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Abstract. An edge coloring of a graph G is a Gallai coloring if it contains no rainbow triangle.

We show that the number of Gallai r-colorings of Ky, is ((g) + o(l))2(2). This result indicates that
almost all Gallai r-colorings of K, use only 2 colors. We also study the extremal behavior of Gallai
r-colorings among all n-vertex graphs. We prove that the complete graph K, admits the largest
number of Gallai 3-colorings among all n-vertex graphs when n is sufficiently large, while for » > 4,
it is the complete bipartite graph K|, 2| rn/27- Our main approach is based on the hypergraph
container method, developed independently by Balogh, Morris, and Samotij as well as by Saxton
and Thomason, together with some stability results.
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1. Introduction. An edge coloring of a graph G is a Gallai coloring if it contains
no rainbow triangle, that is, no triangle is colored with three distinct colors. The term
Gallai coloring was firSst introduced by Gydrfds and Simonyi [18], but this concept
had already occurred in an important result of Gallai [15] on comparability graphs,
which can be reformulated in terms of Gallai colorings. It also turns out that Gallai
colorings are relevant to generalizations of the perfect graph theorem [11], and some
applications in information theory [22]. There are a variety of papers which consider
structural and Ramsey-type problems on Gallai colorings; see, e.g., [14, 16, 17, 18, 25].

Two important themes in extremal combinatorics are to enumerate discrete struc-
tures that have certain properties and describe their typical properties. In this paper,
we shall be concerned with Gallai colorings from such an extremal perspective.

1.1. Gallai colorings of complete graphs. For an integer r > 3, an r-coloring
is an edge coloring that uses at most r colors. By choosing two of the r colors and
coloring the edges of K, arbitrarily with these two colors, one can easily obtain that
the number of Gallai r-colorings of K, is at least

(;) (26 —2) 47 = @2@ —

If we further consider all Gallai r-colorings of K, using exactly 3 colors, red, green,
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—
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and blue, in which the red color is used only once, the number of them is exactly

(3) o)

Combining with (1), for n sufficiently large, a trivial lower bound for the number of
Gallai r-colorings of K, is

(2) ((2) i 2—”> 2(3).

Motivated by a question of Erddés and Rothchild [12] and the resolution by Alon et
al. [1], Benevides, Hoppen, and Sampaio [9] studied the general problem of counting
the number of edge colorings of a graph that avoid a subgraph colored with a given
pattern. In particular, they proved that the number of Gallai 3-colorings of K, is at
most 3(n —1)!- 2("2"). At the same time, Falgas-Ravry, O’Connell, and Uzzell [13]
provided a weaker upper bound of the form 2(1+0(1))(72L), which is a consequence of the
multicolor container theory. Very recently, Bastos et al. [8] improved the upper bound

to 7(n+ 1)2(3). Note that the gap between the best upper bound and the trivial lower

bound is a linear factor. We show that the lower bound is indeed closer to the truth,
and this actually applies for any integer r. Our first main result is as follows.

THEOREM 1.1. For every integer r > 3, there exists ng such that for all n > ng,
the number of Gallai r-colorings of the complete graph K, is at most

()0

Given a class of graphs A, we denote by A,, the set of graphs in A of order n.
We say that almost all graphs in A have property B if

lim {G € A, : G has property B}| _

n—»00 | Al

1.

Recall that the number of Gallai r-colorings with at most 2 colors is (2)2(;) —r(r—2).
Then the description of the typical structure of Gallai r-colorings immediately follows
from Theorem 1.1.

COROLLARY 1.2. For every integer r > 3, almost all Gallai r-colorings of the
complete graph are 2-colorings.

1.2. The extremal graphs of Gallai colorings. There have been considerable
advances in edge coloring problems whose origin can be traced back to a question of
Erdés and Rothchild [12], who asked which n-vertex graph admits the largest number
of r-colorings avoiding a copy of F' with a prescribed colored pattern, where r is a
positive integer and F' is a fixed graph. In particular, the study for the extremal
graph of Gallai colorings, that is the case when F' is a triangle with rainbow pattern,
has received attention recently. A graph G on n vertices is Gallai r-extremal if
the number of Gallai r-colorings of G is largest over all graphs on n vertices. For
r > 5, the Gallai r-extremal graph has been determined by Hoppen, Lefmann, and
Odermann [19, 20, 21].
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THEOREM 1.3 (see [20]). For all r > 10 and n > 5, the only Gallai r-extremal
graph of order n is the complete bipartite graph K\, /) [n/2]-

THEOREM 1.4 (see [20]). For all r > 5, there exists ng such that for all n > ng,
the only Gallair-extremal graph of order n is the complete bipartite graph K|y, 2|, 1n /2] -

For the cases r € {3, 4}, several approximate results were given.

THEOREM 1.5 (see [9]).  There exists ng such that the following hold for all
n > nyg.
(i) For alld > 0, if G is a graph of order n, then the number of Gallai 3-colorings
of G is at most 20+9)n*/2,
(i) For all £ > 0, if G is a graph of order n, and e(G) < (1 —&)(3), then the
number of Gallai 3-colorings of G is at most 2(5).

We remark that part (i) of Theorem 1.5 was also proved in [20], and the authors
further provided an upper bound for r» = 4.

THEOREM 1.6 (see [20]). There exists ng such that the following hold for all n >
ng. For all 6 > 0, if G is a graph of order n, then the number of Gallai 4-colorings
of G is at most 401+9)n*/4,

The above theorems show that for r € {3,4}, the complete graph K, is not
far from being Gallai r-extremal, while for r = 4, the complete bipartite graph
K| /2],rn/2) 1s also close to be Gallai r-extremal. Benevides, Hoppen, and Sampaio [9]
made the following conjecture.

CONJECTURE 1.7 (see [9]). The only Gallai 3-extremal graph of order n is the
complete graph K, .

For the case r = 4, Hoppen, Lefmann, and Odermann [20] believed that K|, /2] 1n/2]
should be the extremal graph.

CONJECTURE 1.8 (see [20]). The only Gallai 4-extremal graph of order n is the
complete bipartite graph K|z [n/2]-

Using a similar technique to Theorem 1.1, we prove an analogous result for dense
noncomplete graphs when r = 3.

THEOREM 1.9. For 0 < £ < 6%1, there exists ng such that for all n > ng the

following holds. If G is a graph of order n, and e(G) > (1 — 5)(72’), then the number
of Gallai 3-colorings of G is at most

3.2¢6) 4 o T 9(5),
Together with Theorem 1.5 and the lower bound (2), Theorem 1.9 solves Conjec-

ture 1.7 for sufficiently large n.

THEOREM 1.10. There exists ng such that for all n > ng, among all graphs of
order n, the complete graph K, is the unique Gallai 3-extremal graph.

Our third contribution is the following theorem.

THEOREM 1.11. For n,r € N with r > 4, there exists ng such that for all n > ng
the following holds. If G is a graph of order n, and e(G) > |n?/4|, then the number

of Gallai r-colorings of G is less than rln®/4],

We remark that for a graph G with e(G) = [n?/4], which is not K\, /2 n/27,
G contains at least one triangle. Therefore, the number of Gallai r-colorings of G is
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at most 7(r 4+ 2(r — 1))r¢(@—3 < rln®/4] As a direct consequence of Theorem 1.11
and the above remark, we reprove Theorem 1.4 and, in particular, we show that
Conjecture 1.8 is true for sufficiently large n.

THEOREM 1.12. There exists ng such that for all n > ng, among all graphs of
order m, the complete bipartite graph K\, 2| [n/2] 15 the unique Gallai 4-extremal
graph.

1.3. Overview of the paper. Combining Szemerédi’s regularity lemma and
the stability method was used in many earlier works on extremal problems, including
Erdos—Rothchild-type problems; see, e.g., [1, 2, 9, 20]. However, our main approach
relies on the method of hypergragh containers, developed independently by Balogh,
Morris, and Samotij [4] as well as by Saxton and Thomason [24], and some stability
results for containers, which may be of independent interest to readers.

The paper is organized as follows. First, in section 2, we introduce some important
definitions and then state a container theorem which is applicable to colorings. In
section 3, we present a key enumeration result on the number of colorings with special
restrictions, which will be used repeatedly in the rest of the paper. Then in section 4,
we study the stability behavior of the containers for the complete graph, and apply
the multicolor container theorem to give an asymptotic upper bound for the number
of Gallai r-colorings of the complete graph. In section 5, we deal with the Gallai
3-colorings of dense noncomplete graphs; the idea is the same as in section 4 except
that we need to provide a new stability result which is applicable to noncomplete
graphs.

In the second half of the paper, that is, in section 6, we study the Gallai r-colorings
of noncomplete graphs for r > 4. When the underlying graph is very dense, that is,
close to complete graph, we apply the same strategy as in section 4 for the case r = 4,
where we prove a proper stability result for containers. The case r > 5 is even simpler,
in which we actually prove that the number of Gallai colorings in each container is
small enough. When the underlying graph has edge density close to i, i.e., the edge
density of the extremal graph, some new ideas are needed, and we also adopt a result
of Bollobés and Nikiforov [10] on book graphs. For the rest of the graphs whose edge
densities are between 1 +0(1) and 2 —o(1), we use a supersaturation result of triangle-
free graphs given by Balogh et al. [3], and the above results on Gallai r-colorings for
both high density graphs and low density graphs.

