)  4 exp(�t

"/2
0 ) <

1

2t0

for all |a|  1 and all t0 > 0 sufficiently large. Thus it remains to control the second term
on the right hand side of (A.5), and show that for every " > 0 there exists C" 2 (0,1)
such that

P
u1/',H

⇣
⇣(t(1+"/2)/'

0 )  t0

⌘


C"

t0
. (A.7)

Recalling that f(z) = z
', we have |f

0(BH(s))|2 = '
2
|B
H(s)|2('�1). Define �" = '"/(3 + ").

For any n 2 N, using similar argument as in (A.6), we have

P
u1/',H

⇣
max
tn

kB
H(t)k2 � n

(1+�")/2
⌘

 2 max
|a|1

P
a
⇣
max
tn

|B(t)| � n
(1+�")/2/2

⌘
 8 exp(�n

�"/4)
(A.8)

for all sufficiently large n. Consequently

1X

n=bt(1+"/2)/'
0 /2c

P
u1/',H

⇣
max
tn

kB
H(t)k2 � n

(1+�")/2
⌘


C"

t0
. (A.9)
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Stabilization of DLA in a wedge

Thus it suffices to show that ⇣(t1+"/2
0 ) > t0 on the event

A =
1\

n=bt(1+"/2)/'
0 /2c

n
max
tn

kB
H(t)k2 < n

(1+�")/2
o
.

This indeed holds since for all n � bt
(1+"/2)/'
0 /2c � 1

Z n

n�1
'
2
|CB

H(s)|2('�1)
ds > '

2
n
(1+�")('�1)

� '
2
n
�1+'��" = '

2
n
�1+'/(1+"/3)

and therefore

⇣(t(1+"/2)/'
0 ) � '

2

Z t(1+"/2)/'
0

t
(1+"/2)/'
0

2

|B
G(s)|2('�1)

ds � '
2

bt(1+"/2)/'
0 c�1X

n=b t
(1+"/2)/'
0

2 c

n
�1+'/(1+"/3)

� ct
(1+"/2)/(1+"/3)
0 > t0.

(A.10)

With Lemma A.2 at hand, by choosing C = t
1+ 1

2"
0 one obtains:

Lemma A.3. For every " > 0, every t0 2 (0,1) and any u 2 W✓1,✓2 satisfying kuk2 = 1,

lim
C!1

P
u
✓1,✓2(SC"  t0) = 0 . (A.11)

Next, using the invariance principle and an argument similar to the one in the proof
of Lemma 5.5, we prove analogue results to the ones in Lemmas A.1–A.3, for simple
random walk in W✓1,✓2 .

For " > 0, R � 1 and C > 0, let

(SR,C,"
n )n�0 =

✓
Sn^⌧

@W2C"R
✓1,✓2

^⌧
@W

R/2C
✓1,✓2

◆

n�0

be a simple random walks in W✓1,✓2 , starting from xR 2 @W
R
✓1,✓2

, stopped at the first

hitting time of @WR/2C
✓1,✓2

or @W 2C"R
✓1,✓2

. Due to the invariance principle, for every sequence
of points (xR)R�1 for which the limit x1 := limR!1 xR/R exists, the linear interpolation
of (SR,C,"

n )n�0 converges weakly to reflected Brownian motion in the wedge (B✓1,✓2(t))t�0,
starting from x1 2 W✓1,✓2 (satisfying kx1k2 = 1) until the stopping time

inf{t � 0 : |B✓1,✓2(t)| 2 {2C�1
, 2C"

}} .

