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A PRIME SYSTEM WITH MANY SELF-JOININGS

JON CHAIKA AND BRYNA KRA
(Communicated by Lewis Bowen)

ABSTRACT. We construct a rigid, rank 1, prime transformation that is not
quasi-simple and whose self-joinings form a Poulsen simplex. This seems
to be the first example of a prime system whose self-joinings form a Poulsen
simplex.

1. INTRODUCTION

A natural question is to find indecomposable structures, and we study this
question in the setting of measurable dynamics. More precisely, we consider a
measure preserving dynamical system (Z ,M ,µ,T ), where Z is a set endowed
with a æ-algebra M , µ is a probability measure on the measure space (Z ,M ),
and T : Z ! Z is a measurable transformation that preserves the measure µ.
Throughout this article, we assume that (Z ,M ,µ) is a (non-atomic) Lebesgue
space. A factor of a measure preserving system (Z ,M ,µ,T ) is a measure preserv-
ing system (Z

0,M 0,µ0,T
0) and a measurable map º : Z ! Z

0 such that µ±º°1 =
µ0 and T

0 ±º(x) = º ±T (x) for µ-almost all x 2 Z . In this setting, the indecom-
posable structures are the prime transformations, which are transformations
with no non-trivial (measurable) factors. That is, any factor map on (Z ,M ,µ,T )
is either an isomorphism or a map to a one point system. Historically, show-
ing systems are prime has largely been accomplished by understanding the
self-joinings of the system, that is, the T £T invariant measures on Z £Z with
marginals µ on each of the coordinates. Our main result is that there exists a
prime transformation with many self-joinings (the self-joinings form a Poulsen
simplex) and the self-joinings can be large (there is a self-joining that does not
arise as a distal extension of the system):

THEOREM 1.1. There exists a prime system (Y ,B,∫,T ) that is rank 1, rigid, and

has an ergodic self-joining ¥, which is not the product measure, such that (Y £Y ,

B£B, ¥,T £T ) is not a distal extension of (Y ,B,∫,T ). Moreover, the set of self-

joinings of Y is a Poulsen simplex.
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To highlight the novelty of our construction, we note that being not quasi-
simple (or being not quasi-distal) is a residual property in the space of measure
preserving transformations (endowed with the weak topology). This answers a
question posed by Danilenko [5, Section 7, Question (iii)] who asked if the set of
quasi-simple transformations and the set of distal-simple transformations are
both meager. It is also a strengthening of a result of Ageev [2] who showed that
being simple is meager.

1.1. Context of the results. The first systematic family of prime systems was
introduced by Rudolph [28], based on Ornstein’s counterexample machinery,
and has been studied extensively since; for example, see [7, 9, 22, 10, 18, 29]. A
system (Y ,∫,T ) has 2-fold minimal self-joinings if all of the ergodic self-joinings
are either ∫£∫ or are concentrated on the graph {(x,T

j
x)} for some integer j ∏ 0.

Defining the natural generalization for k-fold minimal self-joinings for all k ∏ 2,
Rudolph showed that any system having minimal self-joinings is prime.

However, having minimal self-joinings is quite special, and so there was in-
terest in more general criteria for obtaining prime systems. In this direction,
Veech showed that a 2-simple system is prime if it has no compact subgroups
in its centralizer. Recall that a system is 2-simple (which Veech called prop-

erty S) if the only ergodic self-joinings arise from the product measure and
measures carried on graphs of transformations in the centralizer of the system.
Simple systems have since been studied in a variety of contexts (see for exam-
ple [31, 8, 15, 2, 5, 7, 6, 14, 30]). Veech’s criterion gave rise to the first example
of a rigid prime system, with the construction by del Junco and Rudolph [8] of
a specific rigid, simple system that had no non-trivial compact subgroups in its
centralizer. Glasner and Weiss [15] constructed an example of a prime system
that is not simple, by taking a simple system and considering the factor cor-
responding to a non-normal maximal compact subgroup, again using Veech’s
criteria to show that the factor is prime since it arises from a maximal compact
subgroup. In this example, as the subgroup is not normal, the factor itself is not
simple, but the self-joinings of the factor of a simple system are always isometric
extensions of the factor.

There are a few other known examples of prime systems. For example, King
[21, Section 2] showed that the (proper) factors of rank 1 systems are rigid and
so it follows that mildly mixing rank 1 systems are prime. Continuing in this
vein, Thouvenot asked if mildly mixing rank 1 transformations have minimal
self-joinings, and this difficult question remains open. Parreau and Roy [27]
gave a construction of prime systems for some Poisson suspensions of (infinite
measure preserving) prime systems, and it follows from results in [24] that the
constructed systems are quasi-distal. In the same article, Parreau and Roy write
“it is yet unknown whether prime rank one maps are always factors of simple
systems." Our construction resolves this by producing a prime rank 1 system
that is not the factor of a simple system (it is not quasi-simple).

This short list of examples basically includes all known prime systems, and
one motivation for this work is to give a new construction of prime systems
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not relying on a paucity of joinings (as in the minimal self-joinings, simple,
or factor of simple systems) or soft restrictions on the prime factors (as in the
mildly mixing rank 1 or Poisson suspension of prime infinite measure preserving
systems with additional properties).

Turning to the second conclusion of Theorem 1.1, we note that it is well-
known that a residual set of measure preserving systems is rank 1 and rigid.
King [23] showed that for a typical measure preserving transformation, its self-
joinings form a Poulsen simplex (recall that a Poulsen simplex is a simplex such
that the extreme points are dense). Putting this in context, Lindenstrauss, Olsen,
and Sternfeld [25] proved that a Poulsen simplex is unique up to affine homeo-
morphism. Ageev showed that the typical transformation is not prime [1] and
is not simple [2].

1.2. A brief outline of the paper and a conjecture. In Section 2, we introduce
general concepts from ergodic theory. In Section 3, we define our system (Y ,∫,T ),
as the first return map of an odometer to a compact set, and then we set up the
basic notation used throughout and prove first results on the mixing properties
of the system. In Section 4, we show that our system is not quasi-distal and
that its self joinings form a Poulsen simplex. In Section 6, we show that our
system is prime, building heavily on ingredients developed in Section 5. As our
arguments are technical and require some additional development, we defer
conceptual descriptions of the proofs to Sections 4 and 5, after the preliminary
tools have already been defined.

Our methods for building self-joinings and building self-joinings that can not
be distal extensions of the base system are fairly soft and general (if technical
and involved).

Our proof that the transformation is prime is more combinatorial, making
heavy use of the specific construction. This should not be surprising, because
being prime is a meager property [1] in the space of measure preserving trans-
formations (with the weak topology). Nevertheless, an ideology of this work is
that it may still be a fairly common property. In particular, we conjecture that
in some families of measure preserving transformations almost every system is
prime. To be specific:

CONJECTURE 1. Almost every 3-IET is prime.

Although this may hold more generally for a k-IET, such a conjecture is out
of reach at this point, but for a 3-IET, some of these tools are already developed
with the methods of [4].

A second conjecture, closer to the work of this paper, is stated in Section 3,
after we have developed some further background.