For a positive integer n, we write [n] = {1,2,...,n}. For a graph G and a set
A C V(G), the induced subgraph G[A] is the subgraph of G whose vertex set is A and
whose edge set consists of all of the edges with both endpoints in A. For two disjoint
subsets A, B C V(G), the induced bipartite subgraph G[A, B] is the subgraph of G
whose vertex set is A U B and whose edge set consists of all of the edges with one
endpoint in A and the other endpoint in B. Denote by §(G) the minimum degree of
G, and by A(G) the maximum degree of G. For a graph G and a vertex v € V(G),
let Ng(v) be the neighborhood of v, i.e., the set of vertices adjacent to v in G, and
da(v) = |Ng(v)| be the degree of v. For a set A C V(G), the neighborhood of v
restricted to A is the set Ng(v,A) = Ng(v) N A; the degree of v restricted to A,
denoted by dg(v, A), is the size of Ng(v, A). When the underlying graph is clear,
we simply write N(v), d(v), N(v, A), and d(v, A) instead. Throughout the paper,
we omit all floor and ceiling signs whenever these are not crucial. Unless explicitly
stated, all n-vertex graphs are assumed to be defined on the vertex set [n], and all
logarithms have base 2.
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2. Preliminaries.

2.1. The hypergraph container theorem. We use the following version of the
hypergraph container theorem (Theorem 3.1 in [6]). Let H be a k-uniform hypergraph
with average degree d. The codegree of a set of vertices S C V(#H) is the number of
edges containing S, that is,

d(S)={e€ E(H)| S Ce}.
For every integer 2 < j < k, the jth maximum codegree of H is
Aj(H) = max{d(5) | S C V(H), |S] = j}-

When the underlying hypergraph is clear, we simply write it as A;. For 0 < 7 < 1,
the co-degree function A(H,T) is defined as

dri—1’

k
A(H,7) = 28713 9 (5) 24

In particular, when k = 3,

4A 2A:
A(H7T) = 77'2 Fj

THEOREM 2.1 (see [6]). Let H be a k-uniform hypergraph on vertex set [N]. Let
0 < e, 7 < 1/2. Suppose that 7 < 1/(200k'?k) and A(H,7) < /(12k!). Then there
exists ¢ = c(k) < 1000k!3k and a collection of vertex subsets C such that

(i) every independent set in H is a subset of some A € C;

(ii) for every A €C, e(H[A]) <e-e(H);
(iii) log|C| < eNTlog(1/e)log(1/T).

2.2. Definitions and multicolor container theorem. A key tool in applying
container theory to multicolored structures will be the notion of a template. This
notion of template, which was first introduced in [13], goes back to [24] under the name
of “2-colored multigraphs” and later to [7], where it is simply called “containers.” For
more studies about the multicolor container theory, we refer the interested reader to
[4, 5,7, 13, 24].

DEFINITION 2.2 (template and palette). An r-template of order n is a function
P : BE(K,) — 2"l associating with each edge e of K, a list of colors P(e) C [r]; we
refer to this set P(e) as the palette available at e.

DEFINITION 2.3 (subtemplate). Let Py, Py be two r-templates of order n. We
say that Py is a subtemplate of Po (written as Py C Po) if Pi(e) C Py(e) for every
edge e € E(K,,).

We observe that for G C K,,, an r-coloring of G can be considered as an r-template
of order n, with only one color allowed at each edge of G and no color allowed at each
nonedge. For an r-template P, write RT(P) for the number of subtemplates of P that
are rainbow triangles. We say that P is rainbow-triangle-free if RT(P) = 0. Using
the container method, Theorem 2.1, we obtain the following.

THEOREM 2.4. For every r > 3, there exists a constant ¢ = ¢(r) and a collection
C of r-templates of order n such that
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(i) every rainbow-triangle-free r-template of order n is a subtemplate of some
PecC;
(ii) for every P € C, RT(P) < n='/3(});
(iii) || < 2ot n(3),

Proof. Let H be a 3-uniform hypergraph with vertex set F(K,) x {1,2,...,r},
whose edges are all triples {(e1,d1), (€2, dz), (e3,ds)} such that ey, es, e3 form a triangle
in K,, and dy, do, d3 are all different. In other words, every hyperedge in H corresponds
to a rainbow triangle of K,,. Note that there are exactly r(r—1)(r—2) ways to rainbow
color a triangle with r colors. Hence, the average degree d of H is equal to

_ 3e(H) _ 3r(r—1)(r—2) (g)
v(H) (%)

2

d = -1 —-2)(n-2).

For the application of Theorem 2.1, let e = n~3 /r(r—1)(r—2) and 7 = V72 - 3! - rn" 3.
Observe that Ax(H) = r — 2, and Ag(H) = 1. For n sufficiently large, we have
7 <1/(200-312-3) and

-2, 2 3 _ ¢

dr dr? — dr?2 — 12-3!
Hence, there is a collection C of vertex subsets satisfying properties (i)—(iii) of Theo-
rem 2.1. Observe that every vertex subset of H corresponds to an r-template of order

n; every rainbow-triangle-free r-template of order n corresponds to an independent
set in H. Therefore, C is a desired collection of r-templates. 0

A(H,T) =

DEFINITION 2.5 (Gallai r-template). For a graph G of order n, an r-template P

of order n is a Gallai r-template of G if it satisfies the following properties:
(i) for every e € E(G), |P(e)| > 1;

(i) RT(P) < n=3(%).

For a graph G of order n and a collection P of r-templates of order n, denote by
Ga(P, G) the set of Gallai r-colorings of G which is a subtemplate of some P € P. If
P consists of a single template P, then we simply write it as Ga(P, G).

2.3. A technical lemma. In this section, we provide a lemma that will be useful
to us in what follows. We use a special case of the weak Kruskal-Katona theorem due
to Lovasz [23].

THEOREM 2.6 (Lovasz [23]). Suppose G is a graph with (”2”) edges for some real
number x > 2. Then the number of triangles of G is at most (g), with equality if and
only if x is an integer and G = K.

LEmMMA 2.7. Let n,r € N with r > 3 and % - % <e< % If G is an r-colored
graph of order n, which contains at least (1—¢) (g) monochromatic triangles, then there
exists a color ¢ such that the number of edges colored by c is at least e(G) — 47“25(3),

Proof. We shall prove this lemma by contradiction. Let § = 472¢. Assume that
none of the colors is used on at least e(G) — §(7) edges.

First, we conclude that e(G) > (1 —¢)(}). If not, then by Theorem 2.6, the
number of triangles of G is less than

e () " - (5)

which contradicts the assumption.
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a c
° )
red Pt blue
[ 2 [ J
b d

Fi1G. 1. Two cases of a red-blue pair of edges.

By the pigeonhole principle, we can assume without loss of generality that the
set of red edges in G, denoted by R(G), satisfies |R(G)| > (1 — ¢)(})/r. By the
contradiction assumption, we have |R(G)| < e(G) — §(5). Therefore, the number of
nonred edges is greater than 5(3) Again, without loss of generality, we can assume
that the set of blue edges in G, denoted by B(G), satisfies [B(G)| > () /.

For an edge in R(G) and an edge in B(G), these two edges either share one
endpoint or are vertex disjoint; see Figure 1. In the first case (see Figure 1(a)) the
triple abc could not form a monochromatic triangle of G. In the latter case (see
Figure 1(b)) at least one of abc and bed is not a monochromatic triangle of G.

Let NT(G) be the family of triples {a, b, ¢} which does not form a monochromatic
triangle of G. The above discussion shows that each pair of red and blue edges
generates at least one triple in NT(G). Observe that each triple in NT(G) can be
counted in at most 2 + 3(n — 3) pairs of red and blue edges. Hence, we obtain that

o= BT () =< (3)

which contradicts the assumption of the lemma. 0
3. Counting Gallai colorings in r-templates. In this section, we aim to
prove the following technical theorem, which will be used repeatedly in the rest of the
paper.
THEOREM 3.1. Let n,r € N with r > 3, and G be a graph of order n. Suppose
that 6 = log™ "' n and k is a positive constant, which does not depend on n. For two

colors i, j € [r], denote by F = F(i,j) the set of r-templates of order n which contain
at least (1 — k6) (%) edges with palette {i,j}. Then, for n sufficiently large,

|Ga(F, Q)| < 2¢(G) 4 97 510g%n 2(3),

Fix two colors 1 <i < j <7, and let S = [r]—{i,7}. For an r-coloring F of G, let
S(F') be the set of edges in G, which are colored by colors in S. From the definition
of F, we immediately obtain the following proposition.

PROPOSITION 3.2. For every F' € Ga(F,G), the number of edges in S(F) is at
most k6 (%).

