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Long monochromatic paths and cycles
in 2-edge-colored multipartite graphs

Jozsef Balogh, Alexandr Kostochka, Mikhail Lavrov and Xujun Liu

We solve four similar problems: for every fixed s and large n, we describe all values of ny, ..., ns such
that for every 2-edge-coloring of the complete s-partite graph K, . ., there exists a monochromatic
(1) cycle Cy, with 2n vertices, (ii) cycle Cs,, with at least 2n vertices, (iii) path P,, with 2n vertices, and
(iv) path Py, with 2n + 1 vertices.

This implies a generalization for large n of the conjecture by Gyéarfas, Ruszink6, Sarkézy and Sze-
merédi that for every 2-edge-coloring of the complete 3-partite graph K, ,, , there is a monochromatic
path P»,.. An important tool is our recent stability theorem on monochromatic connected matchings.

1. Introduction

A connected matching in a graph G is a matching whose edges are all in the same component of G. By
M, we will always denote a connected matching with n edges and by P, the path with n vertices. Also
by C, we denote the cycle with n vertices, and by C>, a cycle of length at least n.

For graphs Go, ..., Gy we write Gg — (G, ..., Gy) if for every k-coloring of the edges of G, for
some I € [k] there is a copy of G; with all edges of color i. The Ramsey number R(G1, ..., Gy) is the
minimum N such that Ky — (G, ..., Gy), and R, (G) = R(Gy,...,Gi),where G| =--- =Gy, =G.

Gerencsér and Gydrfas [1967] proved that the n-vertex path P, satisfies Ry (P,) = |_%(3n —2)|. They
actually proved a stronger result:

Theorem 1 [Gerencsér and Gyarfas 1967]. For any two positive integers k > £, R(Py, Py) =k—1+ L%EJ

Many significant results bounding Ry (P,) for k > 3 and Ry (C,) for even n were proved in [Benevides
et al. 2012; Benevides and Skokan 2009; Bondy and Erdds 1973; DeBiasio and Krueger 2018; DeBiasio
et al. 2020; Faudree and Schelp 1974; Figaj and Luczak 2007; 2018; Gyarfas et al. 2007a; Knierim and
Su 2019; Luczak 1999; Luczak et al. 2012; Sarkozy 2016]. Many proofs used the Szemerédi Regularity
Lemma [1978] and a number of them used the idea of connected matchings in regular partitions due to
[Euczak 1999].

Ramsey-type problems when the host graphs are not complete but complete bipartite were studied
by Gyérfés and Lehel [1973], Faudree and Schelp [1975], DeBiasio, Gydrfés, Krueger, Ruszinkd, and
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Séarkozy [Gyarfés et al. 2007a], DeBiasio and Krueger [2018], Bucié, Letzter, and Sudakov [Buci¢ et al.
2019a; 2019b], and Zhang, Sun, and Wu [Zhang et al. 2013], and when the host graphs are complete 3-
partite by Gyéarfés, Ruszinké, Sarkozy, and Szemerédi [Gydarfas et al. 2007b]. The main result in [Faudree
and Schelp 1975] and [Gyarfas and Lehel 1973] was:

Theorem 2 [Faudree and Schelp 1975; Gyarfas and Lehel 1973]. For every positive integer n, K, , —
(Parnj21> Parnj21). Furthermore, K, v/ (Parn/2141, Pafnj2141)-

DeBiasio and Krueger [2018] extended the result from paths P,y 27 to cycles of length at least ZL%nJ
for large n.
The main result in [Gyarfas et al. 2007b] was:

Theorem 3 [Gyarfés et al. 2007b]. For every positive integer n, K, y.n = (Pan—owm)> Pan—om))-
The following exact bound was also conjectured:
Conjecture 4 [Gyarfas et al. 2007b]. For every positive integer n, Ky n n = (Pant1, Pany1).

The goal of this paper is to prove for large n Conjecture 4 and similar exact bounds for paths P,
(parity matters here) and cycles C,. We do it in a more general setting: for multipartite graphs with
possibly different part sizes. In the next section, we discuss extremal examples, define some notions and
state our main results. In Section 3, we describe our tools. In Sections 4—8, we prove the main part,
namely, the result for even cycles C»,. In Sections 9-11 we use the main result to derive similar results
for cycles Cs», and paths P, and Po,1.

2. Examples and results

For a graph G and disjoint sets A, B C V(G), by G[A] we denote the subgraph of G induced by A, and by
G[A, B] the bipartite subgraph of G with parts A and B formed by all edges of G connecting A with B.

Our edge-colorings always will be with red (color 1) and blue (color 2).

We consider necessary restrictions on ny > ny > --- > ng providing that each 2-edge-coloring of
Kn, .n,....n, contains (a) a monochromatic path P,,, (b) a monochromatic path P41, (c) a monochromatic
cycle Cy, and (d) a monochromatic cycle Cs»,. Each condition we add is motivated by an example
showing that the condition is necessary.

First, recall that each of Py, P2,+1, C2,, and Csy, contains a connected matching M,,. Thus a graph
with no M,, also contains neither P, nor P,11 nor Csy,.

2.1. Example with no monochromatic M,: too few vertices. Let G = K3,_5. Clearly, G D K, »,....n,
foreach ny,...,ng; withny 4+ ---+ng; = 3n — 2. Partition V (G) into sets U; and U, with |U;| =2n —1
and |U;| = n — 1. Color the edges of G[U;, U,] with red and the rest of the edges with blue. Since
neither Ky, nor K,_; 2,—1 contains M,,, we conclude G v~ (M,,, M,,); see Figure 1.

To rule out this example, we add the condition

N:=n+---+n;>3n—1. @)
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Figure 1. Section 2.1.
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Figure 2. Section 2.2.

2.2. Example with no monochromatic M,,: too few vertices outside V1. Choose any n; and let N =
ny+2n — 2. Let G be obtained from Ky by deleting the edges inside a vertex subset U; with |Uj| = n.
Graph G contains every K, »,....n, Withnp+---+n, =2n —2. Partition V(G) — U into sets U, and U3
with |U,| = |Us| =n — 1. Color all edges incident with U, red, and the remaining edges of G blue. Since
the red and blue subgraphs of G have vertex covers of size n — 1 (namely, U, and U3), neither of them
contains M,. Thus G & (M,, M,); see Figure 2.

To rule out this example, we add the condition

N—-ni=ny+--+ng>2n—1. (2)

2.3. Example with no red M, and no blue P,1: too few vertices. Let G = K3,_,. Partition V(G)
into sets Uy and U, with |U;| =2n and |U;| =n — 1. Color the edges of G[U, U,] red and the rest of the
edges blue. Since the red subgraph of G has vertex cover U, with |U,| = n — 1, it does not contain M,,.
Since each component of the blue subgraph of G has fewer than 2n 4 1 vertices, it does not contain P, 1.
Therefore
R(Pyy, Prny1) = R(M,,, Pyyy1) > 3n,

which yields for Py, the following strengthening of (1):
for Py,+1, N >3n. 3)
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Figure 3. Section 2.4.

2.4. Example with no monochromatic C», when N — ny — ny < 2. This example, and all the ones
that follow, show that additional restrictions are necessary when G is bipartite or close to bipartite.

Let G = K, ... », satisfy (1) and (2) with N —n; —ny < 2 such that ny < 2n — 2. Then also ny <
2n — 2, so G - K2n—2,2n—2,1,1- Thus we assume G = KZn—Z,Zn—Z,],la with V] = {v1, ey vzn_z}, Vz =
{ui, ..., u—2}, V3={x}, and V4 = {y}. Let Vll ={vi,..., 01}, VlN =V, - VI,’ V2/ ={ur,...,un—1},
V)’ =V, — V. Color the edges in G[V/, V,1, G[V/’, V,'] and in G[V3, V1 UV, U V4] red, and all other
edges blue. Then the red graph G has cut vertex x, and the components of G| — x have sizes 2n — 2,
2n —2, and 1, so G| has no Cs,,. Similarly, G, contains no Csy,; see Figure 3.

To rule out this example, we add the condition

fOI‘CZQn, ifN—ny—ny <2, thenn;>2n-—1. 4)

2.5. Example with no monochromatic C>3, when N —n1 —ny <1. Let G =K, __,, satisfy (1), (2)
and (4) with N —n; —ny < 1 such that N +n; <6n — 3. Since by (4), n; >2n—1, we get N —n; <
(6n —3)—2(2n —1) =2n —1, but (2) implies N —n; > 2n — 1; therefore both inequalities are tight
and N —n; =n1 =2n—1. Hence G C Ky,_1.2,-2.1, Which is a subgraph of the graph K»,-22,-2.1.1
considered in Section 2.4.

This example is not ruled out by (4), so we add the condition

for Csyy, if N—nj—ny<1, thenn;+ N >6n—-2. 5

2.6. Example with no monochromatic P,,1 when G is bipartite. Suppose n3 =0 and n; < 2n. Then
ny < 2n as well, so G € K», 2,. Thus we assume G = Kj, 2, with V| = {v, ..., vp,} and V5 =
{ur, .. uon}. Let Vi={vy, ..., v}, V' =Vi=V], VJ={ui, ..., u,}, V;, =V, —V,. Color the edges
in G(V{, V;) and G(V/’, V') red, and all other edges blue. Then each component in the red graph and
each component in the blue graph has 2n vertices and thus does not contain P,,; see Figure 4.

To rule out this example, we add the condition

for Py,11, ifn3=0, thenn;>2n+1. (6)
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Figure 4. Section 2.5.

2.7. Example with no monochromatic C», when N —n1 —ny < 2. Let G = K, __,, satisfy (1), (2)
and (4) with N —n; —np =2 suchthat N <4n—2. By 4), N —n; <2n—1. Now (2) implies N —n| =

2n —1=mn,. Hence G € K5,-12,-3,1.1- Thus we assume G = Ky, 1 2,-3,1,1 With Vi ={vy,...,v2,-1},
Vo=A{ui,...,u2,3}, V3 ={x}, and V4 = {y}. Define A ={vz,v3,..., 04}, B={vn11,Vn42,..., 201},
C={uy,uy,...,un—1},and D={u,,upy1,...,uz,—3}. We assign the colors to the edges of G as follows:

(1) G[A, C] and G[B, D] are complete bipartite red graphs.

(2) G[A, D] and G[B, C] are complete bipartite blue graphs.

(3) vy has all blue edges to V».

(4) x has all red edges to Vi U Vo U{y}.

(5) y has all red edges to BU D U {x} and all blue edges to AU C U {v;}.

We claim that G has no monochromatic cycle of length 2n. Indeed, consider first the red graph G.
The graph G| — x has three components: (a) AU C of size 2n — 2, (b) {v;} of size 1, and (c) BU D U {y}
of size 2n — 2. Thus G has no red cycle of length 2n since the largest block of G| has order 2n — 1.

Consider now the blue graph G,. We ignore x since it is isolated. Suppose G, contains a 2n-cycle F.
Since v is a cut vertex of G, — {y} with the components of G, — {y, v} of order 2n — 3 and 2n — 2,
F contains y.

If we delete from G5 all edges in G,[{y}, C], then both blocks in the remaining blue graph will be
of order 2n — 1; thus F contains an edge from y to C, say yz. Furthermore, if yz is the only edge in F
connecting y to C, then all other edges in F belong to the bipartite graph H = G,[AUBU{v;}, DU{y}UC].
But this bipartite graph H cannot have a path of odd length 2n — 1 between the vertices y and z in the
same part.

Thus, F has to use two edges from y to C, say yz; and yz. Then the problem is reduced to finding a
blue path from z; to z» of length 2n —2 in G>[C, BU{v;}]. However, it is impossible because |C| =n —1
and the longest path from z; to z5 in G»[C, B U {v;}] has 2n — 3 vertices.

Note that this example has cycles of length greater than 2n — 1, but all such cycles are odd.
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To rule out this example, we add the condition
for Cp,, if N—ni—ny <2, then N >4n—1. @)

2.8. Results. Our key result is that for large n, the necessary conditions (1), (2) and (7) for the presence
in a 2-edge-colored K, .. ,, of a monochromatic Cy, together are also sufficient for this.

Theorem 5. Let s > 2 and n be sufficiently large. Let ny > --- > ng and N = n| + --- + ng sat-
isfy (1), (2) and (7). Then for each 2-edge-coloring f of the complete s-partite graph K, .., . there
exists a monochromatic cycle Cy,.

Based on Theorem 5, we derive our other results. The first of them is on cycles of length at least 2n
(it extends a result of [DeBiasio and Krueger 2018]). Recall that (7) is not necessary for the existence of
a monochromatic Cxz,, but (1), (2), (4) and (5) are.

Theorem 6. Let s > 2 and n be sufficiently large. Let ny > --- > ng and N = ny + --- + ny sat-
isfy (1), (2), (4) and (5). Then for each 2-edge-coloring f of the complete s-partite graph K, . n,, there
exists a monochromatic cycle Csy,.

The results for paths of even and odd lengths are somewhat different. The first of them shows that for
large n, the necessary conditions (1) and (2) for the presence in a 2-edge-colored K,,, .., of a monochro-
matic connected matching M,, together are sufficient for the presence of the monochromatic path P,,,.

Theorem 7. Let s > 2 and n be sufficiently large. Letn| > --->ngand N =n+- - -+ny satisfy (1) and (2).
Then for each 2-edge-coloring f of the complete s-partite graph K,
path Pa,.

ns» there exists a monochromatic

.....

Our last result implies Conjecture 4:
Theorem 8. Let s > 2 and n be sufficiently large. Let ny > --- > ng and N = ny + --- + ny sat-
isfy (2), (3) and (6). Then for each 2-edge-coloring f of the complete s-partite graph K, .. .., there
exists a monochromatic path Py, 1.

In the next section, we describe our main tools: the Szemerédi Regularity Lemma, connected match-
ings, and theorems on the existence of Hamiltonian cycles in dense graphs. In Section 4 we set up and

describe the structure of the proof of Theorem 5, and in the next four sections we present this proof. In
the last three sections we prove Theorems 6, 7 and 8.

3. Tools

As in many recent papers on Ramsey numbers of paths (see [Benevides et al. 2012; Benevides and
Skokan 2009; DeBiasio and Krueger 2018; Figaj and Luczak 2007; Gyérfés et al. 2007a; Knierim and
Su 2019; Luczak et al. 2012; Sarkézy 2016]), our proof heavily uses the Szemerédi Regularity Lemma
[1978] and the idea of connected matchings in regular partitions of reduced graphs due to [Luczak 1999].

3.1. Regularity. We say that a pair (V}, V,) of two disjoint vertex sets Vi, Vo C V(G) is (€, G)-regular if
EX.V)| [E(WV1, V)
| XY Vil Va2l
forall X C Vi and Y C V, with | X| > €|V|| and |Y| > €|V3].
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We use a 2-color version of the Regularity Lemma, following Gyéarfds, Ruszinkd, Sarkozy, and Sze-
merédi [Gyarfas et al. 2007a].

Lemma 9 (2-color version of the Szemerédi Regularity Lemma). For every € > 0 and integer m > 0,
there are positive integers M and ny such that for n > ng the following holds. For all graphs G| and G,
with V(G1) = V(Gy) =V, |V| = n, there is a partition of V into L + 1 disjoint classes (clusters)
(Vo, Vi, Vo, ..., VL) such that

em<L<M,

s Vil=[Va|=---=|VL|,

o |V < €n,

e Apart from at most 6(15) exceptional pairs, the pairs {V;, V;} are (e, G,)-regular for g = 1 and 2.

Additionally, if G{ U G is a multipartite graph with partition V = VUV U...U V¥, with s <6,
we can guarantee that each of the clusters Vi, V,, ..., Vi is contained entirely in a single part of this
partition.

To do so, for a given € > 0, we begin by arbitrarily partitioning each V;* into parts V;*, V), ...,
each of size I_%enj, with a part V%) of size at most ll—oen left over. This is an equitable partition of
V- Uf‘: 1 Vi'o» a set of at least (1 — %e)n vertices. The Regularity Lemma allows us to refine any
equitable partition into one that satisfies the conclusions of Lemma 9. Working with the subgraphs of
G and G, excluding the vertices in Ule Vo, take such a refinement with parameters ée and m, then
add Uf: 1 Vi% to its exceptional cluster Vo. The resulting exceptional cluster still has size at most en, so
we have obtained a partition satisfying the conditions of Lemma 9 in which each of Vi, V,, ..., V. is

entirely contained in one of V", V5, ..., V/".

3.2. Connected matchings. Let o’(G) denote the size of a largest matching and o, (G) denote the size
of a largest connected matching in G. Let «(G) denote the independence number and 8(G) denote the
size of a smallest vertex cover in G.

Fuczak [1999] was the first to use the fact that the existence of large connected matchings in the
reduced graph of a regular partition of a large graph G implies the existence of long paths and cycles
in G. A flavor of it is illustrated by the following fact.