2. DEFINITIONS AND NOTATION

2.1. Systems and joinings. By a measure preserving system (X ,B,µ,T ), we mean
that B is the Borel æ-algebra for some compact metric topology on X , (X ,B,µ)
is a probability space, and T : X ! X is a measurable, measure preserving map.
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Throughout the paper, we generally omit the associated æ-algebra from the no-
tation, assuming that any measure preserving system is endowed with the Borel
æ-algebra. We say that the measure preserving system (Y ,∫,S) is a factor of
(X ,µ,T ) if there exists a measurable map º : X ! Y such that º±T = S ±º and
µ±º°1 = ∫.

A joining of the ergodic measure preserving systems (Xi ,µi ,Ti ) for i = 1,2 is
a (T1£T2)-invariant measure Æ on X1£X2 such that Æ projects to µ1 on the first
coordinate and to µ2 on the second coordinate. A self-joining of a system is a
joining of two copies of the same system. If (X ,µ,T ) is a measure preserving
system, J(n) denotes the off diagonal joining on {(x,T

n
x)}, meaning that J(n)

is the measure on X £X such that for all f 2C (X £X )
Z

f (x, y)d J (n) =
Z

f (x,T
n

x)dµ.

If (X ,µ,T ) is an ergodic measure preserving system, we say that the bounded
linear operator P : L

2(µ) ! L
2(µ) is a Markov operator if it satisfies:

i. For all f 2 L
2(µ) with f ∏ 0, we have P f ∏ 0 and P

§
f ∏ 0.

ii. P1X = 1X and P
§1X = 1X , where 1A denotes the indicator function of the

set A.
iii. PUT =UT P , where UT : L

2(µ) ! L
2(µ) by UT f = f ±T .

Markov operators can be defined more generally for an operator mapping one
measure preserving system to another, but our interest is when the operator
arises as an integral of fibers of a factor and so we can take the map from
a system to itself; see, for example, Glasner [13] for more on such operators.
More precisely, if (X ,µ,T ) has a factor (Y ,∫,S) with factor map º, then by inte-
grating over the fibers of the factor map, we obtain a bounded linear operator
P : L

2(µ) ! L
2(µ), satisfying Properties (i)–(iii) and we call this the Markov oper-

ator defined by º. That is, by disintegration of measures there exist measures µy

on X such that µ=
R

Y
µy d∫ and P ( f )(x) =

R
f dµº(x). Note that joinings also give

rise to Markov operators. However, these do not formally enter the arguments
and so we do not discuss these Markov operators.

2.2. Rigid rank one by cylinders. As above, we assume that each system is en-
dowed with its Borel æ-algebra, but we omit it from the notation.

DEFINITION 2.1. An invertible ergodic system (Z ,∏,R), where Z Ω [0,1] and
∏ denotes normalized (probability) Lebesgue measure restricted to Z , is rigid

rank one by cylinders if there exist a sequence of intervals (Ii )i2N, which we call
cylinders, and a sequence of positive integers (ni )i2N such that:

i. For 0 ∑ i < nk , the iterate R
i
Ik is a cylinder having the same measure as Ik .

ii. The cylinders R
i
Ik and R

j
Ik are pairwise disjoint for all k and for 0 ∑ i <

j < nk .
iii. The measure ∏

°Snk°1
i=0 R

i
Ik

¢
tends to 1 as k !1.

iv. The ratio ∏(R
n

k Ik¢Ik )
∏(Ik ) tends to 0 as k !1.
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Note that rank 1 systems can be rigid without being rigid rank 1, but the
rigidity of a rigid rank one system is not directly tied to the towers of the system.
Also, note that cylinders in this setting are intervals in [0,1], but we refer to
them as cylinders in analogy with the symbolic setting. By a symbolic system

(X ,T ), we mean an infinite sequence space X Ω Q1
i=1 Ai , where each Ai is a

finite alphabet, and T : X ! X is a measurable map. We denote elements of
the space as x = (xi )i2N 2 X , with the convention that a bold face letter x has its
entries denoted as xi . In a symbolic system X , a cylinder set [w] determined by

a word w = w1 . . . wn is defined to be

[w] = {x 2 X : xi = wi for all 1 ∑ i ∑ n}.

We also consider cylinders defined only by some entries ai1 2 Ai1 , . . . , aik
2 Aik

defining the cylinder

{x 2 X : xi j
= ai j

for all 1 ∑ j ∑ k}

and we refer to the i j as defining indices of the cylinder. The collection of cylin-
der sets forms a basis for the topology of X . When working with a symbolic
system (X ,T ), fixing initial entries corresponds to an interval in [0,1], meaning
that a cylinder set corresponds to an interval.

The first three conditions in the definition of rigid rank one by cylinders imply
that G is rank one, but in the general setting of a rank one transformation there
is no requirement that the subsets Ii are intervals. The fourth condition gives
a sequence of times under which the transformation R is rigid, meaning that
along these times the iterates of R approach the identity. Indeed, Condition (iv)

implies that ∏(R
n

k R
i
Ik\R

i
Ik )

∏(Ik ) is close to 1 for all large k and 0 ∑ i < nk , and so
using this with Conditions (i) and (iii), we have a rigidity sequence.

2.3. Distal extensions. We review the definitions of (measurable) isometric and
distal extensions, as introduced by Parry [26]. These extensions were key in Furs-
tenberg’s proof [11] of Szemerédi’s Theorem (see [12] for further background),
and the definition we use comes from Zimmer [33, 34], who showed that a
measurably distal system is equivalent to a (possibly transfinite) inverse limit of
a tower of isometric extensions.

If G is a compact group, H ΩG is a closed subgroup, and (X ,µ,T ) is a Borel
probability system, then a measurable map ¡ : X ! G is called a cocycle and
the extension of G by G/H given by the cocycle ¡ is defined to be the system
(X £G/H ,µ£mG/H ,T¡), where T¡(x, g̃ ) = (T x,¡(x) · g̃ ) for x 2 X and g̃ 2 G/H

and mG/H is the Haar measure on G/H (we use the convention that cosets in
G/H are denoted by ·̃). Defining the topology of the group G by a distance dG

that is invariant under right translation, and of course continuous with respect
to translation on either side, we have an induced distance dG/H on G/H and
we have that the restriction of T¡ to each fiber of the natural projection map
X £G/H ! X is continuous. The system (X £G/H ,µ£mG/H ,T¡) is an isometric

extension of the system (X ,µ,T ).
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If (X ,µ,T ) and (Y ,∫,S) are ergodic systems, then (X ,µ,T ) is a distal extension

of (Y ,∫,S) if it has a sequence of factors X¥ indexed by ordinals ¥∑ ¥0 for some
countable ordinal ¥0 such that X0 = Y , X¥0 = X , X¥+1 is an isometric extension
of X¥ for each ¥, and for each limit ordinal ≥ ∑ ¥0 the system X≥ is an inverse
limit of the systems X¥ with ¥∑ ≥.

NOTATION. We use d to denote the metric in various settings, with a subscript
indicating the space as needed. Thus dG denotes the right invariant metric on
the group G , dG/H denotes the induced distance on G/H .

3. CONSTRUCTION OF THE SYSTEM

3.1. Definition of the transformation T . We begin by constructing an odome-
ter. Set

X =
Y

i

{0, . . . , ai °1},(1)

where

ai =
(

8 if i › {10k : k ∏ 2}

k if i = 10k for some k ∏ 2.

We write elements x 2 X as x = (xi )i2N. Let S denote the odometer on X , mean-
ing that S is addition by (1,0,0, . . .) with carrying to the right. Thus

S(x) = S(x1, x2, . . . , xk , xk+1, . . .) = (0,0, . . . ,0, xk +1, xk+1, . . .),(2)

where k is the least entry such that xk < ak °1 and if there is no such k, then
the odometer turns over and outputs the point 0 = (0,0, . . .).

