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THE TYPICAL STRUCTURE OF GALLAI COLORINGS AND THEIR

EXTREMAL GRAPHS\ast 

JÓZSEF BALOGH\dagger AND LINA LI\ddagger 

Abstract. An edge coloring of a graph G is a Gallai coloring if it contains no rainbow triangle.

We show that the number of Gallai r-colorings of Kn is (
\bigl( r
2

\bigr) 

+ o(1))2

\Bigl( 

n
2

\Bigr) 

. This result indicates that
almost all Gallai r-colorings of Kn use only 2 colors. We also study the extremal behavior of Gallai
r-colorings among all n-vertex graphs. We prove that the complete graph Kn admits the largest
number of Gallai 3-colorings among all n-vertex graphs when n is sufficiently large, while for r ≥ 4,
it is the complete bipartite graph K\lfloor n/2\rfloor ,\lceil n/2\rceil . Our main approach is based on the hypergraph
container method, developed independently by Balogh, Morris, and Samotij as well as by Saxton
and Thomason, together with some stability results.
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1. Introduction. An edge coloring of a graph G is a Gallai coloring if it contains
no rainbow triangle, that is, no triangle is colored with three distinct colors. The term
Gallai coloring was firSst introduced by Gyárfás and Simonyi [18], but this concept
had already occurred in an important result of Gallai [15] on comparability graphs,
which can be reformulated in terms of Gallai colorings. It also turns out that Gallai
colorings are relevant to generalizations of the perfect graph theorem [11], and some
applications in information theory [22]. There are a variety of papers which consider
structural and Ramsey-type problems on Gallai colorings; see, e.g., [14, 16, 17, 18, 25].

Two important themes in extremal combinatorics are to enumerate discrete struc-
tures that have certain properties and describe their typical properties. In this paper,
we shall be concerned with Gallai colorings from such an extremal perspective.

1.1. Gallai colorings of complete graphs. For an integer r \geq 3, an r-coloring
is an edge coloring that uses at most r colors. By choosing two of the r colors and
coloring the edges of Kn arbitrarily with these two colors, one can easily obtain that
the number of Gallai r-colorings of Kn is at least

(1)

\biggl( 

r

2

\biggr) 

\Bigl( 

2(
n
2)  - 2

\Bigr) 

+ r =

\biggl( 

r

2

\biggr) 

2(
n
2)  - r(r  - 2).

If we further consider all Gallai r-colorings of Kn using exactly 3 colors, red, green,
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and blue, in which the red color is used only once, the number of them is exactly

\biggl( 

n

2

\biggr) 

\Bigl( 

2(
n
2) - (n - 1)  - 2

\Bigr) 

.

Combining with (1), for n sufficiently large, a trivial lower bound for the number of
Gallai r-colorings of Kn is

(2)

\biggl( \biggl( 

r

2

\biggr) 

+ 2 - n

\biggr) 

2(
n
2).

Motivated by a question of Erdös and Rothchild [12] and the resolution by Alon et
al. [1], Benevides, Hoppen, and Sampaio [9] studied the general problem of counting
the number of edge colorings of a graph that avoid a subgraph colored with a given
pattern. In particular, they proved that the number of Gallai 3-colorings of Kn is at

most 3
2 (n  - 1)! \cdot 2(n - 1

2 ). At the same time, Falgas-Ravry, O’Connell, and Uzzell [13]

provided a weaker upper bound of the form 2(1+o(1))(n2), which is a consequence of the
multicolor container theory. Very recently, Bastos et al. [8] improved the upper bound

to 7(n+1)2(
n
2). Note that the gap between the best upper bound and the trivial lower

bound is a linear factor. We show that the lower bound is indeed closer to the truth,
and this actually applies for any integer r. Our first main result is as follows.

Theorem 1.1. For every integer r \geq 3, there exists n0 such that for all n > n0,

the number of Gallai r-colorings of the complete graph Kn is at most

\biggl( \biggl( 

r

2

\biggr) 

+ 2
 - n

4 log2 n

\biggr) 

2(
n
2).

Given a class of graphs \scrA , we denote by \scrA n the set of graphs in \scrA of order n.
We say that almost all graphs in \scrA have property \scrB if

lim
n\rightarrow \infty 

| \{ G \in \scrA n : G has property \scrB \} | 
| \scrA n| 

= 1.

Recall that the number of Gallai r-colorings with at most 2 colors is
\bigl( 

r
2

\bigr) 

2(
n
2) - r(r - 2).

Then the description of the typical structure of Gallai r-colorings immediately follows
from Theorem 1.1.

Corollary 1.2. For every integer r \geq 3, almost all Gallai r-colorings of the

complete graph are 2-colorings.

1.2. The extremal graphs of Gallai colorings. There have been considerable
advances in edge coloring problems whose origin can be traced back to a question of
Erdös and Rothchild [12], who asked which n-vertex graph admits the largest number
of r-colorings avoiding a copy of F with a prescribed colored pattern, where r is a
positive integer and F is a fixed graph. In particular, the study for the extremal
graph of Gallai colorings, that is the case when F is a triangle with rainbow pattern,
has received attention recently. A graph G on n vertices is Gallai r-extremal if
the number of Gallai r-colorings of G is largest over all graphs on n vertices. For
r \geq 5, the Gallai r-extremal graph has been determined by Hoppen, Lefmann, and
Odermann [19, 20, 21].
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2418 JÓZSEF BALOGH AND LINA LI

Theorem 1.3 (see [20]). For all r \geq 10 and n \geq 5, the only Gallai r-extremal

graph of order n is the complete bipartite graph K\lfloor n/2\rfloor ,\lceil n/2\rceil .

Theorem 1.4 (see [20]). For all r \geq 5, there exists n0 such that for all n > n0,

the only Gallai r-extremal graph of order n is the complete bipartite graph K\lfloor n/2\rfloor ,\lceil n/2\rceil .

For the cases r \in \{ 3, 4\} , several approximate results were given.

Theorem 1.5 (see [9]). There exists n0 such that the following hold for all

n > n0.

(i) For all \delta > 0, if G is a graph of order n, then the number of Gallai 3-colorings

of G is at most 2(1+\delta )n2/2.

(ii) For all \xi > 0, if G is a graph of order n, and e(G) \leq (1  - \xi )
\bigl( 

n
2

\bigr) 

, then the

number of Gallai 3-colorings of G is at most 2(
n
2).

We remark that part (i) of Theorem 1.5 was also proved in [20], and the authors
further provided an upper bound for r = 4.

Theorem 1.6 (see [20]). There exists n0 such that the following hold for all n >
n0. For all \delta > 0, if G is a graph of order n, then the number of Gallai 4-colorings
of G is at most 4(1+\delta )n2/4.

The above theorems show that for r \in \{ 3, 4\} , the complete graph Kn is not
far from being Gallai r-extremal, while for r = 4, the complete bipartite graph
K\lfloor n/2\rfloor ,\lceil n/2\rceil is also close to be Gallai r-extremal. Benevides, Hoppen, and Sampaio [9]
made the following conjecture.

Conjecture 1.7 (see [9]). The only Gallai 3-extremal graph of order n is the

complete graph Kn.

For the case r = 4, Hoppen, Lefmann, and Odermann [20] believed thatK\lfloor n/2\rfloor ,\lceil n/2\rceil 
should be the extremal graph.

Conjecture 1.8 (see [20]). The only Gallai 4-extremal graph of order n is the

complete bipartite graph K\lfloor n/2\rfloor ,\lceil n/2\rceil .

Using a similar technique to Theorem 1.1, we prove an analogous result for dense
noncomplete graphs when r = 3.

Theorem 1.9. For 0 < \xi \leq 1
64 , there exists n0 such that for all n > n0 the

following holds. If G is a graph of order n, and e(G) \geq (1  - \xi )
\bigl( 

n
2

\bigr) 

, then the number

of Gallai 3-colorings of G is at most

3 \cdot 2e(G) + 2
 - n

4 log2 n 2(
n
2).

Together with Theorem 1.5 and the lower bound (2), Theorem 1.9 solves Conjec-
ture 1.7 for sufficiently large n.

Theorem 1.10. There exists n0 such that for all n > n0, among all graphs of

order n, the complete graph Kn is the unique Gallai 3-extremal graph.

Our third contribution is the following theorem.

Theorem 1.11. For n, r \in N with r \geq 4, there exists n0 such that for all n > n0

the following holds. If G is a graph of order n, and e(G) > \lfloor n2/4\rfloor , then the number

of Gallai r-colorings of G is less than r\lfloor n
2/4\rfloor .

We remark that for a graph G with e(G) = \lfloor n2/4\rfloor , which is not K\lfloor n/2\rfloor ,\lceil n/2\rceil ,
G contains at least one triangle. Therefore, the number of Gallai r-colorings of G is
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at most r(r + 2(r  - 1))re(G) - 3 < r\lfloor n
2/4\rfloor . As a direct consequence of Theorem 1.11

and the above remark, we reprove Theorem 1.4 and, in particular, we show that
Conjecture 1.8 is true for sufficiently large n.

Theorem 1.12. There exists n0 such that for all n > n0, among all graphs of

order n, the complete bipartite graph K\lfloor n/2\rfloor ,\lceil n/2\rceil is the unique Gallai 4-extremal

graph.

1.3. Overview of the paper. Combining Szemerédi’s regularity lemma and
the stability method was used in many earlier works on extremal problems, including
Erdös–Rothchild-type problems; see, e.g., [1, 2, 9, 20]. However, our main approach
relies on the method of hypergragh containers, developed independently by Balogh,
Morris, and Samotij [4] as well as by Saxton and Thomason [24], and some stability
results for containers, which may be of independent interest to readers.

The paper is organized as follows. First, in section 2, we introduce some important
definitions and then state a container theorem which is applicable to colorings. In
section 3, we present a key enumeration result on the number of colorings with special
restrictions, which will be used repeatedly in the rest of the paper. Then in section 4,
we study the stability behavior of the containers for the complete graph, and apply
the multicolor container theorem to give an asymptotic upper bound for the number
of Gallai r-colorings of the complete graph. In section 5, we deal with the Gallai
3-colorings of dense noncomplete graphs; the idea is the same as in section 4 except
that we need to provide a new stability result which is applicable to noncomplete
graphs.

In the second half of the paper, that is, in section 6, we study the Gallai r-colorings
of noncomplete graphs for r \geq 4. When the underlying graph is very dense, that is,
close to complete graph, we apply the same strategy as in section 4 for the case r = 4,
where we prove a proper stability result for containers. The case r \geq 5 is even simpler,
in which we actually prove that the number of Gallai colorings in each container is
small enough. When the underlying graph has edge density close to 1

4 , i.e., the edge
density of the extremal graph, some new ideas are needed, and we also adopt a result
of Bollobás and Nikiforov [10] on book graphs. For the rest of the graphs whose edge
densities are between 1

4+o(1) and 1
2 - o(1), we use a supersaturation result of triangle-

free graphs given by Balogh et al. [3], and the above results on Gallai r-colorings for
both high density graphs and low density graphs.

For a positive integer n, we write [n] = \{ 1, 2, . . . , n\} . For a graph G and a set
A \subseteq V (G), the induced subgraph G[A] is the subgraph of G whose vertex set is A and
whose edge set consists of all of the edges with both endpoints in A. For two disjoint
subsets A,B \subseteq V (G), the induced bipartite subgraph G[A,B] is the subgraph of G
whose vertex set is A \cup B and whose edge set consists of all of the edges with one
endpoint in A and the other endpoint in B. Denote by \delta (G) the minimum degree of
G, and by ∆(G) the maximum degree of G. For a graph G and a vertex v \in V (G),
let NG(v) be the neighborhood of v, i.e., the set of vertices adjacent to v in G, and
dG(v) = | NG(v)| be the degree of v. For a set A \subseteq V (G), the neighborhood of v
restricted to A is the set NG(v,A) = NG(v) \cap A; the degree of v restricted to A,
denoted by dG(v,A), is the size of NG(v,A). When the underlying graph is clear,
we simply write N(v), d(v), N(v,A), and d(v,A) instead. Throughout the paper,
we omit all floor and ceiling signs whenever these are not crucial. Unless explicitly
stated, all n-vertex graphs are assumed to be defined on the vertex set [n], and all
logarithms have base 2.
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2420 JÓZSEF BALOGH AND LINA LI

2. Preliminaries.

2.1. The hypergraph container theorem. We use the following version of the
hypergraph container theorem (Theorem 3.1 in [6]). Let \scrH be a k-uniform hypergraph
with average degree d. The codegree of a set of vertices S \subseteq V (\scrH ) is the number of
edges containing S, that is,

d(S) = \{ e \in E(\scrH ) | S \subseteq e\} .

For every integer 2 \leq j \leq k, the jth maximum codegree of \scrH is

∆j(\scrH ) = max\{ d(S) | S \subseteq V (\scrH ), | S| = j\} .

