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A PRIME SYSTEM WITH MANY SELF-JOININGS

JON CHAIKA AND BRYNA KRA
(Communicated by Lewis Bowen)

ABSTRACT. We construct a rigid, rank 1, prime transformation that is not
quasi-simple and whose self-joinings form a Poulsen simplex. This seems
to be the first example of a prime system whose self-joinings form a Poulsen
simplex.

1. INTRODUCTION

A natural question is to find indecomposable structures, and we study this
question in the setting of measurable dynamics. More precisely, we consider a
measure preserving dynamical system (Z,.#,u, T), where Z is a set endowed
with a o-algebra .#, u is a probability measure on the measure space (Z, 4),
and T: Z — Z is a measurable transformation that preserves the measure p.
Throughout this article, we assume that (Z, .4, ) is a (non-atomic) Lebesgue
space. A factor of a measure preserving system (Z, 4, i, T) is a measure preserv-
ing system (Z,.#',i/, T') and a measurable map n: Z — Z' such that yon™! =
¢ and T'om(x) = mo T(x) for u-almost all x € Z. In this setting, the indecom-
posable structures are the prime transformations, which are transformations
with no non-trivial (measurable) factors. That is, any factor map on (Z, 4, u, T)
is either an isomorphism or a map to a one point system. Historically, show-
ing systems are prime has largely been accomplished by understanding the
self-joinings of the system, that is, the T x T invariant measures on Z x Z with
marginals y on each of the coordinates. Our main result is that there exists a
prime transformation with many self-joinings (the self-joinings form a Poulsen
simplex) and the self-joinings can be large (there is a self-joining that does not
arise as a distal extension of the system):

THEOREM 1.1. There exists a prime system (Y,98,v, T) that is rank 1, rigid, and
has an ergodic self-joining n, which is not the product measure, such that (Y x Y,
B xB,n,TxT) is not a distal extension of (Y,98,v,T). Moreover, the set of self-
joinings of Y is a Poulsen simplex.
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To highlight the novelty of our construction, we note that being not quasi-
simple (or being not quasi-distal) is a residual property in the space of measure
preserving transformations (endowed with the weak topology). This answers a
question posed by Danilenko [5, Section 7, Question (iii)] who asked if the set of
quasi-simple transformations and the set of distal-simple transformations are
both meager. It is also a strengthening of a result of Ageev [2] who showed that
being simple is meager.

1.1. Context of the results. The first systematic family of prime systems was
introduced by Rudolph [28], based on Ornstein’s counterexample machinery,
and has been studied extensively since; for example, see [7, 9, 22, 10, 18, 29]. A
system (Y, v, T) has 2-fold minimal self-joinings if all of the ergodic self-joinings
are either v x v or are concentrated on the graph {(x, T/ x)} for some integer j = 0.
Defining the natural generalization for k-fold minimal self-joinings for all k = 2,
Rudolph showed that any system having minimal self-joinings is prime.

However, having minimal self-joinings is quite special, and so there was in-
terest in more general criteria for obtaining prime systems. In this direction,
Veech showed that a 2-simple system is prime if it has no compact subgroups
in its centralizer. Recall that a system is 2-simple (which Veech called prop-
erty S) if the only ergodic self-joinings arise from the product measure and
measures carried on graphs of transformations in the centralizer of the system.
Simple systems have since been studied in a variety of contexts (see for exam-
ple [31, 8, 15, 2, 5, 7, 6, 14, 30]). Veech’s criterion gave rise to the first example
of a rigid prime system, with the construction by del Junco and Rudolph [8] of
a specific rigid, simple system that had no non-trivial compact subgroups in its
centralizer. Glasner and Weiss [15] constructed an example of a prime system
that is not simple, by taking a simple system and considering the factor cor-
responding to a non-normal maximal compact subgroup, again using Veech’s
criteria to show that the factor is prime since it arises from a maximal compact
subgroup. In this example, as the subgroup is not normal, the factor itself is not
simple, but the self-joinings of the factor of a simple system are always isometric
extensions of the factor.

There are a few other known examples of prime systems. For example, King
[21, Section 2] showed that the (proper) factors of rank 1 systems are rigid and
so it follows that mildly mixing rank 1 systems are prime. Continuing in this
vein, Thouvenot asked if mildly mixing rank 1 transformations have minimal
self-joinings, and this difficult question remains open. Parreau and Roy [27]
gave a construction of prime systems for some Poisson suspensions of (infinite
measure preserving) prime systems, and it follows from results in [24] that the
constructed systems are quasi-distal. In the same article, Parreau and Roy write
“it is yet unknown whether prime rank one maps are always factors of simple
systems." Our construction resolves this by producing a prime rank 1 system
that is not the factor of a simple system (it is not quasi-simple).

This short list of examples basically includes all known prime systems, and
one motivation for this work is to give a new construction of prime systems
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not relying on a paucity of joinings (as in the minimal self-joinings, simple,
or factor of simple systems) or soft restrictions on the prime factors (as in the
mildly mixing rank 1 or Poisson suspension of prime infinite measure preserving
systems with additional properties).

Turning to the second conclusion of Theorem 1.1, we note that it is well-
known that a residual set of measure preserving systems is rank 1 and rigid.
King [23] showed that for a typical measure preserving transformation, its self-
joinings form a Poulsen simplex (recall that a Poulsen simplex is a simplex such
that the extreme points are dense). Putting this in context, Lindenstrauss, Olsen,
and Sternfeld [25] proved that a Poulsen simplex is unique up to affine homeo-
morphism. Ageev showed that the typical transformation is not prime [1] and
is not simple [2].

1.2. A brief outline of the paper and a conjecture. In Section 2, we introduce
general concepts from ergodic theory. In Section 3, we define our system (Y, v, T),
as the first return map of an odometer to a compact set, and then we set up the
basic notation used throughout and prove first results on the mixing properties
of the system. In Section 4, we show that our system is not quasi-distal and
that its self joinings form a Poulsen simplex. In Section 6, we show that our
system is prime, building heavily on ingredients developed in Section 5. As our
arguments are technical and require some additional development, we defer
conceptual descriptions of the proofs to Sections 4 and 5, after the preliminary
tools have already been defined.

Our methods for building self-joinings and building self-joinings that can not
be distal extensions of the base system are fairly soft and general (if technical
and involved).

Our proof that the transformation is prime is more combinatorial, making
heavy use of the specific construction. This should not be surprising, because
being prime is a meager property [1] in the space of measure preserving trans-
formations (with the weak topology). Nevertheless, an ideology of this work is
that it may still be a fairly common property. In particular, we conjecture that
in some families of measure preserving transformations almost every system is
prime. To be specific:

CONJECTURE 1. Almost every 3-IET is prime.

Although this may hold more generally for a k-IET, such a conjecture is out
of reach at this point, but for a 3-IET, some of these tools are already developed
with the methods of [4].

A second conjecture, closer to the work of this paper, is stated in Section 3,
after we have developed some further background.

2. DEFINITIONS AND NOTATION

2.1. Systems and joinings. By a measure preserving system (X, 98, i, T), we mean
that 2 is the Borel o-algebra for some compact metric topology on X, (X, %, 1)
is a probability space, and T: X — X is a measurable, measure preserving map.
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Throughout the paper, we generally omit the associated o -algebra from the no-
tation, assuming that any measure preserving system is endowed with the Borel
o-algebra. We say that the measure preserving system (Y,v,S) is a factor of
(X, u, T) if there exists a measurable map n: X — Y such that 7o T = Soxw and
porm t=wv,

A joining of the ergodic measure preserving systems (Xj, u;, T;) for i =1,2 is
a (T1 x T»)-invariant measure @ on X; x X, such that a projects to y; on the first
coordinate and to yp on the second coordinate. A self-joining of a system is a
joining of two copies of the same system. If (X, y, T) is a measure preserving
system, J(n) denotes the off diagonal joining on {(x, T" x)}, meaning that J(n)
is the measure on X x X such that for all f € C(X x X)

ff(x,y) d](n)=ff(x, T"x)dp.

If (X, u, T) is an ergodic measure preserving system, we say that the bounded
linear operator P: I? (W) — I? (1) is a Markov operator if it satisfies:

i. For all f € L?(u) with f =0, we have Pf =0 and P* f > 0.
ii. P1x =1x and P*1x = 1x, where 1, denotes the indicator function of the
set A.

iii. PUr = UrP, where Ur: L?(u) — L?(u) by Urf = foT.
Markov operators can be defined more generally for an operator mapping one
measure preserving system to another, but our interest is when the operator
arises as an integral of fibers of a factor and so we can take the map from
a system to itself; see, for example, Glasner [13] for more on such operators.
More precisely, if (X, u, T) has a factor (Y, v, S) with factor map =, then by inte-
grating over the fibers of the factor map, we obtain a bounded linear operator
P:I? (W) — 2 (), satisfying Properties (i)-(iii) and we call this the Markov oper-
ator defined by . That is, by disintegration of measures there exist measures p,,
on X such that u= [} uydvand P(f)(x) = [ fdp(y. Note that joinings also give
rise to Markov operators. However, these do not formally enter the arguments
and so we do not discuss these Markov operators.

2.2. Rigid rank one by cylinders. As above, we assume that each system is en-
dowed with its Borel o-algebra, but we omit it from the notation.

DEFINITION 2.1. An invertible ergodic system (Z,A,R), where Z < [0,1] and
A denotes normalized (probability) Lebesgue measure restricted to Z, is rigid
rank one by cylinders if there exist a sequence of intervals (I;);en, which we call
cylinders, and a sequence of positive integers (7n;);en such that:

i. For 0 =i < ny, the iterate Ril k is a cylinder having the same measure as I.
ii. The cylinders R'I; and R’ I} are pairwise disjoint for all k and for 0 < i <
J < ng.

iii. The measure A(UJ"%;" R'I;) tends to 1 as k — co.

iv. The ratio %W tends to 0 as k — oo.
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Note that rank 1 systems can be rigid without being rigid rank 1, but the
rigidity of a rigid rank one system is not directly tied to the towers of the system.
Also, note that cylinders in this setting are intervals in [0, 1], but we refer to
them as cylinders in analogy with the symbolic setting. By a symbolic system
(X, T), we mean an infinite sequence space X c ]'[j.’ilg{i, where each «f; is a
finite alphabet, and T: X — X is a measurable map. We denote elements of
the space as x = (x;);en € X, with the convention that a bold face letter x has its
entries denoted as x;. In a symbolic system X, a cylinder set [w] determined by
a word w = w; ... w, is defined to be

[wl=xeX: x;=w; forall1<i<n}.

We also consider cylinders defined only by some entries a;, € «#;,,...,a;, € «;
defining the cylinder

xeX: xi; = a; foralll1<j<k}

and we refer to the i; as defining indices of the cylinder. The collection of cylin-
der sets forms a basis for the topology of X. When working with a symbolic
system (X, T), fixing initial entries corresponds to an interval in [0, 1], meaning
that a cylinder set corresponds to an interval.

The first three conditions in the definition of rigid rank one by cylinders imply
that G is rank one, but in the general setting of a rank one transformation there
is no requirement that the subsets I; are intervals. The fourth condition gives
a sequence of times under which the transformation R is rigid, meaning that
along these times the iterates of R approach the identity. Indeed, Condition (iv)
implies that %W is close to 1 for all large k and 0 < i < ng, and so
using this with Conditions (i) and (iii), we have a rigidity sequence.

2.3. Distal extensions. We review the definitions of (measurable) isometric and
distal extensions, as introduced by Parry [26]. These extensions were key in Furs-
tenberg’s proof [11] of Szemerédi’s Theorem (see [12] for further background),
and the definition we use comes from Zimmer [33, 34], who showed that a
measurably distal system is equivalent to a (possibly transfinite) inverse limit of
a tower of isometric extensions.

If G is a compact group, H c G is a closed subgroup, and (X, y, T) is a Borel
probability system, then a measurable map ¢: X — G is called a cocycle and
the extension of G by G/ H given by the cocycle ¢ is defined to be the system
(X x G/H,ux mgu, Tp), where Tp(x,8) = (Tx,¢p(x)-g) for xe X and §€ G/H
and mg, g is the Haar measure on G/H (we use the convention that cosets in
G/ H are denoted by 7). Defining the topology of the group G by a distance dg
that is invariant under right translation, and of course continuous with respect
to translation on either side, we have an induced distance dg,;z on G/H and
we have that the restriction of Ty to each fiber of the natural projection map
X x G/ H — X is continuous. The system (X x G/ H, ux mg,u, Ty) is an isometric
extension of the system (X, u, T).
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If (X,u, T) and (Y, v, S) are ergodic systems, then (X, u, T) is a distal extension
of (Y, v,S) if it has a sequence of factors X; indexed by ordinals n <7, for some
countable ordinal ¢ such that Xo =Y, X;, = X, X;+1 is an isometric extension
of X for each n, and for each limit ordinal { < 7o the system X; is an inverse
limit of the systems X, with n <(.

NotATION. We use d to denote the metric in various settings, with a subscript
indicating the space as needed. Thus dg denotes the right invariant metric on
the group G, dg,p denotes the induced distance on G/ H.

3. CONSTRUCTION OF THE SYSTEM

3.1. Definition of the transformation 7. We begin by constructing an odome-
ter. Set

m x=[Jw,...,a; -1},

where

k if i = 10¥ for some k > 2.

We write elements x € X as X = (x;);en. Let S denote the odometer on X, mean-
ing that S is addition by (1,0,0,...) with carrying to the right. Thus

{8 if i ¢ {10%: k> 2}
a; =

2) SX) =S(x1,X2,..0, Xpy Xps1,---) = (0,0,...,0, X + 1, Xps1,--.),

where k is the least entry such that xj < a; —1 and if there is no such k, then
the odometer turns over and outputs the point 0 = (0,0,...).

Set
3) Zr={xeX: xx=7and x; = a; -2 for all i < k}
and
4) Wi = {x€ X: x; = a; — 2 for all i <10?* and x, g < aygee/2}.
Define
[e.°]
5) Y=X~ U ZeulUwk

0¢{10%: k=2} k=1

and define T: Y — Y to be the first return map of S to Y. Throughout this
paper, T refers to this map and dy is any metric on Y giving rise to the product
topology, viewing it as a subspace of X. When there is no confusion as to which
metric is meant, we omit the subscript and just write d for the metric on Y. As
usual, we denote elements ye Y as y = (¥;)jen.

Define Dy to be the cylinder sets with largest defining index k in X~Y. More
explicitly, this means that:

Zr ifke¢{10%: k=2}
(6) Dir={ W, if k=10% for some ¢=1
@ if k=10%*! for some ¢ > 1.
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The following result is standard:

LEMMA 3.1. The odometer S is uniquely ergodic with respect to a probability
measure (i, and thus the first return map T is uniquely ergodic with respect to
the measure v =pu(Y) ' uly.

It follows immediately from the construction of the set Y that its measure is
strictly between 0 and 1, and so the maps T and S are not obviously isomorphic.
In fact, they are not isomorphic, as T is weakly mixing (see Proposition 3.4),
while S has purely discrete spectrum.

NortaTION (for the systems we study throughout this article). Throughout this
article, X is the space defined by (1), S is the odometer defined on X as in (2),
1 is the unique ergodic measure on this system, and (X, i, S) is the odometer
system thus defined. The space Y is defined by (5) and (Y, v, T) is the associated
uniquely ergodic system defined by the first return map.

Both (X, S) and (Y, T) are measurable maps of compact metric spaces. The
remainder of this paper is devoted to studying the properties of the system
(Y,v, 7).

3.2. An overview of the behavior in the system (Y,v,T). To give an idea of
what types of behaviors built into the system (Y, v, T) give rise to it being both
prime and having many self-joinings, we summarize the types of irregularities
that are built into the system in the construction of the towers (see [20] for
the terminology) defining the system. Namely, there are four distinct types of
irregularities:

i. The alphabet size for the odometer is typically 8, but at stage n = 10¥, the
alphabet has size k. This changing in the size of the indices is necessary to
allow enough room for the constructions.

ii. For any n # 10%, before stacking the n —1 columns to obtain an n-tower,
we delete a positive fraction (we fix this to be one eighth) of the right most
tower. This allows separation of the indices in the set of indices for columns
of atypical size, meaning those of the form 10* for some k > 1.

iii. For n = 10%*, we have 2k Rokhlin towers and we remove one level from
each of the first k of them and none from the other k. This is used in our
construction of joinings (in the language of [20], the joinings are built using
that the system has good linked approximation of type (m, m+ 1)).

iv. For n = 10%k*1 before stacking n—1 columns to obtain an n-tower, we make
no change (meaning no deletion). This allows us to use results of Chaika
and Eskin (Theorem 4.9) and King (Theorem 4.15) to ensure that we obtain
a system that is rigid rank 1.

