European Journal of Combinatorics 91 (2021) 103200

Contents lists available at ScienceDirect European Journal

of Combinatorics

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

An analogue of the Erd6s-Gallai theorem for n
random graphs et

Jézsef Balogh **', Andrzej Dudek “?, Lina Li ¢

2 Department of Mathematical Sciences, University of Illinois at Urbana-Champaign, IL, USA
b Moscow Institute of Physics and Technology, Russian Federation

¢ Department of Mathematics, Western Michigan University, Kalamazoo, MI, USA

4 Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL, USA

ARTICLE INFO ABSTRACT
Article history: Recently, variants of many classical extremal theorems have been
Available online 25 August 2020 proved in the random environment. We, complementing existing

results, extend the Erdés-Gallai Theorem in random graphs. In
particular, we determine, up to a constant factor, the maximum
number of edges in a P,-free subgraph of G(N, p), practically for
all values of N, n and p. Our work is also motivated by the recent
progress on the size-Ramsey number of paths.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

A celebrated theorem of Erdés and Gallai [14] from 1959 determines the maximum number of
edges in an n-vertex graph with no k-vertex path P.

Theorem 1 (Erdés and Gallai [14]). For n, k > 2, if G is an n-vertex graph with no copy of Py, then the
number of edges of G satisfies e(G) < %(k —2)n. If n is divisible by k — 1, then the maximum is achieved
by a union of disjoint copies of Ki_1.

An important direction of combinatorics in recent years is the study of sparse random analogues
of classical extremal results; that is, the extent to which of these results remain true in a random
setting. For graphs G and F, we write ex(G, F) for the maximum number of edges in an F-free
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subgraph of G. For example, the Erdés-Gallai theorem asserts that ex(K,, Py) =
divisible by k — 1.

The study of the random variable ex(G, F), where G is the Erdés-Rényi random graph G(n, p),
was initiated by Babai, Simonovits and Spencer [2], and by Frankl and Rodl [15]. After efforts by
several researchers [18,19,21-23,32], Conlon and Gowers [9] and Schacht [30] finally proved a
sparse random version of the Erdés-Stone theorem, showing a transference principle of Turan-type
results, that is, when a random graph inherits its (relative) extremal properties from the classical
deterministic case. Note that via the hypergraph container method the same results were proved [4]
and [29], even when |F| is a reasonable large function of n. A special case of this result, when F is the
k-vertex path Py, can be viewed as a weak analogue (as the Turan density is 0) of the Erdés—Gallai
theorem on the random graph for paths with a fixed size. In this paper, we investigate the random
analogue of the Erdés-Gallai theorem for general paths, whose length might increase with the order
of the random graph.

We say that events A, in a probability space hold asymptotically almost surely (or a.a.s.), if the
probability that A, holds tends to 1 as n goes to infinity. The typical appearance of long paths
and cycles is one of the most thoroughly studied direction in random graph theory. Over the past
decades, there were many diverse and beautiful results on this subject. In a seminal paper, Ajtai,
Komlds and Szemerédi [1], confirming a conjecture of Erdés, proved that for p = % with ¢ > 1,
G(n, p) contains a path of length «(c)n a.a.s. where lim._, o, @(c) = 1. Frieze [16] later determined
the asymptotics of the number of vertices not covered by a longest path in G(n, p). For Hamiltonicity,
Bollobas [8] and Komlés and Szemerédi [24] independently proved that for p > w
the random graph G(n, p) is a.a.s. Hamiltonian. Turdn-type results for long cycles in G(n p) was
also studied under the name of global resilience, that is, the minimum number r such that one
can destroy the graph property by deleting r edges. Dellamonica Jr, Kohayakawa, Marciniszyn and
Steger [10] determined the global resilience of G(n, p) with respect to the property of containing a
cycle of length proportional to the number of vertices. Very recently, Krivelevich, Kronenberg and
Mond [27] studied the transference principle in the context of long cycles and in particular showing
the following.