When the underlying hypergraph is clear, we simply write it as ∆j . For 0 < \tau < 1,
the co-degree function ∆(\scrH , \tau ) is defined as

∆(\scrH , \tau ) = 2(
k
2) - 1

k
\sum 

j=2

2 - (
j - 1
2 ) ∆j

d\tau j - 1
.

In particular, when k = 3,

∆(\scrH , \tau ) =
4∆2

d\tau 
+

2∆3

d\tau 2
.

Theorem 2.1 (see [6]). Let \scrH be a k-uniform hypergraph on vertex set [N ]. Let

0 < \varepsilon , \tau < 1/2. Suppose that \tau < 1/(200k!2k) and ∆(\scrH , \tau ) \leq \varepsilon /(12k!). Then there

exists c = c(k) \leq 1000k!3k and a collection of vertex subsets \scrC such that

(i) every independent set in \scrH is a subset of some A \in \scrC ;
(ii) for every A \in \scrC , e(\scrH [A]) \leq \varepsilon \cdot e(\scrH );

(iii) log | \scrC | \leq cN\tau log(1/\varepsilon ) log(1/\tau ).

2.2. Definitions and multicolor container theorem. A key tool in applying
container theory to multicolored structures will be the notion of a template. This
notion of template, which was first introduced in [13], goes back to [24] under the name
of “2-colored multigraphs” and later to [7], where it is simply called “containers.” For
more studies about the multicolor container theory, we refer the interested reader to
[4, 5, 7, 13, 24].

Definition 2.2 (template and palette). An r-template of order n is a function

P : E(Kn) \rightarrow 2[r], associating with each edge e of Kn a list of colors P (e) \subseteq [r]; we
refer to this set P (e) as the palette available at e.

Definition 2.3 (subtemplate). Let P1, P2 be two r-templates of order n. We

say that P1 is a subtemplate of P2 (written as P1 \subseteq P2) if P1(e) \subseteq P2(e) for every

edge e \in E(Kn).

We observe that forG \subseteq Kn, an r-coloring ofG can be considered as an r-template
of order n, with only one color allowed at each edge of G and no color allowed at each
nonedge. For an r-template P , write RT(P ) for the number of subtemplates of P that
are rainbow triangles. We say that P is rainbow-triangle-free if RT(P ) = 0. Using
the container method, Theorem 2.1, we obtain the following.

Theorem 2.4. For every r \geq 3, there exists a constant c = c(r) and a collection

\scrC of r-templates of order n such that
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(i) every rainbow-triangle-free r-template of order n is a subtemplate of some

P \in \scrC ;
(ii) for every P \in \scrC , RT(P ) \leq n - 1/3

\bigl( 

n
3

\bigr) 

;

(iii) | \scrC | \leq 2cn
 - 1/3 log2 n(n2).

Proof. Let \scrH be a 3-uniform hypergraph with vertex set E(Kn) \times \{ 1, 2, . . . , r\} ,
whose edges are all triples \{ (e1, d1), (e2, d2), (e3, d3)\} such that e1, e2, e3 form a triangle
inKn and d1, d2, d3 are all different. In other words, every hyperedge in\scrH corresponds
to a rainbow triangle ofKn. Note that there are exactly r(r - 1)(r - 2) ways to rainbow
color a triangle with r colors. Hence, the average degree d of \scrH is equal to

d =
3e(\scrH )

v(\scrH )
=

3r(r  - 1)(r  - 2)
\bigl( 

n
3

\bigr) 

r
\bigl( 

n
2

\bigr) = (r  - 1)(r  - 2)(n - 2).

For the application of Theorem 2.1, let \varepsilon = n - 1
3 /r(r - 1)(r - 2) and \tau =

\surd 
72 \cdot 3! \cdot rn - 1

3 .
Observe that ∆2(\scrH ) = r  - 2, and ∆3(\scrH ) = 1. For n sufficiently large, we have
\tau \leq 1/(200 \cdot 3!2 \cdot 3) and

∆(\scrH , \tau ) =
4(r  - 2)

d\tau 
+

2

d\tau 2
\leq 3

d\tau 2
\leq \varepsilon 

12 \cdot 3! .

Hence, there is a collection \scrC of vertex subsets satisfying properties (i)–(iii) of Theo-
rem 2.1. Observe that every vertex subset of \scrH corresponds to an r-template of order
n; every rainbow-triangle-free r-template of order n corresponds to an independent
set in \scrH . Therefore, \scrC is a desired collection of r-templates.

Definition 2.5 (Gallai r-template). For a graph G of order n, an r-template P
of order n is a Gallai r-template of G if it satisfies the following properties:

(i) for every e \in E(G), | P (e)| \geq 1;

(ii) RT(P ) \leq n - 1/3
\bigl( 

n
3

\bigr) 

.

For a graph G of order n and a collection \scrP of r-templates of order n, denote by
Ga(\scrP , G) the set of Gallai r-colorings of G which is a subtemplate of some P \in \scrP . If
\scrP consists of a single template P , then we simply write it as Ga(P,G).

2.3. A technical lemma. In this section, we provide a lemma that will be useful
to us in what follows. We use a special case of the weak Kruskal–Katona theorem due
to Lovàsz [23].

Theorem 2.6 (Lovàsz [23]). Suppose G is a graph with
\bigl( 

x
2

\bigr) 

edges for some real

number x \geq 2. Then the number of triangles of G is at most
\bigl( 

x
3

\bigr) 

, with equality if and

only if x is an integer and G = Kx.

Lemma 2.7. Let n, r \in N with r \geq 3 and 4
n  - 4

n2 \leq \varepsilon < 1
2 . If G is an r-colored

graph of order n, which contains at least (1 - \varepsilon )
\bigl( 

n
3

\bigr) 

monochromatic triangles, then there

exists a color c such that the number of edges colored by c is at least e(G) - 4r2\varepsilon 
\bigl( 

n
2

\bigr) 

.

Proof. We shall prove this lemma by contradiction. Let \delta = 4r2\varepsilon . Assume that
none of the colors is used on at least e(G) - \delta 

\bigl( 

n
2

\bigr) 

edges.

First, we conclude that e(G) \geq (1  - \varepsilon )
\bigl( 

n
2

\bigr) 

. If not, then by Theorem 2.6, the
number of triangles of G is less than

\surd 
2

3
(1 - \varepsilon )3/2

\biggl( 

n

2

\biggr) 3/2

\leq (1 - \varepsilon )

\biggl( 

n

3

\biggr) 

,

which contradicts the assumption.
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a

b c

red blue

(a)

a

b

c

d

red blue

(b)

Fig. 1. Two cases of a red-blue pair of edges.

By the pigeonhole principle, we can assume without loss of generality that the
set of red edges in G, denoted by R(G), satisfies | R(G)| \geq (1  - \varepsilon )

\bigl( 

n
2

\bigr) 

/r. By the

contradiction assumption, we have | R(G)| < e(G)  - \delta 
\bigl( 

n
2

\bigr) 

. Therefore, the number of

nonred edges is greater than \delta 
\bigl( 

n
2

\bigr) 

. Again, without loss of generality, we can assume

that the set of blue edges in G, denoted by B(G), satisfies | B(G)| \geq \delta 
\bigl( 

n
2

\bigr) 

/r.
For an edge in R(G) and an edge in B(G), these two edges either share one

endpoint or are vertex disjoint; see Figure 1. In the first case (see Figure 1(a)) the
triple abc could not form a monochromatic triangle of G. In the latter case (see
Figure 1(b)) at least one of abc and bcd is not a monochromatic triangle of G.

Let NT(G) be the family of triples \{ a, b, c\} which does not form a monochromatic
triangle of G. The above discussion shows that each pair of red and blue edges
generates at least one triple in NT(G). Observe that each triple in NT(G) can be
counted in at most 2 + 3(n - 3) pairs of red and blue edges. Hence, we obtain that

| NT(G)| \geq (1 - \varepsilon )
\bigl( 

n
2

\bigr) 

/r \cdot \delta 
\bigl( 

n
2

\bigr) 

/r

2 + 3(n - 3)
>

\delta 

4r2

\biggl( 

n

3

\biggr) 

= \varepsilon 

\biggl( 

n

3

\biggr) 

,

which contradicts the assumption of the lemma.

3. Counting Gallai colorings in r-templates. In this section, we aim to
prove the following technical theorem, which will be used repeatedly in the rest of the
paper.

Theorem 3.1. Let n, r \in N with r \geq 3, and G be a graph of order n. Suppose

that \delta = log - 11 n and k is a positive constant, which does not depend on n. For two

colors i, j \in [r], denote by \scrF = \scrF (i, j) the set of r-templates of order n which contain

at least (1 - k\delta )
\bigl( 

n
2

\bigr) 

edges with palette \{ i, j\} . Then, for n sufficiently large,

| Ga(\scrF , G)| \leq 2e(G) + 2
 - n

3 log2 n 2(
n
2).

Fix two colors 1 \leq i < j \leq r, and let S = [r] - \{ i, j\} . For an r-coloring F of G, let
S(F ) be the set of edges in G, which are colored by colors in S. From the definition
of \scrF , we immediately obtain the following proposition.

Proposition 3.2. For every F \in Ga(\scrF , G), the number of edges in S(F ) is at

most k\delta 
\bigl( 

n
2

\bigr) 

.

Lemma 3.3. Let \scrF 1 be the set of F \in Ga(\scrF , G) such that S(F ) contains a match-

ing of size \delta n log2 n. Then, for n sufficiently large,

| \scrF 1| \leq 2
 - n2

5 log9 n 2(
n
2).
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Proof. Let us consider the ways to color G so that the resulting colorings are in
\scrF 1. We first choose the set of edges ES which will be colored by the colors in S.
Note that ES must contain a matching of size \delta n log2 n by the definition of \scrF 1. By

Proposition 3.2, there are at most
\sum 

i\leq k\delta (n2)
\bigl( (n2)

i

\bigr) 

choices for such ES , and the number

of ways to color them is at most rk\delta (
n
2). In the next step, take a matching M of size

\delta n log2 n in ES ; the number of ways to choose such a matching is at most
\bigl( (n2)
\delta n log2 n

\bigr) 

.

Let A = V (M) and B = [n] \setminus A. Denote by \scrT the set of triangles of Kn with a
vertex in B and an edge from M , which contain no edge in ES \cap G[A,B]. We claim
that | \scrT | \geq 1

4\delta n
2 log2 n as otherwise we would obtain that

| ES | \geq | B| \cdot \delta n log2 n - | \scrT | + | M | \geq 1

2
\delta n2 log2 n - 1

4
\delta n2 log2 n =

1

4
\delta n2 log2 n > k\delta 

\biggl( 

n

2

\biggr) 

,

which, by Proposition 3.2, contradicts the fact that F \in Ga(\scrF , G). Note that if a
triangle T in \scrT contains more than one uncolored edge, then they must have the same
color as in order to avoid the rainbow triangle. Hence, the number of ways to color
the uncolored edges in \scrT is at most 2| \scrT | .

There remain at most
\bigl( 

n
2

\bigr) 

 - 2| \scrT | uncolored edges and they can only be colored
by i or j, as edges in ES are already colored. Hence, the number of ways to color the

rest of the edges is at most 2(
n
2) - 2| \scrT | . In conclusion, we obtain that

| \scrF 1| \leq 
\sum 

i\leq k\delta (n2)

\biggl( 
\bigl( 

n
2

\bigr) 

i

\biggr) 

rk\delta (
n
2)
\biggl( 

\bigl( 

n
2

\bigr) 

\delta n log2 n

\biggr) 

\cdot 2| \scrT | \cdot 2(n2) - 2| \scrT | 

\leq 2O(\delta n2 logn) \cdot 2O(\delta n log3 n) \cdot 2(n2) - 1
4 \delta n

2 log2 n \leq 2(
n
2) - n2

5 log9 n .

Lemma 3.4. For every integer 1 \leq t < \delta n log2 n, let \scrF (t) be the set of F \in 
Ga(\scrF , G), in which the maximum matching of S(F ) is of size t. Then, for n suffi-

ciently large,

| \scrF (t)| \leq 2
 - n

2 log2 n 2(
n
2).

Proof. For a fixed t, let us count the ways to color G so that the resulting colorings
are in \scrF (t). By the definition of \scrF (t), among all edges which will be colored by the
colors in S, there exists a maximum matching M of size t. We first choose such a

matching; the number of ways is at most
\bigl( (n2)

t

\bigr) 

. Once we fix the matching M , let
A = V (M) and B = [n] \setminus A. By the maximality of M , we immediately obtain the
following claim.

Claim 1. None of the edges in G[B] can be colored by the colors in S.

Denote by Cr(S) the set of edges in G[A,B] which will be colored by the colors in
S. For a vertex u \in A, denote by Cr(S, u) the set of edges in Cr(S) with one endpoint
u. Similarly, define Cr(\{ i, j\} , u) to be the set of edges in G[u,B] which will be colored
by the colors i or j. We shall divide the proof into three cases.