Set

Zk =
©

x 2 X : xk = 7 and xi = ai °2 for all i < k
™

(3)

and

Wk =
©

x 2 X : xi = ai °2 for all i < 102k and x102k < a102k /2
™
.(4)

Define

Y = X ‡
µ [

`›{10k : k∏2}
Z`[

1[

k=1
Wk

∂
(5)

and define T : Y ! Y to be the first return map of S to Y . Throughout this
paper, T refers to this map and dY is any metric on Y giving rise to the product
topology, viewing it as a subspace of X . When there is no confusion as to which
metric is meant, we omit the subscript and just write d for the metric on Y . As
usual, we denote elements y 2 Y as y = (yi )i2N.

Define Dk to be the cylinder sets with largest defining index k in X ‡Y . More
explicitly, this means that:

Dk =

8
><

>:

Zk if k › {10k : k ∏ 2}

W` if k = 102` for some `∏ 1

; if k = 102`+1 for some `∏ 1.

(6)
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The following result is standard:

LEMMA 3.1. The odometer S is uniquely ergodic with respect to a probability

measure µ, and thus the first return map T is uniquely ergodic with respect to

the measure ∫=µ(Y )°1 ·µ|Y .

It follows immediately from the construction of the set Y that its measure is
strictly between 0 and 1, and so the maps T and S are not obviously isomorphic.
In fact, they are not isomorphic, as T is weakly mixing (see Proposition 3.4),
while S has purely discrete spectrum.

NOTATION (for the systems we study throughout this article). Throughout this
article, X is the space defined by (1), S is the odometer defined on X as in (2),
µ is the unique ergodic measure on this system, and (X ,µ,S) is the odometer
system thus defined. The space Y is defined by (5) and (Y ,∫,T ) is the associated
uniquely ergodic system defined by the first return map.

Both (X ,S) and (Y ,T ) are measurable maps of compact metric spaces. The
remainder of this paper is devoted to studying the properties of the system
(Y ,∫,T ).

3.2. An overview of the behavior in the system (Y ,∫,T ). To give an idea of
what types of behaviors built into the system (Y ,∫,T ) give rise to it being both
prime and having many self-joinings, we summarize the types of irregularities
that are built into the system in the construction of the towers (see [20] for
the terminology) defining the system. Namely, there are four distinct types of
irregularities:

i. The alphabet size for the odometer is typically 8, but at stage n = 10k , the
alphabet has size k. This changing in the size of the indices is necessary to
allow enough room for the constructions.

ii. For any n 6= 10k , before stacking the n °1 columns to obtain an n-tower,
we delete a positive fraction (we fix this to be one eighth) of the right most
tower. This allows separation of the indices in the set of indices for columns
of atypical size, meaning those of the form 10k for some k ∏ 1.

iii. For n = 102k , we have 2k Rokhlin towers and we remove one level from
each of the first k of them and none from the other k. This is used in our
construction of joinings (in the language of [20], the joinings are built using
that the system has good linked approximation of type (m,m +1)).

iv. For n = 102k+1, before stacking n°1 columns to obtain an n-tower, we make
no change (meaning no deletion). This allows us to use results of Chaika
and Eskin (Theorem 4.9) and King (Theorem 4.15) to ensure that we obtain
a system that is rigid rank 1.

3.3. A further conjecture. Maintaining the notation of this section, we state a
conjecture closely related to this subject:

CONJECTURE 2. Let a1, a2, . . . 2 N with ai ∏ 2 for all i 2 N. Let T be the cor-
responding odometer viewed as a measure preserving map of [0,1], meaning
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that if x =P1
j=1 b j

1
a1·...·a j

with bi 2 {0, . . . , ai °1}, then T x =P1
j=1 c j

1
a1·...·a j

, where
ck = bk +1 if k = min{ j : b j < a j °1}, ci = 0 for all i < k and ci = bi for all i > k.
For almost every x 2 [0,1], the first return map of T to [0, x] is prime.

3.4. Weak mixing of the transformation T . Our first goal is to show that the
transformation T is weakly mixing, and we start with a sufficient (but not nec-
essary) condition for a transformation to be weakly mixing.

LEMMA 3.2. Assume that (Z1,∏,T1) is an ergodic measure preserving system with

respect to the Lebesgue measure ∏. If there exist a constant c > 0, a sequence of

integers (ni )i2N, and sequences of measurable sets (Ai )i2N and (Bi )i2N such that

i. the measures ∏(Ai ),∏(Bi ) > c for all i 2N,

ii. the limit lim
i!1

R
Ai
|T ni

1 x °x|d∏(x) = 0, and

iii. the limit lim
i!1

R
Bi
|T ni

1 x °T1x|d∏(x) = 0,

then T1 is weakly mixing.

Proof. Assume that f is an eigenfunction of T1 with eigenvalue ∞ 6= 1. By Lusin’s
Theorem, for every "> 0 there exists ±> 0 and a measurable set U with ∏(U ) >
1° " such that if |x ° y | < ± and x, y 2 U , then | f (x)° f (y)| < ". Choose " <
min

©1°|∞|
9 , c

9

™
, where c is the constant given in the statement. For all sufficiently

large i 2N, by hypothesis there exists a measurable set A
0
i

with measure at least
c

2 and integer ni such that if x 2 A
0
i
, then |T ni

1 x ° x| < ". It follows that there
exists x 2 A

0
i
\U and T

ni

1 x 2U and so

| f (x)° f (T
ni

1 x)| = |(1°∞ni )| · | f (x)| = |1°∞ni | < ".

Similarly there exists y 2 Bi \U such that | f (y)°T
ni+1
1 y | = |1°∞ni+1| < ". If these

two inequalities hold simultaneously, this contradicts the choice of ", and so
∞ = 1. Since T1 is ergodic, it follows that f is constant almost everywhere and
so T1 is weakly mixing.

Set

qi =
i°1Y

j=1
a j .(7)

Then S
qi (x) fixes the first i ° 1 positions of x and increments the entry in xi

position by 1. All other entries remain the same unless the i
th position was

exactly ai °1, in which case the carrying continues until this process terminates.
Given n 2N, we choose ci (n) such that

n =
X

ci (n)qi with ci (n) 2
©
° ai+1

2 , . . . , ai+1
2

™
.(8)

Note that there is no unique choice of these coefficients, but we can make a
canonical choice by using the greedy algorithm to define the coefficients ci .
That is, we choose i and ci such that |n ° ci qi | is minimal out of all possible
i 2 N and ci 2

©
° ai+1

2 , . . . , ai+1
2

™
, and then iteratively choose the next coefficient

to be the maximal choice satisfying these conditions. If there is a tie, that is
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if |n ° c j q j | = |n ° c j 0q j 0 | is minimal, we choose i = min{ j , j
0}. Once such a

representation is fixed, our construction depends on this choice.
We define two functions from Z to itself that allow us to move between study-

ing properties of the odometer S and those of the first return map T :

NOTATION. We introduce two functions to relate powers of T and S. These are
useful in arguments throughout the paper, most immediately in the proof that
T is weakly mixing (Proposition 3.4) below. For y 2 Y , define ≥y : Z! Z to be
the map taking the integer n to the integer m such that S

my = T
ny.