3.3. A further conjecture. Maintaining the notation of this section, we state a
conjecture closely related to this subject:

CONJECTURE 2. Let aj,ay,... € N with a; =2 for all i € N. Let T be the cor-
responding odometer viewed as a measure preserving map of [0,1], meaning
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that ifx:Z b]a — with b; €1{0,. ;—1}, then Tx =Y =1 aray , where
ck:bk+lifk mm{] bj<aj- 1},cl Oforallz<kandcl b,forallz>k.
For almost every x € [0, 1], the first return map of T to [0, x] is prime.

3.4. Weak mixing of the transformation 7. Our first goal is to show that the
transformation T is weakly mixing, and we start with a sufficient (but not nec-
essary) condition for a transformation to be weakly mixing.

LEMMA 3.2. Assume that (Z1,A, T1) is an ergodic measure preserving system with
respect to the Lebesgue measure A. If there exist a constant ¢ > 0, a sequence of
integers (n;)ien, and sequences of measurable sets (A;)ien and (B;)ijen Such that

i. the measures A(A;),A(B;)>c forallieN,
ii. the limit lim [, |T," x—x|dA(x) =0, and
i—oo”

iii. the limit lim [y |T{" x— Ty x|dA(x) =0
i—oo” !
then Ty is weakly mixing.

Proof. Assume that f is an eigenfunction of T} with eigenvalue y # 1. By Lusin’s
Theorem, for every € > 0 there exists 6 > 0 and a measurable set U with A(U) >
1-¢ such that if |[x—y| < 6 and x,y € U, then |f(x) — f(y)| < . Choose € <
min { ! g"’l £1, where c is the constant given in the statement. For all sufficiently
large i €N, by hypothesis there exists a measurable set A, with measure at least
5 and integer n; such that if x € A’, then |T," x — x| < &. It follows that there

exists x € A'nU and T} x € U and so
0= fI 0= 1A=y f 0l = 1=y <&

Similarly there exists y € B;nU such that | f(y)— T{”Hyl = [1—-y"*!| < e. If these
two inequalities hold simultaneously, this contradicts the choice of €, and so
Y = 1. Since T is ergodic, it follows that f is constant almost everywhere and
so T is weakly mixing. O

Set
i-1
() gi=1]aj.
j=1

Then S% (x) fixes the first i — 1 positions of x and increments the entry in x;

position by 1. All other entries remain the same unless the i™ position was

exactly a; — 1, in which case the carrying continues until this process terminates.
Given n € N, we choose c;(n) such that

(8) n:ZCi(n)qi with Ci(n)e _%y---)% .

Note that there is no unique choice of these coefficients, but we can make a
canonical choice by using the greedy algorithm to define the coefficients c;.
That is, we choose i and c; such that |n — ¢;g;| is minimal out of all possible
ieNand ¢; e {-%,..., %1}, and then iteratively choose the next coefficient
to be the maximal choice satisfying these conditions. If there is a tie, that is

JOURNAL OF MODERN DYNAMICS VOLUME 17, 2021, 213-265



A PRIME SYSTEM WITH MANY SELF-JOININGS 221

if [n—-cjqjl = In—cjqj| is minimal, we choose i = min{j, j’}. Once such a
representation is fixed, our construction depends on this choice.

We define two functions from Z to itself that allow us to move between study-
ing properties of the odometer S and those of the first return map T

NoOTATION. We introduce two functions to relate powers of T and S. These are
useful in arguments throughout the paper, most immediately in the proof that
T is weakly mixing (Proposition 3.4) below. Fory € Y, define {y: Z — Z to be
the map taking the integer n to the integer m such that Sy = T"y.

Forye Y, define {y: Z — Z to be the map taking the integer n to the least
integer m such that there exists ¢ > n satisfying Ty = S’y.

Let 0 € Y denote the point consisting of all 0’s. To keep track of the iterates
of S that fix the first i positions, as determined by the g; defined in (7) and the
expansion of any integer in the base determined by the sequence g;, as defined
in (8), we define

) ri =¢o(qi)
and define
(10) d;(n) = ¢;({o(n)).

Thus the map {y maps an iterate of T to an iterate of S and the coefficients
c; are changed into d;, while the map ¢y reverses this, taking an iterate of S
to an iterate of T. However they are not precisely inverses, as one can not
regain all of the odometer S from the first return T: if S'(x) ¢ Y, then there is no
corresponding T time.

REMARK 1. Our arguments require understanding the dynamics of T both at
specified times and at arbitrary times. Starting with the proof of Proposition 3.4,
we make use of the r; to choose powers of T with desired dynamical properties,
and the indices i in the criterion for weak mixing given in Lemma 3.2 are cho-
sen to be r; for some appropriately chosen j. These r; are then used to select
powers of T with desired dynamical properties throughout Section 4. The d;
(especially for the largest j such that d; is non-zero) are useful for understand-
ing the dynamics of T at arbitrary times. To motivate this, informally the d;(n)
give us a representation of zn in some base constructed to be compatible with
the dynamics of T. This role is analogous to how the c; act like such a base for
the odometer S; the construction of the d; depend on the c;, and they play such
arole for T, and this role explored and exploited in Sections 5 and 6.

An easy analysis of the return times for the odometer S leads to (we omit the
proof):

LEMMA 3.3. If€ is a cylinder defined by positions < i, then the sum Z?:OI 14(S/x)

does not depend onx € X. Thus the sum Z;.”':BI 1z, (S7x) does not depend onxe X

qgi—1

j=0 1w, (S/x) does not depend onx e X

for any ¢ such that ¢ < i and similarly, )
for any ¢ such that 10%* < i.
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We use this to show:
PROPOSITION 3.4. The system (Y,v,T) is weakly mixing.
Proof. Assume i = 10% — k and set
qi . 00 00 ¢
Ui=X~ US‘J( U Zmu U Wj) .
j=0 m=i+1 10/ >i

We claim that if i = 108, then u(U;) = 1 -1 8~ Lm=i+2 S,nlﬁ Indeed, under this
assumption a,, = 8 and so u(W,,) =

q o for m =i and u(Zy) = for all

¢ =1. Thus, qi,q(Zg) <8 lforall ¢ >i. By the assumption on i, it follows that
2 1027>m) ql'qij <
Set
Ai=fxelU;nY: x; <4}

and so v(4;) > %— %. For x € A;, we have S/x¢ D, forany 0< j<g; and £ > i
(recall that the sets Dy are defined in (6) and (S/x); # a;—2). Thus by Lemma 3.3
and the definition of T, and r; € Z such that T"ix = S§9x, which by choice of g;
is close to x (note that r; is defined in (9)). Set

Bi={x€eU;: x;j=7,x1 <5,x;_1 <6}

O{xeX: xj41<5,x;=7,xj-1 <6,x1 <5}

Then u(B;) > ¢; and v(B;nY)> 128 For x € B;, we have S/xe D; = Zyok_y for
some 0< j< ql and by definition Six¢ Dy for all ¢ > i (because (Sfx),- #£a;—2).
Lemma 3.3 implies that T"ix = Sqitly (by our assumption that x; <5, we have
S9%+1lx € V). And thus the assumptions of Lemma 3.2 are verified for the mea-
surable sets A;, B; and sequence of integers n; = r; with i € (10— k: k=8}. O

3.5. T isrigid rank one by cylinders. We now show that the constructed system
is rigid rank one by cylinders, using information on the odometer system (X, S)
to study the system (Y, T). Recall that since the system (X, S) is an odometer,
fixing initial entries corresponds to an interval in [0, 1).

LEMMA 3.5. The system (Y,v, T) is rigid rank one by cylinders.

Proof. Let I be the cylinder set determined by the word of all 0’s up to 10%¢*1
and with any value between 0 and 2k +1 -5 = 2k — 4 in the entry at 102F*1, Let
Ny = I'g2¢+1, as defined in (9). If y € Uan Lri (Ik), then y,gx+1 <2k+1-3 and so
(S'y) g2t < 2k+1—-2 for 0 < i < ng. Thus, S’y ¢ Uysqg2xn Dy for 0 < i < ng and
Yol

an—l . o0 o0
2
U ruon| U 2zvu U wj|=9.
i=0 £=102k+141 J=k+1
q102k+1 1

Additionally, by Lemma 3.3 we have that Z 1y, _ 2641 De S/x is constant on
X. Therefore ¢y(gyger+1) is constant (and equal to ng = ryg2e+1) on this set.
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For any x € I}, we have that (T"(x)); = x; for all i #10%**! and (T"* (%)), g2x+1 =

X1p2e+1 + 1. Thus
1473 — 1
p(IT* I,nly) = (1 2k_4)p(lk),

establishing condition (iv) (after passing from u to v) of the definition of rigid
rank one by cylinders. For any x € I; and 0 < i < ny, we have T" (x) j # 0 for some
j <10%**1 and so condition (ii) follows. Since each T’I is either contained in
or is disjoint from Z, and W; for ¢ < 10251 and s < 2k + 1, and furthermore is
disjoint from all other Z, and W, we have that T’ I} is a cylinder set for all 0 <
i < gy, establishing condition (i). Finally condition (iii) follows since U?ja Lrir k
contains all of Y other than the cylinder sets defined by having entries at least
2k — 4 in the position 102%+1, O

4. JOININGS

In this section we prove that our system is not quasi-distal and that the self-
joinings of the system form a Poulsen simplex. We start by proving Theorem 4.1,
a general criterion for a system to not be quasi-simple. As simple extensions
arise via quite a general construction, it is natural that this argument becomes
technical. In Sections 4.2 and 4.3, we show that our system (Y, v, T) verifies the
assumptions of Theorem 4.1. The key results used for doing this are Proposi-
tion 4.4 and Lemma 4.13, and we include a paragraph after Proposition 4.4 for a
description of its role. The motivating idea behind the proof of Proposition 4.4
comes from a modification of a construction of the first named author and
Eskin [4, Section 3], and in Section 4.2.1, we verify that our system (Y, v, T) sat-
isfies the assumptions of the construction. Lemma 4.13 is general. The fact that
our joinings form a Poulsen simplex is analogous to the previously mentioned
construction in [4] and is established in Section 4.4 using only the results from
Section 4.2.1 (and in particular does not require Proposition 4.4). Section 4.5
establishes that these properties are residual.

4.1. Isometric and distal extensions. Given systems (Z1,{;, T1) and (Z,{>, T»),
if  is a measure on Z; x Z,, we make a mild abuse of notation and let 7, denote
the measure on Z, that is defined for almost all x € Z; by disintegrating the
measure 7 on the fiber {x} x Z,. We want to have a condition to rule out that
(Z1 x Z»,m, T x T3) is measurably isomorphic to Ty: Z1 x G/H — Z; x G/ H by
Ty(x,8) = (Tx,[¢(x)]g). Note that the change in the second fiber of such a map
is independent of g (but may depend on x). Theorem 4.1 is the tool to do this,
and we give a rough idea how the various the conditions in the hypotheses play
different roles. Condition (ii) identifies what the change in the second fiber
must be (note that it is allowed to depend on x) and condition (iii) says that
this can not be the change. Since our isomorphism is only a measurable map,
conditions (i), (iv), and (v) are to allow us to be able to apply Lusin’s Theorem.

THEOREM 4.1. Assume (Z1,{1,T1) and (Z,,{», T>) are ergodic, Borel probability
systems such that Z, and Z, are compact metric spaces. Let 11 be an ergodic
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joining of the systems (Z1,(1,T1) and (Z,,(>,T>), and let c > 0. Assume that
there exists 6 > 0, a sequence of integers (n;)ien tending to infinity, a sequence of
integers (L;)ien Such that L; > 6n;, and measurable sets A; C Z, satisfying

i. (1(A;)>c forallieN.
Further assume that for each x € A;, there exist sets C;(x),E;(x) € Zp, and jy €
[—n;,n;] (all depending on x) satisfying the following conditions:
ii. sup sup %Z;i:_ol dzz(Tf T,y Tf sz"y) —0.
x€A; yeCi(x)
iii. Forall y € E;(x), we have

1 ) .
—HosesLi-1: Az, (TL Ty, T TS y) > c}| > c.
1

iv. Forall x€ A;, nx(Ci(x)),nx(E;j(x)) >c.
v. For any ¢’ > 0, there exists iy such that for all i = iy and any x € A; if we have
balls B(py,c) < Z, satisfying nx(Ei(x) " Ug B(pe,c)) > c—c/, then

nx(Ci(x)n [ JB(pe,2¢)) > c—2¢".
v

Then n is not a distal extension of (Z1,(1, T1).

Note that this is a general result, holding for arbitrary measure preserving sys-
tems whose underlying spaces are compact metric spaces, and this result does
not depend on the particular constructions we have for the systems (Z1,{1, T1)
and (Z,,{2, T»). We further note that in (ii), we can not take j, = n;, as this
would preclude Condition (iii). Note that since Condition (v) holds for arbitrar-
ily small choice of ¢/, this rules out the possibility that the joining is carried
on a finite union of graphs. Indeed, if fi,..., fr: Z1 — Z, are distinct functions
satisfying f;(T1z) = T>(f;z), then for all € > 0 there exists ¢ > such that for all but
a set of z€ Z; of yy-measure at most € we have dz, (fi(z), fj(z)) > ¢ forall i # j.
Then we can not satisfy Condition (v) with £ small enough and ¢’ < g

The proof of Theorem 4.1 proceeds by contradiction. We assume (Z; x Z»,1,
Ty x T) is an isometric extension of (Z1,{;, T1), meaning that there exists a (mea-
surable) isomorphism W¥: (Z; x Z5,1, Ty x T2) — (Z1 x G/ H,{1 x mg,p, Tp) that
is the identity on the first coordinate, and use this to derive a contradiction.
Since a distal system can be decomposed as a tower of isometric extensions, we
conclude that it can not be a distal extension.

Before turning to this proof, we start with some preliminaries and a lemma
used to derive the contradiction. Let £ be a compact continuity set for ¥ with

nx) >1- 1%064. Thus £ is also a continuity set for 7, o ¥, where m,: Z; x
G/H — G/ H is the projection on the second coordinate. Choose § > 0 such
that dg,ir(gh, gh') < § whenever dgi(h,h') < 6 and g € G. Choose § > 6" >0
such that dg,p (2 0 ¥ (x, y),7m2 0 P(x'y")) < § whenever (x,y),(x',y) € £ and

Az xz((x,y),&,y)) <6

LEMMA 4.2. Under the assumptions of Theorem 4.1, there exist a pair of points
(x,y), (x, ") € Z1 x Zp and b € Z such that
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i. (%, )),0x,¥),(TPx, T y), and (T?x, T?y") e X ;
ii. dz,(y,y")<&';

iii. dz,(TPy, TPy >5-£> £

Proof. For all L= 1, we have that

Lt} o LS 1,
n({(x,y). igoll((fo, Tzly))<L—Ec})<Ec :

Choosing ¢’ = %' as in Condition (v) of Theorem 4.1, for all sufficiently large i,

we can pick x € A;, y € C;(x), and y' € E;(x) satisfying dz, (y,y") <&’ and the
conditions

Li+n;—1 ] ' L
Y 14 ((T{x,Tiy)>Li+ni - —c,
i=0 10

Li+n;—1 ) - Ll
> Lx((Tix, T,))) > (Li+n) - —c.
i=0 10

By Conditions (ii) and (iii) of Theorem 4.1, there exists ¢ such that the points
(T, T y), (T, T ), (T8 x, Ty, and (T)x, T) 0 y) all
lie in the set £, while at the same time

dZZ(TZ[+"iy,T2[+j"y)<5' and dZZ(T2[+niy’,T2€+j’“y')>c.

Thus we can take b to be one of ¢ + j, or £+ n;. Indeed,
max{dzz (T€+n[ y, T[+n,-y/)’ dZZ (T[Jrj"y, T“jxy')}
> dZZ (T“”"y', T“j"y’) _ d22 (T£+ni ¥, T“j“‘y). 0

Proof of Theorem 4.1. We first show that 1 is not an isometric extension. Ob-
serve that if g = (,b(le‘lx) ...+ ¢p(x), then w0 ‘I’(lex, szy) =gmyo¥(x,y) and

720W (TP x, T?y') = gmaoW(x,)). Because all four of the points (T} " x, T, *" y),

(Tfﬂxx, T;ﬂ"y), (Tf””x, Tf””y’), and (Tfﬂ"x, Tf”"y’) lie in the set %", Con-
clusion (ii) of Lemma 4.2 implies that dz, (T. zb »T. 2b y") < {, a contradiction of
Conclusion (iii) of Lemma 4.2.