Case 1: | Cr(S)| \leq nt
log2 n

. We first color the edges in G[A] and the number of

options is at most r(
2t
2 ). In the next step, we select and color the edges in Cr(S); by

the above inequality, the number of ways is at most
\sum 

i\leq nt
log2 n

\bigl( 

2nt
i

\bigr) 

r
nt

log2 n . By Claim 1,

the remaining edges can only use the colors i or j. Let \scrT be the set of triangles of
Kn formed by a vertex in B and an edge from M , which contain no edge in Cr(S).
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2424 JÓZSEF BALOGH AND LINA LI

We claim that | \scrT | \geq 1
4nt as otherwise we would obtain

| Cr(S)| \geq | B| t - | \scrT | \geq 1

2
nt - 1

4
nt >

nt

log2 n
,

which contradicts the assumption. If a triangle T in \scrT contains more than one uncol-
ored edge, then they must have the same color in order to avoid the rainbow triangle.
Hence, the number of ways to color the uncolored edges in \scrT is at most 2| \scrT | .

There remain at most
\bigl( 

n
2

\bigr) 

 - 2| \scrT |  - 
\bigl( 

2t
2

\bigr) 

uncolored edges, and they can be colored
by i or j. Therefore the number of ways to color the rest of the edges is at most

2(
n
2) - 2| \scrT |  - (2t2 ). In conclusion, we obtain that the number of r-coloring F \in \scrF (t) with

| Cr(S)| \leq nt
log2 n

is at most

\biggl( 
\bigl( 

n
2

\bigr) 

t

\biggr) 

\cdot r(2t2 ) \cdot \sum i\leq nt
log2 n

\bigl( 

2nt
i

\bigr) 

r
nt

log2 n \cdot 2| \scrT | \cdot 2(n2) - 2| \scrT |  - (2t2 )

\leq 2O(t logn) \cdot 2O(t2) \cdot 2O( nt
log n ) \cdot 2(n2) - 1

4nt \leq 2(
n
2) - 1

5nt \leq 2(
n
2) - 1

5n,

where the third inequality is given by t2 \leq t \cdot \delta n log2 n = nt/ log9 n.
Case 2: There exists a vertex u \in A such that

(3) | Cr(S, u)| \geq n

log4 n
and | Cr(\{ i, j\} , u)| \geq n

log4 n
.

We first choose the vertex u, and the number of options is at most 2t. Moreover, the
number of ways to select and color edges in Cr(S, u) is at most rn2n. In the next
step, we color all the uncolored edges in G[A,B] and G[A], and the number of ways is

at most r2nt+(
2t
2 ). Let \scrT be the set of triangles T = \{ uvw\} of Kn, in which v, w \in B,

uv \in Cr(S, u), and uw \in Cr(\{ i, j\} , u). By the relation (3), we have | \scrT | \geq n2

log8 n
. For

every triangle T = \{ uvw\} \in \scrT , if vw is an edge of G, then by Claim 1 it can only be
colored by i or j, and must have the same color as uw in order to avoid the rainbow
triangle. Therefore, the number of ways to color the uncolored edges in \scrT is 1.

There remain at most
\bigl( 

n
2

\bigr) 

 - | \scrT | uncolored edges in B, as other edges are already
colored. By Claim 1, none of the remaining edges in B could use the colors from S.

Therefore, the number of ways to color the rest of the edges is at most 2(
n
2) - | \scrT | . In

conclusion, we obtain that the number of F \in \scrF (t) which is included in Case 2 is at
most

\biggl( 
\bigl( 

n
2

\bigr) 

t

\biggr) 

\cdot 2t\cdot rn2n \cdot r2nt+(2t2 ) \cdot 2(n2) - | \scrT | \leq 2O(t logn) \cdot 2O(n) \cdot 2O(nt) \cdot 2(
n
2) - n2

log8 n \leq 2(
n
2) - n2

2 log8 n ,

where the last inequality is given by the condition that nt \leq n \cdot \delta n log2 n = n2/ log9 n.
Case 3: | Cr(S)| > nt

log2 n
, and for every vertex u \in A,

(4) | Cr(S, u)| < n

log4 n
or | Cr(\{ i, j\} , u)| < n

log4 n
.

We first color the edges in G[A] and the number of ways is at most r(
2t
2 ). By (4), for ev-

ery vertex u \in A, the number of ways to select Cr(S, u) is at most 2
\sum 

i\leq n/ log4 n

\bigl( 

n
i

\bigr) 

\leq 
2n/ log3 n. Therefore, the number of ways to select Cr(S) is at most 22nt/ log3 n.
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Subcase 3.1: e(G) \leq 
\bigl( 

n
2

\bigr) 

 - n2

4 log6 n
. The number of ways to color Cr(S) is at most

r2nt. By Claim 1, the rest of the edges can only be colored by i or j, and the number
of them is at most e(G)  - | Cr(S)| . Hence, the number of F \in \scrF (t) covered in Case
3.1 is at most

\biggl( 
\bigl( 

n
2

\bigr) 

t

\biggr) 

\cdot r(2t2 ) \cdot 2
2nt

log3 n \cdot r2nt \cdot 2e(G) - | Cr(S)| \leq 2O(t logn) \cdot 2O(nt) \cdot 2(
n
2) - n2

4 log6 n
 - nt

log2 n

\leq 2(
n
2) - n2

5 log6 n ,

where the last inequality holds by the condition that nt \leq n \cdot \delta n log2 n = n2/ log9 n.

Subcase 3.2: e(G) >
\bigl( 

n
2

\bigr) 

 - n2

4 log6 n
. For u \in A, define NS(u) = \{ v \in B | uv \in 

Cr(S, u)\} . Let Gu be the induced subgraph of G on NS(u), and denote by c(Gu) the
number of components of Gu.

Claim 2. For every u \in A, we have c(Gu) \leq n
log3 n

.

Proof. Suppose that there exists a vertex u in A with c(Gu) > n
log3 n

. Then

the number of nonedges in Gu is at least
\bigl( n

log3 n

2

\bigr) 

\geq n2

4 log6 n
, which contradicts the

assumption of Case 3.2.

Claim 3. For every u \in A, the number of ways to color Cr(S, u) is at most rc(Gu).

Proof. Let C be an arbitrary component of Gu. It is sufficient to prove that for
every v, w \in V (C), uv and uw must have the same color. Assume that there exist
v, w \in V (C) such that uv and uw receive different colors. Since C is a connected
component of Gu, there is a path P = \{ v = v0, v1, v2, . . . , vk = w\} in Gu, in which
uvi is painted by a color in S for every 0 \leq i \leq k. Moreover, since uv and uw receive
different colors, there exists an integer 0 \leq j \leq k - 1 such that uvj and uvj+1 receive
different colors. On the other hand, by Claim 1, vjvj+1 can only be colored by i or
j. Therefore, u, vj , vj+1 form a rainbow triangle, which is not allowed in a Gallai
r-coloring.

By Claims 2 and 3, the number of ways to color Cr(S, u) is at most r
n

log3 n , and

therefore the total number of ways to color Cr(S) is at most r
2nt

log3 n . By Claim 1, the
rest of the edges can only be colored by i or j, and the number of them is at most
e(G) - | Cr(S)| . Hence, the number of F \in \scrF (t) included in Case 3.2 is at most

\biggl( 
\bigl( 

n
2

\bigr) 

t

\biggr) 

\cdot r(2t2 ) \cdot 2
2nt

log3 n \cdot r
2nt

log3 n \cdot 2e(G) - | Cr(S)| \leq 2O(t logn) \cdot 2O
\Bigl( 

nt
log3 n

\Bigr) 

\cdot 2(
n
2) - nt

log2 n

\leq 2(
n
2) - n

2 log2 n
 - 1

.

Eventually, we conclude that

| \scrF (t)| \leq 2(
n
2) - 1

5n + 2(
n
2) - n2

2 log8 n + 2(
n
2) - n

2 log2 n
 - 1 \leq 2

 - n
2 log2 n 2(

n
2)

for every 1 \leq t < \delta n log2 n.

Observe that every r-coloring of G using at most 2 colors is a Gallai r-coloring.
Then we immediately obtain the following lemma.
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Lemma 3.5. Let \scrF 0 be the set of F \in Ga(\scrF , G) such that S(F ) = \emptyset . Then

| \scrF 0| = 2e(G).

Now, we have all the ingredients to prove Theorem 3.1.

Proof of Theorem 3.1. Applying Lemmas 3.3, 3.4, and 3.5, we obtain that

| Ga(\scrF , G)| = | \scrF 1| +
\delta n/ log2 n
\sum 

t=1

| \scrF (t)| + | \scrF 0| \leq 2e(G) + 2
 - n

3 log2 n 2(
n
2)

for n sufficiently large.

4. Gallai r-colorings of complete graphs.

4.1. Stability of the Gallai r-template of complete graphs.

Proposition 4.1. Let n, r \in N with r \geq 3. Suppose P is a Gallai r-template of

Kn. Then the number of edges with at least 3 colors in its palette is at most n - 1/6n2.

Proof. Let E = \{ e \in E(Kn) : | P (e)| \geq 3\} and assume that | E| > n - 1/6n2. Let
F be a spanning subgraph of Kn with edge set E. For every i \in [n], denote by di the
degree of vertex i of F . Then the number of 3-paths in F is equal to

\sum 

i\in [n]

\biggl( 

di
2

\biggr) 

\geq n

\Biggl( 
\sum 

i\in [n] di
n
2

\Biggr) 

\geq n

\biggl( 

2| E| /n
2

\biggr) 

\geq | E| 2
n

> 3n - 1/3

\biggl( 

n

3

\biggr) 

.

Observe that if i, j, k is a 3-path in F , then there is at least one rainbow triangle in P
with vertex set \{ i, j, k\} since edges ij, jk have at least 3 colors in its palette and edge
ik has at least one color in its palette. Therefore, there would be more than n - 1/3

\bigl( 

n
3

\bigr) 

rainbow triangles in P , which contradicts the fact that P is a Gallai r-template.

Lemma 4.2. Let n, r \in N with r \geq 3 and n - 1/6 \ll \delta \ll 1. Assume that P is a

Gallai r-template of Kn with | Ga(P,Kn)| > 2(1 - \delta )(n2). Then the number of triangles

T of Kn with
\sum 

e\in T | P (e)| = 6 and P (e) = P (e\prime ) for every e, e\prime \in T is at least

(1 - 4\delta )
\bigl( 

n
3

\bigr) 

.

Proof. Let \scrT be the collection of triangles of Kn. We define

\scrT 1 =
\bigl\{ 

T \in \scrT | \sum e\in T | P (e)| = 6 and P (e) = P (e\prime ) for every e, e\prime \in T
\bigr\} 

,

\scrT 2 = \{ T \in \scrT | \exists e \in T, | P (e)| \geq 3\} ,
\scrT 3 =

\bigl\{ 

T \in \scrT \setminus (\scrT 1 \cup \scrT 2) | 
\sum 

e\in T | P (e)| = 6
\bigr\} 

,

\scrT 4 =
\bigl\{ 

T \in \scrT \setminus \scrT 2 | \sum e\in T | P (e)| \leq 5
\bigr\} 

.

Let | \scrT 1| = \alpha 
\bigl( 

n
3

\bigr) 

, | \scrT 2| = \beta 
\bigl( 

n
3

\bigr) 

, | \scrT 3| = \gamma 
\bigl( 

n
3

\bigr) 

. Then | \scrT 4| \leq (1 - \alpha )
\bigl( 

n
3

\bigr) 

. By Proposition 4.1,

we have | \scrT 2| \leq n - 1/6n3 and therefore \beta \leq 12n - 1/6. Observe that for every T \in \scrT 3,
the template P contains a rainbow triangle with edge set T ; therefore, we obtain that
| \scrT 3| \leq RT(P ) \leq n - 1/3

\bigl( 

n
3

\bigr) 

, which gives \gamma \leq n - 1/3 \leq n - 1/6.
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Assume that \alpha < 1 - 4\delta . Then the number of Gallai r-colorings of Kn, which are
subtemplates of P , satisfies

log | Ga(P,Kn)| 

\leq log

\biggl( 

\prod 

e\in E(Kn)

| P (e)| 
\biggr) 

= log

\biggl( 

\prod 

T\in \scrT 

\prod 

e\in T

| P (e)| 
\biggr) 

1
n - 2

\leq log

\biggl( 

\prod 

T\in \scrT 1

23
\prod 

T\in \scrT 2

r3
\prod 

T\in \scrT 3

23
\prod 

T\in \scrT 4

22
\biggr) 

\cdot 1

n - 2

\leq (3\alpha + 3\beta log r + 3\gamma + 2(1 - \alpha ))
1

3

\biggl( 

n

2

\biggr) 

\leq 
\Bigl( 

2 + \alpha + (36 log r + 3)n - 1/6
\Bigr) 1

3

\biggl( 

n

2

\biggr) 

< (2 + (1 - 4\delta ) + \delta )
1

3

\biggl( 

n

2

\biggr) 

= (1 - \delta )

\biggl( 

n

2

\biggr) 

.