LEMMA 3.3. Let Fy be the set of F' € Ga(F,G) such that S(F) contains a match-
ing of size onlog®n. Then, for n sufficiently large,

71.2 n
|Fi| < 27 5o a 2(5).
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Proof. Let us consider the ways to color G so that the resulting colorings are in
Fi. We first choose the set of edges E° which will be colored by the colors in S.
Note that ES must contain a matching of size dnlog®n by the definition of F;. By

Proposition 3.2, there are at most ZKM( ) ((g)) choices for such E¥, and the number

"
of ways to color them is at most rk‘s(;). In the next step, take a matching M of size

dnlog®n in ES; the number of ways to choose such a matching is at most (M %{32 n)

Let A=V (M) and B = [n] \ A. Denote by T the set of triangles of K, with a
vertex in B and an edge from M, which contain no edge in E N G[A, B]. We claim
that [7| > 10n?log” n as otherwise we would obtain that

1 1 1
|ES| > |B|-dnlog?n—|T|+|M| > §5n2 loan—zén2 log?n = ZénQ log®n > k&(;),

which, by Proposition 3.2, contradicts the fact that F € Ga(F,G). Note that if a
triangle T" in T contains more than one uncolored edge, then they must have the same
color as in order to avoid the rainbow triangle. Hence, the number of ways to color
the uncolored edges in 7 is at most 2!71.

There remain at most (%) — 2|7 uncolored edges and they can only be colored
by ¢ or j, as edges in Eg are already colored. Hence, the number of ways to color the

rest of the edges is at most 2(5) =271 1 conclusion, we obtain that

F1] < i<%%;) <(§))rk5(’5) (5n 522 n) L2IT1 . 9(3) =271

n2

< 20(5n2 logn) . 20(6n log3n) 2(;‘)—%679 log%n < 2(3)—m. 0O
LEMMA 3.4. For every integer 1 < t < dnlog®n, let F(t) be the set of F €
Ga(F,G), in which the maximum matching of S(F) is of size t. Then, for n suffi-
ciently large,
\F(1)] < 2 Tz a(3).,

Proof. For a fixed t, let us count the ways to color G so that the resulting colorings
are in F(t). By the definition of F(t¢), among all edges which will be colored by the
colors in S, there exists a maximum matching M of size t. We first choose such a
matching; the number of ways is at most ((g)) Once we fix the matching M, let
A =V (M) and B = [n] \ A. By the maximality of M, we immediately obtain the
following claim.

CLAIM 1. None of the edges in G[B] can be colored by the colors in S.

Denote by Cr(S) the set of edges in G[A, B] which will be colored by the colors in
S. For a vertex u € A, denote by Cr(.S,u) the set of edges in Cr(S) with one endpoint
w. Similarly, define Cr({4, j},u) to be the set of edges in G[u, B] which will be colored
by the colors 7 or j. We shall divide the proof into three cases.
Case 1: |Cr(S)| < 2. We first color the edges in G[A] and the number of
2t

log? n
options is at most 7\2/. In the next step, we select and color the edges in Cr(S); by

nt

the above inequality, the number of ways is at most >, ng (Z?t)rlogZ ». By Claim 1,
—Tlog2 n

the remaining edges can only use the colors ¢ or j. Let T be the set of triangles of
K,, formed by a vertex in B and an edge from M, which contain no edge in Cr(.S).
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We claim that |7] > int as otherwise we would obtain

1 1 nt
Cr(S)] 2 [Blt — 7] 2 gnt ot > o
which contradicts the assumption. If a triangle 7" in 7 contains more than one uncol-
ored edge, then they must have the same color in order to avoid the rainbow triangle.
Hence, the number of ways to color the uncolored edges in 7 is at most 2!71.

There remain at most () — 2|7 — (22t) uncolored edges, and they can be colored
by i or j. Therefore the number of ways to color the rest of the edges is at most
2(5)=2T1=(3) 1 conclusion, we obtain that the number of r-coloring F' € F(t) with
|Cr(S)| < 4 is at most

logZn

CIECE.

2ty ot L 9IT] . (3)-2TI= (%)

t - log2 n

nt n 1 n 1

< 90(tlogn)  90(*)  90(5E5) . 9(3)—int < o(3)—3nt < 9(3)-3n

)

where the third inequality is given by ¢2 < t - dnlog?n = nt / log® n.
Case 2: There exists a vertex u € A such that

n .o
3) |Cr(S,u)| = log 1 and  |Cr({i,j},u)| =

log4 n’

We first choose the vertex u, and the number of options is at most 2¢. Moreover, the
number of ways to select and color edges in Cr(S,u) is at most r™2". In the next
step, we color all the uncolored edges in G[A, B] and G[A4], and the number of ways is

at most 72" () Let T be the set of triangles T' = {uvw} of K, in which v, w € B,
wv € Cr(S,u), and uvw € Cr({7,j},u). By the relation (3), we have |T| > 12 For

log8n "

every triangle T' = {uvw} € T, if vw is an edge of G, then by Claim 1 it car;g only be
colored by 7 or j, and must have the same color as uw in order to avoid the rainbow
triangle. Therefore, the number of ways to color the uncolored edges in 7 is 1.

There remain at most (g) — | 7] uncolored edges in B, as other edges are already
colored. By Claim 1, none of the remaining edges in B could use the colors from S.
Therefore, the number of ways to color the rest of the edges is at most 2(3)=IT1 Iy
conclusion, we obtain that the number of F' € F(¢) which is included in Case 2 is at
most

n) n?

((§)> t.pnon .20+ (5) 9(3) =171 < 9O(tlogn) 90(n) 90(nt) o(3)~i2m < 9ls T

where the last inequality is given by the condition that nt < n-énlog®n = n? / log® n.
Case 3: |Cr(S)| > —2— and for every vertex u € A,

log? n

n
4

(4) |Cr(S,u)| <

. n
or ICr({3,7},u)| < —5—.
log™n log™n

We first color the edges in G[A] and the number of ways is at most r(%). By (4), for ev-
ery vertex u € A, the number of ways to select Cr(S, u) is at most 237, ., /g4 1, (1) <

2n/108° n Therefore, the number of ways to select Cr(S) is at most 92nt/log?n
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Subcase 3.1: ¢(G) < (5) — #:6". The number of ways to color Cr(S) is at most

r27t. By Claim 1, the rest of the edges can only be colored by i or j, and the number
of them is at most e(G) — |Cr(S)|. Hence, the number of F' € F(t) covered in Case
3.1 is at most

n

<(2)> (%) 9 ant | 9e(@)—[Cr(9)] < 9O(tlogn)  90mt) . o(3)~ it~ nits

: <
2

2(2) Lge’n
5
S 5 lo.

where the last inequality holds by the condition that nt < mn - dn log;2 n=n?/ log9 n.
Subcase 3.2: e(G) > (5) — 1 For u € A, define Ng(u) = {v e B | uv €

2 4logbn
Cr(S,u)}. Let Gy, be the induced subgraph of G on Ng(u), and denote by ¢(G,,) the
number of components of G,,.

CLAIM 2. For every u € A, we have ¢(G,) < —%

— log®n"”

Proof. Suppose that there exists a vertex u in A with ¢(G,) > long_n. Then

the number of nonedges in G, is at least (bgs n) > ﬁ, which contradicts the
assumption of Case 3.2. O

CLAIM 3. For everyu € A, the number of ways to color Cr(S,u) is at most re(Gu),

Proof. Let C' be an arbitrary component of G,. It is sufficient to prove that for
every v,w € V(C), uwv and uw must have the same color. Assume that there exist
v,w € V(C) such that wv and uw receive different colors. Since C' is a connected
component of G,,, there is a path P = {v = vg,v1,v2,...,vx = w} in G,, in which
uw; is painted by a color in S for every 0 < ¢ < k. Moreover, since uv and uw receive
different colors, there exists an integer 0 < j < k — 1 such that uv; and uv;41 receive
different colors. On the other hand, by Claim 1, v;v;41 can only be colored by i or
j. Therefore, u,v;,vj41 form a rainbow triangle, which is not allowed in a Gallai
r-coloring. 0

By Claims 2 and 3, the number of ways to color Cr(S,u) is at most Toss »and

therefore the total number of ways to color Cr(S) is at most 7“102&?”. By Claim 1, the
rest of the edges can only be colored by ¢ or j, and the number of them is at most
e(@) — |Cr(S)]. Hence, the number of F' € F(t) included in Case 3.2 is at most

<(2)> () o i 9e(G)-1Cx(S)] < 9O(tlogn) | o0 (n) . o(3) - ki
: <

< o(3) = sremrn -1

Eventually, we conclude that

1 n

77.2 n n n n
\F(t)] < 2(8)=5m 4 9(3)-mmew 4 9(8) iz ! < 9 smern o(3)

for every 1 < t < dnlog®n. d

Observe that every r-coloring of G using at most 2 colors is a Gallai r-coloring.
Then we immediately obtain the following lemma.
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LEMMA 3.5. Let Fo be the set of F € Ga(F,G) such that S(F) = 0. Then
| Fo| = 209,

Now, we have all the ingredients to prove Theorem 3.1.