For y 2 Y , define ªy : Z! Z to be the map taking the integer n to the least
integer m such that there exists `∏ n satisfying T

my = S
`y.

Let 0 2 Y denote the point consisting of all 0’s. To keep track of the iterates
of S that fix the first i positions, as determined by the qi defined in (7) and the
expansion of any integer in the base determined by the sequence qi , as defined
in (8), we define

ri = ª0(qi )(9)

and define

di (n) = ci (≥0(n)).(10)

Thus the map ≥y maps an iterate of T to an iterate of S and the coefficients
ci are changed into di , while the map ªy reverses this, taking an iterate of S

to an iterate of T . However they are not precisely inverses, as one can not
regain all of the odometer S from the first return T : if S

i (x) › Y , then there is no
corresponding T time.

REMARK 1. Our arguments require understanding the dynamics of T both at
specified times and at arbitrary times. Starting with the proof of Proposition 3.4,
we make use of the r j to choose powers of T with desired dynamical properties,
and the indices i in the criterion for weak mixing given in Lemma 3.2 are cho-
sen to be r j for some appropriately chosen j . These r j are then used to select
powers of T with desired dynamical properties throughout Section 4. The d j

(especially for the largest j such that d j is non-zero) are useful for understand-
ing the dynamics of T at arbitrary times. To motivate this, informally the d j (n)
give us a representation of n in some base constructed to be compatible with
the dynamics of T . This role is analogous to how the ci act like such a base for
the odometer S; the construction of the di depend on the ci , and they play such
a role for T , and this role explored and exploited in Sections 5 and 6.

An easy analysis of the return times for the odometer S leads to (we omit the
proof):

LEMMA 3.3. If C is a cylinder defined by positions < i , then the sum
Pqi°1

j=0 1C (S
j x)

does not depend on x 2 X . Thus the sum
Pqi°1

j=0 1Z`(S
j x) does not depend on x 2 X

for any ` such that `< i and similarly,
Pqi°1

j=0 1W`(S
j x) does not depend on x 2 X

for any ` such that 102` < i .
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We use this to show:

PROPOSITION 3.4. The system (Y ,∫,T ) is weakly mixing.

Proof. Assume i = 10k °k and set

Ui = X ‡
√

qi[

j=0
S
° j

µ 1[

m=i+1
Zm [

1[

10 j>i

Wj

∂!c

.

We claim that if i ∏ 108, then µ(Ui ) ∏ 1° 1
8 °

P
m∏i+2

1
8m°i+1 . Indeed, under this

assumption am ∏ 8 and so µ(Wm) = m

q102m+1
for m ∏ i and µ(Z`) = 1

q`+1
for all

`∏ i . Thus, qiµ(Z`) ∑ 8i°`°1 for all `∏ i . By the assumption on i , it follows that
P

{ j : 102 j>m} qi

j

q j

< 1
8 .

Set

Ai = {x 2Ui \Y : xi ∑ 4}

and so ∫(Ai ) > 1
2 °

1
8 . For x 2 Ai , we have S

j x › D` for any 0 ∑ j ∑ qi and `∏ i

(recall that the sets Dk are defined in (6) and (S
j x)i 6= ai °2). Thus by Lemma 3.3

and the definition of T , and ri 2Z such that T
ri x = S

qi x, which by choice of qi

is close to x (note that ri is defined in (9)). Set

Bi = {x 2Ui : xi = 7, x1 < 5, xi°1 < 6}

æ {x 2 X : xi+1 < 5, xi = 7, xi°1 < 6, x1 < 5}.

Then µ(Bi ) > 1
64 and ∫(Bi \Y ) > 1

128 . For x 2 Bi , we have S
j x 2 Di = Z10k°k

for
some 0 < j < qi and by definition S

j x › D` for all `> i (because (S
j x)i 6= ai °2).

Lemma 3.3 implies that T
ri x = S

qi+1x (by our assumption that x1 < 5, we have
S

qi+1x 2 Y ). And thus the assumptions of Lemma 3.2 are verified for the mea-
surable sets Ai ,Bi and sequence of integers ni = ri with i 2 {10k °k : k ∏ 8}.

3.5. T is rigid rank one by cylinders. We now show that the constructed system
is rigid rank one by cylinders, using information on the odometer system (X ,S)
to study the system (Y ,T ). Recall that since the system (X ,S) is an odometer,
fixing initial entries corresponds to an interval in [0,1).

LEMMA 3.5. The system (Y ,∫,T ) is rigid rank one by cylinders.

Proof. Let Ik be the cylinder set determined by the word of all 0’s up to 102k+1

and with any value between 0 and 2k +1°5 = 2k °4 in the entry at 102k+1. Let
nk = r102k+1 , as defined in (9). If y 2S2nk°1

i=0 T
i (Ik ), then y102k+1 < 2k +1°3 and so

(S
i y)102k+1 < 2k +1°2 for 0 ∑ i ∑ nk . Thus, S

i y › S
`∏102k+1 D` for 0 ∑ i ∑ nk and

so
2nk°1[

i=0
T

i (Ik )\
√

1[

`=102k+1+1
Z`[

1[

j=k+1
Wj

!

=;.

Additionally, by Lemma 3.3 we have that
Pq102k+1°1

j=0 1S
`<102k+1 D`S

j x is constant on
X . Therefore ªy(q102k+1 ) is constant (and equal to nk = r102k+1 ) on this set.
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For any x 2 Ik , we have that (T
nk (x))i = xi for all i 6= 102k+1 and (T

nk (x))102k+1 =
x102k+1 +1. Thus

µ(T
nk Ik \ Ik ) =

µ
1° 1

2k °4

∂
µ(Ik ),

establishing condition (iv) (after passing from µ to ∫) of the definition of rigid
rank one by cylinders. For any x 2 Ik and 0 < i < nk , we have T

i (x) j 6= 0 for some
j < 102k+1, and so condition (ii) follows. Since each T

i
Ik is either contained in

or is disjoint from Z` and Ws for `< 102k+1 and s < 2k +1, and furthermore is
disjoint from all other Z` and Ws , we have that T

i
Ik is a cylinder set for all 0 ∑

i < qk , establishing condition (i). Finally condition (iii) follows since
Snk°1

i=0 T
i
Ik

contains all of Y other than the cylinder sets defined by having entries at least
2k °4 in the position 102k+1.

4. JOININGS

In this section we prove that our system is not quasi-distal and that the self-
joinings of the system form a Poulsen simplex. We start by proving Theorem 4.1,
a general criterion for a system to not be quasi-simple. As simple extensions
arise via quite a general construction, it is natural that this argument becomes
technical. In Sections 4.2 and 4.3, we show that our system (Y ,∫,T ) verifies the
assumptions of Theorem 4.1. The key results used for doing this are Proposi-
tion 4.4 and Lemma 4.13, and we include a paragraph after Proposition 4.4 for a
description of its role. The motivating idea behind the proof of Proposition 4.4
comes from a modification of a construction of the first named author and
Eskin [4, Section 3], and in Section 4.2.1, we verify that our system (Y ,∫,T ) sat-
isfies the assumptions of the construction. Lemma 4.13 is general. The fact that
our joinings form a Poulsen simplex is analogous to the previously mentioned
construction in [4] and is established in Section 4.4 using only the results from
Section 4.2.1 (and in particular does not require Proposition 4.4). Section 4.5
establishes that these properties are residual.