Now assume that 7 is a distal extension of (Z;,{1, T1). By the structure theo-
rem for distal flows of Furstenberg [11] and Zimmer [34], the system (Z) x Z»,
1, T1 x T») is an inverse limit of systems, each of which is an isometric exten-
sion of the preceding one. Thus there is a factor of our distal extension, which
is an isometric extension of (Z1,{1, T1), and which satisfies the assumptions of
Theorem 4.1 (with different c¢). Indeed, by the definition of inverse limits, we
can embed our distal extension into the product defining the inverse limit. This
contradicts the previous paragraph. O

4.2. A self-joining that is not quasi-simple. We apply Theorem 4.1 to establish
part of Theorem 1.1:

THEOREM 4.3. There exists a non-trivial ergodic self-joining of (Y,v,T) that is
not a distal extension of (Y,v, T).
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By non-trivial, we mean that the self-joining is not v x v.

Before turning to the proof, we start with some preliminaries. If (Y, T) is a
compact metric space, let .4 (Y xY) denote the set of Borel probability measures
on Y and let d 4 yxy)(,-) denote the Kantorovich-Rubenstein metric, defined
for Borel probability measures pu,ve #(Y xY) as

dJﬂ(YxY)(IJ,V):ZSUP{)ffdﬂ_fde‘: f is 1-Lipschitz function on Y x Y}.

This metric endows the set of Borel probability measures .# (Y xY) on Y x Y
with the weak*-topology. Similarly, define d_4(y) to be the Kantorovich-Ruben-
stein metric on the . (Y).

Recall that J(n) denotes the off diagonal joining on {(x, 7"x)}, meaning that
J(n) is the measure on X x X defined by

ff(x,y)d](n)=ff(x, T"x) dp.

Recall that if o is a self-joining of (Y, v, T), we let ox denote the disintegration
of o given by projection to the first coordinate, thought of as a measure on Y.
Note that this is only defined v-almost everywhere and is slightly different than
the usual disintegration of measures: it defines a measure on Y, rather than a
measure on Y x Y that gives full measure to {x} x Y.

The main tool in establishing Theorem 4.3 is the following proposition:

PROPOSITION 4.4. For any e >0 and ky,...,k; € Z, there exist ¢1,...,¢2:, N, M,
LeZ, withM<L, aset AcY with v(A) > 9—19, and for each x € A there exists
Jx € [=M, M] such that
(a) v({x: dM(Y)((Z—II, Zi’ﬂ](&))x, (%Z;le(kn))x) > s}) < ¢. (Recall our conven-
tion that the disintegration of measure on Y x 'Y by projection onto the first
coordinate is a measureon Y .)

there exist reorderings iy,...,i; of 1,...,r and
(b) VI{X€ At i14r,...,02r Of T+1,...,2r such that foralll<s<r,;|>v(A) —¢.
dy(Tka, Tlisx) < € and dy(Tksx, Tliresx) < €

© duysv) (x5 XN, 8 (rixriTtnny T Lhey J(ki)) <€ for all n<2r andx e A.

@ 1Y dy (TMHI T nx, T Tnx) < € forallxe Aand n<r.
Moreover, if we assume that there exist a,b € N and ¢ > 0 such that dy (Tx, T?x) >
4c+¢€ for a set W of x with v(W) = % and
r
A1) |{isnsridy(Tx T <c}|=|{1sn<r:dy(TFx TP%) < c}| = 5
forallxe W, then

dy (TM+iTlax TiTlaThy) > ¢ } .

e 1
L forallxe Aandr<d<r+2[sr]

{OSiSL—l:

O
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The proof of this proposition occupies the rest of this section, starting with
finding the first half of the ¢; and then the second half. Before we turn to this,
we comment on the role that this proposition plays. To prove Theorem 4.3, we
iteratively apply this proposition, and at the k — 1% application obtain a join-
ing that is the barycenter of 2¥ off diagonal joinings. We then take the weak*-
limit of this sequence of (non-ergodic) joinings and obtain o, an ergodic joining
that satisfies the criterion of Theorem 4.1. Using the proposition, we obtain
a joining with the desired properties before passing to a limit. Before turning
to the proof, we give some indication of the role of the various conditions in
the statement. Conditions (a) and (b) are used to prove that o is ergodic, and
Conditions (d) and (e) are used to show that ¢ satisfies the assumptions of Theo-
rem 4.1. More precisely, the sets C;(x) for o are approximated by (Tt "x}:l:1 in
the sense that 1, restricted to C;(x) is close to 2—1r Z;: 1 0 reny- Similarly, the sets

(Tt "x}:;zr[ﬁ] correspond to E;(x), M corresponds to n;, and L to L;. Conclu-
sion (e) is the analog of (iii) in Theorem 4.1 and Conclusion (d) of (ii). Condi-
tion (v) in Theorem 4.1 corresponds to observing that (b) implies that for most
x, foranyr <d < r+2[ﬁ] there exists 1 < i; < i, such that T%x is close to T iax.
The relation between the pre-limit versions of the properties and the desired

properties for the limiting measure o is addressed in Lemma 4.13.

4.2.1. Finding ¢,...,¢,. We now construct ¢1,...,¢, satisfying the conclusions
of Proposition 4.4.

LEMMA 4.5. For all € > 0, there exists ko € N such that for all k> ko and 1< ¢ < k:
i If(TiX)lozk <k forall 0 <i < lryp«, then d(Thloz"x,x) < €. Similarly, if
(TX)yg2¢ < k for all 0 = i = — €7k, then d(T*1v?x,x) < .
ii. If k< (T'X)y g < 2k =2 for all 0 < i < £(rygee + 1), then d(T*"w+ " Vx,x) <&
Similarly, if k = (T'X) g2« < 2k—2 for all 0 = i = —0(rypx + 1), then
d(T!Mectx x) < .

Recall from Section 3 that d = dy is a metric giving the subspace topology for
Y coming from product topology on X.

Proof. We only include the proof of the first part of (ii), as the proofs of all
four statements are similar. Thus we need to show that under the assumptions,
(7! *+Dx); = x; for all i < 102*. This statement immediately follows once we
show that

(12) Tk Dy = §lhorkx,

To prove (12), note that by assumption, (T°X), gz« < 2k—2 for all 0 < i < £(rygex+1),
and so Six ¢ Uj>102k Dj for all 0 < i < £q,qp. (Recall that D; are defined in (6).)
Similarly, by the assumption that k < (T?x), g2« for all 0 < i < £(r,gz¢ + 1), we have
that S'x ¢ D, for all 0 < i < £q,2«. Thus for any such x, {x(gy¢2¢) = {o(qyq2¢) +
1 =y« + 1. Indeed, there exists 0 < i < 1y« such that S?(0) € D;q. Iterating
this process for x, we obtain that S%e2kx = Thek*lx, ., §¢%ukx = T¢Upee Dy,
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thus proving the claim. (Note that by assumption, S*(T7/"2¢*Ux) ¢ D; g for
any0=<j</¢and0=<i=< qg.) If ko is large enough (depending on the metric,
d, and ¢), the lemma follows. O

LEMMA 4.6. Letu,veZ and n=u+ vryg«. If

(13) Xy2x € [lul + vl + 1,k —|ul— v -1],
then (T™x)j = (T"x); for all j # 10?%. Similarly, if

(14) Xyo2k € [lul + vl + k+1,2k—|ul-v|-3],
then (T™x); = (T“7Vx); for all j # 10?k,

Proof. These results follow from Lemma 4.5, and again we only prove the first
part as the others are analogous. If x;g« € [lul +|v|+ 1, k—|ul—|v|- 1], then we
apply the first part of Lemma 4.5 with ¢ = v to T“x. O

COROLLARY 4.7. Foralle >0 and b, b’ € Z, there exists ko such that for all ¢ > k
there exists py € Z, disjoint sets Ay, By, and a cylinder ], satisfying

i. TPt(x);=(TPx); forall j #10** andx e A,.

ii. TP'x);=(TYx); forall j #10* andxe€ By.

iii. v(Ag), v(By) > % —¢.

. (@=2(1bl-1b"1-1))r i
iv. A[ = UiZO 102¢ leé

v. T JynJ,=@ forall0<i<2(¢—|bl—|b'| - 1)rgex.
Proof. We apply Lemma 4.6 to n = b+ (b— b')ry, and as in the lemma, we
write n = u+ vrypx. (Thatis, u=b and v=b-"D'.) Since b— (b-b') = b, by
choosing
Je=1{x:xj=0forall j < 102/ and X102¢ = lul+|v|+1},

the corollary follows with p, = b+ (b—b') rg2¢. Indeed, A, satisfies (13) and

QeO-lul-lvDryee
B, = U T'J,

i=(ul+ V407,20

satisfies (14). Clearly the measures of each of these sets converge to % as ¢ goes
to infinity (for fixed u, v). O

LEMMA 4.8. For any e >0 and b € Z, there exists N € N such that for alln = N,
1 n
'V({XE Y: d‘/ﬂ(yx Y)(% Z 6(TiX,TinX)’](b)) > 6}) <E.
i=1
Proof. This follows immediately from the Ergodic Theorem and the compact-

ness of the space of 1-Lipschitz functions with bounded integral. O

We now combine these results with the strategy developed in [4] to build
off diagonal joinings that are weak-*close to the barycenter of other off diago-
nal joinings. We begin by summarizing the results of [4], where the input is a
sequence of numbers and sets with certain properties.
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We assume that ¢ > 0, J; is a sequence of cylinders, m; is a sequence of
natural numbers, b(.l),...,b(.d) are sequences of integers, and A i B jand U; are
sequences of sets, and ¢; > 0 satisfy the following properties:

i. Forall j, A;=U,, TJ;~Uj.

ii. For all j, Bj =Y~ (Aj U Uj).
iii. For all j, V(A]’),V(Bj) > c.
iv. The minimal return time to J; is at least %m j-
v. Forall j, v(Uj) <g;.
vi. For all j, ij‘;‘inv(][) <ey.
vii. Forall j, ej11<¢jand ¥ j&; <oo.
R » ) R
viii. For any x € A;, we have d(be' x, Vi x) < ¢ and for any x € B}, we have
(p) (p) —
d(be X, be-lx) <¢j. (Note that b;’ill) is interpreted to be bﬁ.‘f)l ifp=1)
ix. duwxn(EXL (TxD' UGB, JBP)) <e;forallxe Y, all L= 41, and
any pefl,...,d}.

THEOREM 4.9 (Chaika—Eskin [4, Proposition 3.1 and the proof of Corollary 3.3]).
Assuming sequences of numbers and sets satisfying (i)—(ix), there exist p < 1,
C' > 0 (depending only on c and d) such that

1 & k .
dan (TG~ Y 0P =Y eq+ Cp*,
p=1 q=i

whenever k=i and p € {1,...,r}. Moreover, ifx ¢ U’;:i Uy, there is a reordering

) )
(which is allowed to depend onx) py,..., pq with d(TbE])x, The’ x) < 25:1 eq for
alll=sj=d.

REMARK 2. The last statement of this theorem is not in the statement of Corol-
lary 3.3, but follows by iterating (viii). The condition in (viii) is a slightly simpler
condition than that in [4], where the conditional measure of an off diagonal join-
ing on a fiber is used instead of the distance between points, but the condition
in [4] follows immediately by using the definition of the Kantorovich—-Rubinstein
metric.

REMARK 3. We iteratively apply the result of Theorem 4.9 for different (decreas-
ing) choices of €; and (increasing) d, with each choice satisfying all of the prop-
erties (i)—(ix). Corollary 4.7 is designed to ensure that conditions (i)-(ix) in the
hypotheses of Theorem 4.9 hold. Indeed conclusions (i) and (ii) of Corollary 4.7
provide condition (viii). Conclusion (v) of Corollary 4.7 provides condition (iv),
while conclusion (iv) provides condition (i). Lemma 4.8 provides condition (ix).

COROLLARY 4.10. For any & >0 and integers by, ..., by, there exist integers by, ...,
by such that

.1 4
(15) duyn (1o, =Y I ) <e
j=1
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forall ¢ €11,...,d}. Moreover, we may assume that there is a set W of measure

1—¢ such that for everyx € W, there is a reordering p1, ..., pq with d(TYix, i X)
<gforalll<j<d.

We note that the reordering in the second part of this statement depends on
the particular x.

Proof. By Corollary 4.7 and Lemma 4.8, the result holds for d = 2. Indeed, given
by, bo, and €', Lemma 4.8 provides Ly such that

1 L

for j € {1,2} and L = Ly. Given this Ly, we apply Corollary 4.7 twice (for suffi-
ciently large ¢ depending on L) to obtain sets A, B and p, p’ € Z for (b, b') =
(b1, b2) and (b, b') = (b2, by) respectively as in the statement of the Corollary and
such that v(N}2, A) and v(N}2, B) are at least 1 —¢’. Iterating this provides con-
ditions (i)-(ix). In particular, in the next application we have p, p’ instead of
by, b;.

Moreover, we claim that we can simultaneously apply these results to d dif-
ferent pairs (b1, b)), ..., (bg, b)) (the resulting common sets become A and B).
To see this, choose

A= {x: x142c € [max{|b;|} + max{|b; — b||} +1,¢ — (max{| b;|} + max{|b; — b;|}) - 1]}
and

B = {x: xq € [¢+max{| b;|}+max{|b;—b}|}+1,2¢— (max{| b; |}+max{|b; - b}|})-3]}.
We apply this argument for the d pairs (bgl),biz)), e, (bgd),bil)) to produce
measures bél),...,béd). Note that on A, there is a reordering of 1,...,d, call it

P1,..., Pa, such that d(TPix, Tb”fx) <eforall1<j<dandxe A. (In fact, this is
the reordering p; = j.) There is a similar reordering on B (this is the reordering
pj=j—1for j#1 and p; = d). Inductively, given b}l),...,b§d) we apply this to
the corresponding pairs (b;.l),b}z)), e, (b;.d),bﬁ.l)). Let Al,...,AJ- and El,...,éj
denote the corresponding sets, as above. By Theorem 4.9, there exists j € N
such that b}i) satisfy (15) forall i =1,...,d. That is,

( o 1 i )
duyxyn|by, =) Jby)|<e.
Jod o
Define
N A
(16) W=[(4;uB)
i=1

to be the intersection of the sets obtained at each step, and this satisfies the
desired conclusion. O
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We now combine these results to find ¢y, ...,¢,. Given € > 0, applying Corol-
lary 4.10 to ki, ..., kr, we obtain ¢4,...,#¢; such that

1S 1S
v({x: d_/%(y)(; Y Jix, - > ](ki)x) > .9/2}) <el2
i=1 i=1

(Condition (a) for the first r) and also satisfy the reordering condition on ¢,,
..., ¢, in (b), where for each xe€ W, the reordering is given by p}c =k-|{l<i<s
j:x€ B;}| and this difference is taken modulo d. (Note that as we have not yet
introduced ¢;1,...,¢2,, we have not yet fully established (a) or (b).) Towards
obtaining Conclusion (c), for each ¢;, choose N; such that for all L = N; we have

1 L-1
dﬂ(YxY)(z Z 6(zjTJ')(x,T[ix)’]([i)) <€
j=0

4.2.2. Finding l;1,...,¢2,. We start first by finding [T‘H""’[Z[ir]‘

LEMMA 4.11. Under the assumptions of Proposition 4.4 including the additional
assumption, there exists ] c{1,...,r} with |]| = Z[ﬁ r1 and an order 2 bijection
¢: J— ] such that

17) v({x: d(Tx, T*x) > c}) > %
forallie].

Proof. First we claim that for each i < r, we have that

1 r

o - A(TCix T z | L

(18) H]sr.v({x. A(Tlix, T x)>c})>8} >
To justify (18), we limit our consideration to W n W, where W is as in the state-
ment of Proposition 4.4 and W is defined as in (16) as given in the proof of

Corollary 4.10 and note that v(W n W) = % —£> %. If (18) does not hold,

L acrte 1t N i
anWrHJ'd(T ix, T x)s0}|dv2(100 8)8>2v(WnW).