Lemma A.4. For every " > 0, t0 2 (0,1) and C > 1, there exists C" 2 (0,1) such that
the following holds

lim
R!1

max
y2@WR

✓1,✓2

Py
✓1,✓2

�
⌧
@WR/C

✓1,✓2

< ⌧@WRC"
✓1,✓2

�
 ", (A.12)

lim
R!1

max
y2@WR

✓1,✓2

Py
✓1,✓2

(⌧
@WT1/2+"R  t0R

2) 
C"

t0
, (A.13)

and
lim

C!1
lim

R!1
max

y2@WR
✓1,✓2

Py
✓1,✓2

�
⌧@WC"R

✓1,✓2
 t0R

2
�
= 0. (A.14)

Proof. As alluded above, we use a similar argument to the one in the proof of Lemma
5.5. Suppose (A.12) does not hold. Then there is a sequence (Rn)n�1 going to infinity
and a sequence (xn)n� such that for every n � 1, xn 2 @W

Rn
✓1,✓2

and

Pxn
✓1,✓2

�
⌧
@WR/C

✓1,✓2

< ⌧@WRC"
✓1,✓2

�
� "
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Since xn/Rn is a bounded sequence in R2, there exists a subsequence (nk)k�1 such that
limk!1 xnk/Rnk = x

0
1 2 W✓1,✓2 , satisfying kx

0
1k2 = 1. Thus by the invariance principle

and Lemma Lemma A.1,

"  lim
k!1

P
xnk
✓1,✓2

�
⌧
@W

Rnk
/C

✓1,✓2

< ⌧
@W

Rnk
C"

✓1,✓2

�
= P

x0
1

✓1,✓2
(SC�1 < SC") =

"

1 + "

which contradicts the assumption. Repeating the argument with Lemma A.2 and Lemma
A.3 replacing Lemma A.1, yields (A.13) and (A.14) respectively.

Proof of Proposition A.1. Since A is a fixed finite set, for every C > 1 and R sufficiently
large (depending only on C and A) we have A ⇢ W

R/C
✓1,✓2

. Hence, for every x 2 @W
R
✓1,✓2

and R sufficiently large

⌧C"R ^ ⌧R/C  ⌧R/C  ⌧A, Px
✓1,✓2 � a.s

and therefore, for every t0 > 0, C > 1, " > 0 and x 2 @W
R
✓1,✓2

Px
✓1,✓2(⌧A  t0R

2)  Px
✓1,✓2

�
⌧@WC"R

✓1,✓2
^ ⌧

@WR/C
✓1,✓2

 t0R
2
�

 Px
✓1,✓2

�
⌧
@WR/C

✓1,✓2

< ⌧@WC"R
✓1,✓2

�
+Px

✓1,✓2

�
⌧@WC"R

✓1,✓2
 t0R

2
�
.

Taking the maximum over x 2 @W
R
✓1,✓2

, then the limit R ! 1, then the limit C ! 1

and finally the limit "! 0, the result follows from Lemma A.4.

A.3 Proof of Proposition A.2

Since Px1,x2

R couples the two random walks via a maximum coupling for Markov
chains, it follows that

P
x1,x2

R (T > t0)  dTV(B
R
1 (t0), B

R
2 (t0))

:=
X

y2W✓1,✓2/R

��Px1,x2

R (BR
1 (t0) = y)� Px1,x2

R (BR
2 (t0) = y)

��

For M0 2 (0,1), one can split the sum over y into two parts, those satisfying
kyk2 � M0 and the ones satisfying kyk2 < M0. We turn to estimate each of the sums
separately.

M0R

R

A

Figure 4: Max coupling occurs before hitting @WM0R
✓1,✓2

.
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For the first sum, note that a similar argument the one in (A.3) yields

X

y2W✓1,✓2/R
kyk2�M0

��Px1,x2

R (BR
1 (t0) = y)� Px1,x2

R (BR
2 (T0) = y)

��

 P
x1,x2

R (kBR
1 (t0)k2 � M0) + P

x1,x2

R (kBR
2 (t0)k2 � M0)

 2e�2(log(4)�1)T0R
2

+ 2 max
x2@WR

✓1,✓2

Px
✓1,✓2(⌧M0R  4t0R

2).