This contradicts the assumption that | Ga(P,Kn)| > 2(1 - \delta )(n2).

We now prove a stability result for Gallai r-templates of Kn.

Theorem 4.3. Let n, r \in N with r \geq 3 and n - 1/6 \ll \delta \ll 1. Assume that P is a

Gallai r-template of Kn with | Ga(P,Kn)| > 2(1 - \delta )(n2). Then there exist two colors i,
j \in [r] such that the number of edges of Kn with palette \{ i, j\} is at least (1 - 4r4\delta )

\bigl( 

n
2

\bigr) 

.

Proof. Let G be an
\bigl( 

r
2

\bigr) 

-colored graph with edge set

E(G) = \{ e \in E(Kn) | | P (e)| = 2\} 

and color set \{ (i, j) | 1 \leq i < j \leq r\} , where each edge e is colored by color P (e).
By Lemma 4.2, the number of monochromatic triangles in G is at least (1  - 4\delta )

\bigl( 

n
3

\bigr) 

.
Applying Lemma 2.7 on G, we obtain that there exist two colors i, j such that the
number of edges with palette \{ i, j\} is at least

e(G) - 4

\biggl( 

r

2

\biggr) 2

\cdot 4\delta 
\biggl( 

n

2

\biggr) 

\geq (1 - 4\delta )

\biggl( 

n

2

\biggr) 

 - 4

\biggl( 

r

2

\biggr) 2

\cdot 4\delta 
\biggl( 

n

2

\biggr) 

\geq (1 - 4r4\delta )

\biggl( 

n

2

\biggr) 

.

4.2. Proof of Theorem 1.1.

Proof of Theorem 1.1. Let \scrC be the collection of containers given by Theorem 2.4.
We observe that a Gallai r-coloring of Kn can be regarded as a rainbow-triangle-free
r-coloring template of order n, with only one color allowed at each edge. Therefore,
by property (i) of Theorem 2.4, every Gallai r-coloring of Kn is a subtemplate of some
P \in \scrC .

Let \delta = log - 11 n. We define

\scrC 1 =
\Bigl\{ 

P \in \scrC : | Ga(P,Kn)| \leq 2(1 - \delta )(n2)
\Bigr\} 

, \scrC 2 =
\Bigl\{ 

P \in \scrC : | Ga(P,Kn)| > 2(1 - \delta )(n2)
\Bigr\} 

.

By property (iii) of Theorem 2.4, we have

| Ga(\scrC 1,Kn)| \leq | \scrC 1| \cdot 2(1 - \delta )(n2) \leq 2cn
 - 1/3 log2 n(n2) \cdot 2(n2) - log - 11 n(n2) \leq 2

 - n2

4 log11 n 2(
n
2).

We claim that every template P in \scrC 2 is a Gallai r-template of Kn. First, by
property (ii) of Theorem 2.4, we have RT(P ) \leq n - 1/3

\bigl( 

n
3

\bigr) 

. Suppose that there exists
an edge e \in E(Kn) with | P (e)| = 0. Then we would obtain that Ga(P,Kn) = \emptyset 
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as a Gallai r-coloring of Kn requires at least one color on each edge, which con-
tradicts the definition of \scrC 2. Now by Theorem 4.3, we can divide \scrC 2 into classes
\{ \scrF i,j , 1 \leq i < j \leq r\} , where \scrF i,j consists of all the r-templates in \scrC 2 which contain
at least (1  - 4r4\delta )

\bigl( 

n
2

\bigr) 

edges with palette \{ i, j\} . Applying Theorem 3.1 on \scrF i,j , we

obtain that | Ga(\scrF i,j ,Kn)| \leq (1 + 2
 - n

3 log2 n )2(
n
2), and therefore

| Ga(\scrC 2,Kn)| \leq 
\sum 

1\leq i<j\leq r

| Ga(\scrF i,j ,Kn)| \leq 
\biggl( 

r

2

\biggr) 

\Bigl( 

1 + 2
 - n

3 log2 n

\Bigr) 

2(
n
2).

Finally, we conclude that

| Ga(\scrC ,Kn)| = | Ga(\scrC 1,Kn)| + | Ga(\scrC 2,Kn)| \leq 
\biggl( \biggl( 

r

2

\biggr) 

+ 2
 - n

4 log2 n

\biggr) 

2(
n
2),

which gives the desired upper bound for the number of Gallai r-colorings of Kn.

5. Gallai 3-colorings of noncomplete graphs. In this section, we count Gal-
lai 3-colorings of dense noncomplete graphs. We shall explore the stability property
first, and then follow a somewhat similar strategy as in the proof of Theorem 1.1.
The main obstacle is that in a Gallai r-template of a noncomplete graph, a palette
of an edge could be an empty set, which leads to a more sophisticated discussion of
templates.

5.1. Triangles in r-templates of dense graphs. Let \scrT be the collection of
triangles of Kn. For a given r-template P of order n, we partition the triangles into
5 classes. We set an extra class, as a T \in \scrT may not be a triangle in G.

(5)

\scrT 1(P ) =
\bigl\{ 

T \in \scrT | \sum e\in T | P (e)| = 6 and P (e) = P (e\prime ) for every e, e\prime \in T
\bigr\} 

,

\scrT 2(P ) = \{ T \in \scrT | T = \{ e1, e2, e3\} , | P (e1)| \geq 3, | P (e2)| \geq 3, and | P (e3)| = 0\} ,
\scrT 3(P ) = \{ T \in \scrT | T = \{ e1, e2, e3\} , | P (e1)| \geq 3, | P (e2)| + | P (e3)| \leq 2\} ,
\scrT 4(P ) =

\bigl\{ 

T \in \scrT \setminus (\scrT 1 \cup \scrT 2 \cup \scrT 3) | 
\sum 

e\in T | P (e)| \geq 6
\bigr\} 

,

\scrT 5(P ) =
\bigl\{ 

T \in \scrT \setminus \scrT 3 | \sum e\in T | P (e)| \leq 5
\bigr\} 

.

Lemma 5.1. Let n, r \in N with r \geq 4 and 0 < k \leq 1. For 0 < \xi \leq ( k
2+6k )

2, let G

be a graph of order n, and e(G) \geq (1 - \xi )
\bigl( 

n
2

\bigr) 

. Assume that P is a Gallai r-template

of G. Then, for sufficiently large n,

| \scrT 2(P )| \leq max

\biggl\{ 

k| \scrT 3(P )| , 3 + 9k

k
n - 1

3

\biggl( 

n

3

\biggr) \biggr\} 

.

Proof. Let E = \{ e \in E(Kn) : | P (e)| \geq 3\} and F be a spanning subgraph of Kn

with edge set E. For every i \in [n], denote by di the degree of vertex i of F . Since
\sum n

i=1 di = 2| E| , the number of vertices with di >
\surd 
\xi n is less than 2| E| \surd 

\xi n
. Therefore,

we obtain

| \scrT 2(P )| \leq 
n
\sum 

i=1

min

\biggl\{ \biggl( 

di
2

\biggr) 

, \xi 

\biggl( 

n

2

\biggr) \biggr\} 

<
2| E| \surd 
\xi n

\cdot \xi n
2

2
+
\sum 

di\leq 
\surd 
\xi n

d2i
2

\leq 2| E| \surd 
\xi n

\cdot \xi n
2

2
+

2| E| \surd 
\xi n

\cdot \xi n
2

2
= 2| E| 

\sqrt{} 

\xi n \leq k

1 + 3k
n| E| ,

(6)

where the third inequality follows from the concavity of the function x2. The rest of
the proof is divided into two cases.
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Case 1: | E| \geq 2+6k
k n - 1

3

\bigl( 

n
2

\bigr) 

. Consider all triangles of Kn with at least one edge
in E. Note that if a triangle has at least one edge in E and belongs to neither \scrT 3(P )
nor \scrT 2(P ), then it induces a rainbow triangle in P . Together with (6), we have

k| \scrT 3(P )| \geq k

\biggl( 

| E| (n - 2) - 2| \scrT 2(P )|  - 3n - 1
3

\biggl( 

n

3

\biggr) \biggr) 

\geq k

\biggl( 

1 + k

1 + 3k
n| E|  - 2| E|  - 3n - 1

3

\biggl( 

n

3

\biggr) \biggr) 

=
k

1 + 3k
n| E| + k

\biggl( 

k

1 + 3k
n| E|  - 2| E|  - 3n - 1

3

\biggl( 

n

3

\biggr) \biggr) 

\geq k

1 + 3k
n| E| \geq | \scrT 2(P )| ,

where the fourth inequality is given by | E| \geq 2+6k
k n - 1

3

\bigl( 

n
2

\bigr) 

for sufficiently large n.

Case 2: | E| < 2+6k
k n - 1

3

\bigl( 

n
2

\bigr) 

. In this case, we have

| \scrT 2(P )| < 1

2
| E| (n - 2) <

3 + 9k

k
n - 1/3

\biggl( 

n

3

\biggr) 

.

5.2. Stability of Gallai 3-templates of dense noncomplete graphs.

Lemma 5.2. Let 0 < \xi \leq 1
64 and n - 1/3 \ll \delta \ll 1. Let G be a graph of order n,

and e(G) \geq (1 - \xi )
\bigl( 

n
2

\bigr) 

. Assume that P is a Gallai 3-template of G with | Ga(P,G)| >
2(1 - \delta )(n2). Then | \scrT 1(P )| \geq (1 - 40\delta )

\bigl( 

n
3

\bigr) 

.

Proof. Let | \scrT 1(P )| = \alpha 
\bigl( 

n
3

\bigr) 

, | \scrT 2(P )| = \beta 
\bigl( 

n
3

\bigr) 

, | \scrT 3(P )| = \eta 
\bigl( 

n
3

\bigr) 

, and | \scrT 4(P )| = \gamma 
\bigl( 

n
3

\bigr) 

.

Then | \scrT 5(P )| \leq (1 - \alpha  - \beta  - \eta )
\bigl( 

n
3

\bigr) 

. Observe that for every T \in \scrT 4(P ), the template
P contains a rainbow triangle with edge set T ; therefore, we obtain that | \scrT 4(P )| \leq 
RT (P ) \leq n - 1/3

\bigl( 

n
3

\bigr) 

, which gives \gamma \leq n - 1/3.
Define for e \in E(Kn) the weight function

w(e) =

\Biggl\{ 

1 if P (e) = \emptyset ,
| P (e)| otherwise.

Similarly to the proof of Lemma 4.2, the number of Gallai 3-colorings of G which are
subtemplates of P satisfies

(7)

log | Ga(P,G)| \leq log

\Biggl( 

\prod 

e\in Kn

| w(e)| 
\Biggr) 

= log

\Biggl( 

\prod 

T\in \scrT 

\prod 

e\in T

| w(e)| 
\Biggr) 

1
n - 2

\leq log

\Biggl( 

\prod 

T\in \scrT 1

23
\prod 

T\in \scrT 2

32
\prod 

T\in \scrT 3

6
\prod 

T\in \scrT 4

33
\prod 

T\in \scrT 5

22

\Biggr) 

\cdot 1

n - 2

\leq (3\alpha + 2\beta log 3 + \eta log 6 + 3\gamma log 3 + 2(1 - \alpha  - \beta  - \eta ))
1

3

\biggl( 

n

2

\biggr) 

=
\Bigl( 

2 + \alpha + (2 log 3 - 2)\beta + (log 6 - 2)\eta + 3n - 1/3 log 3
\Bigr) 1

3

\biggl( 

n

2

\biggr) 

.

Let k = 1. By Lemma 5.1, we have \beta \leq max\{ \eta , 12n - 1/3\} . Assume that \alpha <
1 - 40\delta . The rest of the proof shall be divided into two cases.
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Case 1: \beta \leq \eta . If \eta < 20\delta , continuing (7) we have

log | Ga(P,G)| \leq 
\Bigl( 

2 + \alpha + (2 log 3 + log 6 - 4) \eta + 3n - 1/3 log 3
\Bigr) 1

3

\biggl( 

n

2

\biggr) 

\leq (2 + (1 - 40\delta ) + 1.8 \cdot 20\delta + \delta )
1

3

\biggl( 

n

2

\biggr) 

= (1 - \delta )

\biggl( 

n

2

\biggr) 

.

Otherwise, together with \alpha \leq 1 - \beta  - \eta , continuing (7) we obtain that

log | Ga(P,G)| \leq 
\Bigl( 

3 + (2 log 3 - 3)\beta + (log 6 - 3)\eta + 3n - 1/3 log 3
\Bigr) 1

3

\biggl( 

n

2

\biggr) 

\leq 
\Bigl( 

3 + (2 log 3 + log 6 - 6) \eta + 3n - 1/3 log 3
\Bigr) 1

3

\biggl( 

n

2

\biggr) 

\leq (3 - 0.2 \cdot 20\delta + \delta )
1

3

\biggl( 

n

2

\biggr) 

= (1 - \delta )

\biggl( 

n

2

\biggr) 

.