4.1. Isometric and distal extensions. Given systems (Z1,≥1,T1) and (Z2,≥2,T2),
if ¥ is a measure on Z1£Z2, we make a mild abuse of notation and let ¥x denote
the measure on Z2 that is defined for almost all x 2 Z1 by disintegrating the
measure ¥ on the fiber {x}£ Z2. We want to have a condition to rule out that
(Z1 £ Z2,¥,T1 £T2) is measurably isomorphic to T¡ : Z1 £G/H ! Z1 £G/H by
T¡(x, g ) = (T x, [¡(x)]g ). Note that the change in the second fiber of such a map
is independent of g (but may depend on x). Theorem 4.1 is the tool to do this,
and we give a rough idea how the various the conditions in the hypotheses play
different roles. Condition (ii) identifies what the change in the second fiber
must be (note that it is allowed to depend on x) and condition (iii) says that
this can not be the change. Since our isomorphism is only a measurable map,
conditions (i), (iv), and (v) are to allow us to be able to apply Lusin’s Theorem.

THEOREM 4.1. Assume (Z1,≥1,T1) and (Z2,≥2,T2) are ergodic, Borel probability

systems such that Z1 and Z2 are compact metric spaces. Let ¥ be an ergodic
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joining of the systems (Z1,≥1,T1) and (Z2,≥2,T2), and let c > 0. Assume that

there exists ±̂> 0, a sequence of integers (ni )i2N tending to infinity, a sequence of

integers (Li )i2N such that Li > ±̂ni , and measurable sets Ai Ω Z1 satisfying

i. ≥1(Ai ) > c for all i 2N.

Further assume that for each x 2 Ai , there exist sets Ci (x),Ei (x) Ω Z2, and jx 2
[°ni ,ni ] (all depending on x) satisfying the following conditions:

ii. sup
x2Ai

sup
y2Ci (x)

1
Li

PLi°1
`=0 dZ2 (T

`
2 T

ni

2 y,T
`
2 T

jx

2 y) ! 0.

iii. For all y 2 Ei (x), we have

1
Li

ØØ©0 ∑ `∑ Li °1: dZ2 (T
`
2 T

ni

2 y,T
`
2 T

jx

2 y) > c
™ØØ> c.

iv. For all x 2 Ai , ¥x (Ci (x)),¥x (Ei (x)) > c .

v. For any c
0 > 0, there exists i0 such that for all i ∏ i0 and any x 2 Ai if we have

balls B(p`,c
0) Ω Z2 satisfying ¥x

°
Ei (x)\ S

`B(p`,c
0)
¢
> c ° c

0
, then

¥x

°
Ci (x)\

[

`

B(p`,2c
0)
¢
> c °2c

0.

Then ¥ is not a distal extension of (Z1,≥1,T1).

Note that this is a general result, holding for arbitrary measure preserving sys-
tems whose underlying spaces are compact metric spaces, and this result does
not depend on the particular constructions we have for the systems (Z1,≥1,T1)
and (Z2,≥2,T2). We further note that in (ii), we can not take jx = ni , as this
would preclude Condition (iii). Note that since Condition (v) holds for arbitrar-
ily small choice of c

0, this rules out the possibility that the joining is carried
on a finite union of graphs. Indeed, if f1, . . . , fr : Z1 ! Z2 are distinct functions
satisfying fi (T1z) = T2( fi z), then for all "> 0 there exists c̃ > such that for all but
a set of z 2 Z1 of µ1-measure at most " we have dZ2 ( fi (z), f j (z)) > c̃ for all i 6= j .
Then we can not satisfy Condition (v) with " small enough and c

0 < c̃

3 .
The proof of Theorem 4.1 proceeds by contradiction. We assume (Z1 £Z2,¥,

T1£T2) is an isometric extension of (Z1,≥1,T1), meaning that there exists a (mea-
surable) isomorphism ™ : (Z1 £ Z2,¥,T1 £T2) ! (Z1 £G/H ,≥1 £mG/H ,T¡) that
is the identity on the first coordinate, and use this to derive a contradiction.
Since a distal system can be decomposed as a tower of isometric extensions, we
conclude that it can not be a distal extension.

Before turning to this proof, we start with some preliminaries and a lemma
used to derive the contradiction. Let K be a compact continuity set for ™ with

¥(K ) > 1° ±̂
100 c

4. Thus K is also a continuity set for º2 ±™, where º2 : Z1 £
G/H ! G/H is the projection on the second coordinate. Choose ± > 0 such
that dG/H (g h̃, g h̃

0) < c

8 whenever dG/H (h̃, h̃
0) < ± and g 2 G . Choose c

8 > ±0 > 0
such that dG/H (º2 ±™(x, y),º2 ±™(x

0
y
0)) < ± whenever (x, y), (x

0, y
0) 2 K and

dZ1£Z2

°
(x, y), (x

0, y
0)
¢
< ±0.

LEMMA 4.2. Under the assumptions of Theorem 4.1, there exist a pair of points

(x, y), (x, y
0) 2 Z1 £Z2 and b 2Z such that
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i. (x, y), (x, y
0), (T

b

1 x,T
b

2 y), and (T
b

1 x,T
b

2 y
0) 2K ;

ii. dZ2 (y, y
0) < ±0;

iii. dZ2 (T
b

2 y,T
b

2 y
0) > c

2 °
c

8 > c

3 .

Proof. For all L ∏ 1, we have that

¥
≥n

(x, y) :
L°1X

i=0
1K

°
(T

i

1 x,T
i

2 y)
¢
< L° L±̂

10
c

o¥
< 1

10
c

3.

Choosing c
0 = ±0

8 as in Condition (v) of Theorem 4.1, for all sufficiently large i ,
we can pick x 2 Ai , y 2 Ci (x), and y

0 2 Ei (x) satisfying dZ2 (y, y
0) < ±0 and the

conditions
Li+ni°1X

i=0
1K

°
(T

i

1 x,T
i

2 y)
¢
> Li +ni °

Li

10
c,

Li+ni°1X

i=0
1K

°
(T

i

1 x,T
i

2 y
0)
¢
> (Li +ni )° Li

10
c.

By Conditions (ii) and (iii) of Theorem 4.1, there exists ` such that the points
(T

`+ni

1 x,T
`+ni

2 y), (T
`+ jx

1 x,T
`+ jx

2 y), (T
`+ni

1 x,T
`+ni

2 y
0), and (T

`+ jx

1 x,T
`+ jx

2 y
0) all

lie in the set K , while at the same time

dZ2 (T
`+ni

2 y,T
`+ jx

2 y) < ±0 and dZ2 (T
`+ni

2 y
0,T

`+ jx

2 y
0) > c.

Thus we can take b to be one of `+ jx or `+ni . Indeed,

max
n

dZ2

°
T
`+ni y,T

`+ni y
0¢, dZ2

°
T
`+ jx y,T

`+ jx y
0¢
o

∏ dZ2

°
T
`+ni y

0,T
`+ jx y

0¢°dZ2

°
T
`+ni y,T

`+ jx y
¢
.

