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a b s t r a c t

Recently, variants of many classical extremal theorems have been
proved in the random environment. We, complementing existing
results, extend the Erdős–Gallai Theorem in random graphs. In
particular, we determine, up to a constant factor, the maximum
number of edges in a Pn-free subgraph of G(N, p), practically for
all values of N, n and p. Our work is also motivated by the recent
progress on the size-Ramsey number of paths.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

A celebrated theorem of Erdős and Gallai [14] from 1959 determines the maximum number of
edges in an n-vertex graph with no k-vertex path Pk.

Theorem 1 (Erdős and Gallai [14]). For n, k ≥ 2, if G is an n-vertex graph with no copy of Pk, then the

number of edges of G satisfies e(G) ≤ 1
2
(k−2)n. If n is divisible by k−1, then the maximum is achieved

by a union of disjoint copies of Kk−1.

An important direction of combinatorics in recent years is the study of sparse random analogues
of classical extremal results; that is, the extent to which of these results remain true in a random
setting. For graphs G and F , we write ex(G, F ) for the maximum number of edges in an F-free
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subgraph of G. For example, the Erdős–Gallai theorem asserts that ex(Kn, Pk) = 1
2
(k − 2)n if n is

divisible by k − 1.

The study of the random variable ex(G, F ), where G is the Erdős–Rényi random graph G(n, p),

was initiated by Babai, Simonovits and Spencer [2], and by Frankl and Rödl [15]. After efforts by

several researchers [18,19,21–23,32], Conlon and Gowers [9] and Schacht [30] finally proved a

sparse random version of the Erdős–Stone theorem, showing a transference principle of Turán-type

results, that is, when a random graph inherits its (relative) extremal properties from the classical

deterministic case. Note that via the hypergraph container method the same results were proved [4]

and [29], even when |F | is a reasonable large function of n. A special case of this result, when F is the

k-vertex path Pk, can be viewed as a weak analogue (as the Turán density is 0) of the Erdős–Gallai

theorem on the random graph for paths with a fixed size. In this paper, we investigate the random

analogue of the Erdős–Gallai theorem for general paths, whose length might increase with the order

of the random graph.

We say that events An in a probability space hold asymptotically almost surely (or a.a.s.), if the

probability that An holds tends to 1 as n goes to infinity. The typical appearance of long paths

and cycles is one of the most thoroughly studied direction in random graph theory. Over the past

decades, there were many diverse and beautiful results on this subject. In a seminal paper, Ajtai,

Komlós and Szemerédi [1], confirming a conjecture of Erdős, proved that for p = c
n
with c > 1,

G(n, p) contains a path of length α(c)n a.a.s. where limc→∞ α(c) = 1. Frieze [16] later determined

the asymptotics of the number of vertices not covered by a longest path in G(n, p). For Hamiltonicity,

Bollobás [8] and Komlós and Szemerédi [24] independently proved that for p ≥ log n+log log n+ω(1)

n
,

the random graph G(n, p) is a.a.s. Hamiltonian. Turán-type results for long cycles in G(n, p) was

also studied under the name of global resilience, that is, the minimum number r such that one

can destroy the graph property by deleting r edges. Dellamonica Jr, Kohayakawa, Marciniszyn and

Steger [10] determined the global resilience of G(n, p) with respect to the property of containing a

cycle of length proportional to the number of vertices. Very recently, Krivelevich, Kronenberg and

Mond [27] studied the transference principle in the context of long cycles and in particular showing

the following.

Theorem 2 (Corollary 1.10 in [27]). For every 0 < β < 1
5
, there exists C > 0 such that if G = G(N, p)

where p ≥ C
N
, then for any

C1
log(1/β)

· logN ≤ n ≤ (1 − C2β)N, with probability 1 − eΩ(N),

ex(G(N, p), Cn) ≤
(

ex(KN , Cn)
(

N

2

) + β

)

e(G(N, p)), (1)

where C1, C2 > 0 are absolute constants.