Lemma 10 [Luczak et al. 2012, Lemma 8; Knierim and Su 2019, Lemma 1]. Let a real number ¢ > 0
and a positive integer k be given. If for every € > 0 there exists a 5§ > 0 and an ng such that for every
even n > ng and each graph G with v(G) > (1 4+ €)cn and e(G) > (1 — 8)(v(2(;)) each k-edge-coloring
of G has a monochromatic connected matching My >, then for large N, we have R (Cy) < (¢ +o(1))N
(and hence Ri(Py) < (c+o0(1))N).

We use the following property of (e, G)-regular pairs:

Lemma 11 [Gyarfas et al. 2007a, Lemma 3]. For every § > 0 there exist € > 0 and ty such that the
following holds. Let G be a bipartite graph with bipartition (Vy, V») such that |Vi| = |Va| =t > ty, and
let the pair (V1, V1) be (€, G)-regular. Moreover, assume that deg(v) > 6t for all v € V(G).

Then for every pair of vertices vy € Vi, vy € Va, the graph G contains a Hamiltonian path with
endpoints vi and v,.
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Since we are aiming at an exact bound, we need a stability version of a result similar to Lemma 10.
To state it, we need some definitions.

Definition 12. For € > 0, an N-vertex s-partite graph G with parts Vi, ..., V; of sizesn| >ny > --- > ny,
and a 2-edge-coloring E = E| U E; is (n, s, €)-suitable if the conditions
N=n+---+ng>3n—1, (S1)
np+n3+---+ny,>2n—1 (S2)

hold, and if \7, is the set of vertices in V; of degree at most N — en — n; and V= U‘;:] \71 then
VI=IVi|+-+ V| <en. (S3)
We do not require £1 N E, = &; an edge can have one or both colors. We write G; = G[E;] fori =1, 2.

Our stability theorem gives a partition of the vertices of near-extremal graphs called a (A, i, j)-bad
partition. There are two types of bad partitions.

Definition 13. For i € {1, 2}, A > 0, and an (n, s, €)-suitable graph G, a partition V(G) = W; U W, of
V(G) is (A, i, 1)-bad if the following hold:

@) (I =M)n = [Wr| = (1 +M)n;.

(i) |E(Gi[W1, Wa])| < An.
(iii) |E(G3—i[Wi])| < an®.
Definition 14. Fori € {1, 2}, A > 0, and an (n, s, €)-suitable graph G, a partition V(G) = V; UU; U U,
j €ls], of V(G) is (), i, 2)-bad if the following hold:

(i) [EG;V;, UiD)| < An,

(i) |E(G3—i[V}. UaD)| < An’.
(iii) n; =|Vj| = (1 = M)n.
iv) A —Mn < Ul <A+ Mn.

V) (I=Mn = |z = (1+Mn.

Our stability theorem is:

Theorem 15 [Balogh et al. 2019, Theorem 9]. Let 0 <€ <1073y <107%, n> s> 2, andn > 100/y.
Let G be an (n, s, €)-suitable graph. If max{«,(G}), @, (G2)} < n(1 4 ), then for some i € [2] and
Jj €121, V(G) has a (68y, i, j)-bad partition.

3.3. Theorems on Hamiltonian cycles in bipartite graphs.

Theorem 16 ([Chvatal 1972]; see also [Berge 1976, Corollary 5 in Chapter 10]). Let H be a 2n-vertex
bipartite graph with vertices uy, uy, ..., u, on one side and vy, va, ..., v, on the other such that d(u;) <
< <d(up) and d(vy) < --- < d(vp).

Ifdg(u;) <i <nimplies dg(v,—;) > n—i—+ 1, then H is Hamiltonian.
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Theorem 17 [Berge 1976]. Let H be a 2m-vertex bipartite graph with vertices uy, us, ..., U, on one
side and vy, va, . .., Uy, on the other such thatd(u;) <--- <d(u,) andd(vy) <--- <d(vy). Suppose that
for the smallest two indices i and j such that d(u;) <i+1andd(v;) < j+1, we have d(u;)+d(v;) > m+2.
Then H is Hamiltonian biconnected: for every i and j, there is a Hamiltonian path with endpoints u;
and v;.
Theorem 18 ([Las Vergnas 1970]; see also [Berge 1976, Theorem 11 on page 214]). Let H be a 2n-
vertex bipartite graph with vertices uy, us, ..., u, on one side and vy, v, ..., v, on the other such that
duy) <---<d(uy) andd(vy) <--- <d(vy). Let q be an integer,) < g <n — 1.
If, whenever u;v; ¢ E(H),d(u;) <i+q,and d(vj) < j+q, we have

du;)+dwj)) >n+qg+1,
then each set of q edges that form vertex-disjoint paths is contained in a Hamiltonian cycle of G.

3.4. Using the tools. Our strategy to prove Theorem 5 is: We first apply a 2-colored version of the
Regularity Lemma to G to obtain a reduced graph G”. If G" has a large monochromatic connected
matching then we find a long monochromatic cycle using Lemma 10. If G" does not have a large
monochromatic connected matching, then we use Theorem 15 to obtain a bad partition of G". We then
transfer the bad partition of G” to a bad partition of G and work with this partition. In some important
cases, theorems on Hamiltonian cycles help to find a monochromatic cycle Cy, in G.

4. Setup of the proof of Theorem 5

Formally, we need to prove the theorem for every N-vertex complete s-partite graph G with parts

(V5 V', ..., V) such that the numbers n; = |V;*| satisfy n; > ny > --- > n, and the three conditions
N=ni+---+n;>3n—1, (S1)
N—nj=ny+--+ng>2n—1, (52)
if N—n;—ny, <2, then N>4n—1. (S3)
For a given large n, we consider a possible counterexample with the minimum N + s. In view of this,

it is enough to consider the lists (n1, ..., ny) satisfying (S1"), (S2) and (S3’) such that:
(a) Foreach 1 <i <s, if n; > n;41, then the list (ny,...,n;—1,n; —1,n;11, ..., ny) does not satisfy
some of (S1’), (S2) and (S3').

(b) If s > 4, then the list (ny, ..., ng_3, ng_1 + ny) (possibly with the entries rearranged into a nonin-

creasing order) does not satisfy some of (S1’), (S2') and (S3).
CaseI: N —n; —ny >3 and N > 3n — 1. Then (S3’) holds by default. If n; > ny, then the

list (ny — 1, ny, ns3, ..., n,) still satisfies the conditions (S1’), (S2’) and (S3’), a contradiction to (a).
Hence ny = n,. Choose the maximum i such that ny = n;. If N —n; > 2n — 1, consider the list
(ni,...,nj—1,n; —1,n;41,...,ns). In this case (S1’) and (S2’) still are satisfied for this list; so by (a),

(S3) fails for it. As we assumed N —nj —n, > 3, we must have i > 3 and N —n| — np = 3 for (S3') to
fail for this list; this further implies n; =n; <3,s0 N =n| +ny +3 <9, a contradiction. Thus in this
case N —ny =2n — 1. Therefore, ny =N — (N —ny) >3n—2n—1)=n+1and hence n, > n+1,
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SON—ny—ny <(2n—1)— (m+1) =n —2. Then the list (ny, n1, N — 2n;) satisfies (S1")—(S3").
Summarizing, we get

if N—ni—np>3and N >3n—1, thens=3, no+n3=2n—1, and ny = ny. (8)

Case2: N —ny —ny >3 and N = 3n — 1. Again (S3’) holds by default. By (S2'), n; < n; hence
N—nj—ny>n—1.If s >4 and ny,_1+n,; <n, then let L be the list obtained from (ny, . .., ny) by replacing
the two entries ny_ and ng with ng_; + ng and then possibly rearrange the entries into nonincreasing
order. By construction, L satisfies (S1')—(S3’), a contradiction to (b). Hence ny_1 +n; >n+ 1. We
also have ng_1 +ny, >n+11if s = 3, since in this case ng_; +ng =N —n; >2n — 1. If s > 6, then
N > 3(ng—1 +ng) > 3n+ 3, contradicting N = 3n — 1. Thus

ifN—n—ny>3and N=3n—-1, thenn; <n, s<5, ng_1+ny,>n+1. )

Case 3: N —ny —np <2. Then N <2ny+2,s0by (83),2n;+2> N >4n — 1, implying ny > 2n — 1.
If ny > 2n, then (S2') implies G 2 Kz,2,—1. If ny = 2n — 1, then by (S3'), N —n; > 2n, so again
G 2 K»5,.2q—1. Thus we can assume that

ifN—ny—np<2, thenG:Kzn,zn,l. (10)
As we have seen,
in each of Cases 1, 2 and 3 we have s < 5. (11)

Fix an arbitrary 2-edge-coloring E(G) = E|UE, of G. Fori € [2] and v € V(G), let G; :=(V(G), E;)
and d; (v) denote the degree of v in G;.

5. Regularity

5.1. Applying the 2-colored version of the Regularity Lemma. We first choose parameter o so that
0 < a < 1072 and then choose € such that € < 1072 and 0 < 10% < « so that the pair (%a, 36)
satisfies the relation of (4, €) in Lemma 11 with %a playing the role of 4. Here, € is the parameter for
the Regularity Lemma, and « is our cutoff for the edge density at which we give an edge of the reduced
graph a color.

We apply Lemma 9 to obtain a partition (Vy, Vi, ..., V1) of V(G), with each of V|, V5, ..., V.
contained entirely in one of V*, V¥, ..., V. Define the k-partite reduced graph G" as follows:

e The vertices of G" are v; fori =1,2, ..., L. A k-partition (V|, V,, ..., V]) of V(G") is induced
by the k-partition of G, and reordered if necessary so that |[V]| > |[V;| > --- > |V/].

o There is an edge between v; and v; if and only if v; and v; are in different parts of the k-partition
and the pair {V;, V;} is (e, G,)-regular for both g =1 and g = 2.

e The reduced graph G” is missing at most e(é) edges between distinct pairs {V/, Vj/ }.

» We give G" a 2-edge-multicoloring: two graphs (G}, G%,) whose union includes every edge of G’,
but are not necessarily edge-disjoint. We add edge v;v; € E(G") to G if G4 contains at least

a|V;||V;| of the edges between V; and V;. Since G = G| U G, contains all |V;||V;| edges between
Vi and V;, each edge of G" is added to either G| or G, and possibly to both.
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Lett=|Vi|=|Val=---=|V.|, {; =|V/[fori=1,...,k,and £ := (n —eN)/t; since N < 4n —1,
we have £t > (1 — 5¢)n.
Because |V < €N, we have (1 —€)N < Lt < N and n; —eN < {;t <n;. Therefore:

e Lt>(1—€e)N>3n—1—eN =3{t+eN)—1—€eN > 3¢t — 1+ 2en, which means L > 3¢ — 1.
e Lt <N <4n—1=4{t+€N)—1 <5¢t, which means L < 5¢.

e Lt —lit>N—-n;—eN>2n—1—¢eN >2({t+eN)—1—¢eN > 20t — 1 + €N, which means
L—4,>2¢0—1.

Recall that G” is missing at most e(é) < e%L2 < 16€L? edges between distinct pairs v/, Vj’ }. Since
the number of V;’s missing at least 4,/€¢ edges is less than 4,/€£, we know G” is (£, k, 4./€)-suitable.
We apply Theorem 15 to the graph G” with y such that 107% > y > 1000« and y > 4000,/€. Then we
conclude that either G" has a monochromatic connected matching of size (14 y)¥, or else V(G) has a
(68y, i, j)-bad partition for some i € [2] and j € [2].

5.2. Handling a large connected matching in the reduced graph. For every edge v;v; € G/, the corre-
sponding pair (V;, V;) is (e, G1)-regular and contains at least at? edges of G1. Let X;; C V; be the set
of all vertices of V; with fewer than %oet edges of G| to V;, and let ¥;; C V; be the set of all vertices of
V; with fewer than %at edges of G| to V;. Note we have Y;; = X;; but we keep using the notation Y;;
for emphasizing they are in different parts. Then

|E(Xij, VDI _ @

X1Vl 2

so | X;;| < et to avoid violating (e, G)-regularity; similarly, |Y;;| < et. Call vertices of V; U V; which
are not in X;; UY;; typical for the pair (V;, V;) (or for the edge v;v; of Gy).

Let M be a connected matching in G| of size (1 + y){. Give the edges in M an arbitrary cyclic
ordering.

If v;, v, and v;,v;, are edges of M which are consecutive in the ordering, we shall find a path P(j, i»)
in G joining a vertex of V; \'Y;, j, to a vertex of V;, \ X;,,. To do so, we begin by finding a path P" from
vj, to v;, in G, then find a realization of that path in G . Pick a starting point of P(jy, i2) typical both
for the edge v;, v;, and for the first edge of P". Next, choose the path greedily, making sure to satisfy the
following conditions:

» Choose a neighbor of the previous vertex chosen which is typical for the next edge of P (or for
v;,j, when we reach the end of P").

e Choose a vertex which has not been chosen for any previous paths.

As we construct P (1, i2), the last vertex we have chosen is always typical for the edge of P” we are about
to realize; therefore we have at least %at options for its neighbors. At most € of them are eliminated
because they are not typical for the next edge, and at most L? are eliminated because they have been
chosen for previous paths. Since L is upper bounded by M which is independent of n, and € < 10 %,
we can always choose such a vertex.

Moreover, we may choose the paths such that their total length has the same parity as |M]|. If the
component of G containing M is not bipartite, then each path can be chosen to have any parity we
like. If the component of G| containing M is bipartite, then this condition is satisfied automatically:
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if we join the paths of P” we chose by the edges of M, we get a closed walk, which must have
even length.

Once all these paths are chosen, we combine them into a long even cycle in G. For each edge v;v; in
the matching M, we have vertices x € V; and y € V;, both typical for (V;, V;), which are the endpoints
of two paths we have constructed. We show that we can find a path from x to y using only edges of G
between V; and V; of any odd length between ¢t — 1 and (1 —3¢)2t — 1.

To do so, we choose any X € V; with |X| > %t that contains x and at least %at neighbors of y;
similarly, we choose Y C V; with |Y| = | X| that contains y and at least %at neighbors of x. If we want
the path to have length 2Ct — 1, where C € [%, 1— 36], we begin by choosing X and Y of size (C 4 3¢)t.
The pair (X, Y) is (2¢€, G1)-regular with density at least @ — €, so there are at most 2¢ vertices in each of
X and Y which have fewer than %at neighbors on the other side; by our construction of X and Y, x and
y are not among them.

Let X’ C X and Y’ C Y be the subsets obtained by deleting these low-degree vertices, leaving at least
(C +¢)r vertices on each side, and then deleting enough vertices from each part to make |X’| = |Y'| = Ct.
The pair (X', Y’) is (3¢, G)-regular, and all vertices have minimum degree at least (o — 3¢€)z, so by
Lemma 11, there is a path from x to y using all vertices of X" and Y’, which has the desired length 2Ct — 1.

If we use C =1—3e for each edge v; v; in the matching M, then the cycle contains at least 2(1—3¢)z ver-
tices for each edge of M, even ignoring the paths we constructed between them, while |[M| > (14 10¢)¢;
therefore the total length is at least

2(1 =3e)(1+10e)ft > 2(1 —3€)(1 +10e)(1 —S5¢)n > (1 4+ ¢€)2n.

If we use C = % each edge v;vj, then the cycle contains only ¢ vertices for each edge of M, giving
approximately half as many edges. Up to parity, we are free to choose any length in this range, and
therefore it is possible to construct a path in G of length exactly 2n.

5.3. Handling a bad partition of the reduced graph. We will show in Sections 6 and 7 how to find a
long monochromatic cycle in a bad partition of G. In this subsection, we show that a bad partition of G"
corresponds to a bad partition of G.

(1) If X € V(G") has size C¥, then the corresponding set of vertices in G is th_e x Vi. It has size Clt,
which is in the range [(1 — 5¢)Cn, Cn].

2) If |EG{ (X)| < A2, then each of those 1¢> edges of G! corresponds to at most 12 edges of G; for

0212 < an? edges.

Additionally, edges not in G} may appear in G;; across all of G; there are at most atZ(é) <
%aN 2 < 10an® edges that occur in this way.

Moreover, edges from at most e(é) exceptional pairs may appear in G;, contributing at most
10en? edges in total by the same calculation.

To summarize, there are at most (A + 10« 4+ 10€)n? edges in G; corresponding to Egr(X). A
similar argument applies to a bound on |EGr (X, Y) for X, Y CV(G").