3k = 2)n if n is

Theorem 2 (Corollary 1.10 in [27]) For every 0 < B < =, there exists C > 0 such that if G = G(N, p)
where p > <, then for any log(1/ﬂ -logN <n<(1- Czﬂ)N with probability 1 — e,
EX(KNs Cn)

) + ﬂ) e(G(N, p)) (1)
2

where Cq, C; > 0 are absolute constants.

eX(G(N,p), Cn) S (

We aim to explore the global resilience of general long paths. More formally, given integers N >
n, we are interested in determining the asymptotic behavior of random variable ex(G(N, p), Py+1)
as N and n go to infinity at the same time.

We start with an observation, which is proved in Section 3.

Proposition 3. For every N2 Lp< ﬁ and n > 2, a.as. we have ex(G(N, p), Pay1) = O(pN?). In
particular, a.a.s. ex(G(N, 1/N), Pp+1) > N/15.

Therefore, throughout this paper, we naturally restrict ourselves to the regime p > 1/N and have
the following trivial lower bound

a.a.s. ex(G(N,p),Pp+1) > ex(G(N,1/N),Ppyq) = N/15. (2)

We prove the following results.

Theorem 4. Let 3n < N < ne?™. The following hold a.a.s. as n approaches infinity.

(i) For p > (log ) /(6n), we have ;pnN < ex(G(N, p), Pp11) < 18pnN.
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(ii) Let @ = (log %) /(np). For N=' < p < (log %) /(6n), we have

1 o

- pnN < ex(G(N, p), Ppi1) < SLpnN.
75 log w log w

Theorem 5. Let N > ne*". The following hold a.a.s. as n approaches infinity.

(i) Forp > N—%, we have %nN < ex(G(N, p), Ppy1) < %nN,

ii) Let @ = (logN) /(np). For N~! §p§N’%,We have
(i) (log

1 o w
- pnN < ex(G(N, p), Pp1) < 8——pnN.
75 log w log w

Remark 1. Assume that n is even. Then (1) together with ex(Ky, C,) < nN'*2/" [28] implies that

ex(Ky, Cp)
(2)

nN1+2/n pN2 1t2/n pN2
S( (,;,) +,8) 5 pnN +/32,
which is weaker than our bounds. (Recall that p > % where C = C(B8).) Of course, there are some
better upper bounds for ex(Ky, C,), which could be used to make an improvement. However, since,
in general, ex(Ky, C,) behaves differently with ex(Ky, P,) and is indeed much greater, Krivelevich,
Kronenberg, and Mond'’s result [27] and ours do not imply one another.

ex(G(N, p), Pn) < ex(G(N, p), Ca) < ( + ﬂ) e(G(N, p))

Remark 2. One can run the same proof and show that Theorem 5 holds when n is a constant
greater than 1 and N approaches infinity. Note also that a result of Johansson, Kahn and Vu [20]
on the threshold function of the property that G(N, p) contains a K,-factor (n is a constant) implies
ex(G(N, p), Pny1) = 3(n — 1)N for p = £2 (N~2/"(log n)/(2) ), whenever N is divisible by n. Indeed,
they determined the threshold function for containing a H-factor (H is a fixed graph), which might
be useful for further improving the above result.

We made no attempt to optimize the constants in the theorems. Throughout the paper, we omit
all floor and ceiling signs whenever these are not crucial. All logarithms in this paper have base e.

2. Tools

In this section, we list several results that we will use. The first lemma is a direct application
of the depth first search algorithm (DFS), which has appeared in [12]. Using the DFS algorithm in
finding long paths was first introduced by Ben-Eliezer, Krivelevich, and Sudakov [6], and then it
became a particularly suitable tool in this topic.

Lemma 6 ([12]). For every P, -free graph H on N vertices, we can find a decomposition of edges into
Uf’:/;' Fi, where F; = E(S;) U E(S;, T;) for two disjoint sets S;, T; € [N] with |S;| = |Ti| = n.