We aim to explore the global resilience of general long paths. More formally, given integers N >

n, we are interested in determining the asymptotic behavior of random variable ex(G(N, p), Pn+1)

as N and n go to infinity at the same time.

We start with an observation, which is proved in Section 3.

Proposition 3. For every 1

N2 ≪ p ≤ 1
N

and n ≥ 2, a.a.s. we have ex(G(N, p), Pn+1) = Θ(pN2). In

particular, a.a.s. ex(G(N, 1/N), Pn+1) ≥ N/15.

Therefore, throughout this paper, we naturally restrict ourselves to the regime p ≥ 1/N and have

the following trivial lower bound

a.a.s. ex(G(N, p), Pn+1) ≥ ex (G (N, 1/N) , Pn+1) ≥ N/15. (2)

We prove the following results.

Theorem 4. Let 3n ≤ N ≤ ne2n. The following hold a.a.s. as n approaches infinity.

(i) For p ≥
(

log N
n

)

/(6n), we have 1
4
pnN ≤ ex(G(N, p), Pn+1) ≤ 18pnN.
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(ii) Let ω =
(

log N
n

)

/(np). For N−1 ≤ p ≤
(

log N
n

)

/(6n), we have

1

75

ω

logω
pnN ≤ ex(G(N, p), Pn+1) ≤ 8

ω

logω
pnN.

Theorem 5. Let N ≥ ne2n. The following hold a.a.s. as n approaches infinity.

(i) For p ≥ N− 2
5n , we have 1

16
nN ≤ ex(G(N, p), Pn+1) ≤ 1

2
nN.

(ii) Let ω = (logN) /(np). For N−1 ≤ p ≤ N− 2
5n , we have

1

75

ω

logω
pnN ≤ ex(G(N, p), Pn+1) ≤ 8

ω

logω
pnN.

Remark 1. Assume that n is even. Then (1) together with ex(KN , Cn) ≤ nN1+2/n [28] implies that

ex(G(N, p), Pn) ≤ ex(G(N, p), Cn) ≤
(

ex(KN , Cn)
(

N

2

) + β

)

e(G(N, p))

≤
(

nN1+2/n

(

N

2

) + β

)

pN2

2
∼ pnN1+2/n + β

pN2

2
,

which is weaker than our bounds. (Recall that p ≥ C
n
, where C = C(β).) Of course, there are some

better upper bounds for ex(KN , Cn), which could be used to make an improvement. However, since,
in general, ex(KN , Cn) behaves differently with ex(KN , Pn) and is indeed much greater, Krivelevich,
Kronenberg, and Mond’s result [27] and ours do not imply one another.

Remark 2. One can run the same proof and show that Theorem 5 holds when n is a constant
greater than 1 and N approaches infinity. Note also that a result of Johansson, Kahn and Vu [20]
on the threshold function of the property that G(N, p) contains a Kn-factor (n is a constant) implies

ex(G(N, p), Pn+1) = 1
2
(n − 1)N for p = Ω

(

N−2/n(log n)1/(
n
2)
)

, whenever N is divisible by n. Indeed,

they determined the threshold function for containing a H-factor (H is a fixed graph), which might
be useful for further improving the above result.

We made no attempt to optimize the constants in the theorems. Throughout the paper, we omit
all floor and ceiling signs whenever these are not crucial. All logarithms in this paper have base e.

2. Tools

In this section, we list several results that we will use. The first lemma is a direct application
of the depth first search algorithm (DFS), which has appeared in [12]. Using the DFS algorithm in
finding long paths was first introduced by Ben-Eliezer, Krivelevich, and Sudakov [6], and then it
became a particularly suitable tool in this topic.

Lemma 6 ([12]). For every Pn+1-free graph H on N vertices, we can find a decomposition of edges into
⋃N/n

i=1 Fi, where Fi = E(Si) ∪ E(Si, Ti) for two disjoint sets Si, Ti ⊆ [N] with |Si| = |Ti| = n.

We also need the following form of Chernoff’s bound.