Proof of Theorem 4.1. We first show that ¥ is not an isometric extension. Ob-
serve that if g = ¡(T

b°1
1 x) · . . . ·¡(x), then º2 ±™(T

b

1 x,T
b

2 y) = gº2 ±™(x, y) and

º2±™(T
b

1 x,T
b

2 y
0) = gº2±™(x, y

0). Because all four of the points (T
`+ni

1 x,T
`+ni

2 y),

(T
`+ jx

1 x,T
`+ jx

2 y), (T
`+ni

1 x,T
`+ni

2 y
0), and (T

`+ jx

1 x,T
`+ jx

2 y
0) lie in the set K , Con-

clusion (ii) of Lemma 4.2 implies that dZ2 (T
b

2 y,T
b

2 y
0) < c

4 , a contradiction of
Conclusion (iii) of Lemma 4.2.

Now assume that ¥ is a distal extension of (Z1,≥1,T1). By the structure theo-
rem for distal flows of Furstenberg [11] and Zimmer [34], the system (Z1 £ Z2,
¥,T1 £T2) is an inverse limit of systems, each of which is an isometric exten-
sion of the preceding one. Thus there is a factor of our distal extension, which
is an isometric extension of (Z1,≥1,T1), and which satisfies the assumptions of
Theorem 4.1 (with different c). Indeed, by the definition of inverse limits, we
can embed our distal extension into the product defining the inverse limit. This
contradicts the previous paragraph.

4.2. A self-joining that is not quasi-simple. We apply Theorem 4.1 to establish
part of Theorem 1.1:

THEOREM 4.3. There exists a non-trivial ergodic self-joining of (Y ,∫,T ) that is

not a distal extension of (Y ,∫,T ).
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By non-trivial, we mean that the self-joining is not ∫£∫.
Before turning to the proof, we start with some preliminaries. If (Y ,T ) is a

compact metric space, let M (Y £Y ) denote the set of Borel probability measures
on Y and let dM (Y £Y )(·, ·) denote the Kantorovich–Rubenstein metric, defined
for Borel probability measures µ,∫ 2M (Y £Y ) as

dM (Y £Y )(µ,∫) := sup
ΩØØØ

Z
f dµ°

Z
f d∫

ØØØ : f is 1-Lipschitz function on Y £Y

æ
.

This metric endows the set of Borel probability measures M (Y £Y ) on Y £Y

with the weak*-topology. Similarly, define dM (Y ) to be the Kantorovich–Ruben-
stein metric on the M (Y ).

Recall that J(n) denotes the off diagonal joining on {(x,T
nx)}, meaning that

J (n) is the measure on X £X defined by
Z

f (x,y)d J (n) =
Z

f (x,T
nx)dµ.

Recall that if æ is a self-joining of (Y ,∫,T ), we let æx denote the disintegration
of æ given by projection to the first coordinate, thought of as a measure on Y .
Note that this is only defined ∫-almost everywhere and is slightly different than
the usual disintegration of measures: it defines a measure on Y , rather than a
measure on Y £Y that gives full measure to {x}£Y .

The main tool in establishing Theorem 4.3 is the following proposition:

PROPOSITION 4.4. For any "> 0 and k1, . . . ,kr 2 Z, there exist `1, . . . ,`2r , N , M,

L 2 Z, with M ∑ L, a set A Ω Y with ∫(A) > 1
99 , and for each x 2 A there exists

jx 2 [°M , M ] such that

(a) ∫
≥n

x : dM (Y )
°
( 1

2r

P2r

n=1 J (`n))x, ( 1
r

P
r

n=1 J (kn))x
¢
> "

o¥
< ". (Recall our conven-

tion that the disintegration of measure on Y £Y by projection onto the first

coordinate is a measure on Y .)

(b) ∫

0

@

8
<

:x 2 A :
there exist reorderings i1, . . . , ir of 1, . . . ,r and

i1+r , . . . , i2r of r +1, . . . ,2r such that for all 1 ∑ s ∑ r ,

dY (T
ks x,T

`is x) < " and dY (T
ks x,T

`ir+s x) < "

9
=

;

1

A> ∫(A)°".

(c) dM (Y £Y )
° 1

N

P
N

i=1±(T i x,T i T `n x),
1
r

P
r

i=1 J (ki )
¢
< " for all n ∑ 2r and x 2 A.

(d)
1
L

P
L°1
i=0 dY (T

M+i
T
`n x,T

i+ jx T
`n x) < " for all x 2 A and n ∑ r .

Moreover, if we assume that there exist a,b 2N and c > 0 such that dY (T
ax,T

bx) >
4c +" for a set W of x with ∫(W ) = 1

2 and

ØØ©1 ∑ n ∑ r : dY (T
kn x,T

ax) < c
™ØØ=

ØØ©1 ∑ n ∑ r : dY (T
kn x,T

bx) < c
™ØØ= r

2
(11)

for all x 2W , then

(e)
1
L

ØØØØ

Ω
0 ∑ i ∑ L°1:

dY (T
M+i

T
`d x,T

i
T
`d T

jx x) > c

for all x 2 A and r < d ∑ r +2d 1
16 r e

æØØØØ> 1
9 .
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The proof of this proposition occupies the rest of this section, starting with
finding the first half of the `i and then the second half. Before we turn to this,
we comment on the role that this proposition plays. To prove Theorem 4.3, we
iteratively apply this proposition, and at the k ° 1st application obtain a join-
ing that is the barycenter of 2k off diagonal joinings. We then take the weak*-
limit of this sequence of (non-ergodic) joinings and obtain æ, an ergodic joining
that satisfies the criterion of Theorem 4.1. Using the proposition, we obtain
a joining with the desired properties before passing to a limit. Before turning
to the proof, we give some indication of the role of the various conditions in
the statement. Conditions (a) and (b) are used to prove that æ is ergodic, and
Conditions (d) and (e) are used to show that æ satisfies the assumptions of Theo-
rem 4.1. More precisely, the sets Ci (x) for æ are approximated by {T

`n x}r

n=1 in
the sense that ¥x restricted to Ci (x) is close to 1

2r

P
r

n=1±T `n x. Similarly, the sets

{T
`n x}

r+2d r

16 e
n=r+1 correspond to Ei (x), M corresponds to ni , and L to Li . Conclu-

sion (e) is the analog of (iii) in Theorem 4.1 and Conclusion (d) of (ii). Condi-
tion (v) in Theorem 4.1 corresponds to observing that (b) implies that for most
x, for any r < d ∑ r +2d r

16e there exists 1 ∑ id ∑ ir such that T
`d x is close to T

`i
d x.

The relation between the pre-limit versions of the properties and the desired
properties for the limiting measure æ is addressed in Lemma 4.13.

4.2.1. Finding `1,. . . ,`r . We now construct `1, . . . ,`r satisfying the conclusions
of Proposition 4.4.

LEMMA 4.5. For all "> 0, there exists k0 2N such that for all k > k0 and 1 ∑ `∑ k:

i. If (T
i x)102k < k for all 0 ∑ i ∑ `r102k , then d(T

`r102k x,x) < ". Similarly, if

(T
i x)102k < k for all 0 ∏ i ∏°`r102k , then d(T

`r102k x,x) < ".

ii. If k ∑ (T
i x)102k < 2k °2 for all 0 ∑ i ∑ `(r102k +1), then d(T

`(r102k +1)x,x) < ".

Similarly, if k ∑ (T
i x)102k < 2k ° 2 for all 0 ∏ i ∏ °`(r102k + 1), then

d(T
`(r102k +1)x,x) < ".

Recall from Section 3 that d = dY is a metric giving the subspace topology for
Y coming from product topology on X .