Proof of Theorem 3.1. Applying Lemmas 3.3, 3.4, and 3.5, we obtain that

on/log?n
Ga(F.Q)| = A+ 3 IF@)]+|Fo| < 2@ + 27 mimna)
t=1
for n sufficiently large. ]

4. Gallai r-colorings of complete graphs.

4.1. Stability of the Gallai r-template of complete graphs.

PROPOSITION 4.1. Let n, r € N with r > 3. Suppose P is a Gallai r-template of
K,,. Then the number of edges with at least 3 colors in its palette is at most n="/5n2.

Proof. Let E = {e € E(K,) : |P(e)| > 3} and assume that |E| > n~"/%n2. Let
F be a spanning subgraph of K,, with edge set E. For every ¢ € [n], denote by d; the
degree of vertex ¢ of F'. Then the number of 3-paths in F' is equal to

> (5) 2n(Z) 2o(1) 2 5w (l)

1€[n]

Observe that if 7, j, k is a 3-path in F', then there is at least one rainbow triangle in P
with vertex set {i,7, k} since edges ij, jk have at least 3 colors in its palette and edge
ik has at least one color in its palette. Therefore, there would be more than n=1/3 (g)
rainbow triangles in P, which contradicts the fact that P is a Gallai r-template. 0O

LEMMA 4.2. Let n, r € N with r > 3 and n~1/0 « § <« 1. Assume that P is a
Gallai r-template of K,, with |Ga(P, K,,)| > 20=9(3) . Then the number of triangles
T of Ky with ) .p|P(e)| = 6 and P(e) = P(e') for every e, ¢ € T is at least

(1—48)(3)-
Proof. Let T be the collection of triangles of K,. We define
={T eT|Y . cr|P(e)] =6 and P(e) = P(¢') for every e, ¢’ € T},
E:{T€T|366T |P(e)| > 3},
={T €T\ (MU | Z.er|Ple)| = 6},
7lf{TGT\TMZeeTIP )| <5}

Let [Ti| = (), [T2] = B(%), | T3l = v(3). Then |T4| < (1—a)(5). By Proposition 4.1,
we have |T2| < n —1/6p3 and therefore § < 12n~'/6. Observe that for every T € Ts,
the template P contains a rainbow triangle with edge set T'; therefore, we obtain that
T3] < RT(P) < n~Y/3(%), which gives v < n~1/2 <n~-1/6
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Assume that a < 1 —49. Then the number of Gallai r-colorings of K,,, which are
subtemplates of P, satisfies

log |Ga(P, K,,)|

<o ] |p<e)|):10g<HH|p(e)|>*2

ecE(Ky) TeT eeT
1
<1 93 3 3 2 .
< 0g< H H T H 2 H 2 —
TeTyn TeT: TeTz TeTs
1
< (3a+3Blogr + 37 +2(1 — a)) (n>

< (2+a+ (36logr +8)n~"°) ;z;; < (24 (1— 40) +5);(Z> —a 5)(2).

This contradicts the assumption that |Ga(P, K,,)| > 2(1-0)(3). d
We now prove a stability result for Gallai r-templates of K.

THEOREM 4.3. Letn, r € N with r > 3 and n='/% < § < 1. Assume that P is a

Gallai r-template of K, with |Ga(P, K,,)| > 2-0(3). Then there exist two colors i,
j € [r] such that the number of edges of K,, with palette {i,j} is at least (1—4r*5) ().

Proof. Let G be an (;)—Colored graph with edge set

E(G) ={eec E(Ky) | [P(e)| = 2}

and color set {(4,7) | 1 < i < j < r}, where each edge e is colored by color P(e).
By Lemma 4.2, the number of monochromatic triangles in G is at least (1 — 46)(3).
Applying Lemma 2.7 on G, we obtain that there exist two colors i, j such that the
number of edges with palette {i,j} is at least

e(G)—4<;)2-45<;> > (1-45)(3) —4(;>2.45<’;) > (1—47«45)(;‘). 0

4.2. Proof of Theorem 1.1.

Proof of Theorem 1.1. Let C be the collection of containers given by Theorem 2.4.
We observe that a Gallai r-coloring of K,, can be regarded as a rainbow-triangle-free
r-coloring template of order n, with only one color allowed at each edge. Therefore,
by property (i) of Theorem 2.4, every Gallai r-coloring of K, is a subtemplate of some
PeC.

Let 6 = log™*!' n. We define

¢ = {P eC: |Ga(P,K,)| < 2<1*5>(£‘)} . Co= {P cC: |Ga(P,K,)| > 2<1*5>(£‘)} .

By property (iii) of Theorem 2.4, we have

—1/3 n

n2 n
Qa(Cr, K| < [Ca] - 20-(E) < gen™logn(2) _g(2)los™" n(3) < 9 sy (%),

We claim that every template P in Cy is a Gallai r-template of K,. First, by

property (ii) of Theorem 2.4, we have RT(P) < n~'/3(%). Suppose that there exists
an edge e € F(K,) with |P(e)] = 0. Then we would obtain that Ga(P, K,) = 0
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as a Gallai r-coloring of K, requires at least one color on each edge, which con-
tradicts the definition of C;. Now by Theorem 4.3, we can divide C; into classes
{Fi;,1 <i<j<r}, where F;; consists of all the r-templates in C, which contain
at least (1 — 47%6)(}) edges with palette {i,j}. Applying Theorem 3.1 on F; ;, we

obtain that [Ga(F;, K,)| < (1 + 2 5%77)2(3) and therefore

T _7712 ;
Ga(Cs, ) < 30 Ga(fi,j,mns(g) (1+ 27w 20),

1<i<j<r

Finally, we conclude that
GalC. )| = GaCs, £6,)] + GatCa, )] < ( () 2777557 ) 2,

which gives the desired upper bound for the number of Gallai r-colorings of K,,. 0O

5. Gallai 3-colorings of noncomplete graphs. In this section, we count Gal-
lai 3-colorings of dense noncomplete graphs. We shall explore the stability property
first, and then follow a somewhat similar strategy as in the proof of Theorem 1.1.
The main obstacle is that in a Gallai r-template of a noncomplete graph, a palette
of an edge could be an empty set, which leads to a more sophisticated discussion of
templates.

5.1. Triangles in r-templates of dense graphs. Let T be the collection of
triangles of K,,. For a given r-template P of order n, we partition the triangles into
5 classes. We set an extra class, as a T' € 7 may not be a triangle in G.

TiP)={T € T | X .cr|P(e)| = 6 and P(e) = P(€) for every e, ¢ € T},

To(P)={T € T | T ={e1,ea,e3}, |Ple1)| >3, |Ple2)| >3, and |P(e3z)| = 0},
() Ta(P) ={T € T |T ={er, ez, €3}, |Ple1)| 2 3, |Ple2)| + |P(es)] < 2},

Ta(P)={T e T\ (MU UT) | X.cr |P(e) > 6},

Ts(P)={T € T\ T3 | Xeer IP(e) <5}.

LEMMA 5.1. Let n,r € N withr >4 and 0 < k < 1. F07’0<§<(2+6k)2, let G

be a graph of order n, and e(G) > (1 —£)(}). Assume that P is a Gallai r-template
of G. Then, for sufficiently large n,

|7a<p>|§max{kl75<P>|’ 32%”7 <§>}

Proof. Let E = {e € E(K,): |P(e)| > 3} and F be a spanning subgraph of K,
with edge set E. For every i € [n], denote by d; the degree of vertex ¢ of F. Since

ol

Yo, d; = 2|E|, the number of vertices with d; > \/&n is less than % Therefore,
we obtain
n 2|E| &n? d?
< v o el RS Zi
me s min{(3) ()} <2 5+ 2
(6) d'<fn
2|E 2|E
< AL LS ol < B

~Vén o 2 +\/En _1+3k

where the third inequality follows from the concavity of the function z2. The rest of
the proof is divided into two cases.
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Case 1: |E| > %n*% (). Consider all triangles of K,, with at least one edge

in E. Note that if a triangle has at least one edge in E and belongs to neither 73(P)
nor 73(P), then it induces a rainbow triangle in P. Together with (6), we have

kUHPNZk<EMnﬂ2WHPN&léCD)

1+k 1(n
> E|—2|E|— 303
—k<1+3k” | = 21B] = 3n 3(3))

k k 1(n
= B k(B 2B - 30t
e Bl <1+3k” | —21B] = 3n 3(3))

n|E| = [T2(P)],

>

k
143k
where the fourth inequalit}lr is given by |E| > %n* 3 (g) for sufficiently large n.

Case 2: |E| < Llfkn*E (5). In this case, we have

1 _ 3+9]f _1/3 n
TP < L1l —2) < 35 % ara (),

5.2. Stability of Gallai 3-templates of dense noncomplete graphs.

LEMMA 5.2. Let 0 < £ < & and n~'/3 <« § < 1. Let G be a graph of order n,
and e(G) > (1 —¢€)(3). Assume that P is a Gallai 3-template of G with |Ga(P,G)| >

20-9G). Then |T5(P)| > (1 —408) (2).