Lemma 7 (Chernoff’s Bound). Let X =
∑n

i=1 Xi, where Xi = 1 with probability pi and Xi = 0 with

probability 1 − pi, and all Xi’s are independent. Let µ = E(X) =
∑n

i=1 pi. Then, for all 0 < δ < 1,

P(X ≤ (1 − δ)µ) ≤ e−µδ2/2.

The third lemma is a key ingredient of our proof, which is used to find dense subsets in random
graphs. This may be of independent interest.
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Lemma 8. For N > 2n, 0 < p < 1 and a constant 0 < α ≤ 1/2, let r = N/n and choose an arbitrary

β satisfying

max

{

2 log(2e),
2

αnp
log

(

1

αnp

)}

≤ 2β logβ ≤ min

{

2

(

1

p

)

log

(

1

p

)

,
1

np

(

log r − logα2
1
α

)

}

.

(3)

Then there exists a positive constant c = c(α) such that with probability at least 1− exp(−crαn) there
exists an n-set in G(N, p) with at least

(

1−α
2

)

βpn2 edges.

Remark 3. Lemma 8 essentially states that given N, n, for some range of p, we can find an n-vertex

subgraph, which is denser than the random graph by some factor β . For instance, as it will be
explained in the proof of Theorem 4(ii), when 135n ≤ N ≤ ne2n, we can choose log r

nr1/5
≤ p ≤ log r

6n
, so

that 2β logβ = 1
np

log
(

3
8
r
)

satisfying (3). Note that if p ≪ log r

n
, we have β = ω(1), and therefore

the graph we produce here is much denser than the random graph.

Proof. One can check that the function f (x) = x log x is non-negative and increasing for x ≥ 1.

Thus, log(2e) ≤ f (β) ≤ f (1/p) implies that

max

{

2,
1

αnp

}

< β ≤ 1/p. (4)

Let B0 = [N]. We will construct the desired set iteratively. In each step, take an arbitrary subset

Ai ⊆ Bi−1 of size αn, and let

Bi = {v ∈ Bi−1 \ Ai : deg(v, Ai) ≥ βαnp}.

We will show that a.a.s. we can continue this process in ⌈ 1
α
⌉ steps. For convenience, in the rest of

the proof, we ignore all floor and ceiling signs.

Claim 9. |Bi| ≥ rn

2i
exp (−2iβ logβ · αnp), for all 0 ≤ i ≤ 1

α
− 1 with probability at least

1 − exp(−Ω(rαn)).

We prove it by induction on i ≥ 0. For i = 0, it is trivial. Suppose the statement holds for i − 1.

That means

|Bi−1| ≥ rn

2i−1
exp (−2(i − 1)β logβ · αnp) (5)

with probability at least 1− exp(−Ω(rαn)). Furthermore, 0 ≤ i ≤ 1
α

− 1 yields that (i− 1)α < iα ≤
1 − α < 1 and hence,

|Bi−1| ≥ rn

2
1
α −2

exp (−2β logβ · np) ≥ rn

2
1
α −2

exp
(

−
(

log r − logα2
1
α

))

= 4αn,

consequently

|Bi−1| − αn ≥ 3

4
|Bi−1| >

|Bi−1|√
2

.

Then, the expected size of Bi is

E(|Bi|) = (|Bi−1| − αn)P(deg(v, Ai) ≥ βαnp) ≥ 1√
2
|Bi−1|

(

αn

βαnp

)

pβαnp(1 − p)αn.
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Due to (4), we get that p ≤ 1/β ≤ 1/2 and βαnp ≥ 1. Now we use
(

αn

βαnp

)

≥
(

αn
βαnp

)βαnp

=
(

1
βp

)βαnp

and the inequality 1 − p ≥ (2e)−p, which is valid for 0 ≤ p ≤ 1/2. Thus,

E(|Bi|) = (|Bi−1| − αn)P(deg(v, Ai) ≥ βαnp) ≥ 1√
2
|Bi−1| exp(−(β logβ + log 2e)αnp)

≥ 1√
2
|Bi−1| exp(−2β logβ · αnp).