(3) There are fewer than e N < 5en vertices from the exceptional part Vj, which can generally be
assigned to any part of any bad partition without changing the approximate structure.
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Thus, for 1073 > A > 1000« > 10%¢ > 0, if G" has a (%, i, 1)-bad partition (i € [2]) V(G") = Wiuwy,
then G has a corresponding (24, i, 1)-bad partition with:
0) W, := (le_ewf Vi) UV and W, := Uu,—ewg V.
O I=2)n <A -1A=56)n < (1 =1t < |Wa| = (1 + 1)1 < (1 +M)ny.
(ii) |E(Gi[Wy, WaD)| < (A + 10a + 10€ + 5¢)n? < 2An?.
(iii) |E(Ga—i[WiD| < (A + 100 + 10€ + 5¢ + F€2)n? < 2an>.
If G" has a (A, i, 2)-bad partition (i € [2]) V(G") = Vj/U Uy UU, then G has a corresponding (24, i, 2)-
bad partition with:
) Ur:==Uyepr ViV Vo= V) and Uz := U, ey Vi-
(i) |E(Gi[V}", UiD| < (A + 10a 4 10€ + 5€)n* < 2in.
(i) |E(G3-i[Vj, Ua])| < (A + 10a + 10€ + 5€)n? < 2xn>.
(i) nj =V =4t = (1=l = (1 =21 —=56)n = (1 —20)n.
iv) A+20)n =0 +1)n+5en> A+ 1)t +5en> Ui = (1 -2l = (1 -1 —5)n > (1 —2X)n.
V) A+Mn=A+21)lt = |Uz] = (1 =)t = (1 —2)(1 =5€)n = (1 —24)n.
Therefore, a (68y, i, j)-bad partition of G corresponds to a (136y, i, j)-bad partition of G for some

i € [2] and j € [2]. In the next three sections we show how to find a monochromatic cycle of length
exactly 2n when G has a (A, i, j)-bad partition for some i € [2] and j € [2], where A = 136y.

6. Dealing with (A, i, 1)-bad partitions when N —ny —n; >3

6.1. Setup. Without loss of generality, let i = 1. Recall that di (v) is the degree of v in Gy, where k € [2].
We assume that for some A < 0.01, there is a partition V (G) = W U W, such that

(1—2)n < |Wa| < (1+M)ny, (12)
|E(G1[W;, Wal)| < An?, (13)
|E(G2[W1])| < An?. (14)

If G has at least four parts then n; < n by (8) and (9). If G is tripartite, then we could have n; much
larger than n, but in this section, we will assume n| < %n. The alternative, that G is tripartite and n; > %n,
is handled in Section 6.2.

We know that |[W(| > N — (1 +X)n; >2n—1—Ain; > (2 —5A)n since n| < 2n. For any vertex x,
fewer than %n vertices of W can be in the same part V; of G as x, so at least (% — SA)n > %n are in
other parts of G. In other words, we have d(x, W;) > %n for all x € V(G).

We call a vertex x € V(G) W;-typical if di(x, W) > %d(x, W), and Wj-typical if dy(x, Wi) <
2d(x, Wy).

If x is Wy-typical, then d; (x, Wp) > % . %n =3

Ten- Since

> di(x, Wi) = [E(G1[W1, Wal)| < an®,

xeW;
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the number of Wi-typical vertices in W5 is at most

an?
5 < 6An.

Rl’l
Similarly, if x is Wp-typical, then d>(x, Wy) > I - tn = scn. Since

> do(x, W) =2|E(Go[Wi])| < 2an?,

. . XEW, .
the number of W,-typical vertices in W is at most

2an?

1
El’l

=32\n.

Let W/ be the set of all W;-typical vertices and W be the set of all W,-typical vertices. The partition
(W{, W) is almost exactly the same as the partition (W;, W>): at most 40An vertices have been moved
from one part to the other part to obtain (W, W) from (W;, W,). Therefore, if x € W], we still have
di(x, W)) = 3d(x, W) —40An, and if x € W}, we still have d;(x, W|) < 3d(x, W;) +40An. In either
case, we still have d(x, Wl/) > %n — 40An for all x.

Moreover, Wl’ and Wé still satisfy similar conditions to W; and W5:

(1) (1 —=410)n < |W}| < (14 M)n; +40in < (14 811)n; (since ny > %n in all cases).
(2) |E(G1[W], W,])| < An? + N - (40An) < 161An?, since we move at most 40An vertices with degree
less than N.

(3) |E(G2[W{DI < an? 4 N - (6An) < 25in?, since we move at most 6An vertices with degree less than
N into W/|.

For convenience, let § = 200A, which is at least as large as all multiples of A used above.

Our goal is to find a cycle of length 2x in either G or G,. We decide which type of cycle we will
attempt to find based on the relative sizes of W| and W;.

Suppose that |W{| > 2n and, moreover, |W{ \ V;| > n for all i. In this case, we find a cycle of length 2n
in G1; this is done in Section 6.3.

Otherwise, we must have | W,| > n: either |[W]| <2n—1and |W,|=N—|W{|>n,orelse |W[\V;| <n—1
for some i, and

(Wl = W\ Vil = [VA\ Vi = W\ Vi|>(N=n)) —(n—=1) > Q2n—1) —(n— 1) =n.

In this case, we find a cycle of length 2n in G5; this is done in Section 6.4.
We use the following lemma to pick out “well-behaved” vertices in W| and W,. For example, we
commonly apply it to Go[W/{] or to G{[W], W]].

Lemma 19. Let H be an n-vertex graph with at most en” edges for some € > 0 and let S € V(H). If
S" C S is any subset that excludes the k vertices of S with the highest degree, then every v € S’ satisfies
dy(v) < 2en?/k.

Additionally, when H is bipartite, and S is entirely contained in one part of H, every v € S’ satisfies
dy(v) < en?/k.



LONG MONOCHROMATIC PATHS AND CYCLES IN 2-EDGE-COLORED MULTIPARTITE GRAPHS 69

Proof. In the first case, if we have dy(v) > 2€n2/k for any v € §’, then we also have dy (v) > d for
the k vertices of S with the highest degree, which we excluded from S’. The sum of degrees of these
k + 1 vertices exceeds 2en?, so it is greater than twice the number of edges in H, a contradiction.

In the second case, if we have dy (v) > en?/k for any v € §’, the same sum of degrees exceeds en?.
But since the vertices of S are all on one side of the bipartition of H, this sum of degrees cannot be
greater than the number of edges in H, which is again a contradiction. (Il

6.2. The nearly bipartite subcase. In this subsection, we assume that G is tripartite with n; > %n Recall
that when G is tripartite we have n| = ny and n| +n3 = np +n3 = 2n — 1, and that throughout Section 6
we assume N —ny —ny > 3, or in this case that ny > 3.

Case 1: (W NV;| > (1+10A)n fori =1 ori =2. We assume i = 1; the proof for the case i =2 is the

same. In this case, let X be an n-vertex subset of V| N W avoiding the 5An vertices of Vi N W, with the

most edges of G, to Wy \ V| and the 5An vertices of Vi N W with the most edges of G| to W» \ V.
For any vertex v € X, we have

U, an U,

by Lemma 19.
We partition V, U V3 into sets Y| and Y, by the following procedure:

(1) The 2An vertices of Wy \ V| with the most edges of G, to X are set aside, and the remaining vertices
of Wi\ V| are assigned to Y.
By Lemma 19, any vertex v assigned to Y; in this step has d; (v, X) < %n.

(2) The 2An vertices of W, \ V| with the most edges of G| to X are set aside, and the remaining vertices
of Wy \ V| are assigned to Y.
By Lemma 19, any vertex v assigned to Y in this step has d; (v, X) < %n.

(3) Each remaining vertex v is assigned to Y if di(v, X) > %n and to Y, otherwise (in which case
dy(v, X) > 1n).

Since |V, U V3| = 2n — 1, we must have |Y|| > n or |Y2| > n. Let YJ./ be an n-vertex subset of Y,
where j € [2] and |Y;| > n. We apply Theorem 16 to find a Hamiltonian cycle in the bipartite graph
H = G,[X,Y]].

The minimum H -degree in X is 4n 2Xn, since each v € X had at most 1n edges to W;\ V| which were
not in G; J, and at most 2An vertices of Y ! did not come from W; \ V; orlglnally The minimum H -degree
in Y’ is 2n SO the condition of Theorem 16 is satisfied: whenever dgy (u;) < i, we have i > (— — ZA)
0 i (vn_i) = n=(f+20)n+1.

Case 2: |ViNWi| < (1+4+10A)n fori =1 and i = 2. By (12), we must have |W;| > N — (1 +A)n; =
2n—1—An; >2n—3An. Since n; =n, > %n and n, +n3 =2n—1, fewer than %n vertices of Wy are in V3,
so at least (% —3)»)11 of them are in V| U Vj; therefore |[W NV|| > (% — 13A)n and |W;NV,| > (% — 13A)n.
Because 2n > ny =np > %n, we have (% — IOA)n < |ViNW,| < (% + 13A)n fori =1, 2, as well.
Next, we choose subsets X;; € V; N W; with [ X | = [X21]| = [X12] = | X| = %n + 10. To choose
X11 and X5, avoid the %n vertices with the most edges in G| to W, and the %n vertices with the most

edges in G, to Wy, so that each chosen vertex has at most 20An edges of each kind by Lemma 19. To
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choose X1, and X7;, avoid the %n vertices with the most edges in G| to Wy, so that each chosen vertex
has at most 10An such edges by Lemma 19.

First, we observe that if H is any of the graphs G[X 11, X21], G2[X 12, X21], or G2[X 11, X22], then
given any vertices v, w in H, we can find a (v, w)-path in H on m vertices, provided that n — 10 <m <
n + 10 (this is not optimal, but it is more than we need) and that the parity of m is correct.

To do so, we apply Theorem 18. If v and w are on the same side of H, add a vertex x to the other
side adjacent to all vertices in the side containing v and w; if not, add an edge vw. Then take a subgraph
containing |_%m-| vertices from each side, making sure to include v, w and if applicable x. In this
subgraph, the minimum degree is at least f%m] —20An, so we can use Theorem 18 to find a Hamiltonian
cycle in this graph containing either the edge vw or the edges vx and xw. Deleting the vertex x or the
edge vw, whichever applies, creates a (v, w)-path in H of the correct length.

Suppose that G[ X 12, X27] contains a matching M = {uu,, viv,} of size 2, where u;, v; € X and
Uz, v» € X2,. In that case, we can find a (uy, v1)-path P in Go[X12, X211 on 2[1n] + I vertices and a
(up, v2)-path Q in G[ X1, X22] on ZL%nJ — 1 vertices by the previous observation. Joining the paths P
and Q using the edges of the matching M, we find a cycle of length 2n in G,.

Now we assume G>[X 12, X22] does not contain a matching of size 2. If the size of a maximum
matching in this graph is 1, then there is a vertex cover of size 1 since G[X 12, X»7] is bipartite. We
delete this vertex cover from X > or Xp; (it depends on where this vertex cover is). Having changed X,
and Xy; in this way, G1[X12, X22] is a complete bipartite graph, so it also has the property that any two
vertices in it can be joined by a path on m vertices, provided that n — 10 < m < n + 10 and that the parity
of m is correct.

Note that there are at least three vertices in V3.

We say that a vertex v € V3

e is j-adjacent to a set S if it has at least two edges in G; to S,

 S-connects G; if it is j-adjacent to both X, and X/, or if it is j-adjacent to both X, and X5,
(““S-connects” because it is j-adjacent to two sets in the same part of V| or V),

e C-connects G if it is 1-adjacent to both X, and X, or if it is 1-adjacent to both X, and Xy,
(“C-connects” because the j-adjacency crosses from V| to V),

o C-connects G, if it is 2-adjacent to both X; and X1, or if it is 2-adjacent to both X, and X7,
* folds into G if it is 1-adjacent to both X, and X5, or if it is 1-adjacent to both X, and X»»,
e folds into G, if it is 2-adjacent to both X and X»», or if it is 2-adjacent to both X, and X»;.

Some comments on these definitions: first, a vertex that is j-adjacent to at least three of X1, X o,
X21, X2 is guaranteed to both S-connect and C-connect G;. Second, a vertex that is j-adjacent to only
two of X1, X12, X21, X for each value of j may S-connect both G| and G, or C-connect G and fold
into G, or C-connect G, and fold into G;. In particular, each vertex either S-connects or C-connects
some G;.

If there are two vertices in V3 that both S-connect G|, or both C-connect G|, then we can find a cycle
of length 2n in G;. The cases are all symmetric; without loss of generality, suppose v, w € V3 both
S-connect G . We can find a path P in G{[X |, X»1] on 2|_%n-| — 1 vertices that starts at a G1-neighbor
of v and ends at a G1-neighbor of w, and a path Q in G{[X13, X272] on ZL%nJ — 1 vertices that starts at
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a G-neighbor of v and ends at a G-neighbor of w. Joining P and Q via v at one endpoint and via w
on the other creates a cycle of length 2n in G.

If we cannot find two vertices as in the previous paragraph, then the best we can do is to find, for
some j, a vertex v € V3 that S-connects G; and another vertex w € V3 that C-connects G;. Since v does
not C-connect G, it must also S-connect G3_;.

There is at least one more vertex x € V3. By assumption, it does not S-connect G3_; and neither
S-connects nor C-connects G, so it must fold into G; (and C-connect G3_ ).

Without loss of generality, suppose that j =1 and x has a G-neighbor in both X1 and X5;. We add
an artificial edge e, between a pair of such neighbors of x.

As before, we can find a path P in G{[ X, X»;] joining a neighbor of v to a different neighbor of w;
we add the requirement that it uses the edge e,, which is still possible by Theorem 18. We can also find
a path Q in G1[X12, X»2] joining a neighbor of v to a different neighbor of w. Since v S-connects G
and w C-connects G, one of these paths will have even length and the other will have odd length, but
we can choose them to have 2n — 3 vertices total.

Now join the paths P and Q using the vertices v and w, then replace the artificial edge e, by two
edges to x from its endpoints. The result is a cycle of length 27 in G;.

6.3. Finding a cycle in G1. In this subsection, we are considering a 2-edge-colored graph G and a
partition W{ U W, of V(G) satisfying the following properties:

(1) G is a complete s-partite graph with parts Vi, Vo, ..., V; of sizes ny, ny, ..., ng, with s > 3 and
ni+---+ng <4n.

2) A =dn < Wyl <A +8)n.
(3) |E(G1IW{, WD)| < 8n* and |E(G2[W{D)| < én*.
(4) If x € W], then d (x, W)) > 2d(x, W) — én.

(&) |W1’| >2n and |W1’ \ Vi| > n for all i. (This is the assumption that leads to this subsection as opposed
to Section 6.4.)

We can deduce a further degree condition that holds for all vertices x € W;:

(6) By properties (1) and (2), |[W{| =|V(G)|—|Wj| <4n—(1—=8)n=(3+8)n,sod(x, W) < (3+)n.
By property (4), we have dy(x, Wp) < i(S +8)n+dn < (% + 28)n.

To find a cycle of length 2n in G, we will choose two disjoint sets X, Y € W/ of size n, then apply
Theorem 16 to find a Hamiltonian cycle in H = G[X, Y].

Leta,be{l,2,...,s} be such that V, N W/ is the largest part of G{[W/] and V};, N W] is the second-
largest part of G{[W/]. To define X and Y, we begin by assigning V, N W to X and V;, N W| to Y. If
either of these exceeds n vertices, we choose n of the vertices arbitrarily.

Continue by assigning the parts V; N W] to either X or Y arbitrarily for as long as this does not make
| X| or |Y| exceed n. Once this is no longer possible, then:

o If there are still at least two parts V; N W left unassigned, then each of them must have more than
max{n — |X|, n — |Y|} vertices. Therefore we can add vertices from one of them to X to make
|X| = n (if necessary), and add vertices from the other to Y to make |Y| = n (if necessary).
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« If there is only one part of Gl[Wl/ ] left unassigned, call it Vpjic N Wl’ . We assign n — | X| vertices of
Viptic N W] to X and n — |Y| other vertices of Vyiie N W/ to Y.

o If there are no parts left unassigned, then we must have | X| = |Y|=n.

We must show that we do not run out of vertices in either of the last two cases. If |V, N W{| < n, then we
do not run out because |W{| > 2n (by property (5)) and all vertices in Wl/ \ Viplit are assigned to either
X or Y, so either Vgpie N Wl’ must contain enough vertices to fill X and Y or X and Y are already full. If
|Va N W/| > n, then we do not run out because |W/| \ V,| > n (again, by property (5)), and after V, N W
is assigned, all vertices of W/ are added to Y until it is full.

The most difficult case for us is the one in which some part Vi N Wl/ is divided between X and Y. To
handle all cases at once, we assume this happens; if necessary, we choose some part V; N W/ (i # a, b)
to be a degenerate instance of V)i which is entirely in X or Y.

Let ny = |Vsplie N X| and ny = |Vipiie N Y. We assigned the largest part of G[Wl/ ] to X and the second-
largest to Y'; therefore X and Y both contain at least n, +n, vertices not in V.. Since | X| = |Y|=n,
we must have n, + (n, +n,) <n and ny, + (n; +n,) < n; therefore n, +n, < %n, while individually
ny < %n and n, < %n.