Proof. Let |Ti(P)| = a(3), [T2(P)| = B(3), [T3(P)| = n(5), and |Ta(P)| = ~(5)-
Then |75(P)| < (1 —a — B8 —n)(3). Observe that for every T' € T4(P), the template
P contains a rainbow triangle with edge set T'; therefore, we obtain that |T4(P)| <
RT(P) <n~1/3 (3), which gives v < n=1/3,

Define for e € E(K,,) the weight function

w(e) = {1 if P(e) = 0,

|P(e)| otherwise.

Similarly to the proof of Lemma 4.2, the number of Gallai 3-colorings of G which are
subtemplates of P satisfies

1%%m®<m<ﬂmm0ﬁ%ﬁ1nmw>_

ecK, TeT eeT

1
<1 3 2 3 2) .-
con( T2 T TTo 2 1125
TeTy TeT2 TeTs TeTs TeETs
1
§(3a+2610g3—|—7]10g6+3710g3+2(1—a—ﬁ—n))3(7;)

1
= (2 +a+ (2log3 —2)8 + (log6 — 2)n + 3n~1/3 logB) 3 (Z)

Let k = 1. By Lemma 5.1, we have § < max{n, 12n~/3}. Assume that o <
1 —406. The rest of the proof shall be divided into two cases.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/01/21 to 130.126.162.126. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

2430 JOZSEF BALOGH AND LINA LI

Case 1: B <mn. If n < 204, continuing (7) we have

1
log |Ga(P,G)| < (2 o+ (2log3+logh—4)n + 303 1og3) 5 (Z)

g(2+(1—405)+1.8-205+6);(2) :(1_5)@).

Otherwise, together with « < 1 — 8 — 1, continuing (7) we obtain that

1
log |Ga(P,G)| < (3 + (2log3 — 3)8 + (log6 — 3)n 4 3n~ /3 log 3) 3 (;‘)

1
< (3+ (210g3+10g6—6)n+3n‘1/3log3) 3(”)

2
§(3—0.2-206+6);<Z> :(1—5)(;’).

Case 2: B < 12n~1/3. Together with n < 1 —a and o < 1 — 406, continuing (7)
we have

1
log |Ga(P, G)| < (2 +a+2log3-12n13 + (log6 — 2)(1 — a) + 3n"/3log 3) 3 (Z)

1
< (1og6 + (3 — log6)ar + 270" Y3 1og 3) 3 (Z)

< (log 6 + (3 — log 6)(1 — 406) +5)§<;’> < —5)(;‘)

Both cases contradict our assumption that |Ga(P, G)| > 2(1-9)(3). 0

Similarly as in the proof of Theorem 4.3, using Lemmas 2.7 and 5.2, we obtain
the following theorem.

THEOREM 5.3. Let 0 < & < 6%1 and n~Y3 < § < 1. Let G be a graph of
order n and e(G) > (1 —§)(5). Assume that P is a Gallai 3-template of G with

|Ga(P,G)| > 91=9(3) . Then there exist two colors i, j € [3] such that the number of
edges of K,, with palette {i,5} is at least (1 — 37 - 400) (g)

5.3. Proof of Theorem 1.9.

Proof of Theorem 1.9. Let C be the collection of containers given by Theorem 2.4
for r = 3. Note that every Gallai 3-coloring of G is a subtemplate of some P € C. Let
6 =log "' n. We define

¢ = {P €C: |Ga(P,K,)| < 2<1—5><’z‘)} , o= {P eC: |Ga(P,K,)| > 2(1—5><3)} .
Similarly to the proof of Theorem 1.1, applying Theorems 2.4, 3.1, and 5.3, we obtain
that )
Ga(C, G)] = [Ga(C1, G)| + [Ga(Cz, )| < 2 T 2(3)
13 (ze(G) n 2‘@2(3))

< 3.2¢G) 4 9" Toeza9(3), 0
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6. Gallai r-colorings of noncomplete graphs. Theorem 1.11 is a direct con-
sequence of the following three theorems.

THEOREM 6.1. For n,r € N with r > 4, there exists ng such that for all n > ng
the following holds. For a graph G of order n with e(G) > (1 — log™ "' n) (5). the

number of Gallai r-colorings of G is strictly less than pln?/4],

THEOREM 6.2. Let n,r € N withr >4, and 0 < £ < 1. For a graph G of order n
with |n?/4] < e(Q) < [n%/4] + &n?, the number of Gallai r-colorings of G is strictly
less than rln°/4)

THEOREM 6.3. For n,r € N with r > 4, there exists ng such that for all n > ng
the following holds. Let n='/3% « ¢ < %log_11 n < 1. For a graph G of order n with
(% +36)n? < e(Q) < (% —36)n?, the number of Gallai r-colorings of G is strictly less
than rln*/4],

6.1. Proof of Theorem 6.1 for r > 5.

LEMMA 6.4. Letn,r € N withr > 5 and 0 < £ < ﬁ. Assume that G is a graph
of order n with e(G) > (1 —£)(5), and P is a Gallai r-template of G. Then, for
sufficiently large n,

|Ga(P,G)| < r(3) . 970:007(3),
Proof. Let T be the collection of triangles of K,. For a given r-template P
of order n, we again use the partition (5). Let |Ti(P)| = «a(}), |T2(P)| = B(%).
|'T3(P)| = n(3), and |T4(P)| = (%) Then |T5(P)| < (1 —a— 8 —n)(%). Note that
for every T' € T4(P), the template P contains a rainbow triangle with edge set T}
therefore, we obtain that |T3(P)| < RT(P) < n~1/3(%), which gives v < n~1/3.
Define for e € E(K,,) the weight function

w(e) = {1 if P(e) = 0,

|P(e)| otherwise.

Similarly, as in Lemma 5.2, the number of Gallai r-colorings of G, which is a subtem-
plate of P, satisfies

1OgGa(P7G)§log<H 2 T[22 [[ ] 22) .ni2

TeT1 TeT> TeTs TeTa TETs

1
(8) < (Ba+2B8logr + nlog2r + 3ylogr + 2(1 —a—,@—n))g(Z)

1
< <2+a+ (2logr —2)8 + (logr — 1)77+3n’1/310gr> 3(;)

Let k = 1/12. By Lemma 5.1, we have § < max{kn, %n‘lm}. The rest of the
proof shall be divided into two cases.
Case 1: 8 < kn. Together with o < (1 — 8 — 1), continuing (8) we have

1
log |Ga(P, G)| < (3 + (2logr — 3)8 + (logr — 2)n + 3n~/3 logr) 3 <Z>
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Note that (2k+ 1) logr — (3k + 2) is positive as r > 4. Therefore, together with n <1
and k = &, we obtain that

2
7 3 : 1/n
< | = — —-1/3 _
log |Ga(P, G)| < <6 logr + 1 +3n logr) 3 (2>

3 1
(2 logr — 0.023 4 3n~1/3 log r> 3 (Z)

1/n n
3 <2) logr — 0.007(2>,

where the second inequality follows from (% logr — %) > 0.023 as r > 5.
Case 2: B < 3t2%kn=1/3 Together with o < (1 — ), continuing (8) we have

IN

IN

3+ 9k 1
log |Ga(P,G)| < (3 + (logr — 2)n+2logr - +Tn_1/3 +3n71/3 logr) 3 <g)

3 1 2+ 6k 1/n
< (Zlogr—(=logr—1 1)3n"1/31 -
< (2 ogr <2 ogr >+( i + )i’m ogr) 3<2>
3 1/n 1/n n
<(= - 0. 01) = == - 0.
_(210gr 016+001>3(2> 2(2> logr 005(2>,

where the third inequality holds for » > 5 and sufficiently large n. |

Using Lemma 6.4, we prove a stronger theorem for the case r > 5.

THEOREM 6.5. Forn,r € Nwithr >5 and 0 < £ < ﬁ, there exists ng such that

for all n > ng the following holds. If G is a graph of order n, and e(G) > (1 — f)(g),

then the number of Gallai r-colorings of G is less than r3(3),

Proof. Let C be the collection of containers given by Theorem 2.4. Theorem
2.4 indicates that every Gallai r-coloring of G is a subtemplate of some P € C and
IC] < gen™ 108" n(3) for some constant ¢, which only depends on r. We may assume
that all templates P in C are Gallai r-templates of G. By property (ii) of Theorem 2.4,
we always have RT(P) < n~'/3(7). Suppose that for a template P there exists an
edge e € E(G) with |P(e)| = 0. Then we would obtain |Ga(P,G)| = 0 as a Gallai
r-coloring of G requires at least one color on each edge. Now applying Lemma 6.4 on
every container P € C, we obtain that the number of Gallai r-colorings of G is at most

S Ga(P,G)| < [c] - rH(E) 0007 < ()

peC
for n sufficiently large. ]

6.2. Proof of Theorem 6.1 for »r = 4. Given two colors R and B, consider a
4-template P of order n in which every edge of K, has palette {R, B}. For a constant
0 < e <« 1 and a graph G with e¢(G) > (g) — 2en, we can easily check that P is
a Gallai 4-template of G and |Ga(P,G)| = 2¢(¢) > 43(3)==" This indicates that
Lemma 6.4 fails to hold when r = 4. Instead, we shall apply the same technique
as for 3-colorings: prove a stability result to determine the approximate structure of
r-templates, which would contain too many Gallai r-colorings, and then apply this
together with Theorem 3.1 to obtain the desired bound.