Observe that conditioning on (5) gives

E(|Bi|) ≥ 1√
2
|Bi−1| exp(−2β logβ · αnp)

≥ 1√
2

· rn

2i−1
exp (−2(i − 1)β logβ · αnp) · exp(−2β logβ · αnp)

= 1√
2

· rn

2i−1
exp (−2iβ logβ · αnp) ≥ 1√

2
· rn

2i−1
exp

(

−αi

(

log r − logα2
1
α

))

≥ 1√
2

· rn

2
1
α −1

exp
(

−(1 − α)
(

log r − logα2
1
α

))

= Ω(rαn),

which goes to infinity together with n. Therefore, Chernoff’s bound (applied with δ = 1 − 1/
√
2)

yields that with probability at least 1 − exp(−Ω(rαn)) we have

|Bi| ≥ 1√
2
E(|Bi|) ≥ 1

2
|Bi−1| exp(−2β logβ · αnp) ≥ rn

2i
exp (−2iβ logβ · αnp) ,

where the last inequality follows from (5).

Now we finish the proof of Lemma 8. Claim 9 gives that with probability at least 1 −
exp(−Ω(rαn)) the set B 1

α −1
exists and satisfies

⏐

⏐

⏐
B 1

α −1

⏐

⏐

⏐
≥ rn

2
1
α −1

exp
(

−
(

log r − logα2
1
α

))

= 2αn > αn.

Therefore, we can find disjoint sets A1, . . . , A1/α of size αn with e(Ai, Aj) ≥ αn · βαnp for all

1 ≤ i < j ≤ 1/α. Let A =
⋃1/α

i=1 Ai. Then we have |A| = n and

e(A) ≥
(

1/α

2

)

αn · βαnp =
(

1 − α

2

)

βpn2. □

We also present the following two probabilistic results which will be used later.

Lemma 10. Assume that np ≥
(

log N
n

)

/6 and N ≥ 3n. Then a.a.s. for every two disjoint sets S, T ⊆ [N],
|S| = |T | = n, the number of edges in G ∈ G(N, p) induced by S ∪ T with at least one endpoint in S is

at most 18n2p.

Proof. Let XS,T be the number of edges in G(N, p) with one endpoint in S and one endpoint in
T . Observe that E(XS,T ) =

(

3
2

− 1
2n

)

n2p. Note that if 3n2/2 ≤ 18n2p, then the statement is trivial.

Otherwise, the union bound implies that

P(∃S, T , XS,T ≥ 18n2p) ≤
(

N

n

)2(
3n2/2

18n2p

)

p18n
2p ≤

(

Ne

n

)2n
( e

12

)18n2p

= exp

(

−n

(

18np log

(

12

e

)

− 2 log

(

Ne

n

)))

.
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Since np ≥
(

log N
n

)

/6 and N ≥ 3n, we obtain that

18np log

(

12

e

)

− 2 log

(

Ne

n

)

≥ 3 log

(

12

e

)

log

(

N

n

)

− 2 log

(

Ne

n

)

≥ 4 log

(

N

n

)

− 2 log

(

N

n

)

− 2 = 2 log

(

N

n

)

− 2 ≥ 2 log 3 − 2 ≥ 0.19.

Finally, we conclude that P(∃S, T , XS,T ≥ 18n2p) ≤ exp(−0.19n) = o(1), which completes the
proof. □

Lemma 11. Let β =
1
np log N

n

log
(

1
np log N

n

) > 1 and m = 8βn2p. Then a.a.s. for every two disjoint sets S, T ⊆ [N],
|S| = |T | = n, the number of edges induced by S ∪ T with at least one endpoint in S is at most m.

Proof. We assume m < 3n2/2 since otherwise Lemma 11 holds trivially. By a simple union bound,
we obtain

P(∃S, T , XS,T ≥ m) ≤
(

N

n

)2(
3n2/2

m

)

pm ≤ exp

(

2n log

(

Ne

n

))

exp(− logβ · m)

= exp

(

2n log

(

Ne

n

)

− 8β logβ · n2p

)

.