We also need the following form of Chernoff’s bound.

Lemma 7 (Chernoff’s Bound). Let X = 2?21 X;, where X; = 1 with probability p; and X; = 0 with
probability 1 — p;, and all X;’s are independent. Let © = E(X) = 2?21 pi. Then, forall 0 < § < 1,

P(X < (1—8)u) < e #/2,

The third lemma is a key ingredient of our proof, which is used to find dense subsets in random
graphs. This may be of independent interest.
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Lemma 8. For N > 2n,0 <p < 1and aconstant 0 < o < 1/2, let r = N/n and choose an arbitrary
B satisfying

max{Zlog(Ze) —log< 1 )} §Zﬂlogﬁ§min{2 (1>log<l>, l(logr—logozﬁ)}.
np p p np

(3)

Then there exists a positive constant ¢ = c(«) such that with probability at least 1 — exp(—cr®n) there
exists an n-set in G(N, p) with at least (15%) Bpn?* edges.

Remark 3. Lemma 8 essentially states that given N, n, for some range of p, we can find an n-vertex
subgraph, which is denser than the random graph by some factor B. For mstance as it will be
explained in the proof of Theorem 4(ii), when 135n < N < ne*" 5 <p< l‘]ﬂ , SO
that 28logg = L log( r) satisfying (3). Note that if p < 'Og’ , we have g8 = w( ), and therefore
the graph we produce here is much denser than the random graph

Proof. One can check that the function f(x) = xlogx is non-negative and increasing for x > 1.
Thus, log(2e) < f(B) < f(1/p) implies that

max {2, 1} < B <1/p. (4)
anp

Let By = [N]. We will construct the desired set iteratively. In each step, take an arbitrary subset
A; C B;_1 of size an, and let

Bi = {v € Bi_1 \ A; : deg(v, A;) > Banp}.

We will show that a.a.s. we can continue this process in (é} steps. For convenience, in the rest of
the proof, we ignore all floor and ceiling signs.

Claim 9. |B;]| > %exp(—Zi,B logB-anp), for al 0 < i < é — 1 with probability at least
1 — exp(—£2(r*n)).

We prove it by induction on i > 0. For i = 0, it is trivial. Suppose the statement holds for i — 1.
That means

™m
[Bi—1| >
2171

—2(i — 1)Blog B - anp) (5)

with probability at least 1 — exp(—$2(r*n)). Furthermore, 0 < i < & — 1yields that (i — 1) < i <
1—a < 1 and hence,

m m
[Bi—1| = — . exp (—2Blog B - np) > — S exp (— (logr — logazé)) = 4un,
1_ 2i-
consequently
|Bi_1] — an > §|B | > 1Bii|
i—1 =24 i—1 «/j .

Then, the expected size of B; is

E(|Bil) = (IBi-1| — an)P(deg(v, Aj) = Banp) > [' = 1|<ﬁ np)Dﬁ“"p(l - p)".
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panp panp
Due to (4), we get that p < 1/8 < 1/2 and Banp > 1. Now we use (ﬁanp) > (;;’;p) = (—)
and the inequality 1 — p > (2e)~P, which is valid for 0 < p < 1/2. Thus,

1
E(|Bi) = (IBi—1| — an)P(deg(v, A;) = panp) = $|Bi—1|exl)(_(,3 log B + log 2e)anp)

IB, 1l exp(—28log B - anp).

g

Observe that conditioning on (5) gives

E(|Bi|) > |Bi—1| exp(—2p81log B - anp)

ﬁ
> % . 2% exp (—2(i — 1)B log B - anp) - exp(—2p log B - anp)

1 m . 1
= \—fz o > f = T exp (—ou (logr —logaZa))
> % . 2?4 exp <—(l —a) (logr — logaza)) = (r%n),

which goes to infinity together with n. Therefore, Chernoff's bound (applied with § = 1 — 1/4/2)
yields that with probability at least 1 — exp(—$£2(r*n)) we have