Fixing some " > 0 and defining M0 = t
1/2+"
0 , it follows from Lemma A.4 (see (A.13))

that the sum is bounded by

2e�2(log(4)�1)t0R
2

+
3C"

t0


4C"

t0
,

provided R is sufficiently large.
Next, we turn to estimate the second term, namely

X

y2W✓1,✓2/R
kyk2<M0

��Px1,x2

R (BR
1 (t0) = y)� Px1,x2

R (BR
2 (t0) = y)

�� (A.15)

The strategy for bounding the last sum is to use known bounds on the mixing time
and total variation distance for random walks on finite graphs, obtained by intersecting
scaled version of Z2 with some bounded and sufficiently regular domains in R2. Note
however, that the continuous time, simple random walk in (A.15) is defined on the cone
W✓1,✓2/R, which is not bounded. Thus our first step is to show that the last sum can be
well approximated by a corresponding sum for a continuous time, simple random walk in
W

M0R
✓1,✓2

/R, with M0 chosen (as before) to be t
1/2+"
0 .

To this end, forM0 = t
1/2+"
0 > 1, R > 0 and x1, x2 2 @W

R
✓1,✓2

, denote by Px1,x2,M0

R a cou-

pling of two continuous time, simple random walks on W
M0R
✓1,✓2

/R, denoted (BR,M0
1 (t))t�0

and (BR,M0
2 (t))t�0, defined as follows:

1. B
R,M0
1 (t) is a continuous time, simple random walk on W

M0R
✓1,✓2

/R, starting at x1/R,
with fixed jump rate of 2R2.

2. B
R,M0
2 (t) is a continuous time, simple random walk on W

M0R
✓1,✓2

/R, starting at x2/R,
with fixed jump rate of 2R2.

3. (BR,M0
1 (t))t�0 and (BR,M0

2 (t))t�0 are coupled according to the maximum coupling,
see [LL10, Appendix A.4.2].

Furthermore, for i 2 {1, 2} and s � 0, we denote by N
R,M0
i (s), the number of jumps

made by the Markov process (BR,M0
i (t))t�0 up to time s and for D ⇢ W

M0R
✓1,✓2

, define

⌧
i,M0

D = inf{t � 0 : B
R,M0
i (t) 2 D/R}.

Lemma A.5. Fix " > 0 and t0 > 1, and let M0 = t
1/2+"
0 . Then for every R > 0 sufficiently

large and every x1, x2 2 @W
R
✓1,✓2

����
X

y2W
M0R
✓1,✓2

/R

��Px1,x2

R (BR
1 (t0) = y)�Px1,x2

R (BR
2 (t0) = y)

���dTV(B
R,M0
1 (t0), B

R,M0
2 (t0))

����
16C"

t0

EJP 25 (2020), paper 42.
Page 19/22

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP446
http://www.imstat.org/ejp/


Stabilization of DLA in a wedge

Proof. Fix x1, x2 2 @W
R
✓1,✓2

and note that for i 2 {1, 2}

P
x1,x2

R

�
⌧
i
@W

M0R/2
✓1,✓2

 t0

�
 P

x1,x2

R

�
Ni(t0) � 4t0R

2
�
+ Px1,x2

R

�
Ni(⌧

i
@W

M0R/2
✓1,✓2

)  4t0R
2
�

 e
�2(log(4)�1)t0R

2

+ Pxi
✓1,✓2

(⌧
@W

M0R/2
✓1,✓2

 4t0R
2) 

4C"

t0
,

where in the last step we used Lemma A.4(A.13). A similar argument shows that for
i 2 {1, 2}

P
x1,x2,M0

R

⇣
⌧
i
@W

M0R/2
✓1,✓2

 t0

⌘


4C"

t0
.

Next, notice that the laws of (BR
i (t ^ ⌧

i
@W

M0R/2
✓1,✓2

))t�0 and (BR,M0
i (t ^ ⌧ i,M0

@W
M0R/2
✓1,✓2

))t�0 are

equal and therefore

P
x1,x2

R

�
B

R
i (t0) = y, ⌧

i
@W

M0R/2
✓1,✓2

> t0

�
= Px1,x2,M0

R

�
B

R,M0
i (t0) = y, ⌧

i,M0

@W
M0R/2
✓1,✓2

> t0

�
.

Combining all of the above, together with the fact that

dTV(B
R,M0
1 (t0), B

R,M0
2 (t0))

=
X

y2W
M0R
✓1,✓2

/R

��Px1,x2,M0

R (BR,M0
1 (t0) = y)� Px1,x2,M0

R (BR,M0
2 (t0) = y)

��

yields the result.