Proof. We only include the proof of the first part of (ii), as the proofs of all
four statements are similar. Thus we need to show that under the assumptions,
(T

`(r102k +1)x)i = xi for all i < 102k . This statement immediately follows once we
show that

T
`(r102k +1)x = S

`q102k x.(12)

To prove (12), note that by assumption, (T
i x)102k < 2k°2 for all 0 ∑ i ∑ `(r102k+1),

and so S
i x ›S

j>102k D j for all 0 ∑ i ∑ `q102k . (Recall that D j are defined in (6).)
Similarly, by the assumption that k ∑ (T

i x)102k for all 0 ∑ i ∑ `(r102k +1), we have
that S

i x › D102k for all 0 ∑ i ∑ `q102k . Thus for any such x, ≥x(q102k ) = ≥0(q102`)+
1 = r102k +1. Indeed, there exists 0 < i < r102k such that S

i (0) 2 D102k . Iterating
this process for x, we obtain that S

q102k x = T
r102k +1x, . . . ,S

`q102k x = T
`(r102k +1)x,
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thus proving the claim. (Note that by assumption, S
i (T

j (r102k +1)x) › D102k for
any 0 ∑ j ∑ ` and 0 ∑ i ∑ q102k .) If k0 is large enough (depending on the metric,
d , and "), the lemma follows.

LEMMA 4.6. Let u, v 2Z and n = u + vr102k . If

x102k 2
£
|u|+ |v |+1,k ° |u|° |v |°1

§
,(13)

then (T
nx) j = (T

ux) j for all j 6= 102k
. Similarly, if

x102k 2
£
|u|+ |v |+k +1,2k ° |u|° |v |°3

§
,(14)

then (T
nx) j = (T

u°v x) j for all j 6= 102k
.

Proof. These results follow from Lemma 4.5, and again we only prove the first
part as the others are analogous. If x102k 2

£
|u|+ |v |+1,k ° |u|° |v |°1

§
, then we

apply the first part of Lemma 4.5 with `= v to T
ux.

COROLLARY 4.7. For all "> 0 and b,b
0 2Z, there exists k0 such that for all `> k0

there exists p` 2Z, disjoint sets A`, B`, and a cylinder J` satisfying

i. T
p`(x) j = (T

bx) j for all j 6= 102`
and x 2 A`.

ii. T
p`(x) j = (T

b
0
x) j for all j 6= 102`

and x 2 B`.

iii. ∫(A`), ∫(B`) > 1
2 °".

iv. A` =
S(`°2(|b|°|b0|°1))r102`

i=0 T
i
J`

v. T
i
J`\ J` =; for all 0 ∑ i ∑ 2(`° |b|° |b0|°1)r102k .

Proof. We apply Lemma 4.6 to n = b + (b °b
0)r102` , and as in the lemma, we

write n = u + vr102k . (That is, u = b and v = b °b
0.) Since b ° (b °b

0) = b
0, by

choosing

J` = {x : x j = 0 for all j < 102` and x102` = |u|+ |v |+1},

the corollary follows with p` = b + (b °b
0)r102` . Indeed, A` satisfies (13) and

B` =
(2`°|u|°|v |)r102`[

i=(|u|+|v |+`)r102`

T
i
J`

satisfies (14). Clearly the measures of each of these sets converge to 1
2 as ` goes

to infinity (for fixed u, v).

LEMMA 4.8. For any "> 0 and b 2Z, there exists N 2N such that for all n ∏ N ,

∫

µΩ
x 2 Y : dM (Y £Y )

≥ 1
n

nX

i=1
±(T i x,T i T b x), J (b)

¥
> "

æ∂
< ".

Proof. This follows immediately from the Ergodic Theorem and the compact-
ness of the space of 1-Lipschitz functions with bounded integral.

We now combine these results with the strategy developed in [4] to build
off diagonal joinings that are weak-*close to the barycenter of other off diago-
nal joinings. We begin by summarizing the results of [4], where the input is a
sequence of numbers and sets with certain properties.
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We assume that c > 0, J j is a sequence of cylinders, m j is a sequence of
natural numbers, b

(1)
j

, . . . ,b
(d)
j

are sequences of integers, and Â j , B̂ j and U j are
sequences of sets, and " j > 0 satisfy the following properties:

i. For all j , Â j =
Sm j

`=1 T
`

J j ‡U j .
ii. For all j , B̂ j = Y ‡ (A j [U j ).

iii. For all j , ∫(Â j ),∫(B̂ j ) > c.
iv. The minimal return time to J j is at least 3

2 m j .
v. For all j , ∫(U j ) < " j .

vi. For all j , m j

P1
`= j+1∫(J`) < "`.

vii. For all j , " j+1 ∑ " j and
P

j " j <1.

viii. For any x 2 Â j , we have d
°
T

b
(p)
j x,T

b
(p°1)
j°1 x

¢
< " j and for any x 2 B̂ j , we have

d
°
T

b
(p)
j x,T

b
(p)
j°1 x

¢
< " j . (Note that b

(p°1)
j°1 is interpreted to be b

(d)
i°1 if p = 1.)

ix. dM (Y £Y )
° 1

L

P
L

i=1(T £T )i (J (b
(p)
i

)x), J (b
(p)
i

)
¢
< "i for all x 2 Y , all L ∏ mki+1

9 , and
any p 2 {1, . . . ,d}.

THEOREM 4.9 (Chaika–Eskin [4, Proposition 3.1 and the proof of Corollary 3.3]).
Assuming sequences of numbers and sets satisfying (i)–(ix), there exist Ω < 1,

C
0 > 0 (depending only on c and d) such that

dM (Y £Y )

≥
J (b

(p)
k

),
1
r

rX

p=1
J (bi

(p))
¥
∑C

0
kX

q=i

"q +C
0Ωk°i ,

whenever k ∏ i and p 2 {1, . . . ,r }. Moreover, if x › S
k

q=i
Uq , there is a reordering

(which is allowed to depend on x) p1, . . . , pd with d
°
T

b
( j )
i x,T

b̂
(p j )

k x
¢
<P

k

q=1 "q for

all 1 ∑ j ∑ d.

REMARK 2. The last statement of this theorem is not in the statement of Corol-
lary 3.3, but follows by iterating (viii). The condition in (viii) is a slightly simpler
condition than that in [4], where the conditional measure of an off diagonal join-
ing on a fiber is used instead of the distance between points, but the condition
in [4] follows immediately by using the definition of the Kantorovich–Rubinstein
metric.

REMARK 3. We iteratively apply the result of Theorem 4.9 for different (decreas-
ing) choices of "i and (increasing) d , with each choice satisfying all of the prop-
erties (i)–(ix). Corollary 4.7 is designed to ensure that conditions (i)-(ix) in the
hypotheses of Theorem 4.9 hold. Indeed conclusions (i) and (ii) of Corollary 4.7
provide condition (viii). Conclusion (v) of Corollary 4.7 provides condition (iv),
while conclusion (iv) provides condition (i). Lemma 4.8 provides condition (ix).

COROLLARY 4.10. For any "> 0 and integers b1, . . . ,bd , there exist integers b̂1, . . . ,

b̂d such that

dM (Y £Y )

≥
J (b̂`),

1
d

dX

j=1
J (b j )

¥
< "(15)
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for all ` 2 {1, . . . ,d}. Moreover, we may assume that there is a set Ŵ of measure

1°" such that for every x 2 Ŵ , there is a reordering p1, . . . , pd with d(T
b j x,T

b̂p j x)
< " for all 1 ∑ j ∑ d.