Case 2: \beta \leq 12n - 1/3. Together with \eta \leq 1  - \alpha and \alpha < 1  - 40\delta , continuing (7)
we have

log | Ga(P,G)| \leq 
\Bigl( 

2 + \alpha + 2 log 3 \cdot 12n - 1/3 + (log 6 - 2)(1 - \alpha ) + 3n - 1/3 log 3
\Bigr) 1

3

\biggl( 

n

2

\biggr) 

\leq 
\Bigl( 

log 6 + (3 - log 6)\alpha + 27n - 1/3 log 3
\Bigr) 1

3

\biggl( 

n

2

\biggr) 

\leq (log 6 + (3 - log 6)(1 - 40\delta ) + \delta )
1

3

\biggl( 

n

2

\biggr) 

< (1 - \delta )

\biggl( 

n

2

\biggr) 

.

Both cases contradict our assumption that | Ga(P,G)| > 2(1 - \delta )(n2).

Similarly as in the proof of Theorem 4.3, using Lemmas 2.7 and 5.2, we obtain
the following theorem.

Theorem 5.3. Let 0 < \xi \leq 1
64 and n - 1/3 \ll \delta \ll 1. Let G be a graph of

order n and e(G) \geq (1  - \xi )
\bigl( 

n
2

\bigr) 

. Assume that P is a Gallai 3-template of G with

| Ga(P,G)| > 2(1 - \delta )(n2). Then there exist two colors i, j \in [3] such that the number of

edges of Kn with palette \{ i, j\} is at least (1 - 37 \cdot 40\delta )
\bigl( 

n
2

\bigr) 

.

5.3. Proof of Theorem 1.9.

Proof of Theorem 1.9. Let \scrC be the collection of containers given by Theorem 2.4
for r = 3. Note that every Gallai 3-coloring of G is a subtemplate of some P \in \scrC . Let
\delta = log - 11 n. We define

\scrC 1 =
\Bigl\{ 

P \in \scrC : | Ga(P,Kn)| \leq 2(1 - \delta )(n2)
\Bigr\} 

, \scrC 2 =
\Bigl\{ 

P \in \scrC : | Ga(P,Kn)| > 2(1 - \delta )(n2)
\Bigr\} 

.

Similarly to the proof of Theorem 1.1, applying Theorems 2.4, 3.1, and 5.3, we obtain
that

| Ga(\scrC , G)| = | Ga(\scrC 1, G)| + | Ga(\scrC 2, G)| \leq 2
 - n2

4 log11 n 2(
n
2)

+ 3 \cdot 
\Bigl( 

2e(G) + 2
 - n

3 log2 n 2(
n
2)
\Bigr) 

\leq 3 \cdot 2e(G) + 2
 - n

4 log2 n 2(
n
2).
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6. Gallai r-colorings of noncomplete graphs. Theorem 1.11 is a direct con-
sequence of the following three theorems.

Theorem 6.1. For n, r \in N with r \geq 4, there exists n0 such that for all n > n0

the following holds. For a graph G of order n with e(G) \geq (1  - log - 11 n)
\bigl( 

n
2

\bigr) 

, the

number of Gallai r-colorings of G is strictly less than r\lfloor n
2/4\rfloor .

Theorem 6.2. Let n, r \in N with r \geq 4, and 0 < \xi \ll 1. For a graph G of order n
with \lfloor n2/4\rfloor < e(G) \leq \lfloor n2/4\rfloor + \xi n2, the number of Gallai r-colorings of G is strictly

less than r\lfloor n
2/4\rfloor .

Theorem 6.3. For n, r \in N with r \geq 4, there exists n0 such that for all n > n0

the following holds. Let n - 1/36 \ll \xi \leq 1
2 log

 - 11 n \ll 1. For a graph G of order n with

( 14 +3\xi )n2 \leq e(G) \leq ( 12  - 3\xi )n2, the number of Gallai r-colorings of G is strictly less

than r\lfloor n
2/4\rfloor .

6.1. Proof of Theorem 6.1 for r ≥ 5.

Lemma 6.4. Let n, r \in N with r \geq 5 and 0 < \xi \leq 1
900 . Assume that G is a graph

of order n with e(G) \geq (1  - \xi )
\bigl( 

n
2

\bigr) 

, and P is a Gallai r-template of G. Then, for

sufficiently large n,

| Ga(P,G)| \leq r
1
2 (

n
2) \cdot 2 - 0.007(n2).

Proof. Let \scrT be the collection of triangles of Kn. For a given r-template P
of order n, we again use the partition (5). Let | \scrT 1(P )| = \alpha 

\bigl( 

n
3

\bigr) 

, | \scrT 2(P )| = \beta 
\bigl( 

n
3

\bigr) 

,

| \scrT 3(P )| = \eta 
\bigl( 

n
3

\bigr) 

, and | \scrT 4(P )| = \gamma 
\bigl( 

n
3

\bigr) 

. Then | \scrT 5(P )| \leq (1  - \alpha  - \beta  - \eta )
\bigl( 

n
3

\bigr) 

. Note that
for every T \in \scrT 4(P ), the template P contains a rainbow triangle with edge set T ;
therefore, we obtain that | \scrT 4(P )| \leq RT(P ) \leq n - 1/3

\bigl( 

n
3

\bigr) 

, which gives \gamma \leq n - 1/3.
Define for e \in E(Kn) the weight function

w(e) =

\Biggl\{ 

1 if P (e) = \emptyset ,
| P (e)| otherwise.

Similarly, as in Lemma 5.2, the number of Gallai r-colorings of G, which is a subtem-
plate of P , satisfies

(8)

log | Ga(P,G)| \leq log

\Biggl( 

\prod 

T\in \scrT 1

23
\prod 

T\in \scrT 2

r2
\prod 

T\in \scrT 3

2r
\prod 

T\in \scrT 4

r3
\prod 

T\in \scrT 5

22

\Biggr) 

\cdot 1

n - 2

\leq (3\alpha + 2\beta log r + \eta log 2r + 3\gamma log r + 2(1 - \alpha  - \beta  - \eta ))
1

3

\biggl( 

n

2

\biggr) 

\leq 
\Bigl( 

2 + \alpha + (2 log r  - 2)\beta + (log r  - 1)\eta + 3n - 1/3 log r
\Bigr) 1

3

\biggl( 

n

2

\biggr) 

.

Let k = 1/12. By Lemma 5.1, we have \beta \leq max\{ k\eta , 3+9k
k n - 1/3\} . The rest of the

proof shall be divided into two cases.
Case 1: \beta \leq k\eta . Together with \alpha \leq (1 - \beta  - \eta ), continuing (8) we have

log | Ga(P,G)| \leq 
\Bigl( 

3 + (2 log r  - 3)\beta + (log r  - 2)\eta + 3n - 1/3 log r
\Bigr) 1

3

\biggl( 

n

2

\biggr) 

\leq 
\Bigl( 

3 + ((2k + 1) log r  - (3k + 2)) \eta + 3n - 1/3 log r
\Bigr) 1

3

\biggl( 

n

2

\biggr) 

.
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Note that (2k+1) log r - (3k+2) is positive as r \geq 4. Therefore, together with \eta \leq 1
and k = 1

12 , we obtain that

log | Ga(P,G)| \leq 
\biggl( 

7

6
log r +

3

4
+ 3n - 1/3 log r

\biggr) 

1

3

\biggl( 

n

2

\biggr) 

\leq 
\biggl( 

3

2
log r  - 0.023 + 3n - 1/3 log r

\biggr) 

1

3

\biggl( 

n

2

\biggr) 

\leq 1

2

\biggl( 

n

2

\biggr) 

log r  - 0.007

\biggl( 

n

2

\biggr) 

,

where the second inequality follows from ( 13 log r  - 3
4 ) \geq 0.023 as r \geq 5.

Case 2: \beta \leq 3+9k
k n - 1/3. Together with \alpha \leq (1 - \eta ), continuing (8) we have

log | Ga(P,G)| \leq 
\biggl( 

3 + (log r  - 2)\eta + 2 log r \cdot 3 + 9k

k
n - 1/3 + 3n - 1/3 log r

\biggr) 

1

3

\biggl( 

n

2

\biggr) 

\leq 
\biggl( 

3

2
log r  - 

\biggl( 

1

2
log r  - 1

\biggr) 

+

\biggl( 

2 + 6k

k
+ 1

\biggr) 

3n - 1/3 log r

\biggr) 

1

3

\biggl( 

n

2

\biggr) 

\leq 
\biggl( 

3

2
log r  - 0.16 + 0.01

\biggr) 

1

3

\biggl( 

n

2

\biggr) 

=
1

2

\biggl( 

n

2

\biggr) 

log r  - 0.05

\biggl( 

n

2

\biggr) 

,

where the third inequality holds for r \geq 5 and sufficiently large n.

Using Lemma 6.4, we prove a stronger theorem for the case r \geq 5.

Theorem 6.5. For n, r \in N with r \geq 5 and 0 < \xi \leq 1
900 , there exists n0 such that

for all n > n0 the following holds. If G is a graph of order n, and e(G) \geq (1 - \xi )
\bigl( 

n
2

\bigr) 

,

then the number of Gallai r-colorings of G is less than r
1
2 (

n
2).

Proof. Let \scrC be the collection of containers given by Theorem 2.4. Theorem
2.4 indicates that every Gallai r-coloring of G is a subtemplate of some P \in \scrC and

| \scrC | \leq 2cn
 - 1/3 log2 n(n2) for some constant c, which only depends on r. We may assume

that all templates P in \scrC are Gallai r-templates of G. By property (ii) of Theorem 2.4,
we always have RT(P ) \leq n - 1/3

\bigl( 

n
3

\bigr) 

. Suppose that for a template P there exists an
edge e \in E(G) with | P (e)| = 0. Then we would obtain | Ga(P,G)| = 0 as a Gallai
r-coloring of G requires at least one color on each edge. Now applying Lemma 6.4 on
every container P \in \scrC , we obtain that the number of Gallai r-colorings of G is at most

\sum 

P\in \scrC 
| Ga(P,G)| \leq | \scrC | \cdot r 1

2 (
n
2) \cdot 2 - 0.007(n2) < r

1
2 (

n
2)

for n sufficiently large.

6.2. Proof of Theorem 6.1 for r = 4. Given two colors R and B, consider a
4-template P of order n in which every edge of Kn has palette \{ R,B\} . For a constant
0 < \varepsilon \ll 1 and a graph G with e(G) >

\bigl( 

n
2

\bigr) 

 - 2\varepsilon n, we can easily check that P is

a Gallai 4-template of G and | Ga(P,G)| = 2e(G) > 4
1
2 (

n
2) - \varepsilon n. This indicates that

Lemma 6.4 fails to hold when r = 4. Instead, we shall apply the same technique
as for 3-colorings: prove a stability result to determine the approximate structure of
r-templates, which would contain too many Gallai r-colorings, and then apply this
together with Theorem 3.1 to obtain the desired bound.

Lemma 6.6. Let n - 1/3 \ll \delta \ll 1. Let G be a graph of order n with e(G) \geq 
(1  - \delta )

\bigl( 

n
2

\bigr) 

. Assume that P is a Gallai 4-template of G with | Ga(P,G)| > 2(1 - \delta )(n2).
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Then the number of triangles T of Kn with
\sum 

e\in T | P (e)| = 6 and P (e) = P (e\prime ) for

every e, e\prime \in T is at least (1 - 16\delta )
\bigl( 

n
3

\bigr) 

.

Proof. Let \scrT be the collection of triangles of Kn. We define

\scrT 1 =
\bigl\{ 

T \in \scrT | \sum e\in T | P (e)| = 6 and P (e) = P (e\prime ) for every e, e\prime \in T
\bigr\} 

,

\scrT 2 = \{ T \in \scrT | \exists e \in T, | P (e)| = 0\} ,
\scrT 3 = \{ T \in \scrT | T = \{ e1, e2, e3\} , | P (e1)| = 4, | P (e2)| = | P (e3)| = 1\} ,
\scrT 4 =

\bigl\{ 

T \in \scrT \setminus (\scrT 1 \cup \scrT 2 \cup \scrT 3) | 
\sum 

e\in T | P (e)| \geq 6
\bigr\} 

,

\scrT 5 =
\bigl\{ 

T \in \scrT \setminus \scrT 2 | \sum e\in T | P (e)| \leq 5
\bigr\} 

.

Let | \scrT 1| = \alpha 
\bigl( 

n
3

\bigr) 

, | \scrT 2| = \beta 
\bigl( 

n
3

\bigr) 

, | \scrT 3| = \eta 
\bigl( 

n
3

\bigr) 

, and | \scrT 4| = \gamma 
\bigl( 

n
3

\bigr) 

. Then

| \scrT 5| = (1 - \alpha  - \beta  - \eta  - \gamma )

\biggl( 

n

3

\biggr) 

.