We first prove some bounds on d; (x, Y) for x € X (and, by symmetry, d;(y, X) for y € Y). If x ¢ Vipiit,
then d(x, Y) =n (since there are no vertices of Y in the same part of G as x), while d, (x, Wl’ )< (% +28)n
by property (6), so di(x,Y) > (‘—i - 28)n. If x € Vipiit, then d(x, W)) = (n —n,) + (n —n,), since all
vertices of Wl/ outside Vi have been assigned to either X or Y, so da(x, Wl’ ) < %(Zn —ny —ny)+én
by property (4). This leaves d (x,Y) > in — 3n, —én > (§ — §)n.

If we exclude the %n vertices of X with the most edges to W] in G, then by Lemma 19, the remaining
vertices x € X have d,(x, Wl/) <208n. If x ¢ Vpiit, this means d(x, Y) > (1 —208)n, and if x € Vipiir,
this means that d; (x, Y) > n —n, —20én.

Let H=G[X,Y],letuy, us, ..., u, bethe vertices of X ordered so that dg (1) <--- <dgy(u,), and
let vy, vy, ..., v, be the vertices of Y ordered so that dy (v() < --- <dg(v,).
Suppose u; € X satisfies dy (u;) <i <n. We have shown d; (x, Y) > (%—8)n, soamong Uy, Uy, ..., U;,

there must be a vertex not among the %}n vertices of X with the most edges to W| in G,. For such a
vertex, di(x, Y) > n—ny, —208n, so in particular dy (u;) > n —ny, —208n, which means i > n—n, —208n.

If we had dy (v,—;) <n—i, then by repeating this argument for vertices in Y, we would have dg (v,,—;) >
n —n, —208n, which would mean n —i > n —n, —208n. Adding this to the inequality on i, we would get
n > 2n—ny, —n, —408n, which is impossible since n, +n, < %n. So we must have dy (v,,_;) >n—i+1,
and by Theorem 16, H contains a Hamiltonian cycle. This gives a cycle of length 2n in G;.

6.4. Finding a cycle in G,. In this subsection, we are considering a 2-edge-colored graph G and a

partition W; U W} of V (G) satisfying the following properties:

(1) G is a complete s-partite graph with parts Vi, V,, ..., V; of size ny, no, ..., ns, with s > 3 and
ny+---+ng <4n. Moreover, %n >np > --- > ng; we considered the case n; > %n in Section 6.2.

(2) Either N —n; >2n—1and |V;|<nforalli,orn;=ny>n,s=3,and N—n; =N —np=2n—1.

(3) |E(G1[W{, W)D)| < 8n* and | E(G2[W{])| < 8n*.

(4) If x € W;, then d(x, W|) > in — én, and da(x, W)) > 1d(x, Wy) — én.
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(5) n < |W;| < (148)n;. (The lower bound is the assumption that leads to this subsection as opposed
to Section 6.3.)

Let Bad consist of the «/8n vertices of W, that maximize d;(x, W{); let Good = W, \ Bad. By
Lemma 19, d; (x, W{) < +/én for all x € Good.

Our strategy is to handle the vertices in Bad: first by finding short vertex-disjoint paths containing the
vertices in Bad, then by combining them into a single path. Finally, we extend this path to a cycle of
length 2n in Go[W/, W]].

6.4.1. Constructing paths containing each vertex of Bad. For every vertex x € Bad, we find a four-edge
path P(x) in G,, which contains x, but begins and ends at a vertex of Good. We construct these paths
one at a time; for each vertex x, we must keep in mind that in each of W| and W}, up to 2/8n vertices
may have been used for previously chosen paths.

This is not always possible; when it is not, we find a cycle of length 2n in another way.

Lemma 20. One of the following holds:

(1) G, contains a collection {P(x) : x € Bad} of vertex-disjoint paths of length 4 such that, for all
x € Bad, P(x) begins and ends at a vertex of Good, and also contains x and two vertices in W/.

(2) G, contains a cycle of length 2n.

Proof. We attempt to find the collection of vertex-disjoint paths, one vertex of Bad at a time.

By property (4) at the beginning of this section, even if x € Bad, we have d(x, W) > (} — §)n and
dy(x, W)) > JTd(x, W{) —dn, so da(x, W) > (% — %5)1@. There is a part V; with dy(x, Wi N'V;) >
(&~ 5o

First we consider the first case of property (2). That is, suppose N —n; > 2n — 1; then we have
Vil =n; <ni <n,so |W,NV;| < (% + 15—65)n. But [W;| > n in total, so there must be another part
V; with [W; NV;| > ‘—1‘((%4 — 15—68)11. We can choose two vertices v, w € V; to use as the endpoints of
P (x): ruling out the vertices of V; N Bad (at most Vén) and previously used vertices of W in V; (at
most 24/8n) we still have a number of choices linear in 7.

Now we know not just the center vertex x of the path P(x) but also its two endpoints v and w. To
complete P(x), we must find a common neighbor of v and x, and another common neighbor of w and x.
This is possible, since there are at least (61—4 - %S)n neighbors of x in W/ N V;; v and w have edges in
G, to all but at most «/gn of them, and we exclude at most 2\/311 more that have been already used.

We call the method above of choosing the collection { P (x) : x € Bad} the greedy strategy. As we have
seen, it always works in the first case of property (2); it remains to see when it works in the second case.
Now, we assume that G is tripartite, ny =np, >n,and N —ny =N —np =2n — 1.

The greedy strategy continues to work if we can always choose the part V; from which to pick the
endpoints of P(x). For this choice to always be possible, it is enough that at least two parts of G contain
3/8n vertices of W): both of them will have vertices outside Bad not previously chosen for any path,
and one of them will not be the same as V;.

If this does not occur, then one part V,, of G contains all but 6+/8n vertices of Wz’, and each of the
other two parts contains fewer than 3«/511 vertices of Wz’. If V, contains fewer than %n vertices of W/,
then the greedy strategy still works: for any x € Bad, we have d>(x, W) > (% — %S)n > [V, NW{| +2/8n,
so we can always choose a part of G other than V, to play the part of V;. In this case, it does not matter
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that only V,, contains many vertices of W), because we only need to choose the endpoints of P(x) from
vertices in V.

The greedy strategy fails in the remaining case: when V,, contains all but 6+/8n vertices of W, and at
least %n vertices of Wl/ . Then |V, | > n, so without loss of generality, V, = V,. In this case, we do not
try to find the paths P(x) and instead find a cycle of length 2n in G or G, directly.

We have a lower bound on n; = n, = |V2| itis [V, N Wl’l + VN W2’| > (1 + % — 6\/3)11. Since
|V10W|<3\/_n Wehave|VlﬂW|>( 9x/_)n>n

Let Y be a subset of exactly n vertices of Vin Wl’, chosen to avoid the ~/8n vertices of vin Wl’ with
largest degree in G{[W/, W] and the /8n vertices of V;N W/{ with largest degree in G,[ViNW|, W\ Vi].
(This is possible since (%—(1) — 11\/3)11 > n as well.) In both cases, if a vertex x € Y; has degree d in the
corresponding graph, we get at least ~/6nd edges in either G{[W], W}] or G2[W/] by looking at the
vertices we deleted; therefore ~/Snd < 8n? and d < «/$n.

Redistribute vertices of V, U V3 into two parts (X1, X») as follows:

o All vertices of Wl/ \ V1, except the V8n vertices v maximizing d, (v, Y1), are put in X;. A vertex v
of this type is guaranteed to have dy (v, Y;) < +/8n.

o All vertices of W, \ Vi, except the vertices in Bad, are put in X>. A vertex v of this type is guaranteed
to have di (v, Y7) < Jon.

« The remaining vertices, of which there are at most 2+/8n, are assigned to X or X, based on their
edgesto Yy. If dy (v, Y1) > %n then v is put into X; otherwise, d, (v, Y1) > %n, and v is put into X».

The sets X, X», Y| satisfy the following properties. For any v € X; we have d; (v, Y1) > %n For any
v € X, we have dr(v, Y1) > %n For any v € Y| we have d(v, X1) < 4+/8n, since d> (v, Wl’) < +/8n and
X contains at most 34/8n vertices of W.; similarly, for any v € Y| we have d; (v, X3) < 4:/8n.

Since | X |+ |X2| =|V2 U V3| =2n — 1, either | X{| > n or | X3| > n.

If |X{| > n, then we let X| be a subset of exactly n vertices of X1, and find a cycle of length 2n in
H = G[X/, Y1] by applying Theorem 16. The hypotheses of the theorem are satisfied by the minimum
degree conditions above: for u € X we have dy (1) > %n, and for v € Y we have dy(v) > (1 — 4/8)n.

Similarly, if | X3| > n, we let X ’2 be a subset of exactly n vertices of X, and find a cycle of length 2n
in H = G,[X}, Y1] by applying Theorem 16. The argument is the same as in the previous paragraph. [J

6.4.2. Finding a cycle using Theorem 18. Applying Lemma 20, each of the «/8n vertices x € Bad is
the center of a length-4 path P(x). Let A be the 2+/8n vertices of W/ in these paths and B be the
34/8n vertices of W} in these paths (including the vertices in Bad). Additionally, let C be the set of N
vertices of W| \ A with the most edges to W] in G; by Lemma 19, every x € W \ (A U C) satisfies
di(x, Ws) < /én.

Next, we will construct a bipartite graph H by choosing subsets W;' € W; \ (AUC) of size n —2+/8n,
and W) € W, \ B of size n — 34/8n; the edges of H are the edges of Go[W[| U A, W U B], except that
we artificially join every internal vertex of every path P(x) to every vertex on the other side of H. We
will apply Theorem 18 to find a Hamiltonian cycle in H containing all ¢ = 4+/8n edges belonging to the
paths P(x), after choosing W{" and W, to make sure that the hypotheses of this theorem hold.

In terms of our future choice of (Wl”, W), letn; j =|V;N W”l If u € V; N WY, then the degree of u
in H is at leastn —n; o — V8n: u has at most /n edges to W” that are in G1, not G, and its degree is
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further reduced by the n; » vertices of W' that are also in V;. Similarly, if v € V; N W) then the degree
of vin H is atleastn —n; | — NED

Let 1,1 > Ry 1 be the two largest values of n; | and let n, » > n,, > be the two largest values of n; 5.
As in the statement of Theorem 18 let uy, us, ..., u, be the vertices of Wl” UA and let vy, va, ..., v, be
the vertices of W) U B, ordered by degree in H.

We begin with a lemma showing that some choices of (W', W}') are guaranteed to satisfy the condi-
tions of Theorem 18:

Lemma 21. Theorem 18 can be applied, letting us find a cycle of length 2n in H, if we can choose W/’
and W} to satisfy the following two conditions:

(1) Foreachi, either nj1+n;» <n— 104/8n, or n;1=0.
(2) For either j =1 or j =2, at most one value of n; ; exceeds (% — 10\/3)11.

Proof. Suppose that u; € W/UA andd(u;) <i+q =i+ 4+/8n. The minimum H -degree of vertices in
W{UAisn—n,» —/8n, so we must have i >n —Ny2 —58n. By condition (1), at most n—n, », — 104/8n
vertices in W|’ are in the same part as the largest part of Wy'; at most 2+/8n vertices are endpoints of
paths P(x), so together these make up at most n —n, 2 — 8+/8n < i vertices. Therefore some of the
vertices uy, ..., u; are vertices of W' in a different part, and therefore d(u;) > n —n,. > — Jén.

Similarly, suppose that v; € W5 U B and d(v;) < j +¢q < j + 4+/6n. The minimum H-degree of
vertices in Wy U B is n —n, | — V/8n, so we must have j > n — n, | — 5+/8n. By condition (1), at
most n — n, | — 104/8n + | B| vertices in W are in the same part as the largest part of W/, which is
fewer than j. Therefore some of the vertices vy, ..., v; are vertices of Wz” in a different part, and hence
d(vj) Z N —MNyy ] — \/gn

In such a case, we have d(u;) +d(v;) = 2n —Nys 1 — Nys 2 — 2./8n. We have P15 a2 < %n, and
additionally by condition (2), 14 ; < %n —10+/8n for some J. Therefore d(u;) +d(vj) > n+ 8/on >
n+4+/8n + 1, and the hypothesis of Theorem 18 holds. ]

It remains to choose W" and W' so that they satisfy the conditions of Lemma 21, or to deal separately
with the cases where this is impossible.

First, we consider the case in which all parts of G have size at most %n. (By property (2), this
automatically holds when G has more than three parts: if so, all parts of G have size at most n.) Choose
W arbitrarily. W| must contain at least N — (1 +8)ny > N —ny —ény = 2n — 1 — 28n vertices, of which
only 2+/8n vertices have been used by paths and +/8n more have been thrown away as C; therefore we
have at least 2n — 1 — 3+/8n — 28n choices for vertices in wy.

We set aside vertices of W[ which we forbid from being in W/". From each part, V;, forbid either at
least |V;| — (1 — 104/8)n vertices, or else all vertices of V; N W/{, whichever is smaller. This forbids at
most (% + 1()«/3)n vertices from each part, and at most 104/8n vertices in the case n; < n. There are at
most two parts with n; > n, so we forbid at most (% + 50\/3)11 vertices. Now condition (1) of Lemma 21
will be satisfied no matter what: for each part i, we will either have n; | +n;2 < (1 — le/S)n, or else
ni1= 0.

Next, we attempt to ensure that condition (2) of Lemma 21 holds. Call a part V; of G W{'-rich if, after
excluding the forbidden vertices, and vertices of A U C, there are still at least 20+/8n vertices of Wl’ left
in V;; call it W{"-poor otherwise.
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If there are at least three W/'-rich parts, then we can choose 20+/8n vertices from each of them for Wy,
and complete the choice of W/ arbitrarily. Condition (2) of Lemma 21 must now hold for j = 1: if we
had n, ; > (% — 10«/5)11 and 7,1 > (% — 10\/3)71, then together these two parts would contain all but
20+/8n vertices of W/ This is impossible, since there is a third W{-rich part containing at least that
many vertices of W/.

If there are not at least three W/ -rich parts, we give up on Lemma 21, and satisfy the conditions of
Theorem 18 by a different strategy.

If V; is W{-poor, it must have many vertices of W,. More precisely, V; has at least min{n, n;} — 10+/8n
vertices that we have not forbidden. Among these, there are up to 3+/8n vertices which are in AU C,
up to 3«/511 vertices which are in B, and fewer than 20\/511 vertices that can be added to Wl”, so the
remaining minf{n, n;} — 36+/8n vertices must be in Wi\ B.

Moreover, when G is tripartite, n; > %n — 1 for any part, so if a part is W’-poor, it contains at least
%n —36+/8n — 1 vertices of W, \ B. When G has more than three parts, at least two parts must be
W/{-poor; any two parts V;, V; have n; +n; > n, so together, two W/'-poor parts have at least n — 72+/8n
vertices of W, \ B. In either case, there are one or two W/ -poor parts which together contain at least
%n vertices of W, \ B.

We change our choice of W}, if necessary, to include at least %n vertices from this W{'-poor part
or parts; otherwise, the choice is still arbitrary. Meanwhile, we choose no vertices from these parts
from W/’; this rules out at most 40+/8n vertices in addition to our previous restrictions. Completing the
choice of W/ arbitrarily, we are left with a pair (W', W))) that satisfies condition (1) of Lemma 21, but
possibly not condition (2).

From condition (1), we know that if v; € Wz” satisfies d(v;) < j+¢g, we have d(v;) > n—nyu 2 — J8n >
%n — J/én. Additionally, we know that for any u; € Wl”, d(u;) > %n — \/8n, since there are at least
%n vertices of W' in a different part of G. Then d (u;) +d(v;) > %n —2Vén>n+ q + 1, satisfying the
hypothesis of Theorem 18.

Next, we consider the case where G has at most three parts and ny > %n. By (9), N > 3n—1. Hence by

(8) we know that ny =n, and N —ny =2n — 1. The case of n; > %n was handled in Section 6.2. Thus,

we may assume nj < %n, song=02n—1)—ny > %n— 1.

Assume first that one of W{\ (AUC) or W, \ B intersects each part of G in at least 20+/8n vertices,
and the other has at least 30+/8n vertices outside each part of G; we will consider departures from this
assumption later. This implies that for j = 1 or j = 2, we can choose 20+/3n vertices from each part to
add to Wj”, and match these by choosing 60+/8n vertices to add to W} . with no more than 304/8n of

J
these from one part. (No V; has more than 50+/8n vertices chosen from it at this point.)

Then proceed by an iterative strategy. At each step, choose one vertex from W{ \ (A U C) not pre-
viously added to W{, and a vertex from W, \ B not previously added to Wy, so that these vertices are
in different parts of G. Then add them to W{" and W} respectively. This step is always possible when
WU A, W)U B| < n: in this case, at least two parts still have unchosen vertices, since | Vi, | V2| > %n
but fewer than n vertices have been chosen. Additionally, choosing a pair of vertices, one from W| and
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one from W, is only impossible if W, \ B has no more vertices, in which case W)’ has reached its desired
size.

Stop when |W; U B| = n. When this happens, W/’ still needs /n more vertices, and these can be
chosen arbitrarily.