It follows that there exists x € (W n W) such that
[{j: d(T%x, T!x) < ct| > %
Since x € W, it follows that
1{j: d(T*x, Tlix) < c+e}|> g

But since x € W n W, we have that d(T[ix, T%x) or d(T[ix, Tbx) is less than c +¢,
all of these T*ix are at least 2¢c away from whichever of 7% or T?x that T?x is
not close to. This contradicts the fact that xe W.

Given (18), we can obtain our set of ], because until || = [% r1, we can always
inductively pick any i ¢ J and find j ¢ J satisfying (17) and add them both into
], letting ¢ (i) = j and ¢(j) = i. Thus we can obtain a set J whose cardinality is
the smallest even number that is at least %r. O
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LEMMA 4.12. Assume there exist a,b € Z and c > 0 such that
1
v(ix: d(T%, TPx) > c}) > 3

Let
Gr={x€ Y: xjpu € [k +|a—bl, 3k —2—|a—bl|| and x;gx_; =3}

and set dy = a+(a—Db)ryypx. Then for every € > 0, there exists ko such for all k = ko
and x € Gy, there exists jx € [—k, k] satisfying

i d(T€+a+jxX, T€+a+§rwzkx) <€

ii. d(Td””fo'g’loz’fx, Th+x) < ¢
forall ¢ € [—rgex_q, 19261 1. Moreover, for all but a set of such x with measure at
most €, we have

1
(19) [0 € [=rygex_1, T1gee_y 1 (T %, T %) > c}| > 927021

Proof. We apply the proof of Corollary 4.7 with n = dj to obtain the first 2 con-
ditions. More precisely, by construction G is a subset of Ay U By where Ay and

k - .

By given by the proof of Corollary 4.7. Choose jx = Zg’;(oz Noze) 71 1p i (8'X) = IQC
(Recall that D is defined in (6).) Then since xyq2«_; = 3, it follows that jx = jry
for all such x and ¢’ € [—%rmzk_l, %rlozk_l]. Indeed, because y € D, implies

yl()Zk_l = 6, fOI‘ all XWlth x102k_1 =3 and gl € [—%r102k_1, %rlozk_l] we haVe

Ux(Er i) -1 G G- ‘
Y 1p, (8- > 1p ., (8'%) =0.
i=0 i=0

Choosing ko such that |al, |b| < rjy«_;, the first 2 conditions hold. For the final
condition, let V = {x: d(T%, T?x) > c}.
By the (mean) ergodic theorem, there exists NV € N such that

v({x: A—I/[Ag 1v(T'x) > (1 —g)v(V)}) >l-¢

for all M = N. Choosing ry2x_; > N we have (19). O

We now use this to define ¢; for j € {r + 1,...,r+2[%]}. Choose J as in
Lemma 4.11 and enumerate the elements of the set J as ay,..., Ay 1. Let ;4
be given by Lemma 4.12 applied with a = a;j and b = (4, and where k is cho-
sen larger than the ky needed for the 2 [1—%] applications of Lemma 4.12, as well
as sufficiently large such that ¢; < %rmzk_l forall 1 <i<r. For each such j, we
define ¢, to be the corresponding dj.

We now define €r+2[ﬁ]+1,...,£2r. Define V, to be the set of x such that
d(Tix, T!i*heat1x) < ¢ for all j € J°. Observe that for all large enough a, v(V,) >

1-¢. Let iy, ..., ir_g%] be an enumeration of J and define €j+r+2%1 =i+ rpzar.
a2r — /. ;
So w]}j=r+2fr'61+l = {5]/ + r102a+1}]/€]c.
We use this to prove the proposition:
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Proof of Proposition 4.4. Choose M = %rmzk, L = rygex 41, and set
B=[3k+2 max {lf4l}3k-2-2 max {|{4]}]
j=1....2[{] J=len2lE]
and
A={x: x;p2c_; =3 and x;c € B} n W V.
By Conclusion (i) of Lemma 4.12 and our choice that |£| < rygz«_;, we have

Conclusion (d) with jx as in Lemma 4.12. By Corollary 4.10 (see also the last
paragraph of Section 4.2.1) we have Conclusions (a) and (b) for {¢;}_,. Since

. " . . 2[4
each éal,...,éazrﬁw appears as both j and ¢(j) in our construction of {é,-};:rill"'],

it follows outside a set of x with small measure, for each such x there exist,
P1,---» P2y, @ reordering of /; forr <i < r+2[ﬁ] such that dy(Tg“iX, Tlrix) < €.
For the remaining r < j < 2r, the off diagonal joining ¢; is built to be & close
to the corresponding ¢;. Thus Conclusion (b) follows for {¢ i}?; . We have (c)
for N = max{N; ;:1 (see the end of Section 4.2.1). Finally, by (19) and (ii) of
Lemma 4.12, we have (e). Indeed, by our choice of A we can apply (ii), and
by (19) this gives the desired distance bound of TM*d+’x from T4+ /*ixx, O

4.3. Proof of Theorem 4.3. Let _#, denote the self-joinings of (Y, T,v). Recall
that o, denotes a measure on Y, and not on {x} x Y.

LEMMA 4.13. Lete >0, ky,...,kr€Z, ¢1,...,02,,L,N,M € Z, the set A, and jx €
[—M, M] be as in Proposition 4.4.
There exists % > 6 > 0 such that if for some o € _¢, we have

(20) v({x: duw(ow (2_17' Zz_rl ](ﬁn))x) > 6}) <5,

then there exists Ac Ac'Y and v(A) > ﬁ such that

i oY) € Ax Y daqyxy) (y EIL, 8 (rix, iy 7 Zicy (k) < 261) > 15V (A).

ii. forallxe A, there exists Cx with ox(Cy) > m and

1 L-1 . L
I Y arMtly, Titly) < 2¢
i=0

forallye Cx.

Moreover, under the additional assumption that there exist a,b e N and ¢ > 0
such that d(T%x, T?x) > 3¢ for a set of x with measure %, then there exists Ex with

ox(Ex) > m satisfying
iii. 1{0<i<L:d(TM*'y, Th*'y)> <Y > < forallxe A andy € Ey.
Proof. Choose a compact set G with v(G) > 1 — 5555; such that T!|G is (uni-

formly) continuous for all |i| = max{N, L, M}. Let G=Gn ﬂ,zle T~!G. There
exists 0 >0 such that if xe€ G and d(x,y) <9, then

1) d(T'x, T'y) <min{e, 107} for all |i| < max{N, L, M}.
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Thus we can choose A; = AnG. Ifx€ Ay, y,y € G, d(y,y) <8, and

1 1
Aty x) (N ;5(Tix,T"y)’ 7 izzll(ki)) <e¢

then by (21) the definition of d_s (v xy) we have

1 Y 1
dM(YxY)(N i:Zla(Tix'Tiy/), ; lzzlj(kl)) <2e.

Thus Condition (i) follows from Condition (c) of Proposition 4.4 (as well as (20)
and the measure bound on G). Setting

.
Cx=Gn | B(T?x,0),

n=1
then (ii) (without the measure bound) follows from (d). Setting

r+2[ ]
E=Gn | B(I'x9),
n=r+1
then (iii) (without the measure bound) follows from (e). Let A be the subset
of A; such that (20) holds, ox(A;) > % > % + 0 and so that ox(Cy), ox(Ex) >

_1_
99999° =

Before completing the proof of Theorem 4.3 we note the following. If (X, T, 1)
is an Borel probability system and X is a compact metric space, then p is ergodic
if and only if there exists a sequence N; — co such that for every f € C(X),

(22) hm— Z f(TJx)—ffdu:O

i—oo Nj j=0
for y-almost every x € X.

Proof of Theorem 4.3. We now produce a joining as close as desired (with re-
spect to d 4 (yxy)) to %( J(0) + J(1)), which can thus be assumed to be different
from the product joining. Let k(l) =0and k(l) = 1. We apply Proposition 4.4 with

0 mmd(Tx,x) to obtain ¢4,...,¢4, which we denote as kiz),...,kf).

We also obtaln Nl,Ll,Ml and we then apply Lemma 4.13 to obtain d;. Apply-
ing Proposition 4.4 with &, = min{zlz, 62‘} and k(z),..., kf) and we also obtain
N>, Ly, M,. We repeat the application of Lemma 4.13 to obtain §,, which with-

out loss of generality we can assume is less than 6— We repeat this procedure,

€< g3 <

inductively obtaining ki”,. k2, , which by Part (a) of Proposition 4.4 satisfies

V({Xi dﬂm(% il(kﬁ-”)x, zin zf(kl?"))x) > 5 r_n)}) <8,(1- Zrl_n)

for all n < r. Applying Lemma 4.13 to obtain §,, which again we take to be

bounded by 2‘?1’,1 for all n < r, we can repeat the application of Proposition 4.4,
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but with &,47 = min{zr—lﬂ,%ér}. We pass to the weak*-limit of 2—1,2?;1](1#)),
which we denote o. By construction, we have that

1 2
(23) V({X: dM(Y)(UXrF Zlf(kl(-r))x) >5r)}) S(Sr
i=
for all r € N. From this, it follows via Lemma 4.13 (i) and Proposition 4.4 (c),

1M 12
0{(x,y) EYxY: dﬂ(YxY)(ﬁr Zf(Tix,Tfy)’F Zlf(kgr 1))) > 8r}
1= 1=

27‘

<2¢r <

or-1°
Thus }LIEON% Zf;’l 5(TiX’Tiy) is the weak*-limit of % Z?;lj(kl(f)), which is o, and
this holds for g-almost every (x,y) € Y x Y. By the criterion given in (22), it
follows that o is ergodic.

Thus to complete the proof of the theorem, it suffices to show that the as-
sumptions for Theorem 4.1 are satisfied. By (23) we can apply Lemma 4.13 with
o and any 2%2?;1 J (k;”) that we have produced. That is, it suffices to show

that for each ¢’ > 0, for all large enough r, we have that % Z?;l J (kl(.r )) satisfies
the assumptions of Theorem 4.1 with L; = L, n; = M,, as this then verifies the
assumptions of Theorem 4.1 for the weak* limit and with the same parameters
L, M,. This gives us a sequence of sets A,, such that for every X € A,, we have

sets CI™ EU™ such that oy (CY™), ox (ES™) > 59095 and

i. 150 d(TM*ly, Tixtly) < 2¢ forallx € A, and y € Cx giving Theorem 4.1 (ii)
as m — oo and we can choose € — 0. (This uses Proposition 4.4, part (d)
and Lemma 4.13, part (ii).)

ii. 110 < i< L: d(TM*'y, Th*ly) > £} > £ for all x € Ay, and y € Ex giving
Theorem 4.1 (iii). (This uses Proposition 4.4, part (e), and Lemma 4.13,
part (iii).)

iii. The assumption that ox(Cx),0x(Ex) > ggt55 giving Theorem 4.1 (iv).

iv. Proposition 4.4, part (b) applied to r < d < r +2[{;1 combined with (20)
imply Theorem 4.1 (v).

Note that strictly speaking, M, L, Cx, Ex, and jx depend on m, but we omit the
dependency for the sake of readability. The choices of Cx and Ex are given by
Lemma 4.13 and we have that M and L are M,,, and L,, introduced earlier in the
proof (which are required input for using Lemma 4.13). Thus we have proven
the assumptions needed to apply Theorem 4.1. O

4.4. Poulsen simplex. We have assembled the tools to prove the last part of
Theorem 1.1, showing that the set of self-joinings of the constructed system
form a Poulsen simplex, meaning that they form a simplex such that the extreme
points are dense.

PROPOSITION 4.14. The self-joinings of the system (Y,v, T) form a Poulsen sim-
plex.
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In the proof, we make use of a result of King:

THEOREM 4.15 (King [23, EJCL Theorem]). Ifn is a self-joining of (Y,v,T) and
T is rigid rank 1, then there exist real numbers ag.k) > 0 such that ) ; ag.k) J(@)
converges in the weak*-topology to 1.

Note that in our setting, we can utlize this result, as rigid rank 1 transforma-
tions have flat stacks. In fact, King establishes that the ergodic self-joinings of
transformations with flat stack lie in the weak closures of off diagonal joinings.
A different proof of this result is given in [4, Corollary 2.3] (see also [3, Corollary
0.3]).

Proof of Proposition 4.14. By King’s Theorem, it suffices to show that for any
integers n1,..., n; and positive rationals B, ..., B such that }_ §; = 1, there exists
m such that d_y4 (v xy)(J(m), ). B;J(n;)) < . Without loss of generality, we may
assume that all of the rationals have a common denominator, writing g§; = m’
where all m; are positive integers. By Corollary 4.10, applied to ny,..., ng where
each n; appears m; times, there exists m such that

T )
dﬂ(ny)(](m),—Z Y J(a, )) <
I =
Thus d v xv)J(mM), Y. B;J(n;)) <e. O

4.5. These properties are residual.

THEOREM 4.16. A residual set of measure preserving transformations are not
quasi-simple.

If (h i) jen is a sequence of positive integers, we say a system (X, T, u) admits
special linked approximation of type (hj, h; +1) if for each j € N, there exist sets
A;,CjcX satisfying the following five conditions:

i lim u(U Yrip)=1= = lim u(U TiC));
ii. The sets A],...,T T A],C], , T iC; are pairwise disjoint;
o o TUANAY (T ’”lcjmc,)
i, lim St = 1= lim S
iv. Defining

-1
R = |_| T'A; and 2! = |_| TiC;,
i=0 i=0
there exist measurable sets J; = A; and a,b € N such that J;,..., T“+b‘1]j
are all pairwise disjoint, Ti]j %U) forall0<i<a-1, and Ti]j c ,%(C]) for
ala<i<a+b-1and hm ,u(U‘”b LTiy)=1;

v. For all € > 0, there exist measurable sets Béj ), . B,(l] )_1 and E(()j ), . ..,E;lj_) eX
7 J
of diameter at most € such that
hi-1 h; .
lim ¥ p(T'A;~BY)=0= lim Z wric;~B").
j=o0 Dy -
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Condition (iv) distinguishes this from usual linked approximation, and is needed
to carry out the arguments of Section 4.2. This property is a residual property in
the space of measure preserving transformations. Indeed, it is conjugacy invari-
ant, and nonempty. Halmos [16, Theorem 1] showed that the conjugacy class
of any aperiodic measure preserving transformation is dense. Our conditions
(i)-(v) are the intersection of a countable number of open conditions and so the
property holds on a Gs set. Thus it is a dense Gg, that is residual, property.

We say a system (X, T, ) is rigid rank 1 if there exist numbers n; and sets I;
such that

i lim (U L) = 1
Jj—oo -
ii. The sets [},..., T j are pairwise disjoint;

wT"innI) 1.
- b

iii. lim )

j—oo
iv. For all € > 0, there exist measurable sets B(()] ),...,Bil]j )_1 € X of diameter at

most € such that
l’lj—l

im 5 w115 =0
J70 =0
Note that this property is stronger than being both rigid and rank 1. Similarly
to the property of admitting a special linked approximation, rigid rank 1 is also
a residual property in the space of measure preserving transformations.

Any transformation that both admits a special linked approximation of type
(hj,hj+1) and is rigid rank 1 has a self-joining that is not a distal extension of
(X, T,u). Indeed, these transformations have the following property: for any
pair of integers a, b € N and € > 0, there exists m € N and a pair of sets C, D with

measure at least % — € so that
p({xeC: d(T%x, T"x) > €}) <€ and p({x € D: d(Tlx, T"x) > e}) <e.

Using this property, rank 1 rigidity, and the ergodicity of i, our construction
of the joining that is not a distal extension of (X, T, ) proceeds similarly to
Sections 4.2 and 4.3. More precisely, for sufficiently large j, we can choose
C= U?i;l TiAj, D= U?LO TiBj, and m = a+ (a— b)h;. The inductive construc-
tion of ¢1,...,¢, proceeds verbatim. Similarly for ¢,,4,..., £,+2[Trﬁ] is almost ver-
batim (the described set in Lemma 4.12 is less explicit) and the construction of
4 r+2[£1+10- ..,¥2; is verbatim (making use of the property that our transforma-
tion is rigid).

REMARK 4. Analogously, Proposition 4.14 can be generalized for any rigid rank
1 transformation that admits special linked approximation of type (hj, hj +1).
Using this, it follows that there is a residual set of measure preserving transfor-
mations such that their self-joinings form a Poulsen simplex.