Since G satisfies e(G) \geq (1 - \delta )
\bigl( 

n
2

\bigr) 

and P is a Gallai template, we have | \scrT 2| \leq \delta 
\bigl( 

n
2

\bigr) 

\cdot n \leq 
6\delta 
\bigl( 

n
3

\bigr) 

, and therefore \beta \leq 6\delta . Observe that for every T \in \scrT 4, the template P contains a

rainbow triangle with edge set T ; therefore, we obtain that | \scrT 4| \leq RT (P ) \leq n - 1/3
\bigl( 

n
3

\bigr) 

,

which gives \gamma \leq n - 1/3.
Define for e \in E(Kn) the weight function

w(e) =

\Biggl\{ 

1 if P (e) = \emptyset ,
| P (e)| otherwise.

Assume that \alpha < 1 - 16\delta . Similarly, as in Lemma 5.2, the number of Gallai 4-colorings
of G which is a subtemplate of P satisfies

log | Ga(P,G)| \leq log
\bigl( 
\prod 

T\in \scrT 1
23
\prod 

T\in \scrT 2
42
\prod 

T\in \scrT 3
4
\prod 

T\in \scrT 4
43
\prod 

T\in \scrT 4
4
\bigr) 

\cdot 1
n - 2

\leq (3\alpha + 4\beta + 2\eta + 6\gamma + 2(1 - \alpha  - \beta  - \eta  - \gamma )) 1
3

\bigl( 

n
2

\bigr) 

= (2 + \alpha + 2\beta + 4\gamma ) 1
3

\bigl( 

n
2

\bigr) 

< (2 + (1 - 16\delta ) + 13\delta ) 1
3

\bigl( 

n
2

\bigr) 

= (1 - \delta )
\bigl( 

n
2

\bigr) 

.

This contradicts the assumption that | Ga(P,G)| > 2(1 - \delta )(n2).

Similarly, as in Theorem 4.3, applying Lemmas 2.7 and 6.6, we obtain the follow-
ing.

Theorem 6.7. Let n - 1/3 \ll \delta \ll 1. Let G be a graph of order n with e(G) \geq 
(1  - \delta )

\bigl( 

n
2

\bigr) 

. Assume that P is a Gallai 4-template of G with | Ga(P,G)| > 2(1 - \delta )(n2).
Then there exist two colors i, j \in [4] such that the number of edges of Kn with palette

\{ i, j\} is at least (1 - 145 \cdot 16\delta )
\bigl( 

n
2

\bigr) 

.

Proof of Theorem 6.1 for r = 4. Let \scrC be the collection of containers given by
Theorem 2.4 for r = 4. Note that every Gallai 4-coloring of G is a subtemplate of
some P \in \scrC . Let \delta = log - 11 n. We define

\scrC 1 =
\Bigl\{ 

P \in \scrC : | Ga(P,G)| \leq 2(1 - \delta )(n2)
\Bigr\} 

, \scrC 2 =
\Bigl\{ 

P \in \scrC : | Ga(P,G)| > 2(1 - \delta )(n2)
\Bigr\} 

.

Similarly, as in the proof of Theorem 1.1, applying Theorems 2.4, 3.1, and 6.7, we
obtain that

| Ga(\scrC , G)| = | Ga(\scrC 1, G)| + | Ga(\scrC 2, G)| \leq 2
 - n2

4 log11 n 2(
n
2) + 6

\Bigl( 

2e(G) + 2
 - n

3 log2 n 2(
n
2)
\Bigr) 

\leq 6 \cdot 2e(G) + 2
 - n

4 log2 n 2(
n
2) < 4\lfloor n

2/4\rfloor .
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6.3. Proof of Theorem 6.2. A book of size q consists of q triangles sharing a
common edge, which is known as the base of the book. We write bk(G) for the size
of the largest book in a graph G and call it the booksize of G.

Lemma 6.8. Let n, r \in Z
+ with r \geq 4, 0 < \alpha , \beta \ll 1, and G be a graph of order n.

Assume that there exists a partition V (G) = A\cup B satisfying the following conditions:

(i) \delta (G[A,B]) \geq ( 12  - \alpha )n;

(ii) ∆(G[A]), ∆(G[B]) \leq \beta n.

Then the number of Gallai r-colorings of G is at most r\lfloor n
2/4\rfloor . Furthermore, if e(G) \not =

\lfloor n2/4\rfloor , then the number of Gallai r-colorings of G is strictly less than r\lfloor n
2/4\rfloor .

Proof. By condition (i), we have ( 12  - \alpha )n \leq | A| , | B| \leq ( 12 + \alpha )n. Let e(G) =
\lfloor n2/4\rfloor +m. Without loss of generality, we can assume that m > 0 and e(G[A]) \geq m

2 .

Then there exists a matching M in G[A] of size at least e(G[A])
2∆(G[A]) - 1 \geq m

4\beta n .

For two vertices u, v \in A, the number of their common neighbors in B is at least

| B|  - 2 (| B|  - \delta (G[A,B])) = 2\delta (G[A,B]) - | B| \geq 2

\biggl( 

1

2
 - \alpha 

\biggr) 

n - 
\biggl( 

1

2
+ \alpha 

\biggr) 

n \geq n

3
.

Then, for every e \in G[A], there exists a book graph Be of size n/3 with the base
e. Let \scrB = \{ Be | e \in M\} . Note that M is a matching, and therefore book graphs
in \scrB are edge-disjoint. Another crucial fact is that for every B \in \scrB , the number of

r-colorings of B without rainbow triangles is at most r (r + 2(r  - 1))
n/3

< r(3r)n/3,
since once we color the base edge, each triangle must be colored in the way that two
of its edges share the same color. Hence, the number of Gallai r-colorings of G is at
most

\bigl( 

r(3r)
n
3

\bigr) | M | 
re(G) - | M | (1+2\cdot n3 )

= re(G) - (1 - logr 3)| M | \cdot n3 \leq r\lfloor n
2/4\rfloor +m - (1 - logr 3) m

4βn \cdot n3 < r\lfloor n
2/4\rfloor ,

where the last inequality is given by \beta \ll 1.

Lemma 6.9. Let n, r \in Z
+ with r \geq 4, 0 < \alpha \prime , \beta \ll 1, 0 < \alpha , \gamma , \xi \ll \varepsilon \ll 1, and G

be a graph of order n with e(G) \leq \lfloor n2/4\rfloor + \xi n2. Assume that there exists a partition

V (G) = A \cup B \cup C satisfying the following conditions:

(i) dG[A,B](v) \geq 
\bigl( 

1
2  - \alpha 

\bigr) 

n for all but at most \gamma n vertices in A \cup B;

(ii) \delta (G[A,B]) \geq 
\bigl( 

1
2  - \alpha \prime \bigr) n;

(iii) ∆(G[A]), ∆(G[B]) \leq \beta n;

(iv) 0 < | C| \leq \gamma n;

(v) for every v \in C, both d(v,A), d(v,B) \geq r\varepsilon n.

Then the number of Gallai r-colorings of G is strictly less than r\lfloor n
2/4\rfloor .

Proof. By condition (i), we have

(9)

\biggl( 

1

2
 - \alpha 

\biggr) 

n \leq | A| , | B| \leq 
\biggl( 

1

2
+ \alpha 

\biggr) 

n.

For a vertex v, a set S, a set of colors \scrR , and a coloring of G, let N(v, S;\scrR ) be
the set of vertices u \in N(v, S), such that uv is colored by some color in \scrR . Let
d(v, S;\scrR ) = | N(v, S;\scrR )| . Denote by \scrC 1 the set of Gallai r-colorings of G, in which
there exist a vertex v \in C, and two disjoint sets of colors \scrR 1 and \scrR 2, such that both
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d(v,A;\scrR 1), d(v,B;\scrR 2) \geq \varepsilon n. Let \scrC 2 be the set of Gallai r-colorings of G, which are
not in \scrC 1.

We first show that \scrC 1 = o(r\lfloor n
2/4\rfloor ). We shall count the ways to color G so that

the resulting colorings are in \scrC 1. First, we color the edges in G[C,A\cup B]; the number
of ways is at most re(G[C,A\cup B]). Once we fix the colors of edges in G[C,A \cup B], by
the definition of \scrC 1, there exist a vertex v \in C, and two disjoint sets of colors \scrR 1 and
\scrR 2, such that d(v,A;\scrR 1), d(v,B;\scrR 2) \geq \varepsilon n. We observe that for every edge e = uw
between N1 = N(v,A;\scrR 1) and N2 = N(v,B;\scrR 2), e either shares the same color
with uv, or with vw, as otherwise we would obtain a rainbow triangle uvw. Then the
number of ways to color edges in G[N1, N2] is at most 2e(G[N1,N2]) \leq r

1
2 e(G[N1,N2]).

Note that by condition (i), inequality (9), and \alpha , \gamma \ll \varepsilon , we have

e(G[N1, N2]) \geq (| N1|  - \gamma n)(| N2|  - 2\alpha n) \geq 1

2
\varepsilon 2n2.

Hence, we obtain

logr | \scrC 1| \leq e(G[C,A \cup B]) +
1

2
e(G[N1, N2]) + (e(G) - e(G[C,A \cup B]) - e(G[N1, N2]))

= e(G) - 1

2
e(G[N1, N2]) \leq \lfloor n2/4\rfloor + \xi n2  - 1

4
\varepsilon 2n2,

which indicates | \scrC 1| = o(r\lfloor n
2/4\rfloor ) as \xi \ll \varepsilon .

It remains to estimate the size of \scrC 2. Recall that for a coloring in \scrC 2, for every
vertex v \in C, there are no two disjoint sets of colors \scrR 1 and \scrR 2 such that d(v,A;\scrR 1),
d(v,B;\scrR 2) \geq \varepsilon n.

Claim 4. Let \scrS be a set of r colors. For every coloring in \scrC 2, and every vertex

v \in C, there exists a color R \in \scrS , such that both d(v,A;\scrS \setminus \{ R\} ) < \varepsilon n and d(v,B;\scrS \setminus 
\{ R\} ) < \varepsilon n.

Proof. We arbitrarily fix a coloring in \scrC 2 and a vertex v \in C. By condition (v),
there exists a color R such that d(v,A;R) \geq \varepsilon n. By the definition of \scrC 2, we obtain
that d(v,B;\scrS \setminus \{ R\} ) < \varepsilon n. Then we also have d(v,B;R) \geq d(v,B) - d(v,B;\scrS \setminus \{ R\} ) \geq 
r\varepsilon n - \varepsilon n > \varepsilon n. For the same reason, we obtain that d(v,A;\scrS \setminus \{ R\} ) < \varepsilon n.

By Claim 4, the number of ways to color edges in G[C,A \cup B] is at most

\left( 

 r
\sum 

i\leq \varepsilon n

\biggl( 

n

i

\biggr) 

\sum 

i\leq \varepsilon n

\biggl( 

n

i

\biggr) 

r2\varepsilon n

\right) 

 

| C| 

\leq 
\biggl( 

4r
\Bigl( ne

\epsilon n

\Bigr) 2\varepsilon n

r2\varepsilon n
\biggr) | C| 

\leq r((logr e - logr \varepsilon +1)2\varepsilon n+2)| C| < r
| C| n

3 ,

where the last inequality is given by (logr e - logr \varepsilon + 1) 2\varepsilon \ll 1
3 as \varepsilon \ll 1. Note that

by conditions (ii)–(iv), we have
\bullet \delta (G[A,B]) \geq 

\bigl( 

1
2  - \alpha \prime \bigr) n \geq 

\bigl( 

1
2  - \alpha \prime \bigr) (| A| + | B| );

\bullet ∆(G[A]),∆(G[B]) \leq \beta n \leq \beta 
1 - \gamma (| A| + | B| ).

Applying Lemma 6.8 on G[A \cup B], we obtain that the number of ways to color edges

in G[A\cup B] is at most r
(n - | C| )2

4 . A trivial upper bound for the ways to color the rest

of the edges, that is, the edges in G[C] is r(
| C| 
2 ). Hence, we have

logr | \scrC 2| \leq 
| C| n
3

+
(n - | C| )2

4
+

\biggl( | C| 
2

\biggr) 

=
n2

4
 - 
\biggl( 

n

6
 - 3

4
| C| + 1

2

\biggr) 

| C| \leq \lfloor n2/4\rfloor  - 1

4
,
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where the last inequality is given by 0 < | C| \leq \gamma n and \gamma \ll 1. Finally, we obtain that
the number of Gallai r-colorings of G is

| \scrC 1| + | \scrC 2| \leq o(r\lfloor n
2/4\rfloor ) + r\lfloor n

2/4\rfloor  - 1
4 < r\lfloor n

2/4\rfloor .