This process guarantees that conditions (1) and (2) of Lemma 21 hold. Before we begin iterating, we
have chosen 60+/3n vertices, but at most 50+/8n from each part. After we begin iterating, we add at
most one vertex from each part at each step. Therefore in the end, n; 1 +n;2 <n — 10+/8n for each i,
satisfying condition (1). Moreover, for some j, we added at least 20+/8n vertices from each part to WJV ,
ensuring that at most one value of n; ; can exceed (% — 10\/8—)n and satisfying condition (2).

Now we consider alternatives to our initial assumptions in this case. We cannot have W{\ (AU C) have
fewer than 30\/371 vertices outside V; for any i, since it contains at least 2n — 1 — 4\/§n — 28n vertices,
and no V; is larger than %n. But it is possible that one of V| or V, contains all but 304/8n vertices of
W3 \ B; without loss of generality, it is V.

In this case, if |V} N W, \ B| > n, then let W,/ be any n-element subset of V; N W, \ B; otherwise,
let W)/ be any n-element subset of W, \ B containing Vi N W, \ B. The set V, U V3 has 2n — 1 vertices,
at most 30+/8n + | B] = 33+/8n of which are in Wj, so we can pick all n vertices of W/’ from V, U V;.
Choose at least 104/8n of them from Vj to satisfy condition (1) of Lemma 21 for i = 2. Condition (1)
also holds fori =1 (since n; | =0)and i =3 (since n3 < %n); condition (2) holds for j = 2.

Finally, we also violate the assumptions at the beginning of this case when neither W \ (A U C) nor
W3\ B have at least 20+/8n vertices from each part of G. It is impossible that both of them have at most
20+/8n vertices from V3, so one of them has at most 20+/8n vertices from one of Vi or V,.

If one of them (without loss of generality, V) contains at most 20+/8n vertices of Wi\ (AUCQO), it
must have at least n vertices of W, \ B, since |V;| > %n, so choose all remaining vertices out of W, from
there. Outside Vi, we have at least (2n — 1 — 4/8n — 28n) — 20+/3n vertices of W\ (AU C), which
leaves at most 24+/8n + 28n vertices we cannot choose for W/ Choose n vertices outside V; for W/,
including at least 104/8n vertices of V3. This satisfies condition (1) for i = 1 (since n;1 =0),i =2 (since
niy=0andn;, <n— 104/8n), and i =3 (since n3 < %n); condition (2) holds for j = 2.

If one of V| or V, (without loss of generality, V) contains at most 20+/8n vertices of WZ’ \ B, choose
n — 30+/8n vertices of W{ from V; (satisfying condition (1) for i = 1 and condition (2) by taking j = 1).
If V3 contains at least 30+/8n vertices of Wi\ (AU C), take the remaining vertices of W’ from Ws.
Otherwise, V3 contains at least 60+/8n vertices of W3\ B; choosing as many vertices as possible from
ViU V3 to add to WY, and the remaining vertices of W/ arbitrarily, we end up choosing no more than
n — 104/8n vertices from V. So condition (1) holds for i = 2 either because n;1 = 0 or because

ni1+nia<n-— 10+/8n; condition (1) holds for i = 3 because nj3 < %n.

7. Dealing with (A, i, 2)-bad partitions when N —ny —n; >3
A cherry is a path on three vertices. The center of a cherry is the vertex with degree 2.
Suppose N —n| —ny > 3. By (8)—(10), we have two cases:
(1) N>3n—1, s=3, np+n3=2n—1and n; =ny (i.e., (8) holds), or
2) N=3n—1,n1<n, s <5,andif s > 4, then n,_1 +ny, >n—+1 (i.e., (9) holds).
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7.1. The case when (8) holds. By (8), nj =ny >n, s=3,and0<n3=2n—1—n; <n.

Lemma 22. Let G = K, 5, 0, With ny = ny and ny +n3 = 2n — 1 be 2-edge-colored with a (A, i, 2)-bad
partition. Then G has a monochromatic cycle of length 2n.

In this section, we prove Lemma 22, but postpone technical details of how the monochromatic cycles
are constructed in each of four cases; these details are given in Claims 23-26.

Proof of Lemma 22. Without loss of generality, let i = 2; we call color 1 red, color 2 blue, and use d;
(d) to denote the red (blue) degree.

We begin by assuming that in the (A, 2, 2)-bad partition (V;, Uy, U3), j = 3. Later, in Section 7.1.5,
we discuss the modifications to the proof when j # 3.

Since (V;, Uy, U») is a 2-bad partition, we know the following conditions hold:

@ V3| = (1 =2)n.

(i) A—=Mn <|Ui| <A +1)n.
(i) (1 =1)n <|U2| < (1 +1)n.
(iv) E(Ga[V3, Up]) < an?.

(V) E(Gi[V3, Us]) < An?.

If a vertex u; in U; has blue degree at least %I’l3 to V3 then we move u; to U,. If a vertex u, in U, has

red degree at least %n3 to V3 then we move u, to Uj. Since there are at most 3in vertices in U; with

blue degree at least %I’lg to V3 and there are at most 3An vertices in U, with red degree at least %I’l3 to Vs,

we moved at most 3An vertices out of U; and U, respectively and moved at most 3An vertices into U

and U, respectively. Thus, we may assume |U| > |U;|, |Ui| =n+ay, |Us| =n+ay, and a; > 0.
Note that (iv) and (v) change to:

(iv) |E(G,[V3, U])| < 4an?.
(V) |E(G1[V3, Us))| < 4Aan?.

Let | V3| =n —as, where az < 10An. Let B be the set of vertices in V3 with blue degree at least 0.9n to
U and | B| =b. Let R be the set of vertices in V3 with blue degree at most 0.05x to U;. By condition (iv),
we know
|B| <5An and |R|>n—az— 80Ain.

Let C be a maximum collection of vertex-disjoint red cherries with center in U, and leaves in U;. If
there are at least m := a3 + b cherries in C, then we use them, together with the edges between U; and
V3, to find a red cycle of length 2#; this is done in Claim 23.

Otherwise, we assume that |C| <m — 1: there are at most m — 1 red cherries from U, to U;. Every
vertex in U, — V(C) has red degree at most 2m — 1 to Uy, since otherwise we have a larger collection of
red cherries.

When |Uy| =n +ap > n — b, we can find a blue cycle using edges between U, and V3, as well as
enough edges between U, and B to make up for the size of U, when |U,| < n. This is done in Claim 24.

Otherwise, we assume that |U;| < n — b — 1; in other words,

a < —(b+1). (15)
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Our goal is now to use edges within U; to find a monochromatic cycle. Without loss of generality, we
may assume that |U; N V(| > |U; N V,|. We first argue that U; N V, cannot be too small.

Earlier, we defined |U | =n+ay, |Uz| =n+as, |V3| =n—as. Since |Vi|+|V3|=|Va|+| V3] =2n—1
and U; U U, = V; U V,, we have

2n+ar+a=|Vi|+ |Vl =4n -2 -2|V3| =2n+2a3 —2
or
ay +ar =2a3 —2. (16)
Therefore
(Ui N Vol = Ui = Vi = UL = 31U+ U2]) =n 4 a) —n — (a1 + az)
= %(al —1,12) =a3—dy — 1= (b+a3)+(—b—a2) — 1.

There are two possibilities for the vertices of U N V5:

 There are at least m = b + a3 vertices in U; N V, which have red degree at least 0.1z to U; N Vy. In

this case, we use Claim 25 to find a red cycle of length exactly 2n.

o There are at least m’ := —b —ay vertices in U; NV, which have blue degree at least |[U; N\ V| —0.1n >
0.4n to Uy N V;. In this case, we use Claim 26 to find a blue cycle of length exactly 2n.

One of these must hold, since |U; N Va| > m +m’ — 1, while by (15), m" = —b — a > 1: therefore there
are either m vertices for Claim 25 or m’ vertices for Claim 26. In either case, we obtain a monochromatic
cycle of length exactly 2n, completing the proof. U

7.1.1. The case of many cherries: |C| > m. Recall that C is a maximum collection of vertex-disjoint red
cherries with centers in U, and leaves in U;; m = b+ a3, where b = |B| and a3 = n — | V3].

Claim 23. If |C| > m, then we have a red cycle of length exactly 2n.

Proof. We do the following steps. Let C’ C C be a collection of m red cherries with centers in U, and
leaves in U;. Let {ug, ..., u,} =V (C)NUy and {vy, ..., va,} = V(C') NU; such that each vy; _1u; vy;
is a cherry with center u;, where 1 <i <m.

To find a cycle of length 2n in G that contains the edges of C’, we will apply Theorem 18 to an
appropriately chosen bipartite graph.

First, create an auxiliary graph G by starting with G and adding every edge between {u1, ..., u;}
and U;. This will help us to satisfy the degree conditions of Theorem 18; however, these artificial edges
will never be used by a cycle containing all the edges of C’, since each of {u, ..., u,} already has
degree 2 in C".

Second, let X = (Vs — B) U {uy, us, ..., uy} (a set of n vertices total) and let ¥ € U; be any set of
size n such that {vy, ..., v} C Y. We check that the hypotheses of Theorem 18 apply to G/ [X, Y].

Order vertices in X and Y separately by their degree from smallest to largest. Since vertices in Y
have red degree at least %n3 —b > 0.4n to X and at most 100in < 0.001n vertices in Y have blue
degree at least 0.04n to X, the smallest index k such that di(y) < k + ¢ satisfies d;(yx) > 0.95n. Since
vertices in X have blue degree at most 0.9x to Uy, they have red degree at least n —0.9n = 0.1n >> 0.09n
to Y. The smallest index j such that d(x;) < j + q satisfies d;(x;) > 0.09n. By Theorem 18 and
0.097 4+ 0.951n > n +q + 1, we can find a Hamiltonian cycle in G|[X, Y] of length 2n containing the
edges of C’, which is a cycle of length 2n in G. ]
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7.1.2. The case of large U,: |U| = n —b. Recall that |U,| =n +ay, B is the set of vertices in V3 with
blue degree at least 0.9n to Uy, and b = |B|.

Claim 24. If b > —ay (in other words, if |\Uy| = n 4+ ay > n — b), then we have a blue cycle of size
exactly 2n.

Proof. Let c .= |C|; let V(C)NU; ={uy,...,uc} and V(C)NU; = {vy, va, ..., v3:}. Let By be the
collection of vertices in V3 — B with red degree at most 0.1n to U,. By condition (v),

q:=|Bz| >n—az—40rn —b.

Since 2n| = |Uy| + |Uz| = 2n + a; + a», we know

N Vol =ni —|UiNVa| >0 —3(n+a) =n+ 3@ +a) —in—ia =i +a)

and thus
LNV <n+a—S(n+a) =3(n+a). (17)

Step 1: We first find a path to include 0.8n vertices in V3 and 0.8n vertices in U, (all of U, N V| and
V(C)) by Theorem 17.

Details: Since |By| > n —asz —40in — b, we take a set X € B, such that | X| = 0.8n. By (17), we can
takeaset Y C U, suchthat U, NV CY, V(C)NU, CY,and Y =0.8n.

Now we consider G,[X, Y] and we order vertices in X and Y separately by their degree from smallest
to largest. Since vertices in ¥ have blue degree at least 0.8n — %n3 > (0.2n to X, the smallest index k such
that do (yr) < k + 1 satisfies d>(yx) > 0.2n. Since vertices in X have red degree at most 0.1n to Uy, they
have blue degree at least 0.8n —0.1n = 0.7n to Y. The smallest index j such that d»(x;) < j + 1 satisfies
d>(x;) > 0.7n. By Theorem 17 and 0.7n +0.2n > 0.8n + 2, we can find a Hamiltonian red path Pl’ from
x € X tosome vertex y € Y — V; — V(C) in G»[X, Y] of length 1.6n — 1.

Since x € X C B>,

d(x,Uy—Y)>n+a,—0.8n—0.1n > 0.05n.

We extend the path P to Py of length 1.6n by adding a blue edge xy’ such that y' € U, — Y.

Step 2: Use min{0, —a,} vertices in B to obtain a blue path. (We can skip this step if a > 0.)

Details: Assume ap < 0; since b > —ap, let Z :={z1, ..., 24|} € B.
Since
ULN VI > S(n+a) = [U N V2,

each vertex in B has blue degree at least 0.9n — |U; N V,| to U; N Vy. Therefore,
0.9n — |U1 N V2| >09n—(+a — |U1 N V1|) = |U1 N V1| —a;—0.1n > %|U1 N V1|.

We can find for each pair (z;, z;+1) @ common neighbor r; € Uy NV, — V(C), where 1 <i < |ap| — 1,
a blue neighbor rg of z1, and a blue neighbor r|4,| of z|4,| such that ro, ..., 1|4, are all distinct.
We obtain a blue path

Py =roziry - 2ili + - Zyag|Faa)
of length 2|ay|.
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Since y’ has at most one red neighbor to U; — V(C), at least one of {rg, r|4,|} is a blue neighbor of y'.
We may assume ryq,|y’ is blue.

Step 3: Include the rest of vertices in U, to Uj.
Details: We proceed differently depending on whether a; < 0 or a; > 0.

e If a; < 0 then we do the following. Let K := (U, — Y — {y’DU{y} ={y, fi1,..., fk—1}. Note that
k=|K|=n+4+a;—0.8n=02n4+ap and K C U, NV, — V(C). Since each vertex in K has at most
one red neighbor to Uy — Vo, — V(C) — {ro, r1, ..., ey}, we find for (y, f1) a blue common neighbor
ho e Uy — Vo —V(C) —{ro, 71, ..., e} and each pair (f;, fi4+1) a distinct blue common neighbor, 4;,
inU; =V, —=V(C) —{ro, 71, ..., ay}, where 1 <i <k —2. We obtain a blue path

P3=yhofi--- fihi fix1--- fra

of length 2k —2 = 0.4n 4 2a, — 2.

We may assume fi_1rg is blue since f;_; has only one red neighbor to Uy NV} — V(C) and there are
many choices when we choose ry to connect with z;.

Finally, we connect P, and P; by adding the edge r|4,)’, glue the paths P; and P;3 at y, then add the
edge fr—1ro to complete a blue cycle of length exactly

2|az| +14+1.6n+0.4n+2a, —2+ 1 =2n.

e If a; > 0 then in the previous argument we take K = {y, y', fi, ..., fi—2} of size 0.2n + 1 and find
common neighbors kg for (y, f1), h; for (f;, fi+1), where 1 <i <k —3, and hy_, for (fi_2,y).

In either case, we obtain a path

Py =yhofi - fihi fis1- - fim2hi—2y'

of length 2k — 2 = 0.4n. We glue P; and P; at y and y’ to obtain a blue cycle of length exactly
1.6n 4 0.4n = 2n. O

7.1.3. Handling many vertices in U1 NV, incident to red edges. We will find a red cycle. Note that the
size of Uy NV, is at least n +a; — nj.

Claim 25. [fthere are at least m = b + a3 vertices in U} NV, of red degree at least 0.1n to Uy NV, then
we have a red cycle of length exactly 2n.

Proof. Let B’ be the collection of vertices in U; with blue degree at least 0.051 to V3. By (iv), we have
|B'| < 80An.

Step 1: We first find a collection of red cherries C3 with center in U; N V; and leaves in U; N V; — B’ of
size b+ az =: m.
Details: Since there are at least m vertices in Uy N V, of red degree at least 0.1z to U; N V| and
0.1n — 80An > 2m, we can find a collection of red cherries C3 with centers in U; N V, and leaves
inU NV, —B ofsizem. Let V(C3) N Vo ={uy, ..., un}and V(C3) NV ={vy, ..., Vam}.

Recall that R C V3 is the collection of vertices in V3 with blue degree at most 0.05x to Uj.
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Step 2: Then by Hall’s theorem we find a matching M for V(C3) N V; to R and then find a common
neighbor back to connect those vertices.

Details: Since {vy, ..., vy} N B’ = &, each of them has red degree at least n — a3 — 0.05n — 80An > 0.9n
to R. Thus, we can find a matching M for {vs, ..., vy,} such that V(M) N V3 = {w,, ..., wy,} and each
v;w; is a matching edge, where 2 <i <2m.

Since V(M) N V3 C R, we can find for each pair (w»;, wy;i+1) a common red neighbor g; € Uy, where
1<i<m-1.

Therefore, we obtained a path

P = vju 102w g1 W3V3UV4 WA -+ V2 — 1 U V2m Wi

of length 6m — 3.
Step 3: We use Theorem 17 to get a path saturating all vertices left in V3 — B — V(M).

Details: Let X = V3 — B — {w», ..., wy,—1} and we know
X|=n—a3—b—2m—2)=n—3m+2.
Choose Y C Uy —{uy, ..., um}—{v2, ..., v2m} —{g1,..., &u—1} such that v; € Y. By (16),

ag=—-ay+2a3—2>b+1+a3+a3—2=m+a3—1>m (18)
and thus
n+a—m—0Cm—-1)—(m—1)>n—-3m+2.

Hence we can require |Y| =n — 3m + 2.