Now we bound from below β logβ by

β logβ =
1
np

log N
n

log
(

1
np

log N
n

) log

⎛

⎝

1
np

log N
n

log
(

1
np

log N
n

)

⎞

⎠ ≥
1
np

log N
n

log
(

1
np

log N
n

) log

√

1

np
log

N

n
= 1

2np
log

(

N

n

)

.

Thus,

P(∃S, T , XS,T ≥ m) ≤ exp

(

2n log

(

Ne

n

)

− 8β logβ · n2p

)

≤ exp

(

2n log

(

Ne

n

)

− 4

np
log

(

N

n

)

· n2p

)

≤ exp

(

−n

(

4 log

(

N

n

)

− 2 log

(

Ne

n

)))

= o(1),

where the last inequality follows from N ≥ 3n as 4 log
(

N
n

)

− 2 log
(

Ne
n

)

= 2 log
(

N
n

)

− 2 ≥
2 log(3) − 2 ≥ 0.19. □

3. Proofs of the main results

3.1. Proof of Proposition 3

Let G = (V , E) = G(N, p). We will count the number of isolated edges. For a given pair of vertices
e ∈

(

V

2

)

, let Xe be an indicator random variable that takes value 1 if e is an isolated edge in G. Set

X =
∑

e Xe. Observe that Pr(Xe = 1) = p(1 − p)2(N−2) and so

E(X) =
(

N

2

)

p(1 − p)2(N−2) ∼
(

N

2

)

pe−2pN ≥
(

N

2

)

pe−2 → ∞,

by assumption. Furthermore, since for vertex disjoint e, f ∈
(

V

2

)

, Pr(Xe = Xf = 1) = p2(1−p)4(n−4)+4,
we obtain that

E(X2) = E(X) +
∑

e∩f=∅
Pr(Xe = Xf = 1) = E(X) + 6

(

N

4

)

p2(1 − p)4(N−4)+4.
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Thus,

E(X2)

E(X)2
= 1

E(X)
+ (N − 2)(N − 3)

N(N − 1)(1 − p)4
≤ 1

E(X)
+ 1

(1 − p)4
≤ 1

E(X)
+ 1

1 − 4p

and

Var(X)

E(X2)
≤ 1

E(X)
+ 1

1 − 4p
− 1 = 1

E(X)
+ 4p

1 − 4p
= o(1),

since E(X) → ∞ and also by assumption p → 0. Now Chebyshev’s inequality yields that X is
concentrated around its mean and consequently a.a.s. we have

ex(G(N, p), Pn+1) ≥ (1 + o(1))E(X) = Ω(pN2).

The upper bound easily follows from the fact that ex(G(N, p), Pn+1) ≤ e(G(N, p)).
Finally observe that a.a.s.

ex(G(N, 1/N), Pn+1) ≥ (1 + o(1))E(X) ≥ (1 + o(1))

(

N

2

)

1

N
e−2 ≥ N/15. □

3.2. Proof of Theorem 4

Proof of Theorem 4(i). This proof is by now quite standard which applies the DFS algorithm and
the first moment method. Recall that np ≥

(

log N
n

)

/6 and N ≥ 3n.
Observe that Lemma 10 together with Lemma 6 implies that for every Pn+1-free subgraph H of

G ∈ G(N, p) a.a.s.

e(H) ≤ N

n
· 18n2p = 18pnN,

which establishes the upper bound.