5. CODING AND RESULTS

Sections 5 and 6 are interrelated and technical, and these contain the argu-
ments that rule out an arbitrary, non-trivial factor. We do this by studying the
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Markov operators. As our system (Y,v,T) has many self-joinings, it also has
many Markov operators on L?(v). The crux of our argument is that none of
these Markov operators can be projections, other than those corresponding to
trivial factors. A challenge, which offers some justification for the technical na-
ture of our proof, is that our arguments need to take into account that there
are two projections, with qualitatively different behaviors from each other, aris-
ing from the two different types of trivial factors: integration against v, which
arises via the factor map to the one point system, and the identity map, which
arises via a factor map that is an isomorphism. These arguments are carried
out in Section 6, which unfortunately is difficult to summarize at this point, as
it rules out non-trivial Markov operators that are not projections by treating
three possible cases. The rough idea of Section 6 is that if T has a non-trivial
factor P with Markov operator F, then there exists a measurable set A such that
(F14,F17-14) =0 and (the contrapositive to) Lemma 5.6 shows that this Markov
operator corresponds to a factor to the one point system (and so the factor was
trivial). The idea of verifying the negation of Equation (26) in Lemma 5.6 is that
if F' is the Markov operator corresponding to a non-trivial self-joining of T, then
for any measurable set A of positive measure, there exists some iterate M of the
operator such that

(24) (FM1,4, FM1p1,) > 0.

To do this, we relate F' to Y @;Up: (Theorem 5.1 and Corollary 5.2) and define
a notion called i-friends adapted to this property in Section 5.2, showing that
there is some small iterate i of the transformation T such that ( F"M1 4, F"M1,. ;)
> 0. To study this quantity, we relate > a;U7: to er’:v ry BiU7: (this is the idea
of Section 5.3) for fixed N depending on A. We show that there exists some M,
which depends on the choice of N, such that

I'N 'n M
< Z ﬁiU%IA,( Z ,Bl'UTi) 1T1A> > 0.
i=—rN i=—rN
This argument covers the first case of Section 6. Now, though, we can (and
do!) choose a; such that (Z aiUTi)M is close to F'M we can not conclude that
Z:ﬁ_rNﬁiU]TVf is close to ¥ a;Uy+; in particular, the closeness of Z;Z_rNﬂiUTi
to Y a;Ur: depends on N, but M also depends on N. However, we can show
that if these two quantities are not close then (24) still holds (this corresponds
to cases 2 and 3 of Section 6). Section 5 sets up the machinery for Section 6 and
is perhaps even more opaque, though it is motivated by explanations within
that section. As we are only concerned with factors, our results are all stated for
Markov operators corresponding to factors. (There are two simplifications in
the above description: In reality, we can not just consider (F’M 14, F"M1,0 A
and instead we must consider (F"M1 4, FM1,.; ,) for i € {1,2,3}. Additionally we
approximate Y a;Ur: by Y. f;1p,Uri where B; c Y are cylinders.) Before start-
ing, we also give a short overview of Section 5. In Section 5.2 we introduce a
key definition i-friends and Lemma 5.6 whose contrapositive is used to show
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our system is prime. The application of this lemma makes use of an elaborate
inductive definition (see Definition 5.7), characterizing the relation between
the transformation T (or some of its small powers) and large powers of T. In-
formally, we call this reducing or the reduction of the power, as it gives us a
procedure by which to replace higher powers of T by lower ones. We study this
procedure in Lemmas 5.9 and 5.10 and throughout Section 5.4, showing how it
is connected to the notion of n-friends. This leads to a criterion for our process
to be prime, developed in Section 5.5. Namely, using Propositions 5.15 and 5.20,
we show that if T has a non-trivial factor, then the inductive procedure given in
Definition 5.7 only can produce small errors. We provide additional motivation
throughout this section.

5.1. The mechanism for showing (Y,v, T) is prime. Throughout this section,
we continue to assume that (X, i, S) and (Y, v, T) are the systems defined in Sec-
tion 3, maintaining all of the notation introduced in that section. The proof that
(Y,v, T) is prime is based on showing that a factor map is either an isomorphism
or a map to the one point system. The first step is relating factor maps to linear
combinations of powers of T which holds for any rigid rank 1 transformation:

THEOREM 5.1. (4, Theorem 2.2]) If P is a factor map of T and F is the corre-
sponding Markov operator, then F is the limit in the strong operator topology of
linear combinations of powers of Ur with non-negative coefficients.

This theorem is stated in [4] for any Markov operator corresponding to any
self-joining of any rigid rank 1 transformation.

COROLLARY 5.2. If P is a factor map of T and F is the corresponding Markov
operator, then there exists a sequence of convex combinations Y ;cz ag.k) satisfying
Yiez ocg.k) =1 and such that ) ;cz (xg.k) Uri — F in the strong operator topology as
k — oo.

Proof. The existence of the sequence of ag.k) without the extra hypothesis that
Zaﬁ.k) =1 for each k follows from Theorem 5.1. For this last assumption, ob-
serve that F1y = 1y, and so klim Y ag.k) Urily = 1y and we may assume the

—00

(k)
i
1>; ag.k) Urilyl =Y; ag.k) and we see that we may assume the ) ; ag.k) is a con-
vex combination. O

(non-negative) coefficients add up to 1. Indeed, because .~ are all positive,

5.2. A condition for a factor to be the one point system. Recall that Z; and W
are defined in (3) and (4). Given n € N, we say that x,y € Y are n-friends if

n . n X
Y 14(8x)=) 17(Sy)
j=0 j=0
for all but one ke N,
n . n .
Y 1,80 -) 1,(y)|=1
j=0 j=0
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for exactly one k e N, and

n .
1w, (S'y)

- 0

Ly, ($7x) =

n
0 Jj=

J
for all £ e N.

LEMMA 5.3. Ifx andy are {x(n)-friends, then 0 <|{y(n)—{x(n)| <3.

Proof. Since Y = X~ (Upg10k: k=) ZeY Uee, Wj) and since x and y are n-friends,

it follows that

{x(m) . {x(m) )
Y 1y (S'x) - 1y(S'y)|=1.
Jj=0 Jj=0

Assume 25":(6” 1y(Sly) = Zj":((’)’) 1y(S/x) - 1, and so {y(n) = {x(n) + m where m is
the least integer such that

m .
Z ly(S]S("(")y) -1.
=1

To prove the statement, we are left with showing that m<3. Ifze X, /€ Z, and
S%z,8/*1z ¢ Y, then one of the two iterates lies in Z; (the only D, with 1st index
not 6) and the other lies in U‘;‘;Z Dy, and so (8/*2z); ¢ {6,7} which means it lies
in Y. It follows that m < 3, completing the proof. O

We record part of the proof for future reference:
COROLLARY 5.4. For everyxeY, ne Z we have |(x(n)| < 3|n|.

NotATION 5.5. We introduce notation (namely %, ) that is crucial for estab-
lishing that T is prime, and is used extensively starting in Section 5.4. To mo-
tivate its meaning, sets with k-friends play a key role in the proof, being used
in Lemma 5.6 to establish a criterion that rules factors not being to the one
point system. To do this, we invoke Lusin’s Theorem and use that many pairs of
friends share their initial entries. We keep this in mind and make the definition
precise.

Given j € Z, we say that 2 disjoint measurable sets «/;,%8; < Y of equal mea-
sure and a measure preserving map G;: of/; — 98; are an (n,¢)-triple for j if
v(j) = v(9ABj) > ¢, x and G;(x) are {x(j)-friends, and x; = G(X), for all k < n.
(Note this terminology is local and is only used in this definition.) We define:

(25) JCne =1{j: there exists an (n, €)-triple for j.}

The next lemma is not used until Section 5.5, but as we aim to prove num-
bers are in ./, in Section 5.4, and we set up useful definitions to do this in
Section 5.3, it is placed here for motivation. In the next lemma we approximate
a non-explicit measurable set by cylinders.

LEMMA 5.6. Assume that (Y,v,T) has a non-trivial factor (Z, p, R) with associ-
ated factor map P: Y — Z. Let F: L?>(v) — L?(v) be the Markov operator defined
by P and further assume that F is the limit (as k — oo) of ). ag.k) Uri, in the strong
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operator topology where ag.k) 20 foralli,k and }_; ag.k) =1 for all k. Then for

all small enough € > 0 there exists Ny = Ny(F, €) such that for all N = Ny and
sufficiently large m,
(m)
(26) 2 aV<e
jeFn e
Note that the proof only uses that the factor is not to a 1 point system, but is
phrased this way for consistency with the results in Section 5.5.

Proof. Since T is weakly mixing, R is aperiodic and by Rokhlin’s Lemma, for any
8 >0, there exists V < Z such that p(V) > 1 - § and such that V, RV, RV, RV
are pairwise disjoint. Define g: Z — C by setting
g= 1y +vV-11py — lRZV— Vv —11R3V
and define f: Y — Cby f = go P to be the pullback of g to Y. Choose f, taking
values in {v/ -1/ }3’.:0, to be a finite linear combination of characteristic functions
of cylinder sets such that v({x: f(x) # f(%)}) <8, and let k be the largest defining
index out of all of these cylinder sets. We claim that if N> k+1 and ne Ay,
then } }
v({x: U f®) - fx)] > %}) >£-116.

To prove the claim, assume that G, : </, — %8, is the measure preserving bijec-
tion given in the definition of %, » and define

G, (x) ifxe o,

Gx) =14 G,'x ifxe%,

b'e otherwise.
We restrict our attention to the set of points y of measure at least € — 106 that
satisfy the following properties:

i. the points lie in 7.

ii. the points satisfy f(y) = f(y) and f(G({y)) = f(G(y)).
iii. the points are such that P(T"y) and P(G(T"y)) liein VURV UR?VUR3V.

Then for any such point y, we have that f(y) = f(G(y)) (because y; = G(y); for
every i in the defining indices of the cylinders defining f) and furthermore for
some 1 < m < 3 (which may depend on y) we have

F(T"y) = f(T"y) =vV=1" f(T"Gy) = V-1 F(T"G(y))
(the second equality follows from Lemma 5.3). Thus either f(y) # f(I"y) or
f(G(y)) # f(T”G(y)). Since f takes values in {\/—_11}3:0, if f(x) # f(z) then

- - J
|f®) - f@)| = v2 and the claim follows.
By construction || F(f) — fll2 <46. However, if

IIUTnjf—fllz > ¢, for some ¢>0and y; = 0 satisfying Zyj =1,
then by taking a convex combination it follows that

27) 1> yjUpmi f=fl,>Cc?
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for some constant C > 0. Indeed, using that || UTfIIZ = ||f||2 =1 we see that
(XyjUpi F.f) = (f, f) — ¢ Because (f,g) = [ fll2-llgll2cos(£(f,g)), either
IIZ)/]-UTn,-fllz < |\fll2 - %2 or cos(é(f,ZyUTnjf)) = %2 and in either case (27)
follows. Similarly, if

> yi>e€,

iU f=Flla>c)
then | Xy ;Upn f = fll2 > Ce?c?. Since § is arbitrary, the lemma follows. O

5.3. Recoding of time scales. This section is devoted to relating T iterated a
large number of times to T iterated a smaller number of times, or perhaps sev-
eral smaller powers with accompanying subsets of Y. This procedure, which
we call reducing or the reductions, is carried out via Definition 5.7, which also
contains a parameter for testing how good this relation is. The defect of it is
related to the notion of n-friends in the next section. To carry out the reduction,
the next definition is a mechanism for computing the “order of magnitude" of
the relevant power of T. Note that this order of magnitude is used to identify
cylinders where friends are contained.

NOTATION. Let

(28) o =max{i: d;i(n) # 0},
where d; is defined as in (10).

Set
(29) E={10%: k>2}.

Now if o, ¢ E it is relatively easy to see that m € #;, 1, (see Lemma 5.11,
whose proof uses o, to identify the explicit cylinders which can be chosen to be
the domain and codomain of G,,). If o, € E, we seek to obtain m’ where T™ is
“close" to T and o m' <O m. In this way, if 0, € E and 0, ¢ E we can still show
that me #; -1 first using Lemma 5.11, this time applied to m’, and second
using the closeness of T™ to Tm’, which is made precise in Lemma 5.9, to show
these same cylinders contain the domain and codomain of G; see Lemma 5.14.
(While this specific example motivates reducing, we note that this is not the
only way reductions are used, and in particular it is used in Cases 1 and 2 in
Section 6.) We now consider two motivating examples: T 102+ *2 ~ T2, because
off of a small measure set (T"0%#+1*2x); = (T%x); for all j < 102¥*1. There is a
more complicated situation, T710% +2 g roughly T2 on {ye Y:ypx <k} (offof a
set of small measure) and T"0%c*2 ig roughly T on {y€ Y: yyqx = k} (off of a set
of small measure). Note that o (g1 +2) = 10°5*! and similarly for the other
powers. We make this recoding precise below by triples which keep track of the
new powers in the first coordinate, the set where this approximation is relevant
in the second coordinate and the measure of the set where this approximation
fails in the third coordinate. Note, the third coordinate can also be related to
friends (Lemma 5.12). The next definition defines an inductive procedure, and
the relevant initial conditions are deferred until Definition 5.8.
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DEFINITION 5.7. Fix N € N and € > 0. For 7 = 1 and a set of triples $,(N,¢)
Z x B(Y) x [0,1], we inductively define the set of triples $,.1 (N, ¢) as follows: if
(j, A, p) € H:(N,¢) and at least one of the following conditions holds
i.oj¢E
ii. j=0
iii. 0j <N
iv. p>¢,
then (j, A, p) € H,11(N,€). Otherwise we modify the triple, depending on the
value of 0 ;:
i Ifoje {10%¢*1: ¢ = 1}, then
ldo; (I

gj

(j_daj(j)rj)A)p+ )E‘S’JT+I(N)£)-

ii. If 0 €{10%/: £>1}, then both

: , do; ()]
j—do;(Prj, A0 J 6s,(0),p+ €Hr+1(N,e)
Z<? i
and
\do; ()

(]_dU](])r]+dO'](J))An U Cgo'](g))p-i—

J
>
lz 2

)Eﬁl‘+1(N’E)-

gj

DEFINITION 5.8. Fix N € N and € > 0. Define §(V,¢) to be the collection of
triples $, (N, ¢) that stabilize with respect to r, meaning that

S(N,€) =9, (N, &) when ,(N,€) = Hr41(N,€).
Define & (N, ¢) to keep track of the measure of the sets in §(IV, €), meaning that
F (N, ) ={(n,v(A),p): (n, A, p) €F(N,é€)}

If Ho(V,€) = (i,[0,1],0) for some i € N, we define &; (N, €) to be the set (NN, ¢).
Similarly, define $),; (N, €) to be 9, (N, ) if Ho(IV,€) = {(i,[0,1],0)}. We simi-
larly define §; (N, €) to be §(IV, &) when Hy(N, ¢) = {(i, [0,1],0)}.

Note that 0, is defined in (28), a; are defined in (1), and r; are defined in (9).
We state a lemma that motivates the sets given in Definition (5.8). In particular,
it shows how these definitions relate T to a large power to T to a smaller power,
or possibly two smaller powers with relevant sets.

LEMMA 5.9. Given neN, let € be a cylinder defined by positions in E that are
greater than o .
i. Assume o, is an odd power of 10. Setting i = n—d,, (n)1,,, we have

7 n ) ldy, (n)]
v({xe€: (T"x); # T"(X); for some i <0 ,}) <4v(€) )

ag,
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ii. Assume o, is an even power of 10. Setting n' = n—d,, (n)(ry, — 1) and defin-
ing A; ={X: x5, 2 m}, we have

2
n n . |dUn (n)l
v({xe A1: (T"x); # T"X); for somei<op})<4v(€nA)——.
On
Furthermore, setting n = n—d,,(n)r,,, and defining Ay = {x: x5, < %}'
we have
|dg, (1)

v({xe Az: (T"'%); # T"(X); for some i <o yr}) <4v(€ N Ap)
O 5
Proof. For convenience, in this proof we assume d,;, > 0 (the case d,, <0 is
similar). Recall that D; is defined in (6). Observe that if T"(x) = Son (Mo, (TTy),
then T"(x) i= T"(x) jforall j <oy, and (by Lemma 3.3) this holds if
day, (M qs,—1 .
(30) > luz, p(S®=0.
i=0 "
First we consider the case of o, = 10/ for j odd.
Since 0, € {102k+1: k > 1}, we have that Dy, = ¢ and so (30) fails for a set of x
of u measure at most

dy, (n) o dg, (1)
31) z qanu( U Dj)s Z—
ag, j=o.+1 4o,
Furthermore,
Aoy (Mo, —1 . 1ds,(n)
vixeY: Y Lz, (S0 #0)=3dy, (0qun(Z,,) = 3 s 2.
i=0 Tn

(Restricting to x € Y and converting from p to v changes this by a factor of less
than 3.)
The next two cases are similar, but a bit more complicated as D, is not
empty, but is equal to W, for some ¢. If xe€ A;, then the conclusion holds if
dan(n)qan71 .
ipn' oy
< IUﬁUnDj(S T X)—O.
i=

Indeed, if Z?gg_l IU‘}ZU D; (Siy) = 0, then this follows from Lemma 3.3 and the
on_l ]
fact that X7 1y p,(5'0) = 1. So,

(T‘ly)j for j#o,

Trﬂn .
W {(T‘ly)j+1 for j <oy,.