1 m .
|Bi| > —=E(|B]) > 5|Bi—l| exp(—2Blog B - anp) > 57 €XP (—2iBlog B - anp) ,

1
V2
where the last inequality follows from (5).

Now we finish the proof of Lemma 8. Claim 9 gives that with probability at least 1 —
exp(—£2(r®n)) the set B1 _, exists and satisfies

m
31_1‘ > exp( <logr - logazé)) = 2uan > an.
o 20(

Therefore, we can find disjoint sets Aq, ..., Ay, of size an with e(A;, A;)) > an - Banp for all
1<i<j<1/a.LetA= U”O‘A, Then we have |A] = n and

e(A) > <1£(X>om - Banp = (1_7&) Bpn®. O

We also present the following two probabilistic results which will be used later.

Lemma 10. Assume that np > (log %) /6 and N > 3n. Then a.a.s. for every two disjoint sets S, T C [N],
|S| = |T| = n, the number of edges in G € G(N, p) induced by S U T with at least one endpoint in S is
at most 18n?p.

Proof. Let X5 be the number of edges in G(N, p) with one endpomt in S and one endpoint in

T. Observe that E(Xs 1) = (% - —) n®p. Note that if 3n?/2 < 18n?p, then the statement is trivial.

Otherwise, the union bound implies that
N\?(3n?/2 Ne\*" 18n%p
P(3S, T, Xs.r > 18n°p) < /2 sy _ (Ne (i)
n 18n2p n 12
12 Ne
=-exp | —n|{ 18nplog <) 2log - .
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Since np > (log %) /6 and N > 3n, we obtain that
12 Ne 12 N Ne
18np log (—) — 2log <—> > 3log <—) log <7> — 2log (—)
e n e n n
N N N
> 4log (—) —2log <—) —2=2log <—) —2>2log3—-2>0.19.
n n n
=

Finally, we conclude that P(3S, T, Xs 1
proof. O

18n2p) < exp(—0.19n) = o(1), which completes the

1oe N
Lemma 11. Let 8 = % > 1and m = 88n%p. Then a.a.s. for every two disjoint sets S, T C [N],

1 N
og( 75 log J
|S| = |T| = n, the number of edges induced by S U T with at least one endpoint in S is at most m.

Proof. We assume m < 3n?/2 since otherwise Lemma 11 holds trivially. By a simple union bound,
we obtain

() () <om (oms ()
P(3S, T, Xs 7 = m) < p™ <exp|2nlog{ — ] )exp(—logp -m)
n m n
(s () —opees -v)
=-exp (| 2nlog o —8BlogB-np).

Now we bound from below g log 8 by

a5 log & o log & a5 log & 1. N 1 N
BlogB = log > log. | —log—=—1log| — ).
log( Log ) log( Ljog ¥ ) log< Log ) np " n 2np n

Thus,

Ne )
P(3S, T, Xs 7 > m) < exp <2n log (7> —8BlogB - n p)
p <2n log (&> _4 log (ﬂ> . n2p>
n np n
(oo (5) 22 (%))
<exp|-nl4dlog|{ —)—2log| — =o(1),
n n

where the last inequality follows from N > 3n as 4log (%) — 2log (%) = 2log(}) — 2 >
2l0g(3)—2 > 0.19. O

IA

3. Proofs of the main results
3.1. Proof of Proposition 3

Let G = (V, E) = G(N, p). We will count the number of isolated edges. For a given pair of vertices
ee (‘g) let X, be an indicator random variable that takes value 1 if e is an isolated edge in G. Set
X =), X. Observe that Pr(X, = 1) = p(1 — p)*N=2) and so

E(X) = (N)pu PPN (g'>pe-2P” (Z)pezaoo,

by assumption. Furthermore, since for vertex disjoint e, f € (‘2/) PriXe =X =1)=p 2(1—p
we obtain that

2) = =X, =1)= N\ 5 . an-aya
]E(X)_]E(X)+ZPr(Xe_Xf_l)_]E(X)+6(4>p(l p) .