Now we consider G1[X, Y] and we order vertices in X and Y separately by their degree from smallest
to largest. Since vertices in U; have red degree at least %ng to V3, they have red degree at least %ng —
b—(2m—2)>0.4nto X.

By condition (iv), there are at most 80An vertices in U; with blue degree at least 0.05x to Vi. Thus, at
least | Y| — 80An vertices in Y have red degree at least | X| —0.05n > 0.94n to X, the smallest index k such
that d; (v, X) < k+ 1 satisfies d; (yx, X) > 0.94n — 1. Since vertices in X have blue degree at most 0.9n
to Uy, they have red degree at leastn +a; —m — 2m — 1) —(m — 1) —0.9n > 0.09n to Y. The smallest
index j such thatd;(x;, Y) < j+1 satisfies d; (x;, Y) > 0.09n. By Theorem 17 and 0.0972+0.94n > n+2,
we can find a Hamiltonian red path P, from v; to wy, in G1[X, Y] of length

2(n —3m+2)—1=2n—6m+3.
We glue P, and P; at v; and wy,, to obtain a red cycle of size exactly
6m —3+4+2n—6m-+3 =2n. O

7.1.4. Handling many vertices in Uy NV, incident to blue edges. In this case, there are many disjoint blue
cherries inside Uy, and we will find a blue cycle. Recall that C is a collection of at most m — 1 cherries
with centers in U; and leaves in U7, which is defined three paragraphs ahead of (15).

Claim 26. [f there are at least —ay — b vertices in Uy NV, of blue degree at least Uy NV | —0.1n > 0.4n
to Uy N Vy, then we find a blue cycle of length exactly 2n.
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Proof. Step 1: We find m’ = —a, — b blue cherries with centers in U; NV, and leaves in Uy N V. Possibly
avoiding bad vertices. Then find common neighbors in U, N V; to connect those cherries.

Details: Since vertices in U, NV, — V(C) have red degree at most 1 to U; NV, — V(C), there are at
most |[Uy N V| < an? red edges between U, NV, — V(C) and Uy NV} — V(C). Therefore, there are at
most 20An vertices in Uy N V) — V(C) with red degree at least 0.05n to U, NV, — V(C) and at least
|UiNVi|—|V(C)NU;|—20An vertices in Uy NV — V(C) with blue degree at least |U, N V5| — |V (C)| —
0.05n > %le NV,| to Uy NV, — V(C); we call those vertices Bs.

Since there are m’ vertices in Uy N V, of blue degree at least |[U; N V| —0.1n — |V (C)| —20An > 0.3n
to Bz, we find m’ blue cherries, C4, with center in U1 N V5 and leaves in Bs. Let V(Cy)NVo ={uy, ..., up)}
and V(C4) N V1 = {vl, ey Usz}.

We can find for each pair (vy;, v2;+1) a common blue neighbor, w;, in U, NV, — V(C), where 1 <i <
m’ —1. We also find for vy a blue neighbor wq and vy, a blue neighbor w,, distinct from {wy, ..., wyy_1}
and V(C).

We obtain a blue path

P = woviu1v2wy - - - Vo — 1 Uy Vo Wy
of length 4m’.
Step 2: We find for vertices in B common neighbors in U; N Vy, avoiding vertices already used.

Details: Since
UiN Vi = S(n+a) > U NV, (19)

each vertex in B has blue degree at least 0.9n — 2m’ — |U; N Va| — |[V(C) N Uy| to Uy NVy — V(C).
Therefore,

0.9n —2m' — Uy N V| — [V(C)NU,| =091 —2m' — (n+a; — U NVy]) —2(m — 1)
=|UiNVi|—a;—2m' = 0.1n—2m +2 > 3|U N V)]

Let B = {z1,...,zp}. We can find for each pair (z;, zi+1) a common neighbor r;, where 1 < i <
b — 1, a blue neighbor ry of z;, and a blue neighbor r; of z; such that rg, ..., rp are all distinct and in
unvi=va).

We obtain a blue path
Py =roziry - ziti -+ 2plp
of length 2b.

Step 3: Take 0.9n vertices in V3 and 0.97n vertices in U including U, N V| and V (C). Use Theorem 17
to find a path.

Details: Recall that B, is the collection of vertices in V3 with red degree at most 0.1xn to U, and |B;| >
n —asz —40in — b. Since |By| > n —az —40in — b, we take a set X C B, such that | X| = 0.9n. By (19),
|U> N Vi| <0.6n and we can take a set Y C Up — {wq, wy, ..., wyy—1}suchthat Uy NV C Y, V(C)CY,
w,y €Y,and Y =0.9n.

First we find a blue edge v'u’ with v/ € X and u’ € U, — Y. Now we consider G,[X, Y] and we
order vertices in X and Y separately by their degree from smallest to largest. Since vertices in Y have
blue degree at least 0.9n — %ng > 0.3n to X, the smallest index k such that d,(yx, X) < k + 1 satisfies
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d>(yk, X) = 0.3n. Since vertices in X have red degree at most 0.1n to U, they have blue degree at least
0.9n —0.1n = 0.8n to Y. The smallest index j such that d>(x;, Y) < j + 1 satisfies d>(x;, Y) > 0.8n.
By Theorem 17 and 0.8n + 0.3n > 0.9n + 2, we can find a Hamiltonian blue path P; from w,, to v’
in G,[X, Y] of length 1.8n — 1. We then extend the path P; to P3 by adding the edge v'u’. Thus, the
path P3 has length 1.8n.

Step 4: Finally, the rest of the vertices in U, N V, have large blue degree to U; N Vi, and we find common
neighbors to include them.

Details: Let K := (U, — Y — {wo, w1, ..., wy—1}) ={u/, f1,..., fr—1}. Note that k = |[K| =n+a; —
09 —m' =0.l1n4+a,—m' and K C U, NV, — V(C). Since each vertex in K has at most one red
neighbor to Uy NV — V(C) —{vy1, ..., va} — {ro, ..., rp}, we find for (u’, f1) a distinct blue common
neighbor A, and for each pair (f;, fi+1) a distinct blue common neighbor, #;, in Uy NV, — V(C) —
{vi, ..., v} —{ro, ..., rp}, where 1 <i <k — 2. We may assume that ry f;_; is blue (since f;_; has
at most one red neighbor to U; NV} and z; has very large blue degree to U; NV, if rg fr—1 is not blue
then we choose ry such that ry fx—; is blue).
We obtain a blue path

Py=u'hofi--- fihifiz1 -+ hi_a fiei

of size 2k —2=0.2n+2a, — 2m’ — 2.
Finally, we add the edge r,wq to connect P, and P;, glue Py and P; at w,,, glue P; and P, at u/, and
add the edge rg fr—1 to complete the cycle of length

1+4m’ +2b+1.8n+0.2n+2a, —2m' +1 =2n. O

7.1.5. Changes of the proof when j # 3. When j # 3, essentially the same proof works, with minor
modifications.

Without loss of generality, we assume j = 1. We use the same setup as in the case when j = 3 but
replace every place of V3 by V| and n3 by n;.

Casel:ny>n+b.

Since n; > n+ b and |U,| > n, we take a set of vertices X € V| — B of size n and a set of vertices
Y C U of size n.

Now we consider G{[X, Y] and we order vertices in X and Y separately by their degree from smallest
to largest. Since vertices in Y have red degree at least 0.57 to X and there are at most 80An vertices with
blue degree at least 0.05#n to Vi, the smallest index k such that d; (yx, X) < k + 1 satisfies d; (yr, X) >
0.95n. Since vertices in X have blue degree at most 0.9n to U, they have red degree at least 0.1n
to Y. The smallest index j such that d;(x;, Y) < j + 1 satisfies d|(x;, Y) > 0.1n. By Theorem 18 and
0.1n +0.957n > n + 1, there is a Hamiltonian cycle in G{[X, Y] of length 2n.

Case2:n+1<ni<n+b-—1.
We still assume n; =n — az with a3 < 0. It is included in Case 1 by replacing n3 with ny, V3 with Vi,
V1 with V5, and V, with V3. Note that in this case we have

n+a+n+a=2n-—1
and thus
ay+a =—1. (20)
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Equation (17) changes to
Uy N V3| =n3 —|U; N Vs3] 22n—1—n+a3—%(n+a1)=%n—l%—ag—%al

and thus

|[UyNVa| <n—+ay— (%n—l—l—ag—%al) = %n+1+a2—a3+%a1 = %n—ag—%al.
Moreover, by az < 0, the inequality a; > m in (18) still holds under the assumption a, < —b — 1 since

ag=—1—a>b>b+az;=m.

When choosing between Claims 25 and 26, we still have by (20)

Uil = |Val=n+a1—n+as=a1+a3=—1—ar+a3=(b+a3) +(—b—ay) — 1

and therefore one of the two claims can still be applied.

7.2. The case when (9) holds.

7.2.1. Statement and setup of the main lemma. In this case, we have

n+n+---+n,=3n—1 21D
and
ny+---4+ng>2n—1. (22)
By (11), s < 5. Our main lemma in this subsection is:

Lemma 27. Let G = Ky, n,.....n, satisfying (21) and (22) be 2-edge-colored with a (X, i, 2)-bad partition.
Then G has a monochromatic cycle of length 2n.

Proof. Without loss of generality, let i = 2. By the definition of a (A, i, 2)-bad partition, there is a j € [s]
such that:

1) n=1|V;| = (1 —Mn.
i) A—=1n<|U;| <A+ 1)n.
@) (1—=Mn <|Uy| <A+ Mn.
(iv) E(GalV}, Uj)) < an’.
(v) E(G1[V;, Ua)) < an®.
Our plan is as follows. In this and the next three subsections we handle the case s = 4 and renumber
the parts so that j = 1 and n, > n3 > ny4. Later, in Section 7.2.5, we return to the original numbering of

the parts (n; > - - - > n;) and describe modifications to the proof for s # 4.
Since (9) holds, we have n; < n for all i; we also know that ny > n3 > n4, ny =1|V;| > (1 — A)n, and

Ui+ Uz =np+n3+ns=3n—1—n; <2n+in—1,

SO ny > %(nz +n3+ny) > %n

We move vertices as we did in the previous section so that for each u € Uy we have d; (u, V) > %nl and
for each v € U, we have d»> (v, V) > %nl. Note that (iv) and (v) change to (iv) |E(G2[ V1, U])| < 4rn?
and (v) |E(G[Vy, U))| < 4An?,



86 JOZSEF BALOGH, ALEXANDR KOSTOCHKA, MIKHAIL LAVROV AND XUJUN LIU

Let |Ui|=n+ay, |Us| =n+ay, and |V|| =n —as. Let B be the set of vertices in V| with blue degree
at least 0.9n to Uy, and let b := | B|. By condition (iv), we know b < SAn.

Let C be a maximum collection of vertex-disjoint red cherries with center in U; and leaves in U. If
there are at least m := as + b cherries in C, then we use them, together with the edges between U; and V1,
to find a red cycle of length 2n. This is done in exactly the same way as in Claim 23, except with V;
playing the role of V.

Otherwise, we assume that ¢ := |C| < m — 1, which means every vertex in U, — V(C) has red degree
at most 2m — 1 to Uj.

When |Uz| =n +ay > n — b, we can find a blue cycle in almost the same way as in Claim 24; the
updated proof is given in Claim 28.

Otherwise, we may assume that |U,| <n — b — 1, in which case (15) holds.

As before, to proceed, we want to use edges within U;. Let k be such that |U; N V| is maximized.
This intersection is still at most |V| < n, while |U|| =n +ay, so |Uy — Vi| = a;.

Since

n+a)+m+a) =|Ui|+|Uz|=3n—1—|Vi|=2n+a3—1,

we have a; +ay = az — 1, and therefore
Uit = Vil 2 a3 —a, — 1= (b+a3) + (—ax—b) — 1.
There are two possibilities:

 There are at least m = b + as vertices in U; — V} of red degree at least 0.1z to Uy N V. In this case,
we will find a red cycle of length exactly 2n by Claim 29.

o There are at least m’ = —ay — b vertices in U; — Vj. of blue degree at least |U; N V| —0.1n > 0.2n
to U1 N Vi. In this case, we find a blue cycle of length exactly 2n by Claim 30.

One of these must hold, since Uy — V| > m +m’ — 1, while by (15), m’ > 1; therefore there are either
m vertices for Claim 29 or m’ vertices for Claim 30. In either case, we obtain a monochromatic cycle of
length exactly 2n, completing the proof. (I

7.2.2. The case of large Uy: |Uy| > n —b.
Claim 28. If |Uy| =n+ay > n — b, then we have a blue cycle of size exactly 2n.

Proof. Since |U,| = n + ap > n — 4in, we know that the largest among U, N V,, Uy N V3, Uy N V4 has
size at least 0.33n. We assume |U, N V| is the largest and

[Uy NV, >0.33n. (23)
By (23) and |V, | < n, we have
[UiNV, <0.67n

and there is a g € {2, 3,4} — {p} such that
[UyNVy| >0.16n. (24)

Step 1: We first find a path to include say 0.8n vertices in V; and 0.8n vertices in Us (all of (V —V,)NU>
and V(C)) by Theorem 17.
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Details: The details are almost the same as in Step 2 of Claim 24 except every place of n3 is replaced
by ny, every place of V3 is replaced by Vi, V; is replaced by (V — V).

o If ay > 0, then we do not need Step 2 and go to Step 3 directly.

Step 2: Use |ay| vertices in B to obtain a blue path.

Details: Since b > |ay|, let Z :={z1, ..., 24y} € B.

By (24) and each vertex v in B having blue degree at least 0.9n > %lU 1] to Uy, we can find for each
pair (z;, zi+1) a blue common neighbor r; € Uy — V(C), where 1 <i < |az| — 1, a blue neighbor ry of
z1 such that ro € V, N Uy — V(C), and a blue neighbor r|4,| of z|4,| such that r,, € V, NU; — V(C) and
70, ..., I'ay| are all distinct.

Since y’ has at most one red neighbor to U; — V(C), we choose 7, to be in U NV, — V(C) and
such that r|4,y’ is blue.

We obtain a blue path

Py=roziri -+ Ziti - Zyay|Fa|
of length 2|as|.
Step 3: Include the rest of vertices in U; to U by Theorem 17.
Details: The details are almost the same as in Step 3 of Claim 24 except every place of V; is replaced
by V,. (Il
7.2.3. Handling many vertices in Uy — Vy incident to red edges.

Claim 29. [f there are at least m = b+ a3 vertices in (V — V) N U of red degree at least 0.1n to U; NV,
then we have a red cycle of length exactly 2n.

Proof. Let B’ be the collection of vertices in U; with blue degree at least 0.05n to V;. Since there are at
most 41n? blue edges between U; and V;, we have

|B'| < 80An.
Step 1: We first find a collection of red cherries C3 with center in U; N (V — Vj) and leaves in Uy NV, — B’
of size m.

Details: The details are almost the same as in Step 1 of Claim 25 except we replace everywhere V, by
V— Vk, V1 by Vk, and Vg by V].

Step 2: By Hall’s theorem we find a matching M for V (C3) N Vj to R and then find a common neighbor
back to connect those vertices.

Details: The details are almost the same as in Step 2 of Claim 25 except we replace everywhere V3 by
V| and n3 by n;.

Step 3: Use Theorem 17 to get a path saturating all vertices left in V| — B — V(M).

Details: Let X =V, — B —{wy, ..., wy,—1} and we know |X|=n—a3—b— (2m —2)=n—3m+2.
We have a; =az —ap) — 1 =m —a, — b — 1 > m, and therefore

n+a—m—QCm—-1)—m—-1)=n+a —4m+2>n—-3m+2.

Wecantake Y CU|—{uy, ..., un}—{v2, ..., vom}—{g1, ..., &u—1} suchthatv; €Y and |Y | =n—3m—+2.
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The rest of details are almost the same as in Step 3 of Claim 25 except we replace everywhere V3
by V) and n3 by n;. |

7.2.4. Handling many vertices in Uy — Vy incident to blue edges. In the case when many vertices in
U, — Vi are incident to blue edges, there are many disjoint blue cherries inside U;, and we find a blue
cycle.

Claim 30. [f there are at least m" = —ay — b vertices in Uy — Vj, of blue degree at least |U; N V| —0.1n
to U; N Vy, then we have a blue cycle of length exactly 2n.

Proof. Since U N Vy is the largest among U1 N V,, VaN Uy, and V4 N U, we know
U NVi| >=0.33n, |UyNV,| <0.67n, and |U;— Vi| > 0.32n. (25)

Step 1: We find m' blue cherries from U; N (V — V) to Uy NV, possibly avoiding bad vertices. Then
we find common neighbors in U; to connect those cherries.

Details: The details are almost the same as in Step 1 of Claim 26 until the following sentence except that
we replace everywhere V, by V — V; and Vj by V;.

For all pairs (vo;, v2i4+1) we can find distinct common blue neighbors, w;, in (V — V) NU, — V (C),
where 1 <i <m’ — 1.