Lemma 6.10. Let n, r \in Z
+ with r \geq 4, \alpha , \beta , \gamma , \xi \ll 1, and G be a graph of

order n with \lfloor n2/4\rfloor < e(G) \leq \lfloor n2/4\rfloor + \xi n2. Assume that there exists a partition

V (G) = A \cup B \cup C satisfying the following conditions:

(i) \delta (G[A,B]) \geq ( 12  - \alpha )n;

(ii) ∆(G[A]), ∆(G[B]) \leq \beta n;

(iii) 0 < | C| \leq \gamma n;

(iv) for every v \in C, d(v) \geq n/2.

Then the number of Gallai r-colorings of G is strictly less than r\lfloor n
2/4\rfloor .

Proof. Let \alpha , \gamma , \xi \ll \varepsilon \ll 1. Let C1 = \{ v \in C | d(v,A) < r\varepsilon n\} , and C2 =
\{ v \in C | d(v,B) < r\varepsilon n\} . By conditions (iii) and (iv), for every v \in C1, we
have d(v,B) \geq 

\bigl( 

1
2  - \gamma  - r\varepsilon 

\bigr) 

n. Similarly, for every v \in C2, we have d(v,A) \geq 
\bigl( 

1
2  - \gamma  - r\varepsilon 

\bigr) 

n. Define

A\prime = A \cup C1, B\prime = B \cup C2, C \prime = C \setminus (C1 \cup C2).

If C \prime = \emptyset , then we obtain a new partition V (G) = A\prime \cup B\prime satisfying the following
properties:

\bullet \delta (G[A\prime , B\prime ]) \geq min\{ 
\bigl( 

1
2  - \alpha 

\bigr) 

n,
\bigl( 

1
2  - \gamma  - r\varepsilon 

\bigr) 

n\} =
\bigl( 

1
2  - \gamma  - r\varepsilon 

\bigr) 

n;
\bullet ∆(G[A\prime ]), ∆(G[B\prime ]) \leq min\{ (\beta + \gamma )n, (r\varepsilon + \gamma )n\} .

Together with e(G) > \lfloor n2/4\rfloor , by Lemma 6.8, we obtain that the number of Gallai

r-colorings of G is strictly less than r\lfloor n
2/4\rfloor . Otherwise, we obtain a new partition

V (G) = A\prime \cup B\prime \cup C \prime satisfying the following properties:
\bullet dG[A\prime ,B\prime ](v) \geq 

\bigl( 

1
2  - \alpha 

\bigr) 

n for all but at most \gamma n vertices in A\prime \cup B\prime ;
\bullet \delta (G[A\prime , B\prime ]) \geq 

\bigl( 

1
2  - \gamma  - r\varepsilon 

\bigr) 

n;
\bullet ∆(G[A\prime ]), ∆(G[B\prime ]) \leq min\{ (\beta + \gamma )n, (r\varepsilon + \gamma )n\} ;
\bullet 0 < | C \prime | \leq | C| \leq \gamma n;
\bullet for every v \in C \prime , both d(v,A\prime ), d(v,B\prime ) \geq r\varepsilon n.

Together with e(G) \leq \lfloor n2/4\rfloor + \xi n2, by Lemma 6.9, the number of Gallai r-colorings

of G is strictly less than r\lfloor n
2/4\rfloor .

Now, we prove a lemma which is crucial to the proof of Theorem 6.2.

Lemma 6.11. Let n, r \in Z
+ with r \geq 4, \alpha , \beta , \gamma , \xi \ll 1, and G be a graph of

order n with \lfloor n2/4\rfloor < e(G) \leq \lfloor n2/4\rfloor + \xi n2. Assume that there exists a partition

V (G) = A \cup B \cup C satisfying the following conditions:

(i) \delta (G[A,B]) \geq ( 12  - \alpha )n;

(ii) ∆(G[A]), ∆(G[B]) \leq \beta n;

(iii) | C| \leq \gamma n.

Then the number of Gallai r-colorings of G is strictly less than r\lfloor n
2/4\rfloor .

Proof. By Lemma 6.8, we can assume that | C| > 0 without loss of generality. We
begin with the graph G and greedily remove a vertex in C with degree strictly less
than | G| /2 in G to obtain a smaller subgraph. Let G\prime be the resulting graph when
the algorithm terminates, and n\prime = | V (G\prime )| . We remark that G\prime is not unique and it
depends on the order of removing vertices. Without loss of generality, we can assume
that n\prime < n, as otherwise we are done by applying Lemma 6.10 on G.
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Let A\prime = A, B\prime = B, and C \prime = V (G\prime )\cap C. Clearly, we have G\prime = G[A\prime \cup B\prime \cup C \prime ].
Furthermore, by the mechanics of the algorithm, we have

(10) e(G) \leq e(G\prime ) +
1

2

\biggl( \biggl( 

n

2

\biggr) 

 - 
\biggl( 

n\prime 

2

\biggr) \biggr) 

.

We first claim that e(G\prime ) > \lfloor (n\prime )2/4\rfloor , as otherwise we would have

e(G) \leq \lfloor (n\prime )2/4\rfloor + 1

2

\biggl( \biggl( 

n

2

\biggr) 

 - 
\biggl( 

n\prime 

2

\biggr) \biggr) 

\leq \lfloor n2/4\rfloor ,

which contradicts the assumption of the lemma. On the other hand, since n\prime \geq 
(1 - \gamma )n, we obtain that

e(G) \leq \lfloor n2/4\rfloor + \xi n2 \leq \lfloor (n\prime )2/4\rfloor + \gamma + 2\xi 

2(1 - \gamma )2
(n\prime )2.

Let \xi \prime = \gamma +2\xi 
2(1 - \gamma )2 . Then we have

(11) \lfloor (n\prime )2/4\rfloor < e(G\prime ) \leq \lfloor (n\prime )2/4\rfloor + \xi \prime (n\prime )2.

If C \prime = \emptyset , we obtain a vertex partition V (G\prime ) = A\prime \cup B\prime satisfying
\bullet \delta (G\prime [A\prime , B\prime ]) \geq ( 12  - \alpha )n \geq ( 12  - \alpha )n\prime ;

\bullet ∆(G\prime [A]), ∆(G\prime [B]) \leq \beta n \leq \beta 
1 - \gamma n

\prime .

Together with (11), by Lemma 6.8, we obtain that the number of Gallai r-colorings of

G\prime , denoted by | \scrC (G\prime )| , is strictly less than r\lfloor n
2/4\rfloor . Otherwise, we find the partition

V (G\prime ) = A\prime \cup B\prime \cup C \prime satisfying:
\bullet \delta (G\prime [A\prime , B\prime ]) \geq ( 12  - \alpha )n \geq ( 12  - \alpha )n\prime ;

\bullet ∆(G\prime [A]), ∆(G\prime [B]) \leq \beta 
1 - \gamma n

\prime ;

\bullet 0 < | C \prime | \leq \gamma n \leq \gamma 
1 - \gamma n

\prime ;

\bullet for every v \in C \prime , d(v) \geq n\prime 

2 .

Together with (11), by Lemma 6.10, we obtain that | \scrC (G\prime )| < r\lfloor (n
\prime )2/4\rfloor . Combining

with (10), we conclude that the number of Gallai r-colorings of G, denoted by | \scrC (G)| ,
satisfies

logr | \scrC (G)| \leq logr | \scrC (G\prime )| +(e(G) - e(G\prime )) < \lfloor (n\prime )2/4\rfloor + 1

2

\biggl( \biggl( 

n

2

\biggr) 

 - 
\biggl( 

n\prime 

2

\biggr) \biggr) 

\leq \lfloor n2/4\rfloor ,

which completes the proof.

Another important tool we need is the stability property of book graphs proved
by Bollobás and Nikiforov [10].

Theorem 6.12 (see [10]). For every 0 < \alpha < 10 - 5 and every graph G of order

n with e(G) \geq ( 14  - \alpha )n2, either

bk(G) >

\biggl( 

1

6
 - 2\alpha 1/3

\biggr) 

n

or G contains an induced bipartite graph G1 of order at least (1  - \alpha 1/3)n and with

minimum degree

\delta (G1) \geq 
\biggl( 

1

2
 - 4\alpha 1/3

\biggr) 

n.
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Proof of Theorem 6.2. Let e(G) = \lfloor n2/4\rfloor +m, where 0 < m \leq \xi n2. We construct
a family \scrB of book graphs by the following algorithm. We start the algorithm with
\scrB = \emptyset and G0 = G. In the ith iteration step, if there exists a book graph B of size n

7
in Gi, we let \scrB = \scrB \cup \{ B\} , and Gi = Gi - 1  - e, where e is the base edge of B. The
algorithm terminates when there is no book graph of size n/7. Let E0 be the set of
base edges of \scrB , and \tau = 7/(1 - logr 3).

Suppose that | \scrB | \geq 2\tau m. Since | E0| = | \scrB | \geq 2\tau m, the edge set E0 contains a

matching M of size | E0| 
2(n - 1) - 1 > \tau m/n. Let \scrB \prime be the set of book graphs in \scrB whose

base edges are in M . Since M is a matching, book graphs in \scrB \prime are edge-disjoint.
Note that for every B \in \scrB ‘, the number of r-colorings of B without rainbow triangles
is at most r(r+ 2(r - 1))n/7 < r(3r)n/7. Then the number of Gallai colorings of G is
at most
\bigl( 

r(3r)
n
7

\bigr) | M | 
re(G) - | M | (1+2\cdot n7 ) = r\lfloor n

2/4\rfloor +m - (1 - logr 3)| M | n7 < r\lfloor n
2/4\rfloor +m - m = r\lfloor n

2/4\rfloor .

It remains to consider the case for | \scrB | < 2\tau m. Without loss of generality, we can
assume that there is no matching of size greater than \tau m/n in E0. Let G

\prime = G - E0.
Then we have

e(G\prime ) > \lfloor n2/4\rfloor  - (2\tau  - 1)m.

Furthermore, by the construction of G\prime , we obtain that bk(G\prime ) < n/7. Let \alpha =
(2\tau  - 1) \xi . By applying Theorem 6.12 on G\prime , we obtain that there is a vertex partition
V (G\prime ) = A\prime \cup B\prime \cup C \prime with | C \prime | \leq \alpha 1/3n, such that A\prime , B\prime are independent sets, and

\delta (G\prime [A\prime , B\prime ]) \geq 
\biggl( 

1

2
 - 4\alpha 1/3

\biggr) 

n.

Let G0 be the spanning subgraph of G with edge set E0. For a small constant \beta with
\xi \ll \beta \ll 1, let V0 be the set of vertices in G0 with degree more than \beta n. Since
| E0| < 2\tau m \leq 2\tau \xi n2, we have | V0| \leq (4\tau \xi /\beta )n \leq \beta n. Let A = A\prime \setminus V0, B = B\prime \setminus V0,
and C = C \prime \cup V0. Then we obtain a vertex partition V (G) = A\cup B \cup C satisfying the
following conditions:

\bullet \delta (G[A,B]) \geq ( 12  - 4\alpha 1/3  - \beta )n;
\bullet ∆(G[A]), ∆(G[B]) \leq \beta n;
\bullet | C| \leq (\alpha 1/3 + \beta )n.

By Lemma 6.11, we obtain that the number of Gallai r-colorings of G is strictly less
than r\lfloor n

2/4\rfloor .

6.4. Proof of Theorem 6.3. We say that a graph G is t-far from being k-
partite if \chi (G\prime ) > k for every subgraph G\prime \subset G with e(G\prime ) > e(G)  - t. We will use
the following theorem of Balogh et al. [3].

Theorem 6.13 (see [3]). For every n, k, t \in N, the following holds. Every graph

G of order n which is t-far from being k-partite contains at least

nk - 1

e2k \cdot k!

\biggl( 

e(G) + t - 
\biggl( 

1 - 1

k

\biggr) 

n2

2

\biggr) 

copies of Kk+1.

Proposition 6.14. Let n \in N and 0 < \varepsilon \leq 1. Every graph F on at least \varepsilon n
vertices, which contains at most n - 1/3

\bigl( 

n
3

\bigr) 

triangles, satisfies

e(F ) \leq | F | 2
4

+
e4

6n1/3\varepsilon 3
| F | 2.
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Proof. Let t = e4

6n1/3\varepsilon 3
| F | 2. Assume that e(F ) > | F | 2

4 + t. Then F is t-far from
being bipartite. By Theorem 6.13, the number of triangles in F is at least

| F | 
2e4

\biggl( 

e(F ) + t - | F | 2
4

\biggr) 

>
| F | 
2e4

\cdot 2t = 1

6n1/3\varepsilon 3
| F | 3 > n - 1/3

\biggl( 

n

3

\biggr) 

,

which gives a contradiction.

For an r-template P of order n, we say that an edge e of Kn is an r-edge of P if
| P (e)| \geq 3. An r-edge e is typical if the number of rainbow triangles containing e is
at most n11/12. We then immediately obtain the following proposition.