enf=¢

Jn—4)+4,
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Thus,
E(X?) 1 (N —=2)N—-13) 1 1 - 1 1
E(XX? EX) NN-1)(1-p)* ~ EX) (1-p)* ~ E(X) * 1—4p

and
Var(X) 1 1 1 4p
< + - 1l=—+ ——
E(X?) T EX) 1-—4p EX) 1—4p
since E(X) — oo and also by assumption p — 0. Now Chebyshev’s inequality yields that X is
concentrated around its mean and consequently a.a.s. we have
ex(G(N, p), Puy1) = (1+ o(1)E(X) = Q2(pN?).

The upper bound easily follows from the fact that ex(G(N, p), Pr+1) < e(G(N, p)).
Finally observe that a.a.s.

=o(1),

ex(G(N, 1/N), Pni1) = (14 o(1))E(X) = (1 +0(1))<I;]

15,
—e2>N/15. O
N
3.2. Proof of Theorem 4
Proof of Theorem 4(i). This proof is by now quite standard which applies the DFS algorithm and
the first moment method. Recall that np > (log %) /6 and N > 3n.
Observe that Lemma 10 together with Lemma 6 implies that for every P, -free subgraph H of
G € G(N, p) a.as.
N 2
e(H) < — - 18n“p = 18pnN,
n

which establishes the upper bound.

For the lower bound, take an arbitrary vertex partition [N] = UN/ "'S;, where |S;| = n for all i.
Let H be the subgraph of G € G(N, p) whose edge set is | J E(G[S;]). Clearly, H is P,1-free. Note that
E(e(H)) = % (1 — &) n?p = (3 — 5&) pnN. By Chernoff's bound,

P <e(H) < anN> < exp (—£2(pnN)) = o(1),
since pnN — oo. Therefore, a.a.s. we have ex(G(N, p), Py+1) > e(H) > %pnN. a

1
nplgn

Proof of Theorem 4(ii). We first show the upper bound. Let 8; = ﬁ and m = 88n°p.
0, 0g —

Since np < (log &) /6, we know that g; > 1.
For every P, 1-free subgraph H of G € G(N, p), Lemmas 6 and 11 imply that a.a.s

lgf

log< L Jog )

which establishes the upper bound.
For the lower bound, we shall divide the discussion into three cases. First, let us assume N <
135n. Together with % log (X) > 6 > e, we have

1 N
@ N = _ o) < log (N) N < 5N.
o8 log (55 log () "

Therefore, by (2), we trivially have

e(H) <

E = 8B1pnN =8 pnN,

1
eX(G(N, p), Pny1) = N/15 = %l—p nN.
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Next, let us assume p < log (&) /(n (%)1/5) Similarly, we complete the proof by observing that

N N
© =186 Toeld) o

pn =<
1 1 N
ogw log (% log (%)) 5 log (V)
It remains to prove the lower bound for the case when N > 135n and

log (Y) cpe log(X)
()7 e

(6)

Indeed, such range of p only exists for N > 6°n. In this case, we will apply Lemma 8 repeatedly to
find a dense subgraph with no P, ;. Let

. 1 1 1 3N
2, log B, = min {2 (7> log <7> , — log <—>} .
D p np 8n

Since N < ne®" and p < log (Y) /(6n) < 1, we have

1 1 1 2 3N
2<)log<>22()10g3>>10g( )
p p p p np 8n

Furthermore, since N > 6°n, we obtain
lo 3N > 1o 3 —i—]lo 65+410 N 4lo N
>N 2 Z = B ).
& 8n ) — & 8 5 & 5 & n 5 & n

1 3N N
2B, log B, = — log (—) > —log () > 2log(2e).
np n

Finally, observe that for « = 1/2,

1 3N 1 2 (' 2 1
—log| — | > — -4log N >—1log| — |,
np 8n np log () anp anp

where the first inequality is given by N > 135n and the last inequality follows from (6). Thus, we
can iteratively apply Lemma 8 N/4n times with ¢ = % andr = i—’: and find N/4n disjoint n-sets A;,
where a.a.s. for all i