Thus this case follows analogously to (31) above after estimating

. OO (]

u({ye Ap: S'ye A \( U Dj) =A \( U Dj) forall i < dgn(n)qgn}).
J=0n J=o,+1

don(n)

This is at most u

n
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The third case is similar: if x € A,, then the conclusion holds if

don (n) qon -1

Ie) —

2 luy,,.,p, X =0

i=0
and

dop, (M) qs,—1 .

Y 1p, (%) =dg,(n),

i=0
where 102/ = g,,. The remainder of the proof is analogous to the first case. [

Motivated by the sets in Lemma 5.9, we make a few more definitions. If
(n,A,p) € Hy,i(N,e), let

Pr(n,A,p) = {xe A: (T"X); # (T'x); for some j < 7}

and
Qr(n, A p) = {xe A: (T"x); = (T'x); for all j <o ,).
Define
(32) 2= U PnAp
(n,A,0)€9,(N,¢)
and
(33) 2,= U omAp.

(n,A,0)€9,(N,¢)

LEMMA 5.10. Assume o; € E and let A be a cylinder with all defining indices at
least o;. Let Ho(N,¢e) ={(i,[0,11,0)}. There exist cylinders Cy,...,Cy defined in
positions greater than or equal to o; such that the following hold:

A Aﬂz@] CUizlcj-
ii. 99v(An2) > v(U(_, C;).

Proof. We treat i with o; € {10%2k*11 Consider the set of y € Y such that (30)
fails. We cover this set by cylinders and show that v(2?) is proportional to the
union of these cylinders. The set D, requires that x; = aj—, for all j </, and so

§o; (Do (U;‘;U.+1 Dy) is contained in at most dy, (0;) + 1 cylinders defined by

the position ;. Furthermore,

dg, ()G, -1 ny-1 }
’

@:{ye Y: ) Ip,,(S'y=land Y Ip, ,(S'y)=0
j=0 j=0

where ny is the first coordinate of (ny, B, p) € $(N,¢) and y € B. This set has

dy. (D) .. N
#) - 41 . The argument for i with o; € {10%%} is similar,

but slightly complicated analogously to the proof of Lemma 5.9, because Dg, =
Wi O

240;

measure at least (% -
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5.4. Obtaining friends. This section illustrates how the imperfections in the
reduction process and the termination of the reduction process are related to
the presence of n-friends. Indeed, we show the parameter p in Definition 5.7
is proportional to the measure of a set of points that have friends and if 6, ¢ E
thenne A, ;1.

799
The proofs are technical and so we outline the strategy and complications.

The idea is similar to the proof of Proposition 3.4. As in that proof, we identify
a sequence of particular sets (in the proof of Proposition 3.4 this is Z;yt_;) and
produce n-friends by choosing pairs of points where one lands in the set and
the other does not. (In the proof of Proposition 3.4, the points in B; hit this D;
and the points in A; do not.) There are two complications in the proofs of this
section that do not arise in the proof of Proposition 3.4.

The first issue is that in Proposition 3.4, we can choose the iterates, but Theo-
rem 5.1 does not have this freedom because we can not pick which coefficients
agk) in Corollary 5.2 are non-negative. This forces us to analyze various cases,
depending on whether o; ¢ E (Lemma 5.11) or 0; € E (Lemma 5.12), where E
is the set defined in (29). Furthermore, when o; ¢ E, there are further cases
to consider, depending whether either of o;4; or o;_; are in E (see the proof
of Lemma 5.11). Additionally, we need to use a more “pointwise approach."
Rather than having two sets, A;, B; such that ¢,(7) is constant on each set and
$y(i)—¢x (i) = 1 for all (y,x) € B; x A;, as we did in Proposition 3.4, we define a set
A and a map G such that x and G(x) are {x(m)-friends for all x € A. In particular,
we do not claim {,(m) is well behaved as z varies in A. (Recall that ¢ and { are
morally “inverses" of each other and while ¢ was more convenient for the proof
of Proposition 3.4, { is more convenient here and in the remainder of the proof.)

The second issue is that we have to take care that our arguments work with
the recoding procedure introduced in Section 5.3. This is carried out in Lem-
mas 5.13 and 5.14, which are versions of Lemma 5.11 and 5.12 adapted to the
recoding procedure. These complications are already reflected in Lemmas 5.11
and 5.12, as it no longer suffices to produce cylinders where a definite propor-
tion of their points that can be paired to be i-friends, but rather we require
entire cylinders that can be paired in this manner.

LEMMA 5.11. Ifo,, ¢ E, then me€ /€, _, 1. Furthermore, if G: ol — By, is the
m ’99
measure preserving bijection associated to Jfam_l_% as defined in (25), then <f,,

and G(sf,,) can be chosen to be a union of cylinders whose defining indices are a
subset of 0,y — 1,0, and oy, + 1.

Proof. Assume o, ¢ E and set k = g ,,. Recall that dy = di(m) is defined in (10).
Assume that dj € {1,2,3,4} (the case that di € {—1,-2, -3, -4} is analogous). Set
X =0, x_1 =5, and xy4; = 4 for whichever of k—1 and k+ 1 do not lie in E.
Whenever k—1 or k+1 lies in E, we stipulate that x;_; or x4 € (%, ai_1—3).
Set yr =7 and x; = y; for all other j. We claim that if x,y € Y are as above, then
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they are {x = {x(m)-friends . We first check that

(x . (x .

Y 14,8y =) 1,(8%)

j=0 j=0
for all # < k. To see this, note that the inclusion S/z € Z, depends only on
z1,...,%z¢ and we have that x; = y; for all j < k. Likewise if 10%¢ < k, then
25":0 1w, (Sfy) = Z?‘:o IW(,(Sfx). Also note that since S/ (X) 41, S/ (Vik+1 # Aer1—2
for all j < {x, we have

& & .
D178y =3 1% =0
j=0 j=0

forall /> k+1 and

(X . (x .
Y 1w, (S'y) =) 1w, (8% =0
j=0 j=0
for all 10%Y > k+ 1. Now, if k+ 1 ¢ E, then since (Sfx)kH, (Sjy)k-+1 #dap. —1 we
have
{x ) {x .
Y1z, =Y 1z, (0 =0.
j=0 Jj=0

If k+ 1€ E, then since yr.1 = xg41 > %52, we have

{x Ix
Y 1w, (STy) =) 1w, (8'x) =0,

Jj=0 Jj=0
where 10 = k+1.

Lastly, since (x > %ak gr-1, we have that by the condition on the digits k and
k—1ofy,
Ix ,
12, (8y)=1.

Jj=0

But since {x < 54, using that x; = 1 we have that (8/x); <7 forall0 < j<{xand
SO Z?"Zl 1 Zk(Sfx) = 0. This proves the claim that x and y are {x = {x(m)-friends
and G is the bijection taking x to y. (That is, changing the k™ entry from 0 to
7.) O

LEMMA 5.12. If o, € E, then there exist cylinder sets Kj,...,K, defined on the
entrieso, +1, o, and 0, —1 such that

(34) V(JL;lK].)>E.§._m._

and there exists a measure preserving map G: U;zl Ki—Y~ U;zl K; defined by
changing the o, + 1 entry such that ifx € U;:l Kj, then x and G(X) are {x(m)-
friends . Moreover, K,...K;,G(Ky),...G(K;) are disjoint cylinders.
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Proof. Let 10* = ¢, and assume that d, o (m) > 0 (the case that d;(m) < 0 is
similar). Let x;¢,1 =0 and y;gc,q =7. Let

Viot € {k=2,k=3,..., k=1 —min{d (), T ar}}

and set y;or_, = 5. Furthermore, set x, = y, for all £ # 10* + 1. It is straightfor-
ward that Zg.":(g” lzwk+1 (S/x) =0 and Zj":((r)”) lzwk+1 (Sjy) =1.

We claim that 1y (8/x) = 1y (S’y) for all | j| < {x(m), where V is either Z, for
¢#£10F+10r Vis any Wy. To see this, for Z, with ¢ < 10F and W, with ¢ < k,
this holds since y and x agree in the relevant entries. Furthermore, (S/x);gt;
and (S7y) ot are not 6 in this range and so we never land in Z, for £ > 10 + 1
or in Wy for ¢ > k, proving the claim. Assuming K; is a cylinder set as in the
statement, define G(x) to change the 10k +1 entry from 0 to 7 (leaving all the
other entries unchanged). Thus G satisfies all of the announced properties. Now

({X xlok€{k_z,k_?),...,k_l—min{dlok(m),%ak}},})> 1 Idam(m)| 1

IJ ) xl0k+1 = 0, and xlok_l = 5 -

Considering the set of such x € Y so that ye Y as well with x; = y; for all i #
0m+1=10%+1and y,gt,, = 7 and (trivially) converting to v establishes (34). [

LEMMA 5.13. Assumer =1, € < g5, $Ho(N,€) = {(;,[0,1],0)}, (1, A, p) € ,(N, )
and o, € E. We can choose By, ...,By c A to be cylinders whose defining indices

are at least 0,_, such that V(U?zl Bj) > @- ld‘;’;(n)l and such that there exists
BcUf_, Bj with
5 l
(35) v(B) = (1-4-99p)v( U Bj),
j=1

G: B — Y a measure preserving injection, defined by changing the o ,,+1 position,
and thus G(B) c A, such thatx and G(x) are {x(i)-friends and xj=GX); forall
j<on.

Proof. Let By,..., By be the cylinders and G be the function given by Lemma 5.12
applied with m = n. Set B; = B; 0 A and let B be the set of points in Ule Bjin
2,nGH2,). Let (n',Ap") € H_1(N,¢) be the predecessor of (1, A, p). We
claim that because o,y > 0, +1, if x,y € 2, then for all k.

{x(n) ) {x(n) , (x() . 0x(@) .
(36) Y 1780 - ) 1,y =) 140 1,(y).
Jj=0 j=0 j=0 j=0

We first consider the case of k < o,/. The sums on the left hand side of (36)
are either L%J or [%1, while on the right hand side they are either qukj or [qlk] ;
the choice of |-] or [-] +1 = [-] depends on comparing x; and (S”x)j for the left
sums on each side, and similarly y; and (S™y) j for the right sums on each side,
for j < k. By our assumption that x, y € 2;, we have that (S"x) j is the same as
(S'x) jforall j < k< n' and so whether the first sum on the left hand side is the
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floor function or one more is the same for the first sum on the right hand side.
The case of y is identical.

Next consider the case of k > 0,41 (since 0, +1 < 0, this covers k= o ,/). We
have that Zg":(g) 1,(S/x) = L%J and Zj":(g) 17, (Siy) = L%J by the argument
in Lemma 5.12. (This argument only depends on the cylinders with defining
entries in positions o, — 1, 05, and o, + 1 that define the cylinders in the proof
of Lemma 5.12 and these entries are the same for B;.) For the right hand side, as
above (§"x); = (Siy)j for j € {n,n+ 1}, so whether we take the floor or ceiling in
the summands on the right hand side depends on j > n+ 1. These are the same
for x and y by construction, giving (36). So in the left hand side both summands
take the floor and for the right hand side they either both take the floor or both
take the ceiling, establishing (36).

A similar computation yields

Ix(n) G L () ,
37) Yo lw, (8% - Y 1w, (STy) = Y 1w, (S7x) - ) 1w, (STy).

Jj=0 Jj=0 Jj=0 Jj=0
To complete the lemma we are left with establishing (35). To check this, we
claim that it suffices to show that £, can be chosen to be unions of cylinders
defined by entries with positions at least 10°810»*1  This follows from the
following:
Claim. For all § > 0, there exists k € N such that if C;, C, are cylinders with the
smallest entry defining C, at least k larger than the largest entry defining Cj,
then

v(CiNCy)

(38) ———€[1-6,1+6].
v(CVv(Cy)

Proof of Claim. Let L be the smallest entry defining C,. Let Uy,....,Uy, be the
cylinders given by proscribing the first L — 1 terms that intersect Y. All but one
of these cylinders are also a cylinders in X, and so they all have the same v mea-
sure. If U; is the one cylinder set in Y that is not also a cylinder set in X, then
U; has smaller v measure than the other m — 1 cylinders. Assume Uj,..., Uy
are those cylinders that are contained in C;. If i € {1,..., m'}, then v(C; N C3) <
v(C1)v(Cy), but it is at least %V(Q)V(CZ). Similarly, if i ¢ {1,...,m'}, then
v(C1 N Cy) < v(C)v(Cy), but it is at most %V(C])V(Cg). Since B is a union of
the sets B; that pairwise satisfy this condition, the claim follows. O

Finally we check that the sufficient condition, meaning that 2, can be chosen
to be unions of cylinders defined by entries with positions at least 10'°810©@»+1
holds. Namely, by iterating Lemma 5.10 and using the assumption that € < ﬁ,
we obtain the complement of the cylinders that cover &2 and so the v measure
of these cylinders contained in 2, is at least %; indeed, by Lemmas 5.9 and 5.10

the v measure of the cylinders that cover &2 are at most 4-99p. O

LEMMA 5.14. Assumer =1, € < g5, $0(N,€) = {(i,[0,11,0)}, (n, A, p) € H,(N,¢),
ando, ¢ E. Let (n', A',p") € $H,_1(N, €) so that Ac A'. Then there exist cylinders
Bi,...,By < A’ defined by positions whose entries are at least o, — 2, such that
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there exists B c U?ZIB]- with v(B) > ﬁv(/}) > % . ﬁv(A’) andamap G: B—Y
such thatx and G(x) are {x(i)-friends for allx € U§:1 Bj. Moreover, xj = G(x); for
all j <oy. Thus G(B) c A’ as well.

Proof. We first prove the statement under the assumption that o0, #0, —1. In
this case, let By,..., By be the cylinders and let G: A — B be the map given by
Lemma 5.11 for m = n. Let B;=B;jnAand B=U{_, B;nQ;nG'Q;.

Repeating the proof used to derive (38), we obtain cylinders defined in entries
at most 0,2, with the entry before the last place defining the cylinders in B;
(and also smaller than the cylinders defining Q, and A). As in that proof, one of
these cylinders differs from the cylinder with the same defining entries in X. On
all the other cylinders, B; intersects AN Q; as expected and the lemma follows
using an argument analogous to the proof of (38).

Now we treat the remaining case, 0, = 0,7 — 1 and the largest entry of the
cylinders defining B; overlaps with the smallest entry of the cylinders defining A.
In this case, we consider A’ whose defining entries are all larger than o, (they
are at least 105*! where the smallest entry defining A is 10%). Then (n’, A, p’) has
two descendants in %, (N,¢), (n, A, p) and (7, A, p). One is AN {x: X gt = ’EC} and
so by the definition of B; in Lemma 5.11 has nonempty intersection with the
cylinders By, ..., By. The proof then follows as above, via the same arguments
used to conclude the proof of Lemma 5.13. O

5.5. Restricting factors. In this section, we develop our main criteria to rule out
factors, Propositions 5.15 and 5.20 and Corollary 5.16. Morally, Proposition 5.15
and Corollary 5.16 rely on the assumption that the factor map is not to the 1
point system, while Proposition 5.20 relies on the assumption that the factor
map is not an isomorphism, though for technical reasons it is helpful not to
disambiguate these situations (in particular the proof of Proposition 5.20 uses
Proposition 5.15).