LEMMA 6.6. Let n='/3 < § < 1. Let G be a graph of order n with e(G) >
(1=10)(3). Assume that P is a Gallai 4-template of G with |Ga(P,G)| > 2(1=9)(3)
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Then the number of triangles T of K, with ) ., |P(e)] = 6 and P(e) = P(e') for
every e, ¢ € T is at least (1 —160)(%).
Proof. Let T be the collection of triangles of K,,. We define

Ti={T €T |XY . cr|P(e) =6 and P(e) = P(¢') for every e, ¢’ € T},
To={TeT|3eecT, |Ple) =0},

Ts ={T €T |T ={er,ea,e3}, |Pler)| =4, |P(e2)| = [P(es)| = 1},
Ta={TeT\(TIUT2UTs) | Leer|P(e)] > 6},

T ={T €T\ T2 | Xeer IP(e)] < 5}.

Let |Ti| = a(}), T2l = B(5), [Ts| = n(5), and |Ta| = 7(5). Then

Til=-a-5-n-(}).

Since G satisfies e(G) > (1-0)(}) and P is a Gallai template, we have | T| < §(3)-n <
60 (g)7 and therefore 5 < 6§. Observe that for every T' € Ty, the template P contains a
rainbow triangle with edge set T'; therefore, we obtain that |T3| < RT(P) < n~'/3(3),
which gives v < n=1/3.

Define for e € E(K,,) the weight function

w(){1 if P(e) = 0,

"~ ||P(e)] otherwise.

Assume that o < 1—166. Similarly, as in Lemma 5.2, the number of Gallai 4-colorings
of G which is a subtemplate of P satisfies

log|Ga(P, G)| < log (TIrer, 2° [Trer 4° [rer, 41lrer, 4 [lrer, 1) 5
<Ba+4B8+2n+6v+2(1l—a—B-n-7)i(5)
=24+ a+28+4)3(5) <2+ (1 —-166)+136) 5(3) = (1-9)(5)-
This contradicts the assumption that |Ga(P, G)| > 20-9)(3), 0
Similarly, as in Theorem 4.3, applying Lemmas 2.7 and 6.6, we obtain the follow-
ing.
THEOREM 6.7. Let n=/3 <« § < 1. Let G be a graph of order n with e(G) >
(1-19) (;) Assume that P is a Gallai 4-template of G with |Ga(P,G)| > 9(1=9)(3).

Then there exist two colors i, j € [4] such that the number of edges of K,, with palette
{i,4} is at least (1 — 145 - 168)(2).

Proof of Theorem 6.1 for r = 4. Let C be the collection of containers given by
Theorem 2.4 for r = 4. Note that every Gallai 4-coloring of G is a subtemplate of
some P € C. Let § = log™ ' n. We define

1 = {P €C: |Ga(P,G)| < 2<H><3)} Oy = {P €C: |Ga(P,G)| > 2<1*5>(’5)}.

Similarly, as in the proof of Theorem 1.1, applying Theorems 2.4, 3.1, and 6.7, we
obtain that

’712 n _ n n
Ga(C, G)| = [Ga(C1, G)| + Ga(Ca, G)] < 27 i 2(3) 46 (246 4 2752 (3) )
<6290 497 Teza 9(3) < 4ln?/4l, 0
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6.3. Proof of Theorem 6.2. A book of size q consists of ¢ triangles sharing a
common edge, which is known as the base of the book. We write bk(G) for the size
of the largest book in a graph G and call it the booksize of G.

LEMMA 6.8. Letn,r € ZT withr > 4,0 < o, 8 < 1, and G be a graph of order n.
Assume that there exists a partition V(G) = AU B satisfying the following conditions:
(i) 6(G[A,B]) > (5 — a)n;
(i) A(G[A]), A(G[B]) < Bn. .
Then the number of Gallai r-colorings of G is at most 1™ /41 Furthermore, if e(G) #

|n2/4], then the number of Gallai r-colorings of G is strictly less than pln?/a]

Proof. By condition (i), we have (3 — a)n < |A],|B| < (3 + a)n. Let e(G)
|n?/4] +m. Without loss of generality, we can assume that m > 0 and e(G[A]) >
Then there exists a matching M in G[A] of size at least % > 15

For two vertices u,v € A, the number of their common neighbors in B is at least

m
5 -

1B — 2(|B| — 6(G[A, B])) = 26(G[A, B]) — |B| > 2 (; - a) n— (; + a) n > g

Then, for every e € G[A], there exists a book graph B, of size n/3 with the base
e. Let B={B. | e € M}. Note that M is a matching, and therefore book graphs
in B are edge-disjoint. Another crucial fact is that for every B € B, the number of
r-colorings of B without rainbow triangles is at most r (r + 2(r — 1))n/3 < r(3r)"/3,
since once we color the base edge, each triangle must be colored in the way that two
of its edges share the same color. Hence, the number of Gallai r-colorings of G is at
most

(r(3r)5) M pet@-mi142:5)

— ,r,e(G)f(lflog,,, 3)|M|-% < 7,|_n2/4j+m—(1—10gr 3agn T < T[n2/4j7

where the last inequality is given by 6 < 1. ]

LEMMA 6.9. Letn,r € Z* withr >4,0< ', 8<K1,0< 0,7, K< 1, and G
be a graph of order n with e(G) < |n?/4] +&n?. Assume that there exists a partition
V(G) = AU BUC satisfying the following conditions:

(i) depa,p(v) = (3 — @) n for all but at most yn vertices in AU B;

(i) 6(G[A, B]) > (& — o) n;

(iii) A(G[A]), A(G[B)) < fn;

(iv) 0 < |C| < yn;

(v) for every v € C, both d(v, A), d(v, B) > ren.

Then the number of Gallai r-colorings of G is strictly less than rln®/4),

Proof. By condition (i), we have

) <;—a>n§A|,|B|§ <;+a> n.

For a vertex v, a set S, a set of colors R, and a coloring of G, let N(v,S;R) be
the set of vertices u € N(v,S), such that uv is colored by some color in R. Let
d(v,S;R) = |N(v,S;R)|. Denote by C; the set of Gallai r-colorings of G, in which
there exist a vertex v € C, and two disjoint sets of colors R, and R, such that both
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d(v, A;R1), d(v, B; Ra) > en. Let Ca be the set of Gallai r-colorings of G, which are
not in Cy.

We first show that C; = o(rL”2/4J). We shall count the ways to color G so that
the resulting colorings are in C;. First, we color the edges in G[C, AU B]; the number
of ways is at most r¢(GlAYBD - Once we fix the colors of edges in G[C, A U B], by
the definition of C;, there exist a vertex v € C, and two disjoint sets of colors R, and
Ro, such that d(v, A; R1), d(v, B; R2) > en. We observe that for every edge e = uw
between Ny = N(v, A;Rq) and Ny = N(v, B;R3), e either shares the same color
with wv, or with vw, as otherwise we would obtain a rainbow triangle uvw. Then the
number of ways to color edges in G[Ny, Ny] is at most 2¢(GIN1N2D) < rze(GIN1Na])
Note that by condition (i), inequality (9), and «, v < &, we have

e(G[N1, No]) > (IN1| = yn)(IN2| = 2am) > Se’n®.

1
2
Hence, we obtain

log,. |C1] < e(G[C, AU B]) + %G(G[Nlu Nal) + (e(G) — e(G[C, AU BJ) — e(G[N1, Na]))

1 1
=e(GQ) - §€<G[N1,N2]) < [n?/4] 4 &n? — 152712,
which indicates |C1]| = 0(7““’2/4]) as { K e.
It remains to estimate the size of C5. Recall that for a coloring in Co, for every
vertex v € C, there are no two disjoint sets of colors Ry and Rs such that d(v, A; Rq),
d(v, B; R3) > en.

CLAM 4. Let S be a set of r colors. For every coloring in Co, and every vertex
v € C, there exists a color R € S, such that both d(v, A; S\ {R}) < en and d(v, B; S\
{R}) < en.