1—w , 1_a LIOg(ﬂ) n2>l %log(%) e
2 o 4 log( L jog (2 ))P ~ 104 (i log (ﬂ))p '
np n

N/an

and

e(Ai) =

Let H be the subgraph of G with vertex set [ J/i" A;, and edge set | J\/;" E(A;). Note that H is

P,.1-free and therefore, a.a.s. we have

eX(G(N7 p)’ PTH—]) = E(H) >

3.3. Proof of Theorem 5

Proof of Theorem 5(i). By the Erdds-Gallai Theorem (Theorem 1), it is sufficient to prove the lower
bound. Let

1 1 4
2B log B = min [2 () log () , — logN} .
p p snp
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Since p > N’SZT, we have 8 = 1/p. If p > 1/3, then the proof simply follows from the proof
of Theorem 4(i). Otherwise, we have 281log8 > 6log3 > 2log(2e). Similarly as in the proof of
Theorem 4(ii), we can iteratively apply Lemma 8 N/4n times with o = % andr = i—’;’, and a.a.s. find
a P, -free subgraph H of G(N, p) with

e(H) > (1 _a>ﬂpn2 N lnN. O

2 4n 16

Proof of Theorem 5(ii). The proof of the upper bound is the same as in Theorem 4(ii) and we skip
here the full details. For the lower bound, we first assume that p < N~'/>. Observe that

logN _ log N

w
—pn < = 5N,
logw log ( L jog N) log N1/5

where the inequality holds for N > ne®". Therefore, by (2), we trivially have
1
G(N, p), P >N/15 > — ——pnN.
ex(G(N, p), Pr+1) = N/ _751g pn

It remains to show the lower bound for p > N~1/°. Let

1 1 4
2B 1log B = min {2 <7> log () , — logN} .
p p snp

Since p < N‘SZT, we have 281log 8 = 5np logN. Since N > ne®", we have

l 3N > 2BlogB > 4 log (ne’") > 8 > SNSL > ges 2 log(2e)
L - — > ZNb& - > .
np °8 8n & 5np & 5p 7 5 - 5 8

&

Moreover, observe that for « = % and p > N~1/>, we have 28log 8 > log <%> Similarly as

in the proof of Theorem 4(ii), the proof is completed by iteratively applymg Lemma 8 N/4n times

; 1 — 3N
w1tha_2andr_4n. O

4. Long paths and multicolor size-Ramsey number

The size-Ramsey number k(F ,1) of a graph F is the smallest integer m such that there exists a
graph G on m edges with the property that any r-coloring of the edges of G yields a monochromatic
copy of F. The study of size-Ramsey number was initiated by Erdés, Faudree, Rousseau and
Schelp [13]. For paths, Beck [5], resolving a $100 question of Erdés, proved that R(P;, 2) < 900n for
sufficiently large n. The strongest upper bound, R(Py, 2) < 74n, was given by Dudek and Pratat [11],
and they also provide the lower bound, R(P,, 2) > 5n/2 — O(1). Very recently, Bal and DeBiasio [3]
further improved the lower bound to (3.75 — o(1))n.

For more colors, it was proved in [11] that @n —0(r?) < k(Pn, r) < 33r4"n. Subsequently,
Krivelevich [26] (see also [25]) showed that I%(Pm r) = O((logr)r’n). An alternative proof of the
above result was later given by Dudek and Pratat [12]. Both proofs indeed give a stronger density-
type result, which shows that any dense subset of a large enough structure contain the desired
substructure. In particular, the proof in [12] implies the following result.

Theorem 12 ([12]). For r > 2 and ¢ > 7, there exists a constant « = «(c) such that the following
statement holds a.a.s. for p > «(logr)/n. Every subgraph H of G € G(crn, p) with e(H) > e(G)/r
contains a Ppy;.