Proof of Proposition A.2. Combining the estimation for the sum over y 2 (W✓1,✓2 \

W
M0R
✓1,✓2

)/R together with Lemma A.5 implies that for every x1, x2 2 @W
R
✓1,✓2

|P
x1,x2

R (T > t0)� dTV(B
R,M0
1 (t0), B

R,M0
2 (t0))| 

20C"

t0
,

where (BR,M0
1 (t0)), B

R,M0
2 (t0))) is distributed according to the coupling Px1,x2,M0

R . There-
fore, it suffices to show that

lim
t0!1

lim
R!1

sup
x1,x22@WR

✓1,✓2

dTV(B
R,M0
1 (t0), B

R,M0
2 (t0)) = 0 .

Recall that (BR,M0
1 (t))t�0 and (BR,M0

2 (t))t�0 are continuous time, simple random
walks on W

M0R
✓1,✓2

/R with law Px1,x2,M0

R , and in particular that they start in x1/R and x2/R

respectively.
We finish the proof using one last rescaling. For i 2 {1, 2} and R > 0, define

eBR,M0
i (t) =

1

M0
B

R,M0
i (M2

0 t), 8t � 0, 8i 2 {1, 2}.

Note that ( eBR,M0
i (t))t�0, for i 2 {1, 2}, is a continuous time, simple random walks in

W
M0R
✓1,✓2

/(M0R) with constant jump rate 2(M0R)2started in xi/M0R. In addition, observe

that WM0R
✓1,✓2

/(M0R) is also the intersection of the rescaled lattice (M0R)�1
Z

2 and the
continuous wedge D = W✓1,✓2 \ {kyk2 < 1}. Thus for any y 2 W✓1,✓2/R such that
kyk2 < M0,

P
x1,x2,M0

R

�
B

R,M0
i (t0) = y

�
= Px1,x2,M0

R

✓
eBR,M0
i

✓
t0

M2
0

◆
=

y

M0

◆
. (A.16)
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Let et0 = t0/M
2
0 = t

�2"
0 . Then

dTV(B
R,M0
1 (t0), B

R,M0
2 (t0))

=
X

y2W✓1,✓2/R
kyk2<M0

���Px1,x2,M0

R

�
B

R,M0
1 (t0) = y

�
� P

x1,x2,M0

R

�
B

R,M0
2 (t0) = y

����

=
X

z2W
M0R
✓1,✓2

/M0R

��Px1,x2,M0

R ( eBR,M0
1 (et0) = z)� Px1,x2,M0

R ( eBR,M0
2 (et0) = z)

��.

(A.17)

We are now ready to use the aformentioned known bound on the mixing time for
continuous-time random walks on bounded domains in R2. Note that D is a bounded,
Lipschitz domain in R2, and therefore, by (2.8) and Theorem 2.11 in [CF17], for " > 0
sufficiently small, there exists a constant, C 0

2 (0,1) which is independent of R and z,
such that for all sufficiently large R and z 2 W

M0R
✓1,✓2

/M0R

(M0R)2
��Px1,x2,M0

R ( eBR,M0
1 (et0) = z)� Px1,x2,M0

R ( eBR,M0
2 (et0) = z)

��

 C
0 |
eBR,M0
1 (0)� eBR,M0

2 (0)|8"

et1+4"
0

.

(A.18)

Recalling that eBR,M0
i (0) = xi/(M0R) for i 2 {1, 2} and that x1, x2 2 @W

R
✓1,✓2

, we conclude

that | eBR,M0
1 (0)� eBR,M0

2 (0)|  CM
�1
0 = Ct

�1/2�"
0 , and therefore

(M0R)2
��Px1,x2,M0

R ( eBR,M0
1 (et0) = z)� Px1,x2,M0

R ( eBR,M0
2 (et0) = z)

��  C
0

t2"0

Noting that |WM0R
✓1,✓2

/M0R| = O((M0R)2), and that the bound is uniform in x1, x2 2 @W
R
✓1,✓2

,
the proof of Proposition A.2 (and thus of Theorem 3.1 as well) is complete.
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