Proposition 6.15. For an r-template of order n containing at most n - 1/3
\bigl( 

n
3

\bigr) 

rainbow triangles, the number of r-edges of P , which is not typical, is at most n11/6.

We now prove the following lemma.

Lemma 6.16. Let n, r \in N with r \geq 4, and n - 1/33 \ll \xi \leq 1
2 log

 - 11 n \ll 1. Assume

that G is a graph of order n with ( 14 + 3\xi )n2 \leq e(G) \leq ( 12  - 3\xi )n2, and P is a Gallai

r-template of G. Then, for sufficiently large n,

logr | Ga(P,G)| \leq n2

4
 - \xi 3

n2

2
+ 4n23/12.

Proof. We first construct a subset I of [n] and a sequence of graphs
\{ G0, G1, . . . , G\ell \} by the following algorithm. We start the algorithm with I = \emptyset 
and G0 = G. In the ith iteration step, we either add a vertex v to I, whose degree is
at most ( 12  - \xi 2)(| Gi|  - 1) in the graph Gi, or add a pair of vertices \{ u, v\} to I, where
uv is a typical r-edge satisfying | NGi

(u) \cap NGi
(v)| \geq 2\xi 2(| Gi|  - 2). In both cases, we

define Gi+1 = G  - I. The algorithm terminates when neither of the above types of
vertices exists.

Assume that the algorithm terminates after \ell steps. Let G\prime = G\ell and k = | G\prime | .
We now make the following claim.

Claim 5.

logr | Ga(P,G)| \leq 
\biggl( 

1

2
 - \xi 2

\biggr) \biggl( 

n2

2
 - k2

2

\biggr) 

+ 3n23/12 + logr | Ga(P,G\prime )| .

Proof. In the ith iteration step of the above algorithm, if we add to I a single
vertex v, then the number of ways to color the incident edges of v in Gi satisfies

logr
\prod 

e is incident to
v in Gi

| P (e)| \leq dGi
(v) \leq ( 12  - \xi 2)(| Gi|  - 1).

Now we assume that what we add is a pair of vertices \{ u, v\} . For every w \in 
NGi

(u)\cap NGi
(v), vertices uvw either span a rainbow triangle in P , or satisfy | P (uw)| =

| P (vw)| = 1. Together with the fact that uv is a typical r-edge, we obtain that the
number of ways to color the edges, which are incident to v or u in Gi, satisfies

logr
\prod 

e is incident to
u or v in Gi

| P (e)| \leq | Gi|  - 2 - | NGi
(u) \cap NGi

(v)| + 2n11/12 + 1

\leq (1 - 2\xi 2)(| Gi|  - 2) + 2n11/12 + 1.

From the above discussion, we conclude that the number of ways to color edges in
E(G) - E(G\prime ) satisfies

logr
\prod 

e\in E(G) - E(G\prime ) | P (e)| \leq 
\bigl( 

1
2  - \xi 2

\bigr) 

\Bigl( 

n2

2  - k2

2

\Bigr) 

+ n(1 + 2n11/12),

which implies the claim.
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We now split the proof into several cases.
Case 1: k \leq \xi 2n. Then | Ga(P,G\prime )| \leq rk

2/2 \leq r\xi 
4n2/2, and therefore by Claim 5

and \xi \ll 1, we obtain that

logr | Ga(P,G)| \leq 
\biggl( 

1

2
 - \xi 2

\biggr) 

n2

2
+ 3n23/12 + \xi 4n2/2 \leq n2

4
 - \xi 2

n2

4
+ 3n23/12.

Case 2: e(G\prime ) >
\bigl( 

1
2  - 2\xi 

\bigr) 

k2 and k > \xi 2n. Since 2\xi \leq log - 11 n \leq log - 11 k for

sufficiently large n, Theorem 6.1 indicates that | Ga(P,G\prime )| \leq rk
2/4. We claim that

k \leq (1 - \xi )n, as otherwise we would have

e(G) \geq e(G\prime ) >

\biggl( 

1

2
 - 2\xi 

\biggr) 

k2 >

\biggl( 

1

2
 - 2\xi 

\biggr) 

(1 - \xi )2n2 \geq 
\biggl( 

1

2
 - 3\xi 

\biggr) 

n2,

which contradicts the assumption of the lemma. Therefore, by Claim 5, we obtain
that

logr | Ga(P,G)| \leq 
\biggl( 

1

2
 - \xi 2

\biggr) \biggl( 

n2

2
 - k2

2

\biggr) 

+3n23/12+
k2

4
\leq n2

4
 - \xi 2

n2

2
+ \xi 2

k2

2
+ 3n23/12

\leq n2

4
 - \xi 2

n2

2
+ \xi 2(1 - \xi )2

n2

2
+ 3n23/12 \leq n2

4
 - \xi 3

n2

2
+ 3n23/12.

Case 3: e(G\prime ) <
\bigl( 

1
4 + 2\xi 

\bigr) 

k2 and k > \xi 2n. Since 2\xi \ll 1, Theorem 6.2 indicates

that | Ga(P,G\prime )| \leq rk
2/4. We claim that k \leq (1 - \xi )n, as otherwise we would have

e(G) <

\biggl( 

n2

2
 - k2

2

\biggr) 

+

\biggl( 

1

4
+ 2\xi 

\biggr) 

k2 <
n2

2
 - 
\biggl( 

1

4
 - 2\xi 

\biggr) 

k2

<
n2

2
 - 
\biggl( 

1

4
 - 2\xi 

\biggr) 

(1 - \xi )2n2 \leq n2

2
 - 
\biggl( 

1

4
 - 3\xi 

\biggr) 

n2 =

\biggl( 

1

4
+ 3\xi 

\biggr) 

n2,

which contradicts the assumption of the lemma. Similarly, as in Case 2, we obtain
that

logr | Ga(P,G)| \leq 
\biggl( 

1

2
 - \xi 2

\biggr) \biggl( 

n2

2
 - k2

2

\biggr) 

+ 3n23/12 +
k2

4
\leq n2

4
 - \xi 3

n2

2
+ 3n23/12.

Case 4: ( 14 + 2\xi )k2 \leq e(G\prime ) \leq ( 12  - 2\xi )k2 and k > \xi 2n. Denote by er(G
\prime ) the

number of r-edges of P in G\prime . Let A = \{ v \in V (G\prime ) | dG\prime (v) \leq 
\bigl( 

1
2 + \xi 

\bigr) 

k\} .
Claim 6. All the typical r-edges of G\prime have both endpoints in A.

Proof. First, by the construction of G\prime , we have the following two properties: for
every v \in V (G\prime ),

(12) dG\prime (v) >

\biggl( 

1

2
 - \xi 2

\biggr) 

(k  - 1),

and for every typical r-edge uv in G\prime ,

(13) dG\prime (u) + dG\prime (v) \leq 2 + (k  - 2) + | NGi
(u) \cap NGi

(v)| < (1 + 2\xi 2)k.

Suppose that there exists a typical r-edge uv such that u is not in A, i.e., dG\prime (u) >
\bigl( 

1
2 + \xi 

\bigr) 

k. Then by (12) and \xi \ll 1, we have

dG\prime (u) + dG\prime (v) >

\biggl( 

1

2
+ \xi 

\biggr) 

k +

\biggl( 

1

2
 - \xi 2

\biggr) 

(k  - 1) > (1 + 2\xi 2)k,

which contradicts (13).
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Subcase 4.1: | A| \leq \xi k. By Proposition 6.15 and Claim 6, we have

er(G
\prime ) \leq 

\biggl( | A| 
2

\biggr) 

+ n11/6 \leq \xi 2
k2

2
+ n11/6.

Therefore, together with the assumption of Case 4, we obtain that

logr | Ga(P,G\prime )| \leq logr

\Bigl( 

rer(G
\prime )2e(G

\prime ) - er(G
\prime )
\Bigr) 

\leq 1

2
(e(G\prime ) + er(G

\prime ))

\leq 1

2

\biggl( \biggl( 

1

2
 - 2\xi 

\biggr) 

k2 + \xi 2
k2

2
+ n11/6

\biggr) 

=
k2

4
 - 
\biggl( 

\xi  - 1

4
\xi 2
\biggr) 

k2 +
1

2
n11/6.

Then by Claim 5,

logr | Ga(P,G)| \leq 
\biggl( 

1

2
 - \xi 2

\biggr) \biggl( 

n2

2
 - k2

2

\biggr) 

+ 3n23/12 +
k2

4
 - 
\biggl( 

\xi  - 1

4
\xi 2
\biggr) 

k2 +
1

2
n11/6

\leq n2

4
 - \xi 2

n2

2
 - 
\biggl( 

\xi  - 3

4
\xi 2
\biggr) 

k2 + 4n23/12 \leq n2

4
 - \xi 2

n2

2
+ 4n23/12,

where the last inequality is given by \xi \ll 1.
Subcase 4.2: | A| > \xi k. By the definition of A, the number of nonedges of G\prime is at

least

(14)
1

2

\biggl( 

k  - 1 - 
\biggl( 

1

2
+ \xi 

\biggr) 

k

\biggr) 

| A| = 1

2

\biggl( \biggl( 

1

2
 - \xi 

\biggr) 

k  - 1

\biggr) 

| A| .

We first claim that

(15) | A| \leq 1 - 8\xi 

1 - 2\xi 
k,

as otherwise we would obtain that the number of nonedges of G\prime is more than

1

2

\biggl( 

1

2
 - \xi 

\biggr) 

k \cdot 1 - 8\xi 

1 - 2\xi 
k  - | A| 

2
\geq 
\biggl( 

1

4
 - 2\xi 

\biggr) 

k2  - k

2

which contradicts the assumption of Case 4. Inequality (15) implies that

(16) (1 - 2\xi )k  - | A| \geq 4\xi k.

By Propositions 6.14 and 6.15, since | A| > \xi k > \xi 3n, we have

er(G
\prime ) \leq e(G\prime [A]) + n11/6 \leq | A| 2

4
+

e4

6n1/3\xi 9
| A| 2 + n11/6,

as otherwise we would find more than n - 1/3
\bigl( 

n
3

\bigr) 

rainbow triangles, which contradicts

the assumption that P is a Gallai r-template of G. Since \xi \gg n - 1/33, we have

(17) er(G
\prime ) \leq | A| 2

4
+

\xi 2

2
| A| 2 + n11/6.

Combining (14), (16), and (17), we have

logr | Ga(P,G\prime )| \leq 1

2
(e(G\prime ) + er(G

\prime ))

\leq 1

2

\biggl( \biggl( 

k

2

\biggr) 

 - 1

2

\biggl( \biggl( 

1

2
 - \xi 

\biggr) 

k  - 1

\biggr) 

| A| + | A| 2
4

+
\xi 2

2
| A| 2 + n11/6

\biggr) 

\leq k2

4
 - | A| 

8
((1 - 2\xi )k  - | A| ) + \xi 2

4
| A| 2 + 1

2
n11/6

\leq k2

4
 - \xi 

2
| A| k +

\xi 2

4
| A| 2 + 1

2
n11/6.
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Then by Claim 5 and the assumption of Subcase 4.2, we obtain that

logr | Ga(P,G)| \leq 
\biggl( 

1

2
 - \xi 2

\biggr) \biggl( 

n2

2
 - k2

2

\biggr) 

+ 3n23/12 +
k2

4
 - \xi 

2
| A| k +

\xi 2

4
| A| 2 + 1

2
n11/6

<

\biggl( 

1

2
 - \xi 2

\biggr) \biggl( 

n2

2
 - k2

2

\biggr) 

+ 3n23/12 +
k2

4
 - \xi 2

2
k2 +

\xi 2

4
n2 +

1

2
n11/6

\leq n2

4
 - \xi 2

n2

4
+ 4n23/12.

Proof of Theorem 6.3. Let \scrC be the collection of containers given by Theorem
2.4. Theorem 2.4 indicates that every Gallai r-coloring of G is a subtemplate of some

P \in \scrC and | \scrC | \leq 2cn
 - 1/3 log2 n(n2) for some constant c, which only depends on r. We

may assume that all templates P in \scrC are Gallai r-templates of G. By property (ii)
of Theorem 2.4, we always have RT(P ) \leq n - 1/3

\bigl( 

n
3

\bigr) 

. Suppose that for a template P
there exists an edge e \in E(G) with | P (e)| = 0. Then we would obtain | Ga(P,G)| = 0
as a Gallai r-coloring of G requires at least one color on each edge. Now applying
Lemma 6.16 on every container P \in \scrC , we obtain that the number of Gallai r-colorings
of G is at most

\sum 

P\in \scrC 
| Ga(P,G)| \leq | \scrC | \cdot r n2

4  - \xi 3 n2

2 +4n23/12

< r\lfloor n
2/4\rfloor ,

where the last inequality follows from \xi \gg n - 1/36 for n sufficiently large.
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