Note that any improvement of the order of magnitude of p in the above theorem would improve
the upper bound for R(P,,r). However, Theorem 4(ii) implies that when p <« (logcr) /(6n),
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i.e. (logcr)/np > 6, a.a.s. there exists a P, 1-free subgraph of G € G(crn, p) which contains more
than
1 (logcr)/np
40 log ((log cr)/np)
edges. Therefore, (logr)/n is the threshold function for the density statement in Theorem 12. It

would be interesting to know if (logr)/n is still the threshold function for the corresponding
Ramsey-type statement.

pn-crn > cpn-crn > e(G)/r

5. Concluding remarks

Our investigation raises some open problems. The most interesting question is to investigate the
corresponding Ramsey properties on random graphs. The Ramsey-type questions on sparse random
graphs have been studied by several researchers, for example, see [7,31].

Problem 13. Determine the threshold function p(n) for the following statement. For some constant
c and r > 2 (c is independent of r), every r-coloring of G(crn, p) contains a monochromatic Py .

Theorem 12 implies that p(n) = O((logr)/n), while the lower bound ofﬁ(Pn, r) shows that p(n) =
£2(1/n), where n goes to infinity. The exact behavior of p(n) remains open and its determination
would be very useful for studying the size-Ramsey number of paths.

Another direction is to consider the following graph parameter. Denote by ¢(G, F) the minimum
number of colors k such that there exists a k-coloring of G without monochromatic F. Clearly, we
have

N
(z)p - pN® .
ex(G(N, p), Pny1) ~ 3ex(G(N, p), Pny1)
Let r = N/n. We first present two general upper bounds on c(G(N, p), Pp41)-

C(G(N7 p)a PI‘H—l) >

(7)

Theorem 14. Suppose r is a prime power, then c(G(N, p), Ppy1) <1+ 1.

Proof. We use a construction from [17] (also appeared in [26]). Let A, be an affine plane of order
r, i.e. r? points with r2 4 r lines, where every pair of points is contained in a unique line, and the
lines can be split into r + 1 disjoint families Fy, ..., F.1 so that the lines inside the families are
parallel.

We arbitrarily partition [N] into r? parts V;, Vs, ..., V,2, where each part has size N/r? =n/r.
We define an r + 1-coloring as follows. If e is an edge crossing between V, and V,,, where the unique
line containing xy is in the family F;, then we color e by i. Observe that every connected subgraph in
color i has its vertex set V inside U, Vy for some line L € A;. Therefore, we have |V| <r-n/r =n,
and there is no monochromatic Ppy;. O

Theorem 15. A.a.s. c(G(N, p), Pp+1) < 2pN.

Proof. Let k = 2pN, and we can assume k < r + 1. Consider a random k-coloring of G(N, p). Then
the subgraph G;, whose edges are all edges in color i, is in G(N, p’), where p" = p/k = 1/2N.
A fundamental result of Erdés and Rényi shows that a.a.s the largest component of G; has size
O(log N) < n. Therefore, a.a.s. there is no monochromatic P,;1. O

Corollary 16. Ifp = ﬁ where w = w(r) > 2, then a.a.s. c(G(N, p), Ppy1) < 2r/w.

For the lower bound, the proof of Theorem 1.2. in [12] implies the following.

Theorem 17. For p > 22(log(r/7))/n, a.a.s. c(G(N, p), Phr1) > 1/7.

This together with Theorem 14 shows that a.a.s. ¢(G(N, p), P,1) = ©(r) for p = 2((logr)/n).
On the other hand, Theorem 4 and (7) give a lower bound for small p.
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Theorem 18. For p < (logr)/34n, a.as. c(G(N, p), Pay1) > ‘%21, where » = (logr)/np.

240

This naturally raises the following question.

Problem 19. What is the exact behavior of ¢(G(N, p), P,+1) for p = o((logr)/n), where n goes to
infinity?
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