Proof. We arbitrarily fix a coloring in Cs and a vertex v € C. By condition (v),
there exists a color R such that d(v, A; R) > en. By the definition of Cs, we obtain
that d(v, B; S\{R}) < en. Then we also have d(v, B; R) > d(v, B)—d(v, B; S\{R}) >
ren —en > en. For the same reason, we obtain that d(v, 4; S\ {R}) < en. ad

By Claim 4, the number of ways to color edges in G[C, AU BJ is at most

IC|

n n 2en ne\2en 2en <l
rz ; Z ; r < [|4r (a) r
i<en i<en
|ICln

log,. e—log.. e+1)2en+2)|C
< pllog, e—log, s+1)2en+2)[C] _ 15

where the last inequality is given by (log, e —log, e + 1) 2e < % as € < 1. Note that
by conditions (ii)—(iv), we have

* 0(GIA, B]) > (5 —a')n > (3 - o) (4] +|BI);

o A(G[A]), A(G[B]) < Bn < {5 (Al + |B]).
Applying Lemma 6.8 on G[A U B], we obtain that the number of ways to color edges

(n—1cp?

in GJAUB] is at most v~ 1 . A trivial upper bound for the ways to color the rest
of the edges, that is, the edges in G[C] is (151, Hence, we have

ICln (n—]C])? |C| n? n 3 1 9 1
log, [Cs| < _ (2210142 ) (0l < |n2/4) - -
o, 0] < 19" (I = (2o D i< e - L

3 4
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where the last inequality is given by 0 < |C| < yn and v < 1. Finally, we obtain that
the number of Gallai r-colorings of G is

IC1| + |Ca| < o(rln* /4y 4 pln®/a) =5 < pln®/4], 0

LEMMA 6.10. Let n,r € ZT with r > 4, a,8,7v,& < 1, and G be a graph of
order n with |n?/4] < e(G) < |[n?/4| + &n?. Assume that there exists a partition
V(G) = AU B UC satisfying the following conditions:

(i) 5(G[AvB]) > (% - a)”f'

(ii) A(G[A]), A(G[B]) < pn;

(iii) 0 < |C| < yn;

(iv) for every v € C, d(v) > n/2.

Then the number of Gallai r-colorings of G is strictly less than pln?/4l,

Proof. Let a,7,6 < ¢ < 1. Let C; = {v € C | d(v,A) < ren}, and Cy =
{v € C | dv,B) < ren}. By conditions (iii) and (iv), for every v € Cj, we
have d(v,B) > (% f’yfrs) n. Similarly, for every v € Cy, we have d(v,A) >
(% e rs) n. Define

A’ZAUCl, B/ZBUCQ, C/:O\(OlLJCg).

If ¢’ = (), then we obtain a new partition V(G) = A’ U B’ satisfying the following
properties:

¢ J(GA, B >min{(3 —a)n, (5 —y—re)n} = (5 -7 —re)m;

o AGIA)), A(GIB')) < min{(8 + 1), (= +7)n}.
Together with e(G) > |n?/4], by Lemma 6.8, we obtain that the number of Gallai
r-colorings of G is strictly less than rln®/4l, Otherwise, we obtain a new partition
V(G) = A" U B’ U (' satisfying the following properties:
derar,p(v) > (3 — a) n for all but at most yn vertices in A’ U B';
§(GIA,B) = (5 —v—re) ms
A(GA)), A(GIB) < min{(8 +7)n, (re +7)n);
0<|C' <|C] < m;

e for every v € C’, both d(v, A"), d(v, B") > ren.
Together with e(G) < [n?/4] + &n?, by Lemma 6.9, the number of Gallai r-colorings
of GG is strictly less than rln®/4), 0

Now, we prove a lemma which is crucial to the proof of Theorem 6.2.

LEMMA 6.11. Let n,r € ZT with r > 4, o,,7,6 < 1, and G be a graph of
order n with |n?/4] < e(G) < [n?/4| + €n?. Assume that there exists a partition
V(G) = AU BUC satisfying the following conditions:

(i) 8(GIA, B]) 2 (5 — a)n;

(ii) A(G[A]), A(G[B]) < Bn;

(iii) |C| < yn.

Then the number of Gallai r-colorings of G is strictly less than pln®/4),

Proof. By Lemma 6.8, we can assume that |C| > 0 without loss of generality. We
begin with the graph G and greedily remove a vertex in C' with degree strictly less
than |G|/2 in G to obtain a smaller subgraph. Let G’ be the resulting graph when
the algorithm terminates, and n’ = |V(G’)|. We remark that G’ is not unique and it
depends on the order of removing vertices. Without loss of generality, we can assume
that n’ < n, as otherwise we are done by applying Lemma 6.10 on G.
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Let A=A, B'= B, and C' =V (G')NC. Clearly, we have G' = G[A'UB' U(C"].
Furthermore, by the mechanics of the algorithm, we have

(10) e(G) < e(G') + % ((’;) - (’;)) :

We first claim that e(G’) > [(n’)?/4], as otherwise we would have

e = Loz ((5) - (5)) <Ll

which contradicts the assumption of the lemma. On the other hand, since n’ >
(1 —v)n, we obtain that

C(G) < L /4] + €n* < ()2 /4] + 5 o

Let &' = % Then we have

(11) [(n)?/4] < e(G") < [(n')*/4] + € (n')*.

If ¢’ =, we obtain a vertex partition V(G’) = A’ U B’ satisfying

e AGIALB)) = (5 —an > (1 — o'

o A(G'[A]), A(G'[B]) < Bn < {£n.
Together with (11), by Lemma 6.8, we obtain that the number of Gallai r-colorings of
@', denoted by |C(G")], is strictly less than r["°/4) Otherwise, we find the partition
V(G") = A’ U B’ U satisfying:

o §(G'[A,B)) = (5 —a)n > (5 —a)n;

o A(G'[4]), A(G'[B)) < 1550

e 0<|C<yn < ﬁn’;

e for every v € C', d(v) > %l
Together with (11), by Lemma 6.10, we obtain that |C(G")| < rL")?/4] " Combining
with (10), we conclude that the number of Gallai r-colorings of G, denoted by |C(G)],
satisfies

o, 1C(G)] < log, (G| + (G () < L'/l + 5 ((5) = () ) < b/l

which completes the proof. ]

Another important tool we need is the stability property of book graphs proved
by Bollobds and Nikiforov [10].

THEOREM 6.12 (see [10]). For every 0 < a < 1075 and every graph G of order
n with e(G) > (3 — a)n?, either

bk(G) > <é - 2a1/3> n

or G contains an induced bipartite graph G of order at least (1 — ozl/3)n and with
minimum degree

5(Gy) > (; - 4a1/3> n.
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Proof of Theorem 6.2. Let e(G) = [n?/4]+m, where 0 < m < &n?. We construct
a family B of book graphs by the following algorithm. We start the algorithm with
B = and Gy = G. In the ith iteration step, if there exists a book graph B of size %
in G;, we let B=BU{B}, and G; = G;_1 — e, where e is the base edge of B. The
algorithm terminates when there is no book graph of size n/7. Let Ey be the set of
base edges of B, and 7 = 7/(1 — log,. 3).

Suppose that |B| > 2rm. Since |Ey| = |B| > 27m, the edge set Ey contains a
matching M of size % > 7m/n. Let B’ be the set of book graphs in B whose
base edges are in M. Since M is a matching, book graphs in B’ are edge-disjoint.
Note that for every B € B, the number of r-colorings of B without rainbow triangles
is at most r(r + 2(r —1))™7 < r(3r)"/7. Then the number of Gallai colorings of G is

at most

(r(3r)%)‘M| re(G)=IM|(1+2:2) _ an2/4j+m—(1—logT M| an2/4J+m—m _ T\_nz/4j.

It remains to consider the case for |B| < 2rm. Without loss of generality, we can
assume that there is no matching of size greater than 7m/n in Ey. Let G' = G — Ey,.
Then we have

e(G') > [n?/4] — (21 — 1) m.
Furthermore, by the construction of G’, we obtain that bk(G') < n/7. Let a =

(27 — 1) €. By applying Theorem 6.12 on G’, we obtain that there is a vertex partition
V(G') = AU B'UC’ with |C'| < a!/3n, such that A’, B" are independent sets, and

5(G'[A', B]) > (; — 4a1/3> n.

Let G be the spanning subgraph of G with edge set Ey. For a small constant 5 with
£ <€ B < 1, let V be the set of vertices in Gy with degree more than fn. Since
|Eo| < 2mm < 27&n?, we have |Vy| < (47€/B8)n < Bn. Let A= A’\ Vy, B = B'\ V,
and C' = C"UV,. Then we obtain a vertex partition V(G) = AU B U C satisfying the
following conditions:

e 8(G[A, B]) > (4 — 401/ — Bn;

o A(GIA)), A(GB]) < Bn:

e ICI < (a3 + B)n.
By Lemma 6.11, we obtain that the number of Gallai r-colorings of G is strictly less
than rln*/4). 0

6.4. Proof of Theorem 6.3. We say that a graph G is t-far from being k-
partite if x(G’) > k for every subgraph G’ C G with e(G’) > e(G) — t. We will use
the following theorem of Balogh et al. [3].

THEOREM 6.13 (see [3]). For every n,k,t € N, the following holds. Every graph
G of order n which is t-far from being k-partite contains at least

2 (o (1-1) %)

PROPOSITION 6.14. Let n € N and 0 < ¢ < 1. Every graph F on at least en

vertices, which contains at most n=1/3 (g) triangles, satisfies

copies of Ki41.