For approximating, we make use of a metric giving rise to the strong oper-
ator topology on L?(v). While any such metric suffices for our purposes, it is
convenient to choose one that simplifies the computations:

NOTATION. Let 2 = %(L%(v)) denote the set of continuous linear operators on
I%(v) and let { fi}‘i’il be an orthonormal basis for L?(v) such that || filloo =1 for
all i. Set D: 9 x 98 — [0,00) to be the metric defined by

(39) DW, V)= Y 27U -V filla.
i=1

Note that restricting D to the set (the choice of 10 is any arbitrary positive
real)

{(U,V)eBx%B: |Ulop+IVlop <10}

endows this set with the strong operator topology.
Recall that the notation %;(N,¢) is introduced in Definition 5.8.
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PROPOSITION 5.15. Assume that (Y,v, T) has a non-trivial factor with associated
factor map P: Y — Z and let F: L*(v) — L?(v) be the Markov operator defined
by P and limy_ ., D(}_; ag.k) Ui, F) =0 where ag.k) =0 foralli,k andy; ag.k) =1
for all k. Then for all € > 0, there exists Ny such that for all N > Ny and all large
enough k,

(40) Y al® Y B<e.
i {(n,B,p)eZ;(N,e): 0,>N}

We record an immediate corollary for later use:

COROLLARY 5.16. Assume that (Y,v,T) has a non-trivial factor with associated
factor map P: Y — Z and let F: I2(v) — L2(v) be the Markov operator defined
by P, then for all small enough € > 0 there exists Ny and 6 > 0 such that if a; =0,
Ya;j=1and

D(Zi:aiUTi,F)<6

then for all N = Ny
Z aj Z ﬂ <E.

i {(np,p)eFi(N,e): 0p>N}
Proof of Proposition 5.15. Let € > 0 be small enough such that Lemma 5.6 is
satisfied. We proceed by contradiction, and show that if

(k)
Z a; Z B> 10c,
i {(n,B,p)€Zi(N,e): 0,>N}

then
(41) > aPsec

i€L7L0N' ce

9999

Then by taking N sufficiently large, we obtain a contradiction via Lemma 5.6.
Let J <N be the set of indices i such that

B>c.

{(n,B,p)€ZF:(N,e): 0,>N}

)

; (k) ; (k
Since Yier @, Xin,p.p)eFi(N,): 0,>Ny P = ¢, it follows that };c; ;™ > c.

CLAIM 5.17. For any i € J, we have i € #py ce .

79999

To check this, the triples defined in Definition 5.7 give the two possible rea-
sons for (n, A, p) € §(NV, €) with g, > N. The first is that o, ¢ E, in which case
Lemmas 5.11 and 5.14 give a set of points, contained in A, which have i-friends
of measure at least WIQV(A) and a map G defined on these symbols, identifying
the point with its friend so that G(x) ; = x; for all j <o ,. The second is that p > ¢,
in which case Lemmas 5.12 and 5.13 similarly give cylinders with measure at

least ——¢-(1-4-99¢)v(A). So if i is such that 2 i(n,p,peFi(N,e): o,>N) B> ¢, then

6-64
since the f are the measure of the sets A mentioned in the previous 2 sentences,
we have i € A ce . O

9999
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The next two lemmas (Lemmas 5.18 and 5.19) are only used in the proof of
Proposition 5.20.

LEMMA 5.18. Assume that (Y,v, T) has a non-trivial factor with associated factor
map P: Y — Z and assume that F: L2(v) — L2(v) is the Markov operator defined
by P. Then for all c,e > 0, there exists Ny such that for all N > Ny we have that

(42) Y aP <V,

i€B¢¢
where

Bc,sz{i3 D(UTi, Z lA-UTn)>lO\/E+ C}.

(n,A,PET; (N,€)
This notation B, is local and only used until the end of this section.

Proof. We claim that for all ¢ > 0 and small enough ¢ > 0, there exists N such
that if S;, Sp are measure preserving transformations such that v({x: (51x); =
(S2x)j for all j < N}) >1-¢ then D(Us,,Us,) < c+3/e.

To prove the claim, given N €N, set

A(N) = {x€ X: (51x); = (S2x) for j < N}.

By Lusin’s Theorem and uniform integrability, for any f € L%(v), there exists N €
N such that if A= A(N), then |[[(foS1)14—(foS2)14ll2 <c. As in the definition
of D, let {f;}32, be an orthonormal basis of L*(v) with [|filleo = 1 for all i € N.
Given i > ¢ >0, choose k such that 27 < ¢ and pick N sufficiently large such
that the associated set A= A(N) ensures that ||(fjoS1)14— (fijoS2)14ll2 < ¢ for
i=1,...,k. Then v(A) > 1—¢ for some € >0 and so (the definition of the metric
D is given in (39))

=S , (2 @
DWs, Us)=e+Y.27( | 1fiosi=fiofil'dv) "+ Y fioSi=fioSal:
i=1 A€ i=k+1

<c+2Ve+2e < c+3vVE,

proving the claim.
We now complete the proof by contraposition. Take N; = N where N is suffi-
ciently large such that the above claim holds. Then for any N > Ny, if

D(Up, Y LaUj>c+l10ve,
{(n,A,p)eFi(N,e)}
then the claim implies that
v({x: (T'x); # (T"x) for j > N and x€ A where (n, A, p) € §;(N,)}) > 3e.

By Lemma 5.9, for each i such that this claim holds, we have

> pp>e.

{(n,B,p)eZ;(N,e)}

Further observe that if such a triple (n, B, p) has p > ¢, then o, > N. Assuming
the negation of (42), we check that this gives the opposite of the bound in (40).
Taking Ny as in Proposition 5.15 for F and ¢, then if N > Ny we have that F is
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given by the factor map to the one point system. Taking Ny in the statement of
Lemma 5.18 to be the maximum of N; and the Ny from Proposition 5.15, the
statement follows. O

LEMMA 5.19. Let ([0,1],R,T) be an ergodic measure preserving system, and let
(Z,R',1") be a factor with factor map P that is not an isomorphism, and let F
be the Markov operator defined by P. Then there exists a set B c [0,1) such that
T(B) = 1 and (F1)(x) < § for all x€ B.

Proof. By disintegration of measures, there exist probability measures 7p(x) car-
ried on P~1(P(x)) such that 7 = fz 7,d1'(2). Let my = essinf{y: p ([0, y]) > %}.
We claim that

1 1
(43) 3 =7Tpx([0,my)) = >

Indeed, if Tp(x) is non-atomic, then 7p(y ([0, my)) = % If Tp(x) is atomic, then
by assumption there are at least two atoms and by ergodicity the atoms are of
equal size. Because the largest atom of 7 p(,) has measure at most 2, and there
are a sum of atoms with measure between % and % inclusive, we have (43).

We claim that x — m, is a Borel measurable function. First recall that by
disintegration of measures, the map x— 7p(y) is Borel. Next, for every interval
[0, a], we have that the map from Borel measures to real numbers, p — p([0, al)
is a Borel map. It follows that the function h(x,y) = Tpy [0, y] is Borel and so
h_l((%, 1]) is Borel and for each x, my =ess inf{y: (x,y) € h_l((%, 1])}. Note that
since Tp(y) is a probability measure this is the same as

min{ess inf{y: (x,y) € h_l((%, 1])}, 1}'

Now if A < [0,1]? is Borel, then x — min{ess inf{y: (x,y) € A},1} = my is Borel
measurable. Indeed, the set of such A is a monotone class containing the alge-
bra generated by rectangles. To see this, for countable nested unions,

o0 n
max{essinf{y: (x,y) € UAi},l} = lim min{essinf {y: (x,7) € UAi},l}.
i=1

oo i=1

For countable nested intersections, min {ess inf{y: (x,y) € N2, A;},1} can be
defined piecewise as

1 if {y:(x,y)eﬂ‘l?zlA,-} is a zero set
r}i_rgomin{ess inf{y: (x,y) ED?ZIA,},I} otherwise.

By the Monotone Class Theorem it is defined on the smallest o-algebra contain-
ing rectangles, which is the Borel o-algebra. We set B = Ux¢(9,1](0, mx). Then for
almost every x, Tp(y) ([0, my)) < % and so F(1p)(x) < 115(x) for all x€ B. O

Note that this lemma holds for any Lebesgue space and in particular for
(Y,v,T).
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PROPOSITION 5.20. Assume that (Y,v,T) has a non-trivial factor with associated

factor map P: 'Y — Z and let F be the Markov operator defined a factor map P.

Let klim D} ; ag.k) Uri, F) = 0 where ag.k) =0 foralli,k and ) ; ag.k) =1 for all k.
—00

Then for all % > ¢ > 0, there exists Ny such that for any N > Ny and all sufficiently

large enough k, we have

1 (1
0 Yoy pal(ios
i (BEFi(Ng: nt0) S ‘2

Proof. Because F # Id, for almost every x € Y we have P~!(Px) is at least two
points, and so there exists a set B as in Lemma 5.19. By assumption and
Lemma 5.18, there exist k;, N7 such that for all k= k; and N > N; we have

(45) v({x: |(F13)(x) —Zaik) > lA(X)(UT"IB)(X)| > E}) <t
i (n,A,p)eFi(N,e) 9 9

By the non-negativity of the ag.k), for almost every x € Y we have

(Zaﬁ.’“) Y 1AUTn13)(x)zZa§.k) y 15(X).
i (n,A,p)€F;(N,¢) i {(n,A,p)€F;(N,): n=0 and xe A}

If (44) does not hold, then there is a set of x of measure at least % + £ such that
1
(k)
Z a; ( Y ﬁ) > +e.
i {(n,A,p)e§;(N,¢): n=0 and x€ A}
But then there is a set of x € B of measure at least € such that for each x in this
set,
1 £
(Zaﬁ.’“) y IA(x)UTnlB)(x)>—+£2(FIB)(X)+—,
i (n,A,p)€F;(N,¢) 2 2
a contradiction of (45). O

6. THE BEHAVIOR OF A PROJECTION

6.1. Overview of the proof that (Y, v, T) is prime. In this section, we show that
our constructed system is prime:

THEOREM 6.1. The system (Y,v,T) is prime.

We start with an overview of the proof and then proceed to study differ-
ent cases. We assume that (Y, v, T) has a non-trivial factor Z with factor map
P: Y — Z and assume that F: L?(v) — L?(v) is the Markov operator defined by
P. We further assume that F is the limit, as k — oo, of ) ai.k) Ur: in the strong
operator topology (Corollary 5.2). Given € > 0, by Proposition 5.15 we can as-
sume that there exists Ny € N such that for all N > Ny and sufficiently large £k,

we have that
k
Ya Y 1,4Up
i (n,A,p)eF;

gives a good approximation to ). ag.k) Ur: (which in turn leads to a good approx-
imation for F). The general idea in the proof of Theorem 6.1 is that we rule
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out the possibility that Zag.k) U7: is close to a non-trivial projection. The key
facts used are that the composition of projections is still a projection and by
properties of the strong operator topology, we may assume that for any fixed M,
for all large enough £,

46) (Zagk)UTi)O(ZaEk)UTi)°"‘°(Za§k)UTi)

M times

is close to FM = F, and this is also close to Zag.k) Uri. We then use the fact
that (46) is

M
a7) Y (1 @®)ursm,

(I1yeering) mM=1

and apply Definition 5.7 to (47). That is, we study

¥ ﬁ ) Y 14Uz,

({1yeering) - m=1 (ﬂ,A,p)ESZMlij (N,%)
=

Treating 3 different cases, this allows us to produce friends and obtain a contra-
diction via Lemma 5.6. We now make this precise.

6.2. Set up for the proof of Theorem 6.1. We begin a proof by contradiction,
assuming that there is a Markov operator F coming from a non-trivial factor
map. By Theorem 5.1, there exists ag.k) =0 with ) ; ag.k) =1 for all i such that
Y ag.k) Ur: converges in the strong operator topology to F.

We assume that ¢ > 0 is sufficiently small such that all of the Lemmas and
Propositions in Section 5 hold. That is, € < min{ﬁ,@} and small enough
such that Lemma 5.6 holds. We also assume that

1
<=

10°-9999
which is to be used in Lemma 6.6. Furthermore, we choose N; > 6 (this choice
is made to simplify the analysis in the third case we consider) to be sufficiently
large such that Lemma 5.6 holds for % and €% and such that

(48) €

M

(49) 272 <€t
Setting

GN:{n: > c<64},

G, neFaf.e2): 0> %)

our choices imply that for all sufficiently large k,

3
(50) Y a®sc
IZEGN 4
Indeed, by Claim 5.17 if n ¢ Gy then n e JfN 2.4 . Since % > €8 by Lemma 5.6
? 9999

this contradicts the fact that our factor map is not to the 1 point system. We set
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s=min{107: 10/~ = N}, set s’ = min{10¢: 10/ = N}, and recall that r; is defined
in (9). Define

Is—2
27‘N.

(51) M=My =

Although M = My depends on N, as N is fixed at this point, we omit it from
the notation, except at one step in the proof of Proposition 6.3. The motivation
behind this definition of M is given by the following lemma (this plays a role in
the proof of Proposition 6.3):

LEMMA 6.2. For all sufficiently large N, we have that Mi > ry+1, where M is

defined as in (51). Moreover, for any € > 0, for all sufficiently large N we have
gl-e)10% _ . < g1+e)10*
10%-1 :

Proof. We first claim that for all € > 0, there exists k such that

- k k
(52) 81N <y <810

For all ¢ ¢ E, we have that ry.; = ag.17¢ — 1. Thus there exists ¢y with ryp, 1 =

8121, for all £ = ¢, and the lower bound follows. For the upper bound, we have
log,, kI .

e < qi < 8F ]'[j:1 j. Itis straightforward that for all € > 0, there exists ky such
that 8¢ T1,%5°" j < 819K for all k = ko.
For all large enough N, by (52) we have

Ly g-o10°

_ _Is-1_ 8 .@8.5(1+e)10F1 _ 8
M=Mpn= orn 21y glioloh >8-8 > T
where the second to last inequality holds for all sufficiently large N. O

6.3. The three cases: This leads us to consider three possibilities for the behav-
ior of the projection F on L?(u) (recall that D is the metric defined in (39)):
Case 1:

M M
63 D ¥ [l a¥Umm, (Lal 3 Upsla) )<g.

(i1,0enyipg) m=1 i {j: (j,Ap)eTi(N,e):0 <N}

N

Case 2: Case 1 does not hold and
2

€
64 Yay Y p<Z.
o peeFNeasN M
Case 3: Case 1 does not hold and
£2
) Yo Y g2t
7 M

{(j,B,0)EFn(N,e2): 0;>N}

We analyze each of these cases separately.
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6.4. Case 1: Fix € > 0 and assume that (53) holds. Roughly speaking, the as-
sumption means that when we iterate the approximation of our transformation
given by Definition 5.7 up to M times, we remain close to the original map.

PROPOSITION 6.3. There exists N3 such that if N > N3 and vy is a probability
measure supported on {—2ry,—2ry+1,...,—-1,0,1,...,2ry} with y({0}) < %, and
M corresponds to N as in (51), then

M 1
’}’M({(il,...,l'M)Z Fs—2 > | Z ij| > rsl+1}) > -,
j=1 9
Proof. Let (Q,?) be a probability space and let Fi,...,Fy: (Q,P) — Z be a se-
quence of independent y distributed random variables, let Z = Z?ﬁ | Fi—MEp(Fy),
and let o be the variance of F;. Then the variance of Z is Mo.