For the lower bound, take an arbitrary vertex partition [N] =
⋃N/n

i=1 Si, where |Si| = n for all i.
Let H be the subgraph of G ∈ G(N, p) whose edge set is

⋃

E(G[Si]). Clearly, H is Pn+1-free. Note that

E(e(H)) = N
n

(

1
2

− 1
2n

)

n2p =
(

1
2

− 1
2n

)

pnN . By Chernoff’s bound,

P

(

e(H) ≤ 1

4
pnN

)

≤ exp (−Ω(pnN)) = o(1),

since pnN → ∞. Therefore, a.a.s. we have ex(G(N, p), Pn+1) ≥ e(H) ≥ 1
4
pnN . □

Proof of Theorem 4(ii). We first show the upper bound. Let β1 =
1
np log N

n

log
(

1
np log N

n

) and m = 8β1n
2p.

Since np ≤
(

log N
n

)

/6, we know that β1 > 1.
For every Pn+1-free subgraph H of G ∈ G(N, p), Lemmas 6 and 11 imply that a.a.s

e(H) ≤ N

n
· m = 8β1pnN = 8

1
np

log N
n

log
(

1
np

log N
n

)pnN,

which establishes the upper bound.
For the lower bound, we shall divide the discussion into three cases. First, let us assume N ≤

135n. Together with 1
np

log
(

N
n

)

≥ 6 ≥ e, we have

ω

logω
pnN =

log
(

N
n

)

log
(

1
np

log
(

N
n

)

)N ≤ log

(

N

n

)

N < 5N.

Therefore, by (2), we trivially have

ex(G(N, p), Pn+1) ≥ N/15 ≥ 1

75

ω

logω
pnN.
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Next, let us assume p ≤ log
(

N
n

)

/

(

n
(

N
n

)1/5
)

. Similarly, we complete the proof by observing that

ω

logω
pnN =

log
(

N
n

)

log
(

1
np

log
(

N
n

)

)N ≤
log
(

N
n

)

1
5
log
(

N
n

)N = 5N.

It remains to prove the lower bound for the case when N ≥ 135n and

log
(

N
n

)

n
(

N
n

)1/5
≤ p ≤

log(N
n
)

6n
. (6)

Indeed, such range of p only exists for N ≥ 65n. In this case, we will apply Lemma 8 repeatedly to

find a dense subgraph with no Pn+1. Let

2β2 logβ2 = min

{

2

(

1

p

)

log

(

1

p

)

,
1

np
log

(

3N

8n

)}

.

Since N ≤ ne2n and p ≤ log
(

N
n

)

/(6n) ≤ 1
3
, we have

2

(

1

p

)

log

(

1

p

)

≥ 2

(

1

p

)

log 3 >
2

p
≥ 1

np
log

(

3N

8n

)

.

Furthermore, since N ≥ 65n, we obtain

log

(

3N

8n

)

≥ log

(

3

8

)

+ 1

5
log 65 + 4

5
log

(

N

n

)

>
4

5
log

(

N

n

)

,

and

2β2 logβ2 = 1

np
log

(

3N

8n

)

≥ 4

5np
log

(

N

n

)

> 2 log(2e).

Finally, observe that for α = 1/2,

1

np
log

(

3N

8n

)

≥ 1

np
· 4 log

(

2
(

N
n

)1/5

log
(

N
n

)

)

≥ 2

αnp
log

(

1

αnp

)

,

where the first inequality is given by N ≥ 135n and the last inequality follows from (6). Thus, we

can iteratively apply Lemma 8 N/4n times with α = 1
2
and r = 3N

4n
and find N/4n disjoint n-sets Ai,

where a.a.s. for all i

e(Ai) ≥
(

1 − α

2

)

β2pn
2 ≥ 1 − α

4

1
np

log
(

3N
8n

)

log
(

1
np

log
(

3N
8n

)

)pn2 ≥ 1

10

1
np

log
(

N
n

)

log
(

1
np

log
(

N
n

)

)pn2.