By (25), there is an £ € {2, 3, 4} — {k} such that

Ve N Us| > 0.16n. (26)

We also find for v; a blue neighbor wg € V, N U, and vy, a blue neighbor w,, € V, N U, distinct from
{wy, ..., w,—1} and V(C).
We obtain a blue path
P = woviuivowy + - Vo — 1 Uy Vo Wiy
of length 4m’.
Step 2: We find for vertices in B common neighbors in U; N Vi, avoiding vertices already used.

Details: By (25) and each vertex v in B having red degree at most 0.1n + a; to U, v has at least
Uy N V| =2m' —0.1n —a; > 0.6|U; NV, — V(C)| (27)

edges to U1 NV, — V(C). We can find for each pair (z;, z;+1) a common neighbor r;, where 1 <i <b—1,
a blue neighbor rg of z;, and a blue neighbor 7}, of z;, such that {rq, ..., r} S U NV, — V(C) are all
distinct and wqr, is blue.
We obtain a blue path
P2=rOle"1 s Ziki o 2l
of length 2b.

Step 3: Take 0.9n vertices in V| and 0.9n vertices in U, including (V — V;) N U, and V(C). Use
Theorem 17 to find a path.

Details: The details are almost the same as in Step 3 of Claim 26 except we replace everywhere V| by
V— Vg, V3 by V1, and nj by ni.
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Step 4: Finally, the rest of vertices in U, N V; have large blue degree to (V — V;) N Uy, and we find
common neighbors to include them.

Details: The details are almost the same as in Step 4 of Claim 26 except we replace everywhere V| by
V -V, Voaby Ve, V3by Vi, and n3 by n;. O
7.2.5. Changes in the proof when s = 4. When s # 4, essentially the proof for s = 4 works, with minor

modifications.

Case 1: s = 3. Then ny +n3 > 2n — 1 implies n; > ny > n and therefore
np=np=n and n3=n-—1.
This case is addressed in Lemma 22.
Case 2: s = 5. If j =2, then since ng +ns > n, ny > ny > (1 — A)n, and n3 > %n, we have
N =ni+ny+n3+ns+ns>2(1—)n+3n>3n,

which is not the case. By a similar argument, j ¢ {3, 4, 5}. Thus, we may assume j = 1.
The argument is almost the same as for s = 4. We only mention differences.
In our case, nq + ns > n implies

ny>ny>n3>ng > 3n; (28)
thus
np+ny=3n—1—ny—ng—ns<n+in—1. (29)
By (28) and (29), we have
%n—kn§n5§n4§n3§n2§%n+kn. (30)

In Section 7.2.2, in (23) we now can only guarantee |U, N V)| > 0.24n instead of 0.33n. By (30), we
can find a g € {2, 3, 4, 5} — {p} such that [U; NV, | > 0.16n.

In Section 7.2.4, in (25) we can now only guarantee the largest |U; N Vi | > 0.24n. Equation (26) still
holds with ¢ € {2, 3, 4, 5} — {k}. Everything else is the same.

8. Completion of the proof of Theorem 5

In the previous three sections, we proved Theorem 5 in the cases when N —n; —ny > 3. By (10), in
the case N —n| —ny <2, it is sufficient to show that for every 2-edge-coloring of K, 2,—1, there is a
monochromatic cycle of length exactly 2n. Thus, the next lemma completes the proof of Theorem 5.

Lemma 31. If n is sufficiently large, then for every 2-edge-coloring of Koy 2n—1, there is a monochro-
matic cycle of length exactly 2n.

Proof. Let G = K2, 2,—1. From Section 5, we know that if the reduced graph G” has a connected matching
of size at least (1 + y)n, then we can find a monochromatic cycle of length exactly 2n. Suppose G" has
no connected matching of size (1 4 y)n and thus, by Section 5 again, G has a (A, i, j)-bad partition for
some i € [2] and j € [2].

Without loss of generality, we assume i = 1 and discuss separately cases j =1 and j = 2.
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Case 1: G has a (A, 1, 1)-bad partition. By the setup in Section 6, we have a partition W; U W, of V (G)
such that

O (I=Mn < [Wrf = (A +Mnp=1+21) 2n,
(i) |E(G1[W, Wa])| < an?,
(iii) [E(G2[Wi])| < an?,
We know |W | =N — |W;,| =4n — 1 — |W,|, so by condition (i),
2—=3M)n < |W| <@+ M)n. (31)
For simplicity, let A := W1 NVy, B:=W,NV;, C:=W;NV,,and D := W, N V,. Let A* be the

collection of vertices in A with less than 0.6|C| red edges to C, B* be the collection of vertices in B
with at least 0.6|C| red edges to C, C* be the collection of vertices in C with less than 0.6|A| red edges
to A, and D* be the collection of vertices in D with at least 0.6|A| red edges to A. Let A= (A — A*)U B,
B=(B—B*)UA*, C=(C—-C*)UD* and D = (D — D*)UC*. By conditions (ii) and (iii),

5 5 5 5
|A*| < —an?, |B¥| < —n?, |C*|<——xn?, and |D*|<—an’.
2|C] 3|C] 2|A| 3|A|

Let =101, Wy =AUC, and W, = BUD.

Remark 32. Conditions (i)—(iii) still hold with A’ replacing A and every vertex in A has red degree at
least 0.59|C| to C, every vertex in B has blue degree at least 0.39|C| to C, every vertex in C has red
degree at least 0.59|A| to A, and every vertex in D has red degree at least 0.39|A| to A.

Case 1.1: |A| = nand |[C| >=n. Let X € A and Y C C such that |X| = |Y| = n. For each x € X and
y €Y,by|Al, |C| <2n and Remark 32,

di(x,Y)>1Y|-041|C| >n—0.82n =0.18n and similarly d;(y, X) > |X|—0.41|A| > 0.18n.

By condition (iii), we know that the number of vertices in X with at least 0.95n edges to Y in G is at
least n — 20A’n and the number of vertices in Y with at least 0.95n edges to X in G is at least n — 201/n.
Therefore, if we order vertices in X by their degrees in nondecreasing order, say the ordering follows from
d(x1) <---<d(xy,), then the smallest index i such that d(x;) <i 41 has the property that d(x;) > 0.95n.
Similarly, if we order vertices in Y by their degree in nondecreasing order, say the ordering follows from
d(y1) <---<d(yn), then the smallest index j such that d(y;) < j +1 has the property that d(y;) > 0.95n.
Since d(x;) +d(y;) > n+ 2, by Theorem 17, we know G[X, Y] is Hamiltonian biconnected and we
can find a cycle in G of length exactly 2n.

Remark 33. The same proof shows that there is a red cycle of length exactly min{|A[, |C|}.
Case 1.2: |A| < (1 —30))n. By (31) and |V;| = 2n,

ICl> (1427 )n and |B| > (1+301)n. (32)
By condition (ii), there are at most 20A'n vertices in C with red degree at least 0.057 to B. Let C’ be the
20A'n vertices in C of largest red degree to B. Let Y be a subset of C — C’ with size n. Similarly, let

B’ be the 20A'n vertices in B of largest red degree to C and we define X C B — B’ of size n. We show
there is a blue cycle of length exactly 2n in G1[X, Y.
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By the definitions of X and Y, we know that d,(x, Y) > 0.95n for x € X and d>(y, X) > 0.95n for
y € Y. By an argument similar to the last paragraph of Case 1.1, we can find a blue cycle of length
exactly 2n in G,[ X, Y].

Case 1.3: |C| < (1 —301")n. We find a blue cycle by an argument similar to Case 1.2.

Case 1.4: |A| = (1 +301")n and | D| > n. By condition (iii), there are at most 201'n vertices in A of red
degree at least 0.05n to D. Let X’ be the 20A'n vertices in A of largest red degree to D.

By condition (ii), there are at most 201'n vertices in D of red degree at least 0.05n to A. Let R be
the 201'n vertices in D of largest red degree to A. Since d»(v, A) > 0.39|A| > 0.39n for each v € R and
|R| = 20A'n =: m, we can order vertices in R so that R ={ry, ..., r,,} and find for R a distinct collection
of blue cherries to A — X’. We may assume the other ends of the cherries are S = {s1, ..., 52, } so that
each sy; _17;sy; is a cherry. Since § € A — X/, each s; has blue degree at least |[D| —0.05n to D and we
can find for each (sy;, s2;+1) a distinct common blue neighbor f; in D — R, where 1 <i <m — 1, and
thus form a blue path

Py = 511182 f153 -+ - Som

from s; to s,,. We then extend the path P; by finding a blue neighbor ry of 51 in D — R distinct from
each vertex chosen in P;. Note now P; has length 4m — 1 from rg to sp,.

Let X C(A—X'—V (P1))U{syn} suchthat sy,, € X and | X|=n—2m+1. LetY C(D—R—V (P1))U{ro)
such that |Y|=n—2m+1. Since d»(y, X) >0.9n for y € Y and d>(x, Y) > 0.9n for x € X, we claim that
G»[X, Y] is Hamiltonian biconnected by an argument similar to the last paragraph of Case 1.2. Therefore,
we can find a blue path P, of length 2n —4m + 1 from rg to s2,.

Finally, we glue P; and P, at rg and sy, to complete a blue cycle of length exactly 2n.

Case 1.5: |C| > (1 +301)n and |B| > n. It is similar to Case 1.4.
Case 1.6: |B| > n and |D| > n.

« If there is no blue edge in G[B, D], then G{[B, D] is a complete bipartite graph and thus we can find
a red cycle of length exactly 2n.

o If there is a blue matching of size 2 in G,[B, D], say the two matching edges are vyv, and uu,, where
vi, 1 € Vy and vy, up € Vs, then by Cases 1.2 and 1.3, we know |A| > (1 —301")n and |C| > (1 — 301 )n.
By condition (ii), there are at most 20A'n vertices in A such that the red degree to D is at least 0.05x and
there are at most 20\'n vertices in D such that the red degree to A is at least 0.05n. Similarly, there are
at most 20A'n vertices in C such that the red degree to B is at least 0.05n and there are at most 20A'n
vertices in B such that the red degree to C is at least 0.05n.

Let A’ C A be the |A| — 20A'n vertices with the largest blue degree to D, D" C D be the |D| —20A'n
vertices with the largest blue degree to A, C’ C C be the |C| —20A'n vertices with the largest blue degree
to B, and B’ C B be the |B| — 20A'n vertices with largest blue degree to C.

By condition (i) and |W>| = |B| + |D| > 2n, we know |A| > n — 2A/n. Thus, by Remark 32,

do(ua, A) > 0.39|A| > 0.38n.

We find a blue neighbor w; € A" of uy. Let A” C A such that w; € A” and |A”| = I_%nj Let D" C D’
such that v, € D” and |D"| = L%nJ By A” c A" and D" C D/, d>(v, A”) > 0.4n for every v € D" and
d>(v, D) > 0.4n for every v € A”. Since 0.4n 4 0.4n > 0.5n + 1, we can use Theorem 17 to find a blue
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path P; of length 2(|_%nj — 1) from v, to w; and then extend P; by adding wiu;. Similarly, we can find
a blue path P, with vertices in B U C from v; to u; of length exactly 2((%n-| — 1).

Finally, we connect P; and P, by adding the edge v;v, and uju, to form a blue cycle of length
exactly 2n.

Remark 34. The argument also works whenever all of A, B, C, D are of size in [n — 1001/, n + 100A'n].

o If the size of a maximum matching in G;[B, D] is exactly 1, then let v;v, be a blue edge, and let
{va} € D be a smallest vertex cover in G,[B, D] (the case {v;} is a smallest vertex cover has a similar
proof and is simpler). If we delete v;, then the remaining graph is a complete bipartite graph in G. If
|D| > n+1 then we can find a red cycle of length 2n in G[B, D — {v,}]. Thus, we may assume |D|=n
and |C|=n—1.

Let B” C B such that |B”| = n. We find a blue cycle in G,[B”, C U {v;}]. By condition (i) and
|Ws| = |B| +|D| > 2n, we know |C| > n — 2)/n. Thus, by Remark 32, for each v € B” we have

dr(v, C) > 0.39|C| > 0.38n.

We also know that each vertex v, in C U {v,} can have red degree at most 1 to B (so it has blue degree at
least n — 1 to B”) since otherwise with vertices in D — {v,} we can find a red cycle of length 2n. Since
n—140.197 > n + 1, we can use Theorem 17 to find a blue cycle of length exactly 2n.

Case 1.7: n+ 1 <|A| < (n+301'n) and n < |D| < n+ 301'n. By Remark 34, the size of a maximum
matching in G[B, D] is at most 1. Let vjv; € G, such that v; € B and v, € D. We may also assume that
{vy} is a minimum vertex cover of G,[B, D] (the case {v;} is a smallest vertex cover has a similar proof
and is simpler). Let R C A be the set of vertices with red degree at least 0.8n to D. By condition (ii),
we know |R| < 2A'n.

We first show that |D| = n. Assume not, i.e., |[D| >n+ 1. Then |D — {v,}| > n.

If |A — R| > n, then we find a blue cycle of length 2n in G;[A — R, D]. To do so, take a subset
A’ C A— R ofsize n and D' C D — {v,} of size n. By Remark 32, for every v € D we have

dr(v, C) > 0.39|C| =0.392n — |D|) = 0.38n.

Thus, d>(v, A’) > for v € D’. By the definition of A’, we know d>(v, D') > 0.2n for v € A. By
condition (ii), we also know there are at most 201'n vertices in A’ of red degree at least 0.057 to D and
thus if we order vertices in A" and D’ in nondecreasing order respectively, say A’ = {uy, ..., u,} and
D' ={w, ..., w,}, then the smallest index such that d»(u#;) <i -+ 1 has d>(u;) > 0.95n and the smallest
index such that d>(w;) < j+ 1 has d»(u;) > 0.19n. Since 0.957+0.19n > n+1, we can use Theorem 17
to find a blue cycle of length exactly 2n in G,[A’, D'].

If |A — R| <n—1, then we find a red cycle of length exactly 2n in G{[BU R, D — {v,}]. To do so,
note that (1) [BUR|=2n—|A—R|>n+1, (2) G|[B, D —{v;}] is a red complete bipartite graph, and
(3) each vertex in R has degree at least 0.8n to D — {v,}. We can use Theorem 17 to find a red cycle of
length exactly 2n, since this red graph is very dense and has both parts large enough.

Remark 35. The proof also shows we can find a monochromatic cycle when |A| € [n—1001'n, n+1001'n]
andn+1<|D| < (1+ 1001 )n.
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We assume | D| = n from now on. Since each vertex in R has red degree at least 0.8n to D, if there
are at least two vertices in R, say r; and r,, then we find a red common neighbor w € D for r| and r;.
Note that by Remark 33, G[A, C] is Hamiltonian-biconnected. Therefore, we can find a red cycle of
length exactly 2n from a path P; from ry to r, of length 2n — 2 glued with the path P, = rjwr;. The
only case remaining is |R| < 1. Then we have |A — R| > n and we find a blue cycle of length 2n by the
same argument as in two paragraphs ahead of this paragraph.

Remark 36. Note that the last sentence of the previous paragraph shows why we need |A| > n + 1.

The only uncovered case is:

Case 1.8: n < |C| < (1 +301)n and (1 — 301 )n < |A] < n — 1. We define R to be vertices in C with
red degree at least 0.8n to B. By Remark 34, we may assume that the size of a maximum matching in
G»[B, D] is at most 1.

If |C — R| = n, then we find a blue cycle of length exactly 2n in G,[B, C — R]. Thus, we may assume

IC—R|<n—1. (33)

o If there is no edge in G,[B, D], then G[B, D] is a complete bipartite graph and we are done if
|[DUR| > n. Thus, we may assume that [DUR| <n—1. Since |C —R|+|R|+|D|=2n—1, |[C—R|>n
and we have a contradiction.
o If the size of a maximum matching in G,[B, D] is exactly 1, say vjv; is such a matching with v; € B
and vy € D, then one of {v;} or {v;} is a minimum vertex cover of G,[B, D]. We may assume that {v;}
is a minimum vertex cover of G,[B, D], and the case when {v;} is a minimum vertex cover has a similar
proof and is simpler.

Since G1[B, D —{vz}] is a complete bipartite graph, we are done if | D| > n+ 1. Thus, we may assume
|D| <n. Moreover, if |[DUR —{v,}| > n then we can find a red cycle of length 2n in G{[DUR —{v,}, B];
hence we may assume

|ID|+|R|—1=<n—1.
But we also know that |D|+ |R|+ |C — R| =2n — 1. Thus,

IC—R|=zn—1,
and by (33) we know
|C—R|=n—1 and |DUR|=n.
If v, has at least two red edges to B then we can find a red cycle in G{[B, D U R] by first considering

the two edges incident with v,. Thus, v, has at most one red edge to B and thus has at least | B| — 1 blue
edges to B. We can find a blue cycle in G,[(C — R) U {v,}, B].