By our choice of M = My, we have that |Z?4:1 ijI<2ryM <rs forall i in
the support of y and the remainder of the proof is devoted to showing the lower
bound. X

By Lemma 6.2, for sufficiently large N, we have that M# is bounded from
below. The proof splits into two cases. In the first, |Ep(F;)| is not too small
and we make use of Chebyshev’s Inequality (as in the proof of the weak law of
large numbers). In the second case, |Ep(F})| is small, and using the central limit
theorem we show that for many w, |Z(w)| ~ VMo

First assume that % < |Ep(F1)|. We compute Ep(Z2) and apply Chebyshev’s
Inequality. By independence of the F;, we have that

Ep(Z%) = MEp((F} — 2F Ep(Fy) + Ep(F1)?)).
Applying Holder’s Inequality, we bound ||F,~2 | by Il Filleo I Fill. By Lemma 6.2, we
have that ||F;|| < 2ry < Ms and similarly, |Fillco < M3. Then Ep(Z2) < MM

and so it follows from Chebyshev’s Inequality that P({x: |f(x)| > ¢ [ f2dP})| <

W. Therefore,

3 1
Ep({w: | Z(w)| <4M4}) > 7

Since Y} F; = MEp(F;)+ Z and |MEp(F;)| > %, we have that if | Z (w)] < 4M%, then

M M 3 1
| Y Fiw)| > 5o —ami > M2,
i=1 99

Now we consider the case that % = |Ep(F1)|. Under this assumption, because
y({0}) < % and is supported on integers, we have that

6 12
[Ee(F1 ~Ep(F1))] = 2(1- o,

which implies that the variance o is at least %.
Let € > 0. There exists Ny such that for all N = Ny, and any probability mea-
sure p on [—ry, rn], we have
1

E
lt/*dp(r) < —
(MN)ﬁf 2k
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itZ
for all k = 3. It follows that ¢; = Eems is bounded by —‘72 + c(t), where |c(?)| < e.
We use Lévy’s Continuity Theorem to complete the proof. Namely, we repeat
this process for a sequence of N; tending to infinity and obtain Z;, M}, and o

iij

i — _2 . . . _279 . . .
such that (,b(t] ) = Epe M%) o™ 3 pointwise. Since e "2 s continuous at 0, it

follows that that —2L converges in distribution. Thus for sufficiently large j,

VMjo;
. .- VM . .
it follows that the probability that | Z;| > 5= is at least 1/9. If the expectation
of F) is nonnegative, this implies that

’yM({(i17""iM): f ij> rer}) > é
=1

Otherwise,
M . . M . 1
Y ({(l]y-'-)lM): j;lj<_rs’+l})>§y
and the result follows. O

Notation. Let & be as in Section 6.2, that is less than m and small enough
such that Lemma 5.6 holds. Let N, be chosen according to Corollary 5.16 for &2
Let N = max{N;, No, N3} and M = M - Let k be chosen large enough such that

(A) D(X; aE.iC) UT,-)M,F) < & where § is as in Corollary 5.16 for e =  and Ny = N
(B) (49) with Gz and (50) hold.

Concluding the proof of Theorem 6.1 in Case 1: Let

A={G1,...,im) Loy > N and oy ¢ E}.

Let y be the probability measure on Z given by y(i) = aE.iC). By Proposition 5.20,

we have y(0) < % By Proposition 6.3, applied to Y we have that " 4 szvi 1 ag“) >

%. Indeed if Z;‘il ij€(ry,rs-1), then oy i € E. By (47) and our choice of k, we
obtain a contradiction of Corollary 5.16. Thus this case can not occur.

6.5. Case 2: In the absence of the first case, we are left with showing that for
at least &% of the sums 2?4: L 1j, for at least &2 points we have 2?4: | ij-friends.
Roughly speaking, the idea is that H?/i 1 UlTj under iteration does not stay close

4

1) > p

{(j’ﬁ’p)engfil iy (N,&): 0j>N}

zd

(i1, ip)€ZM N j=1

becomes significant. To make this precise, we deal with two cases separately,
depending on the sizes of the sums in (54) and (55).
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We start with Case 2. That is we are assuming:
=2
7 g
Y ay) > P<3r
n {(j,B.0)EF,(N,E): 0;>N}
Given n e N, set o = {(n, [0, 1], p)} and define the reduction red;(n)[x] = (m, A, p),
where
e (m,Ap) € 9, (N, &) for some (smallest) r,
e Xe€ A, and
e O; < 10% or (m,A,p) e §(N,&) (thatis, m¢ E or p > &).
Let fgak(n) [x] denote the first coordinate of redy(n)[x]. We say that the sum
2. jij is treatable if
B<E
1(k,,p)EF; (N,€): 0>N]}
for all choices of i; and the sum }. jijis x-treatable if for all i;, the elements
(n,Apeg i;(N, ) satisfy x€ A has 0, < N. (Recall, 3:‘,- (N, &) is not necessarily
a singleton, but each x € Y is in the second coordinate of exactly one triple in
§i; (N, €).)

LEMMA 6.4. Assume}_i; isx-treatable, AcY so that (n, A, p) = redk(Z?/il ij)[x],

(56) redi( 3 7)) # Y redi(ijix]
j=1 j=1
and k is maximal with this property. Then redk+1(2§\4:1 ij)x] or redk(Z?/[:1 ij)[x]
lies in SZMI i (N, ).
i

Proof. Set

M o M
(57) m=Y red1(ij)[x] =red1 () i))Ixl.
j=1 j=1

First, because i; is x-treatable, we have
red1 (i) [x] - redy (i) [X] € {d; g1 (red 41 (1) XD Tygee1,

dygeer (redger 1 (i) X1 Fygket + dygen (ted g () (X)) }

forall j. Letn=Y; (fevdk+1(ij)[x] —;e;ik(ij)[x]) and by our assumption that k
is maximal satisfying (56), n # EEH,M (m)[x] - igak(m) [x]. We now treat a series

of cases, each of which is straightforward. If O i m)x > 10%*1, then because

redi;1 (m)[x]| < Mryges1 41 < oke2_1» | € E. Thus the reduction algo-

O redg (m)x
rithm given in Definition 5.7 halts and the lemma follows. If 0— = 10k+1,

. rediy 1 (m)[x]
then by choice of M and N we have

(58) ’Z;e?ik(l])([x]) < r10k+1_2.
J

JOURNAL OF MODERN DYNAMICS VOLUME 17, 2021, 213-265



260 JON CHAIKA AND BRYNA KRA

Also, because redy1 (m) [x] — red (m) [x],;evdkﬂ(ij)[x] —rfevdk(ij)[x] are all multi-
ples of either rgr+1 o1 1y gr+1+1 (depending on x;yx+1), we have that ;e71k+1 (m) [x]—
red;(m)[x] = n+ p where |p| = rjpe+1. By the algorithm for representing numbers
in terms of d;, we have that if |p| = 74,42 then |p| > 5/¢| and so

(59) Opspz0p—L.
Thus by Equation (58),

—— — — k+1 _ k
Oredi(myix) = UZ,-redk(ij)[X]—p =10 1>10".

Therefore, by the definition of red(-) [x] we must have that red;(m)[x] € (N, §),

that is, the algorithm halts in this case as well. In the final case, O i mx <

10%*! we have that n = 0 and either O el (i = 10* in which case red; (m) [x] =

red;.1(m)[x] and this is zFer(i Xl a contradiction, or 10% < O redin, ()]

10%*1 and so the algorithm stops. O

Concluding the proof of Theorem 6.1 in Case 2. Let

M M
Ix, M) = {(il,...,iM): Y ij is x-treatable and )" red(i)[x] # red( ). i]-)[x]}.

j=1 j=1
We assume that we are not in the first case and moreover (54) holds. Thus for a
set of x of measure at least & we have

[laf
{(i1yeemring): (i1yeenia) €I M)} j=1
For each such x, (iy,...,ip) there exists m, Ac[0,1], p =0 such that xe A and
(m,A,p)e Sle i (N,&) and 0,, = k> N. Thus we have
i

=E.

M
Ha(.’f)) > B =&

( 1
(ymi€Z V=1 G ppeFin |, (N8): 0;>R)
¢=1% !
By Corollary 5.16 and our choices of N, k (see (A)), this establishes Case 2. [

6.6. Case 3 (we assume neither of the conditions in Case 1 or in Case 2 holds).
We say that n is good for reduction if

Z c<ét
{G,eNeFa (X 4 0> 8}
and we say n is bad for reduction if
Z c>E.
{(i,c.NEF(N,E2): 0;>N}
By our assumption on k and the estimate for sufficiently large k given in (50),
we have:
LEMMA 6.5. Let G={iezM: ij is good for reduction for at least % choices of j},

. M )1
thenzieGszlaij =3.
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LEMMA 6.6. If j is bad for reduction and k and m are good for reduction, then
J—k+me Sy .

Similarly, if j and m are good for reduction and k is bad for reduction, then
J—k+me Ay z.

Note that we separate the roles of the terms k and m to make it easier to
apply the lemma (see Corollary 6.7).

Proof. We establish the first claim, as the second is similar. First, if j is bad
for reduction, then by Claim 5.17 we have that j € # s . Taking «/; and

G; as in Notation 5.5, we have that when x € f; there exists 0 < |¢] < 3 such
that (TYT/x); = (T7(G;x)); for all i = N. Recall that the sets D, are defined
in (6). Now if (T™"*¢*x); # (T"*/(G;x)); for some i < N, then there exists a > N
such that either S’T“*/x € D,, for |b| < 3|n| < |{7e+1x(D)| or S’TIGjx € Dy for
bl < 3|n| < ICTjij(b)l. This uses Corollary 5.4. If o, < g, then the measure of
such points is at most
430 Y uDy) <272,
a>N

Letde Z, (n,Ap)€ Sd(%’,é‘l), and x € &/; N A (which implies that G;(x) € A).
If (T“*/x); = (T/(Gjx)); for all i < N but (T4T*T/x); # (T TJ(G;x)); for some
i < N, then x € &, for some r. Since k and m are good for reduction, by it-
erating Lemma 5.10 when d = k or m, we have that the measure of the set of
such points is at most 408*. Combining these two estimates and considering
(n, A, p) € Fa(§,&") with o, > &, we obtain that

j-k+me .

&3 21420540~ Ny°
15999 — 2" (E*+408%+27 2)

By the assumptions (48) and (49) on N and &, the lemma follows. O

COROLLARY 6.7. Assume Z% | Le is good for reduction and j is such that j; = iy
except at one place where iy is good for reduction and j, is bad for reduction.
Then Zlle Je € FON ¢+ Similarly if jo = i, except at one place where iy is bad for
reduction and j, is good for reduction, then Z% 1 Je € FOR g

Proof. We prove the first case and the second is similar. For concreteness we
assume that j; # i;. So 2211 Je=j1—i1+ 224:1 iy satisfies the assumptions of
Lemma 6.6, completing the proof. O

Set A={i: i is good for reduction}, set B = {i: i is bad for reduction}, and set
C =Z~(AUB). We define two closely related partitions & and &’ of 7M. We
index the partition elements of both 2 and 2’ by elements of A x B? x C¢,
where a,b,c =0 and a+b+c=M - 1. Given some triple (¥,7,2) € A*x BY x C¢,
let P(z 7z be the set of all M-tuples (iy,..., ip) such that there exists e} <--- <
ea, f1 << fp & <--- < g satisfying that for each ¢ in the allowed ranges,
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le, = X¢, If, = y¢ and ig, = zo. Moreover if j is the unique element of {1,..., M} ~
{er,....ea f1,-., f1, 81,-.., &} then j > e, and i € A. Set

P ={Psjz: (%77 €A xB”xC* where 0= a,b,cand a+b+c=M-1}.

We give another way to describe this. The partition elements are subsets of ZM
so that each M-tuple has a+1 terms in A, b terms in B and ¢ terms in C. We fix
all the terms that are in B and the order they come in relative to the other terms
that are in B (but not relative to the terms that are in A and C), and similarly
for C. For A, we fix all but the last term that is in A that appears and their order
relative to the other terms of A (but not relative to the terms of B and C). The
last term that is in A which appears is allowed to be any element of A.

We now define &’ by switching the roles of A and B. That is, we define Pz?c,y,z)’
to be the set of all (iy, ..., i) such that there exists e; <:--<eg, fi<---< fp, 81 <
-+ < g such that for each ¢ in the allowed ranges, i., = xy, i f, =V and ig, = z¢.
Moreover if j is the unique element of {1,..., M} ~{e1,...,eq, f1,---» [, 81,---» &c}
then j > f;, and i; € B. Set

{@'z{PE)wz):(J?,j/,Z)EA“bixchhereOSa,b,cand a+b+c=M-1}.

LEMMA 6.8. Forany a+b+c=M-1, (X,7,2) € A% x BY x c°, if any element

of P,5,) is good for reduction, then no element of P(’x 72 is good for reduction,

and the analogous statement holds when the roles of Pz 3,z and P(’x 72

3 are ex-
changed.

Proof. Let (iy,...,inm), (i},...,i),) € Pz 3,2 UP(,?c,j/,Z)

except for at most one j. Moreover, if k € P(z 3z and

. There exists a permutation
!

7(j)
le Pé?c .2 then this is a change from a good for reduction element to a bad for
reduction element. By Corollary 6.7 if Z?/i 1 1] is good for reduction, then Z].Ni i ;
is not good for reduction. Thus if there exists one element in P 3,z that was
good for reduction, then this argument shows every ¢ € P{x W9 is not good for
reduction and similarly vice versa. O

7 such that ij=1

We define one more partition A of ZM. If u,v,w=0and u+v+w =M, let
Nupw={l1,..,im): i ije Al =u, l{j: ijeBY =0, {j: ij€C} = w}.

PROPOSITION 6.9. If the conditional probability that Z?/I:l i is good for reduc-
tion given that (iy,...,in) € NMuv,w) IS greater than %, then the conditional prob-
ability that Z?’Izl ij is not good for reduction given that (iy,...,in) € Nu+1,0-1,w)
is at least %

Observe that both & and &’ are finer partitions than 4.

LEMMA 6.10. For (%,7,%) € A*xBYxC°, the conditional probability of an element
N Na+1,b,c) 18 In Pz.3,%) Is the same as the conditional probability of an element
in Nap+1,0 beingin 9’(’3')7'2).
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Proof. Let uy =3 jea ag.ic), Up = ieB ag.ic), and uz=1-(a+b) = Zlgca . The
conditional probability of being in a particular Pz y,z with (X, 7, 2) € A*x Bb xC¢

given that one lies in (441 p,¢) IS
a v b ; C X
(60) M T 1T
i=1 u =1 1:] u3

This is also the conditional probability of being in PE;? W9 given that one is in
Mab+1,0)- O

Combining Lemmas 6.10 and 6.8, Proposition 6.9 follows.
If (Q,P) is a probability space and H: Q — {0, 1,...} is > measurable, we say i
is (H, 8)-spread if

max{P(H ' (i +1),P(H ' (i — 1)} > 6P(H ' (i)).
We say H is 6-spread if P(U;, (1,6)-spread H'(i) > 6.

LEMMA 6.11. There exists C such that if F;: (Q,P) — {0,1} are independent, iden-
tically P distributed mndom variables satisfying % < IP(FZ._I(O)) <1- %, then

Hw) = Z  Fi(w) is mln{ c’ C} -spread.

Proof. If C>2'"% and 6 <9, 0 is (H,min{¢, % 21)-spread and has a definite prob-
ability of occurring, which proves the lemma. Thus we assume 6 >9. Let
p =P(F; ~1(0)). Due to the symmetry, we can assume that p < —, and by the

assumption on 0, we can assume that p > . Thus

P(lw: Y5 Fiw)=n+1 )i - pk-n-t
(lo: X Filw)=n }):(n+1)(i9) 1-p) (5)(,9/1()”(1—(;9/10)’(‘”

Plw: YK, Filw) = n}) ®Ypyna - pk-n
K n-1 -
—p-p!
Ifne [ Kp, gK pl, then this is greater than mln{gg, g9Kp}. Since 55Kp = 919(‘5

the result follows if at least half of the w lie in this range. To check th1s note
that we have

K 2 3
fQ(ZF,-(w)—p) dP=LZFi(w)2dP=K((1—p)2(p)+(—p)z(1—p>)<EpK.
i=1

Note that the first inequality uses that F;(w) — p and F;(w) — p are independent
and have integral 0 for all i # j. Thus by Chebyshev’s Inequality,

K
P({w: ‘ 3" Fi(w) —Kp‘ >2 pK}) < %
i=1

Since pK =9, we have 2,/pK < %K p, establishing the necessary condition. [J
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Concluding the proof of Theorem 6.1 in Case 3. In this proof only, we introduce
some terminology for clarity: we say i is decisive if it is either good or bad for

reduction. Let y(i“) be the probability measure on {0, 1} defined by

(k)
2_i is bad for reduction a;

r® oy = -
(k)
2. is decisive a;

and

5]
A Zi is good for reduction (X(.
i = —

(k)
Zi is decisive &';

Note that y®({0}) is the conditional probability that i is bad for reduction given

that it is decisive and y(k)({l}) is the conditional probability that i is good for
reduction given that it is decisive. As we are not in Case 2, it follows that

y® (o) > f\—; Thus by Lemma 6.11, ¥_, y® is at least £ spread. We partition

ZM into sets A{q p,c) U N asr1,6-1,c) Where a is even. This gives rise to partitions

of these elements into Pz 5,z and P(’?C 7,7 By Lemma 6.8, for each (%,¥,Z) one

of P53z or PEX 7,7 contain no good for reduction elements. By Lemma 6.10

and the fact that Z?ﬁac_ly”}) is & spread (so long as c < %) it follows from
Lemma 6.5 that at least %ég of the points in A, p,c) U N a+1,b-1,¢) are not good
for reduction. Once again this contradicts Corollary 5.16 and our choices. O
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