Let H be the subgraph of G with vertex set
⋃N/4n

i=1 Ai, and edge set
⋃N/4n

i=1 E(Ai). Note that H is

Pn+1-free and therefore, a.a.s. we have

ex(G(N, p), Pn+1) ≥ e(H) ≥ 1

10

1
np

log
(

N
n

)

log
(

1
np

log
(

N
n

)

)pn2 · N

4n
= 1

40

1
np

log
(

N
n

)

log
(

1
np

log
(

N
n

)

)pnN. □

3.3. Proof of Theorem 5

Proof of Theorem 5(i). By the Erdős–Gallai Theorem (Theorem 1), it is sufficient to prove the lower

bound. Let

2β logβ = min

{

2

(

1

p

)

log

(

1

p

)

,
4

5np
logN

}

.
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Since p ≥ N− 2
5n , we have β = 1/p. If p > 1/3, then the proof simply follows from the proof

of Theorem 4(i). Otherwise, we have 2β logβ ≥ 6 log 3 > 2 log(2e). Similarly as in the proof of

Theorem 4(ii), we can iteratively apply Lemma 8 N/4n times with α = 1
2
and r = 3N

4n
, and a.a.s. find

a Pn+1-free subgraph H of G(N, p) with

e(H) ≥
(

1 − α

2

)

βpn2 · N

4n
= 1

16
nN. □

Proof of Theorem 5(ii). The proof of the upper bound is the same as in Theorem 4(ii) and we skip

here the full details. For the lower bound, we first assume that p < N−1/5. Observe that

ω

logω
pnN = logN

log
(

1
np

logN
)N ≤ logN

logN1/5
N = 5N,

where the inequality holds for N ≥ ne2n. Therefore, by (2), we trivially have

ex(G(N, p), Pn+1) ≥ N/15 ≥ 1

75

ω

logω
pnN.

It remains to show the lower bound for p ≥ N−1/5. Let

2β logβ = min

{

2

(

1

p

)

log

(

1

p

)

,
4

5np
logN

}

.

Since p ≤ N− 2
5n , we have 2β logβ = 4

5np
logN . Since N ≥ ne2n, we have

1

np
log

(

3N

8n

)

≥ 2β logβ ≥ 4

5np
log
(

ne2n
)

≥ 8

5p
≥ 8

5
N

2
5n ≥ 8e

4
5

5
> 2 log(2e).

Moreover, observe that for α = 1
2
and p ≥ N−1/5, we have 2β logβ ≥ 2

αnp
log
(

1
αnp

)

. Similarly as

in the proof of Theorem 4(ii), the proof is completed by iteratively applying Lemma 8 N/4n times

with α = 1
2
and r = 3N

4n
. □

4. Long paths and multicolor size-Ramsey number

The size-Ramsey number R̂(F , r) of a graph F is the smallest integer m such that there exists a

graph G on m edges with the property that any r-coloring of the edges of G yields a monochromatic

copy of F . The study of size-Ramsey number was initiated by Erdős, Faudree, Rousseau and

Schelp [13]. For paths, Beck [5], resolving a $100 question of Erdős, proved that R̂(Pn, 2) < 900n for

sufficiently large n. The strongest upper bound, R̂(Pn, 2) ≤ 74n, was given by Dudek and Prałat [11],

and they also provide the lower bound, R̂(Pn, 2) ≥ 5n/2 − O(1). Very recently, Bal and DeBiasio [3]

further improved the lower bound to (3.75 − o(1))n.

For more colors, it was proved in [11] that (r+3)r

4
n − O(r2) ≤ R̂(Pn, r) ≤ 33r4rn. Subsequently,

Krivelevich [26] (see also [25]) showed that R̂(Pn, r) = O((log r)r2n). An alternative proof of the

above result was later given by Dudek and Prałat [12]. Both proofs indeed give a stronger density-

type result, which shows that any dense subset of a large enough structure contain the desired

substructure. In particular, the proof in [12] implies the following result.

Theorem 12 ([12]). For r ≥ 2 and c ≥ 7, there exists a constant α = α(c) such that the following

statement holds a.a.s. for p ≥ α(log r)/n. Every subgraph H of G ∈ G(crn, p) with e(H) ≥ e(G)/r

contains a Pn+1.