2 4
<|F| € ||2

e(F) < 4 6nl/3e3

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/01/21 to 130.126.162.126. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

THE TYPICAL STRUCTURE OF GALLAI COLORINGS 2439

Proof. Let t = o= |F|?. Assume that e(F) > % +t. Then F is t-far from
being bipartite. By Theorem 6.13, the number of triangles in F' is at least

|F| |F|? |F| _ 1 3 —1/3( M
@ S(F)+t7T >274 2t—6n1/3€3‘F‘ >n 3 ,

which gives a contradiction. ]

For an r-template P of order n, we say that an edge e of K, is an r-edge of P if
|P(e)] > 3. An r-edge e is typical if the number of rainbow triangles containing e is
at most n''/12. We then immediately obtain the following proposition.

PROPOSITION 6.15. For an r-template of order n containing at most n~/3 (g)

rainbow triangles, the number of r-edges of P, which is not typical, is at most n*'/6,

We now prove the following lemma.

LEMMA 6.16. Letn,r € Nwithr > 4, andn='/33 < £ <
that G is a graph of order n with (1 + 35) 2<e(@) < (3 -
r-template of G. Then, for sufficiently large n,

%1 "n < 1. Assume
36)n2, and P is a Gallai

n’ 3N 23/12
log,. |Ga(P,G)| < Z—f ?4—471 .

Proof. ~ We first construct a subset I of [n] and a sequence of graphs
{Go,G1,...,Ge} by the following algorithm. We start the algorithm with I =
and Gy = G. In the ith iteration step, we either add a vertex v to I, whose degree is
at most (3 —&?)(|G;| — 1) in the graph G;, or add a pair of vertices {u, v} to I, where
uv is a typical r-edge satisfying | Ng, (u) N Ng, (v)| > 262(]G;| — 2). In both cases, we
define G;11 = G — I. The algorithm terminates when neither of the above types of
vertices exists.

Assume that the algorithm terminates after ¢ steps. Let G’ = G, and k = |G’|.
We now make the following claim.

CLAIM 5.

1 1 2 n® kK’ 23/12 /
og, |Ga(P,G)| < <2 —¢ ) <2 - 2) +3n + log, |Ga(P,G")|.

Proof. In the ith iteration step of the above algorithm, if we add to I a single
vertex v, then the number of ways to color the incident edges of v in G; satisfies

IOgr He is ivniclildgn_t to |P( )| < dG ( ) ( 52)(|G | - 1)

Now we assume that what we add is a pair of vertices {u,v}. For every w €
Ng, (u)NNg, (v), vertices uvw either span a rainbow triangle in P, or satisty | P(uw)| =
|P(vw)| = 1. Together with the fact that uv is a typical r-edge, we obtain that the
number of ways to color the edges, which are incident to v or w in G, satisfies

log, [ e is incident_to |P(e)| <|Gi| =2 —|Ng,(u) N Ng, (v)| + 2n11/12 41
< (1-28)(1Gi| — 2) + 201112 41,

From the above discussion, we conclude that the number of ways to color edges in
E(G) — E(G') satisfies

2 2
log,. HeGE(G)fE(G/) |P(e)| < (% — 52) (% _ %) + n(l + 2?111/12),

which implies the claim. 0
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We now split the proof into several cases.
Case 1: k < &n. Then |Ga(P,G")| < Pk/2 < p€'n*/2 and therefore by Claim 5
and ¢ < 1, we obtain that
n2

52”72 1 3p23/12
4 4 '

1 2
log, |Ga(P,G)| < <2 - 52> % +3n%/12 4 ¢4n?/2 <
Case 2: e(G') > (3 —26) k? and k > &?n. Since 2¢ < log ' n < log™ " k for
sufficiently large n, Theorem 6.1 indicates that |Ga(P,G")| < r¥*/4. We claim that
k < (1—¢&)n, as otherwise we would have

e(G) > e(G') > (; — 2§> k2 > (; — 25) (1—¢6)%n2> (; - 3§> n?,

which contradicts the assumption of the lemma. Therefore, by Claim 5, we obtain
that
2

1 n k2 k?
L2\~ 23/12 | N7
log,. |Ga(P, G)| (2 13 >< 3 2) 3n + TS

2 2 2
n~  h” 2/{7 23/12
1 I3 5 +& > +3n
2 2 2 2 2
n 2 2 2 23/12 1 3N 23/12
< 2l 1-¢22 +3 < 3l 43 .
_4£2+§( 5)2+n S 85
Case 3: e(G') < (7 +2¢) k? and k > &%n. Since 2 < 1, Theorem 6.2 indicates
that |Ga(P,G")| < r**/4. We claim that k < (1 = &)n, as otherwise we would have

e(G) < (”22—];2)+(i+25)k2<”;—(i—%)k?

9 2
(- (e (e

which contradicts the assumption of the lemma. Similarly, as in Case 2, we obtain
that

1 2 n® kK 23/12 k* _n? a0 23/12
<(=- - LSy S .
log;TGa(P,G)_(2 5)(2 2> 3n +4 = I3 2+3n
Case 4: (3 +2k* < e(G') < (3 —20)k* and k > ¢*n. Denote by e,(G’) the
number of r-edges of P in G'. Let A= {v e V(G') |de (v) < (5 + &) k}.
CraIM 6. All the typical r-edges of G' have both endpoints in A.

Proof. First, by the construction of G, we have the following two properties: for
every v € V(G),

1
(12) dor(0)> (5-€) (- 1)
and for every typical r-edge uv in G’,
(13) dgr (u) + dgr(v) <2+ (k = 2) + [ Ng, (u) N Ne, (v)] < (1 +26)k.

Suppose that there exists a typical r-edge uv such that wu is not in A4, i.e., dg/(u) >
(% + f) k. Then by (12) and £ < 1, we have

der(u) + dgi (v) > (; + 5) k + (; - §2> (k—1) > (1+2H)k,

which contradicts (13). d
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Subcase 4.1: |A| < £k. By Proposition 6.15 and Claim 6, we have
e (G) < <|;1|) Fnll/6 < 52%2 1 pll/e,
Therefore, together with the assumption of Case 4, we obtain that

1 1 2 ij 11/6 _k‘j 1 2 1 nl1/6
2((2 2§>k+§2+n — B (e te) g L

Then by Claim 5,
1 n? k? k> 1 1

1 Ga(P,G)| < (= n- k" 32312 L N (e Ze2) g2 21176

og, |Ga( _(2 >(2 2>+n t7 § 45 +3n

n2 2

_e2™ (5_ 3§2> k2 4+ 4n23/12 < nj _5212 + 4n23/12
4 — 4 2 ’

log, |Ga(P, G')] < log, (r-(¢2e(@)=er (@) < % (e(G) + e (G"))

IN

IN

4 2
where the last inequality is given by & < 1.

Subcase 4.2: |A| > k. By the definition of A, the number of nonedges of G’ is at
least

1 1 1 1
(4 2(’“‘1‘(2*)‘“)"“':2((z‘f)’“‘l)'A'
We first claim that

(15) A < 125

1— 25

as otherwise we would obtain that the number of nonedges of G’ is more than
(3ot = (%) e -3

which contradicts the assumption of Case 4. Inequality (15) implies that

(16) (1—26)k — |A| > 4¢k.

By Propositions 6.14 and 6.15, since |A| > &k > £3n, we have

et

2
/ / 11/6 |A‘
er(G') <e(G'[A]) +n < 4 +6 1/359

as otherwise we would find more than n~—1/3 (g) rainbow triangles, which contradicts
1/33

|A‘2 + n11/6

the assumption that P is a Gallai T—template of G. Since £ > n™"/°° we have

2
a7) ey < A0 4 8

Combining (14), (16), and (17), we have

|A|2 + n11/6

1 /
log, [Ga(P, )| < 1 (e( ) + (@)
LRy L[ AR € 0, e
< (o) -2 ((z-9)- )'A'+ e
k2 A
B %((1—2@ W Clap ¢ Lo
k2 € 2, 1116
B S Sy
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Then by Claim 5 and the assumption of Subcase 4.2, we obtain that

1 n? k2 K2oo¢ ¢ 1
1 p (L g2\ (7 AT a3z R &y g2 4 Ln1/6
og, |Ga( ,G)_(2 £>(2 2>+3n + 2| |k + 4:| | +gn
1 2 n® kK 23/12 2, &, 1 11/6
<(2‘5>(z‘2>+3” VI LR L
2 2
n 2" 23/12
— =& —+4 . O
<7 I3 1 +4n

Proof of Theorem 6.3. Let C be the collection of containers given by Theorem
2.4. Theorem 2.4 indicates that every Gallai r-coloring of G is a subtemplate of some

n

PeCand|C| < gen”™* 108" n(3) for some constant ¢, which only depends on r. We
may assume that all templates P in C are Gallai r-templates of G. By property (ii)
of Theorem 2.4, we always have RT(P) < n~/3(%). Suppose that for a template P
there exists an edge e € E(G) with |P(e)| = 0. Then we would obtain |Ga(P,G)| =0
as a Gallai r-coloring of G requires at least one color on each edge. Now applying
Lemma 6.16 on every container P € C, we obtain that the number of Gallai r-colorings
of G is at most

Y |Ga(P,G)| < || R A e
PeC

where the last inequality follows from & > n~1/36 for n sufficiently large. 0
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