Case 2: G has a (A, 1, 2)-bad partition. This case is covered in Case 1 in Section 7.1.5 (with the same
proof). U
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9. Proof of Theorem 6 on monochromatic Cs»,

For large n, we need to prove the theorem for every N-vertex complete s-partite graph G with parts
(V" V', ..., V) such that the numbers n; = |V;*| satisfy ny > np > - - - > ny and conditions (1), (2), (4)
and (5).

Consider a possible counterexample G with 2-edge-coloring f and minimum N +s. If N—nj—ny >3,
then restriction (7) does not apply, so by Theorem 5, G has a monochromatic C»,, a contradiction. If
N —ny —ny <2 and (7) holds, then again by Theorem 5, G has a monochromatic C,,. Hence we need
to consider only the case that N —n| —ny <2, all (1), (2), (4) and (5) hold, but (7) does not hold. In
particular, n; >2n — 1, but N <4n — 2. Thismeans N —n; < (4n—2) — (2n— 1) =2n — 1, so by (2),
N=4n—-2andn;=2n—1.If N —n; —ny <1, this does not satisfy (5). Thus N —n; —n; =2, and
hence G O Ky;,_1,2,-32. Therefore, the following lemma implies Theorem 6.

Lemma 37. If n is sufficiently large, then for every 2-edge-coloring of K2,—1.2n-32, there is a monochro-
matic cycle of length at least 2n.

Proof. The set-up of the proof is similar to the proof of Lemma 31. We only show the differences.

Let V3 = {u1, uz}. Define V] = V| and V, = V, U V3. We first consider G[V/, V;] and then use the
fact that V; = V, U V3. Note that we have |V]| = |V,| =2n — 1.

By the proof in Lemma 31, we narrow the uncovered cases to (1) |[A|=n—1andn <|C| < (14+301)n
and 2)n < |A| < (1+30A)n and |C|=n—1.

Case 1: |[Al]=n—1andn < |C| < (14+30\)n.

Then we know |B| =n and (1 — 30\ )n — 1 < |D| < n — 1. By Remark 34, we know the size of a
maximum matching, o, in G,[B, D] is at most 1. Let R be the set of vertices in C with at least 0.8n red
neighbors in B. By condition (ii), |R| < 2A/n.

Claim 38. If |C — R| > n then we find a blue cycle of length 2n in G| B, C — R].
Proof. We pick C’ € C — R of size n. We know:

(1) By Remark 32 and the definition of R, each vertex in B has blue degree at least 0.38n to C’ and each
vertex in C’ has blue degree at least 0.2n to B.

(2) By condition (ii), all but at most 20A’n vertices in B have red degree at most 0.057 to C’ and all but
at most 20A'n vertices in C have red degree at most 0.05n to B.

(3) If we order vertices in C’ and B in nondecreasing order by their degree in G,[C’, B] respectively,
then the smallest index with d(x;) <i+ 1 and the smallest index with d(y;) < j + 1 satisfy d(x;) > 0.95n
and d(y;) > 0.95n.

Since 0.95n 4+ 0.95n > n + 1, we can use Theorem 17 to show G,[C’, B] is Hamiltonian biconnected
and thus we can find a cycle by fixing an edge e first and then find a Hamiltonian path in G,[C’, B]
without e, which is still Hamiltonian biconnected. (I

Remark 39. Similarly to Claim 38, we can show:
(1) For any two vertices ¢y € C, a; € A, graph G([A, C] has a red path of length 2n — 3 from ¢; to a;.
(2) For any two vertices cy, c; € C, graph G[A, C] has a red path of length 2n — 2 from c; to c;.
(3) For any two vertices b1, by € B, graph G;[B, C — R] has a blue path of length 2n — 2 from b to b;.
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(4) For any two vertices c; € C — R, by € B, graph G,[B, C — R] has a blue path of length 2n — 3 from
c1 to by.

Therefore, we may assume
|C—R|<n—1 andthus |[DUR|>n. (34)

If |R| > 2, say r1, rp € R, then we find a common neighbor r, € B for them. By Remark 39, we can
find a red path P; of length 2n — 2 in G[C, A] and then extend P; to a red cycle of length 2n by adding
rirpry. Thus, we may assume

|IC—Rl=n—1, |Rl=1 and |D|=n—1. (35)

Let R = {r}. If &’ =0, then G[B, D] is a complete bipartite graph. We can find a red cycle of
length 2n in G [ B, D U R] by first fixing two neighbors in B for r.

If ' = 1, say vjv; is a maximum matching in G,[B, D], where v; € B and v, € D. If {vy} is a
minimum vertex cover, then v, has at most one red edge to B since otherwise we find a red cycle by (35)
in G{[D U R, B] by first fixing two neighbors in B for v,. Thus, we may assume v; has at least |B| — 1
blue edges to B and thus we can find a blue cycle in G,[(C — R) U {v,}, B] by Remark 39.

We may assume {v;} is a minimum vertex cover. Note that v; has at most one red edge to D since
otherwise we find a red cycle in G{[B, D U R] by first fixing two red neighbors for v;. For the same
reason, each vertex in A has at most one red edge to D. We use vertices in V3 to find a monochromatic
cycle.

If there is a red edge from D to C — R, say u;y; with u; € D and y; € C, then we find a red cycle of
length at least 2n. To do so, by Remark 39, we first find a red path P; from y; to r of length 2n — 2 in
G1[A, C]. Since r has at least 0.8z red neighbors in B and G{[B — {v;}, D] is complete bipartite, we
find for r and u; a red common neighbor in B — {v1}, say r,. Finally, we extend P; to a red cycle of
length 2n + 1 by adding the red path rrpu;y;. Since at least one of #; and u, are not in R, say u; ¢ R,
we may assume there is a blue edge u;y; from C — R to D withu; € C — R and y; € D.

We find a blue cycle of length at least 2n by using u;. To do so, by Remark 32, each vertex in D has
blue degree at least 0.38n to AU {v;} and each vertex in C — R has blue degree at least 0.2n — 1 to B. We
first fix a blue neighbor z; of y; with z; € A and then find a common blue neighbor, say y, € D —{y},
for vy and z;. We can find a blue path P; of length 2n — 3 from u; to vy in G2[C — R, B] by Remark 39
and then extend P; by adding the path v;y>z|yju; to obtain a blue cycle of length 2n + 1.

Case 2: n < |A| < (1 +30A)n and |C| =n — 1. It is symmetric to Case 1 until we use vertices in V.
Thus, we may assume the maximum size of a matching in G[B, D] is 1, vjv, is one maximum matching
and {vy} is a minimum vertex cover and every vertex in C U {v,} has blue degree at least |B| — 1 to B.
Moreover, we may define R € A similarly to Case 1; i.e., R is the collection of vertices in A with at
least 0.8n red degrees to D, and assume

IA—R|=n—1, |R|=1 and |B]=n-1. (36)

Let R = {r}. If there is a red edge from C to D — {v;}, say u;y; with u; € C and y; € D, then we can
find a red cycle of length at least 2n. To do so, we first find a red path P; of length 2n — 3 from u; to r
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by Remark 39. Then we find a red neighbor r; of r in D — {v,, y;} and a common red neighbor r, of r4
and y; in B. We extend the path P; to a red cycle of length 2n 4 1 by adding the red path rryrpy1u; to Py.

Then we may assume there is a blue edge from C to D — {v,}, say u;y; with u; € C and y; € D — {v;}.
We first find a blue path of length 2n — 2 from y; to v; in G2[A — R, D] by Remark 39 and then find
a common blue neighbor y € B for v, and u;. Finally, we add the path y,u;yv; to P; to obtain a blue
cycle of length 2n + 1. (Il

10. Proof of Theorem 7 on monochromatic P;,

10.1. A useful lemma. If G contains a monochromatic C5,, then it certainly contains a monochro-
matic P,. So suppose G = K,,, . ,, does not have a monochromatic C,,. The lemma below is very

.....

helpful here and in the next section.

Lemma 40. Let s > 3 and n be sufficiently large. Letny > --- > ngand N =n| + - - - + ny satisfy (1)

and (2). Suppose that for some 2-edge-coloring f of the complete s-partite graph G = Ky, .. ., there

.....

are no monochromatic cycles Cy,. Then G contains a monochromatic Py, .

Proof. By Theorem 5, if (1) and (2) hold but G does not have a monochromatic C»,, then (7) fails. In
particular, N —n; —np < 2. Since s > 3, N —n; —np > 1. We may assume s = 3: if s > 3, then
N —n; —ny <2yields s =4 and n3 = nq = 1. In this case, deleting the edges between V3 and V4 and
combining them into one part (of size 2) only makes the case harder.

We use condition (7) to find a monochromatic C5,, only in the nearly-bipartite subcase of Section 6:
in Section 6.2. Therefore, if there is no monochromatic C»,, but (1) and (2) hold, we have a graph G
that falls under this subcase.

In this case, we have found disjoint subsets X1, X12 C V] and X31, X2 € V, with | X | = |Xo| =
| X12] = | X22| = %n + 10 satisfying the following property: if H is any of the graphs G{[ X, X21],
G1[X12, X22], Ga2[X12, X21], or G2[X11, X22], then given any vertices v, w in H, we can find a (v, w)-
path in H on m vertices, provided that n — 10 < m < n 4+ 10 and that the parity of m is correct.

Now let x € V3 be an arbitrary vertex (since we know that 1 < n3 < 2). Without loss of generality, we
may assume that x has an edge in G to X ;. If x also has an edge in G| to X1, U X5,, then we obtain a
long path in G as follows:

e Let P be a path in G{[ X, X»1] of length at least n starting from a neighbor of x in X ;.
e Let P, be a path in G [ X2, X2,] of length at least n starting from a neighbor of x.

e Use x to join P; and P, into a path.

Otherwise, all edges of x to X|» U X, are in G»; in particular, x has a neighbor in G, in both X1,
and X;. We obtain a long path in G, in a similar way:

e Let P be a path in G,[ X2, X»1] of length at least n starting from a neighbor of x in X ;.
e Let P, be a path in G,[ X1, X2o] of length at least n starting from a neighbor of x in Xy;.

e Use x to join P; and P, into a path.

In either case, G contains a monochromatic Py, 1. |
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10.2. Completion of the proof of Theorem 7. As observed above, if G has a monochromatic C,;,, then
we are done. Otherwise, by Theorem 5 and Lemma 40, G is bipartite. In this case, (2) yields np, > 2n — 1.
Hence n1 > 2n — 1, and G 2 K5,_1 2,—1. In this case, Theorem 2 yields the result. O

11. Proof of Theorem 8 on monochromatic P,

11.1. Setup of the proof. For large n, we need to prove the theorem for each complete s-partite graph

G = K, ....n, such that the numbers n; satisfy ny > ny > - - - > n; and the three conditions
N=n;+--+ns>3n, (T1)
N—-—ni=ny+---+ng>2n-1, (T2)
ifs=2, thenn;>2n+1. (T3)

For a given large n, we consider a possible counterexample with the minimum N + s. In view of this,
it is enough to consider the lists (n1, - - - , ny) satisfying (T1"), (T2") and (T3') such that:

(a) Foreach 1 < j <s,if n; > n;4, then the list (ny,...,n;_1,n; — 1, ni4+1, ..., ns) does not satisfy
some of (T1"), (T2') and (T3’).

(b) If s > 4, then the list (ny, ..., ns_3, ng_1 + ny) (possibly with the entries rearranged into a nonin-
creasing order) does not satisfy some of (T1), (T2') and (T3’).

Case 1: s >3 and N > 3n. Then (T3') holds by default. If ny > ny, then the list (ny — 1, ny, n3, ..., ny)
still satisfies the conditions (T1"), (T2") and (T3'), a contradiction to (a). Hence n; = n,. Choose the
maximum i such that ny =n;. If N —n; > 2n — 1, consider the list (n1,...,n;—1,n; — 1, nj11, ..., ny).
In this case (T1’) and (T2') still are satisfied; so by (a), (T3') fails. But this means s =3 and ny =n; =1,
so N < 3, a contradiction. Thus in this case N —n; = 2n — 1. Therefore, ny = N — (N —n;) >
3n+1—Q2n—1)=n+2andhencen, >n+2,so N—n;—ny <(2n—1)— (n+2) =n — 3. Then the
list (ny, ny, N —2n) satisfies (T1")—(T3’). Summarizing, we get

ifs>3and N >3n, thens=3, np+n3=2n—1landny=n, >n+2. 37

Case 2: s >3 and N = 3n. Again (T3’) holds by default. By (T2'),n; <n+1; hence N —ny—ny, >n—2.
If s >4 and ny_| +ny <n+1, then let L be the list obtained from (n1, ..., n;) by replacing the two
entries ny_1 and ng with ng_| + ng and then possibly rearrange the entries into nonincreasing order. By
construction, L satisfies (T1")—(T3’), a contradiction to (b). Hence ny,_; +ns; > n+2. If s > 6, then
N > 3(ng_1 +ng) > 3n + 6, contradicting N = 3n. Thus

ifs>3and N =3n,thens <5 and ifs >4, thenns_1+n,>n-+2. (38)

Case 3: s =2. Then by (T3'), ny > 2n+ 1 and by (T2), np > 2n — 1. Thus G 2 K2,+1.2,—1, and we can
assume that

if s =2, then G = Kont12n-1. 39)

As we have seen, always s < 5.
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11.2. Completion of the proof. Suppose G satisfies (37)—(39), and f is a 2-edge-coloring G such that
there is no monochromatic Py, 1.

If G has no monochromatic C»,, then by Lemma 40, G is bipartite. So by (39), G = K2, 4+1.2,—1. But
by Lemma 31, K, 2,—1 > (C2y, C2,). Therefore, below we assume that the 2-edge-coloring f of G is
such that G contains a red cycle C with 2n vertices (i.e., G contains C).

Let V' =V(C) and V" = V(G) — V’. Similarly, for j =1, ..., s, let Vj’ =V;NC and Vj” =V, - Vj’.
If some red edge e connects V' with V”, then C + e contains a red Py, 1, so below we assume that

all the edges in G[V’, V"] are blue, i.e., Go[V',V"]1=G[V', V"]. (40)

Case 1: s =2. Then | V| = |V,| =n. By (39), |V|'| =n+ 1. By (40), G2[V{’, V;1 = K415, but K y1
contains Py, 1.

Case 2: s > 3 and ny > n. If V| 2 V”, then (since |V”| > n by (38))
Gao[V", V(G) = Vi1=G[V", V(G) = Vil = Ky.N-n; 2 Kn2n—1 2 Poy1.
Because C is a cycle of length 2n and V| is an independent set, | V|| < n. In particular, since s > 3,
there are distinct 2 < ji, j» < s such that there are vertices v| € V]/l and v, € V]/Z/ .

If |V|"| = n, then G,[V{’, V' — V[] is a complete bipartite graph with parts of size at least n, so it contains
a path P with 2n vertices, starting from v;. Adding to it edge vivy, we get a blue Py, 1.

Suppose now |V|’| <n — 1. Then the complete bipartite graph G,[V,’, V' — V/] has a path Q| with
2|V{"| + 1 vertices starting from v; and ending in V' — V. Also since ny > n and |V"| > n, the complete
bipartite graph G[V/, V" — V] contains K, v/.n—vy| and hence contains a path @, with 2(n — V')
vertices starting from v,. Then connecting O with Q; by the edge v,v, we create a Py, 1.

Case 3: s >3 and n; <n — 1. In this case, N/n; > 3, so s > 4. Then (37)—(39) imply that N = 3n and
4 < s < 5. In particular,

N—-—ni>3n—(n—-1)=2n+1 forevery 1 <i <s. 41

Relabel the V;’s so that |V/'| > --- > |V|. Let s’ be the largest i such that V;” # @&. We construct a
path Q with 2n + 1 vertices greedily in two stages.

Stage 1: Fori =1,...,s'—1, find a vertex w; € V' — V; — V;4; so that all s — 1 of them are distinct.
We can do it because V" and V/" | are nonempty, so

VUVl < i = D+ (s — D) <20 —4=|V'| - 4.

At least four choices for each of the s’ — 1 < 4 vertices w; allow us to choose them all distinct. Then we
choose wg € V' —V; and wy € V' — Vy so that all wy, ..., wy are distinct.

Stage 2: Fori =0, ...,s"—1 we find a (w;, w;+1)-path Q; such that (i) V(Q,))NV"=V/ |,
paths Qy, ..., Qy_ are internally disjoint.

If we succeed, then U,S':_ol Q; is a path that we are seeking.

Suppose we are constructing Q; and V", | = {uy, ..., u,}. We start Q; by the edge w;u;. Then on

Step j for j=1,...,q, do as follows.

and (ii) all
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If j = ¢, then add edge u,w; | and finish Q;. Otherwise, find a vertex z; € V' — V;41 not yet used in
any Q;, then add to Q; edges u;z; and z;ju;1, and then go to Step j + 1. We can find this z; because
by (41), |V — V;| > 2n+ 1, at most n — 2 of these vertices are in V", and at most n vertices of all paths Q;/
are already chosen in V’. Since we always can choose z;, our greedy procedure constructs Q;, and all
Q; together form the promised path Q. ([
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