Note that any improvement of the order of magnitude of p in the above theorem would improve

the upper bound for R̂(Pn, r). However, Theorem 4(ii) implies that when p ≪ (log cr) /(6n),
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i.e. (log cr)/np ≫ 6, a.a.s. there exists a Pn+1-free subgraph of G ∈ G(crn, p) which contains more
than

1

40

(log cr)/np

log ((log cr)/np)
pn · crn ≥ cpn · crn > e(G)/r

edges. Therefore, (log r)/n is the threshold function for the density statement in Theorem 12. It
would be interesting to know if (log r)/n is still the threshold function for the corresponding
Ramsey-type statement.

5. Concluding remarks

Our investigation raises some open problems. The most interesting question is to investigate the
corresponding Ramsey properties on random graphs. The Ramsey-type questions on sparse random
graphs have been studied by several researchers, for example, see [7,31].

Problem 13. Determine the threshold function p(n) for the following statement. For some constant
c and r ≥ 2 (c is independent of r), every r-coloring of G(crn, p) contains a monochromatic Pn+1.

Theorem 12 implies that p(n) = O((log r)/n), while the lower bound of R̂(Pn, r) shows that p(n) =
Ω(1/n), where n goes to infinity. The exact behavior of p(n) remains open and its determination
would be very useful for studying the size-Ramsey number of paths.

Another direction is to consider the following graph parameter. Denote by c(G, F ) the minimum
number of colors k such that there exists a k-coloring of G without monochromatic F . Clearly, we
have

c(G(N, p), Pn+1) ≥
(

N

2

)

p

ex(G(N, p), Pn+1)
≥ pN2

3ex(G(N, p), Pn+1)
. (7)

Let r = N/n. We first present two general upper bounds on c(G(N, p), Pn+1).

Theorem 14. Suppose r is a prime power, then c(G(N, p), Pn+1) ≤ r + 1.

Proof. We use a construction from [17] (also appeared in [26]). Let Ar be an affine plane of order
r , i.e. r2 points with r2 + r lines, where every pair of points is contained in a unique line, and the
lines can be split into r + 1 disjoint families F1, . . . , Fr+1 so that the lines inside the families are
parallel.

We arbitrarily partition [N] into r2 parts V1, V2, . . . , Vr2 , where each part has size N/r2 = n/r .
We define an r+1-coloring as follows. If e is an edge crossing between Vx and Vy, where the unique
line containing xy is in the family Fi, then we color e by i. Observe that every connected subgraph in
color i has its vertex set V inside ∪x∈LVx for some line L ∈ Ar . Therefore, we have |V | ≤ r · n/r = n,
and there is no monochromatic Pn+1. □

Theorem 15. A.a.s. c(G(N, p), Pn+1) ≤ 2pN.

Proof. Let k = 2pN , and we can assume k ≤ r + 1. Consider a random k-coloring of G(N, p). Then
the subgraph Gi, whose edges are all edges in color i, is in G(N, p′), where p′ = p/k = 1/2N .
A fundamental result of Erdős and Rényi shows that a.a.s the largest component of Gi has size
O(logN) ≤ n. Therefore, a.a.s. there is no monochromatic Pn+1. □

Corollary 16. If p = 1
ω·n , where ω = ω(r) ≥ 2, then a.a.s. c(G(N, p), Pn+1) ≤ 2r/ω.

For the lower bound, the proof of Theorem 1.2. in [12] implies the following.

Theorem 17. For p ≥ 22(log(r/7))/n, a.a.s. c(G(N, p), Pn+1) > r/7.

This together with Theorem 14 shows that a.a.s. c(G(N, p), Pn+1) = Θ(r) for p = Ω((log r)/n).
On the other hand, Theorem 4 and (7) give a lower bound for small p.
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Theorem 18. For p ≤ (log r)/34n, a.a.s. c(G(N, p), Pn+1) ≥ logω

24ω
r, where ω = (log r)/np.

This naturally raises the following question.

Problem 19. What is the exact behavior of c(G(N, p), Pn+1) for p = o((log r)/n), where n goes to
infinity?
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