We note that the reordering in the second part of this statement depends on
the particular x.

Proof. By Corollary 4.7 and Lemma 4.8, the result holds for d = 2. Indeed, given
b1,b2, and "0, Lemma 4.8 provides L0 such that

∫

µΩ
x : dM (Y £Y )

≥ 1
L

LX

i=1
±(T£T )i (x,T b j x), J (b j )

¥
> "0

æ∂
< "0

for j 2 {1,2} and L ∏ L0. Given this L0, we apply Corollary 4.7 twice (for suffi-
ciently large ` depending on L0) to obtain sets A, B and p, p

0 2 Z for (b,b
0) =

(b1,b2) and (b,b
0) = (b2,b1) respectively as in the statement of the Corollary and

such that ∫
°TL0

i=0 A
¢

and ∫
°TL0

i=0 B
¢

are at least 1
2 °"

0. Iterating this provides con-
ditions (i)-(ix). In particular, in the next application we have p, p

0 instead of
b1,b2.

Moreover, we claim that we can simultaneously apply these results to d dif-
ferent pairs (b1,b

0
1), . . . , (bd ,b

0
d

) (the resulting common sets become Â and B̂).
To see this, choose

Â =
©

x : x102` 2
£

max{|bi |}+max{|bi °b
0
i
|}+1,`° (max{|bi |}+max{|bi °b

0
i
|})°1

§™

and

B̂ =
©

x : x102` 2
£
`+max{|bi |}+max{|bi°b

0
i
|}+1,2`°(max{|bi |}+max{|bi°b

0
i
|})°3

§™
.

We apply this argument for the d pairs (b
(1)
1 ,b

(2)
1 ), . . . , (b

(d)
1 ,b

(1)
1 ) to produce

measures b
(1)
2 , . . . ,b

(d)
2 . Note that on Â, there is a reordering of 1, . . . ,d , call it

p1, . . . , pd , such that d(T
b j x,T

b̂p j x) < " for all 1 ∑ j ∑ d and x 2 Â. (In fact, this is
the reordering p j = j .) There is a similar reordering on B̂ (this is the reordering
p j = j °1 for j 6= 1 and p1 = d). Inductively, given b

(1)
j

, . . . ,b
(d)
j

we apply this to

the corresponding pairs (b
(1)
j

,b
(2)
j

), . . . , (b
(d)
j

,b
(1)
j

). Let Â1, . . . , Â j and B̂1, . . . , B̂ j

denote the corresponding sets, as above. By Theorem 4.9, there exists j 2 N
such that b

(i )
j

satisfy (15) for all i = 1, . . . ,d . That is,

dM (Y £Y )

≥
b

(i )
j

,
1
d

dX

`=1
J (b`)

¥
< ".

Define

Ŵ =
j\

i=1
(Âi [ B̂i )(16)

to be the intersection of the sets obtained at each step, and this satisfies the
desired conclusion.
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We now combine these results to find `1, . . . ,`r . Given "> 0, applying Corol-
lary 4.10 to k1, . . . ,kr , we obtain `1, . . . ,`r such that

∫

µΩ
x : dM (Y )

≥1
r

rX

i=1
J (`i )x,

1
r

rX

i=1
J (ki )x

¥
> "/2

æ∂
< "/2

(Condition (a) for the first r ) and also satisfy the reordering condition on `1,
. . . , `r in (b), where for each x 2 Ŵ , the reordering is given by p

0
k
= k ° |{1 ∑ i ∑

j : x 2 B̂i }| and this difference is taken modulo d . (Note that as we have not yet
introduced `r+1, . . . ,`2r , we have not yet fully established (a) or (b).) Towards
obtaining Conclusion (c), for each `i , choose Ni such that for all L ∏ Ni we have

dM (Y £Y )

≥ 1
L

L°1X

j=0
±(T j£T j )(x,T `i x), J (`i )

¥
< ".

4.2.2. Finding `r+1, . . . ,`2r . We start first by finding `r+1, . . . ,`2d 1
16 r e.

LEMMA 4.11. Under the assumptions of Proposition 4.4 including the additional

assumption, there exists J Ω {1, . . . ,r } with |J | = 2d 1
2·8 r e and an order 2 bijection

¡ : J ! J such that

∫
°©

x : d(T
`i x,T

`¡(i ) x) > c
™¢

> 1
8

(17)

for all i 2 J .

Proof. First we claim that for each i ∑ r , we have that
ØØØ
n

j ∑ r : ∫
°©

x : d(T
`i x,T

` j x) > c
™¢

> 1
8

oØØØ∏
r

8
.(18)

To justify (18), we limit our consideration to W \Ŵ , where W is as in the state-
ment of Proposition 4.4 and Ŵ is defined as in (16) as given in the proof of
Corollary 4.10 and note that ∫(W \Ŵ ) ∏ 1

2 °">
49

100 . If (18) does not hold,
Z

W \Ŵ

1
r

ØØ© j : d(T
` j x,T

`i x) ∑ c
™ØØd∫∏

≥ 49
100

° 1
8

¥7
8
> 1

2
∫(W \Ŵ ).

It follows that there exists x 2 (W \Ŵ ) such that
ØØ© j : d(T

` j x,T
`i x) < c

™ØØ> r

2
.

Since x 2 Ŵ , it follows that
ØØ© j : d(T

k j x,T
`i x) < c +"

™ØØ> r

2
.

But since x 2W \Ŵ , we have that d(T
`i x,T

ax) or d(T
`i x,T

bx) is less than c +",
all of these T

k j x are at least 2c away from whichever of T
ax or T

bx that T
`i x is

not close to. This contradicts the fact that x 2W .
Given (18), we can obtain our set of J , because until |J | = d1

8 r e, we can always
inductively pick any i › J and find j › J satisfying (17) and add them both into
J , letting ¡(i ) = j and ¡( j ) = i . Thus we can obtain a set J whose cardinality is
the smallest even number that is at least 1

8 r .
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LEMMA 4.12. Assume there exist a,b 2Z and c > 0 such that

∫({x : d(T
ax,T

bx) > c}) > 1
8

.

Let

Gk =
©

x 2 Y : x102k 2
£1

3 k +|a °b|, 1
2 k °2° |a °b|

§
and x102k°1 = 3

™

and set dk = a+(a°b)r102k . Then for every "> 0, there exists k0 such for all k ∏ k0
and x 2Gk , there exists jx 2 [°k,k] satisfying

i. d(T
`+a+ jx x,T

`+a+ k

2 r102k x) < "

ii. d(T
dk+`+ jx+ k

2 r102k x,T
b+`x) < "

for all ` 2 [°r102k°1,r102k°1]. Moreover, for all but a set of such x with measure at

most ", we have

ØØ©` 2 [°r102k°1,r102k°1] : d(T
a+`x,T

b+`x) > c
™ØØ> 1

9
2r102k°1.(19)

Proof. We apply the proof of Corollary 4.7 with n = dk to obtain the first 2 con-
ditions. More precisely, by construction Gk is a subset of Ak [Bk where Ak and

Bk given by the proof of Corollary 4.7. Choose jx = P≥x( k

2 r102k )°1
i=0 1D102k

(S
i x)° k

2 .
(Recall that D j is defined in (6).) Then since x102k°1 = 3, it follows that jx = j

T `0x
for all such x and `0 2 [°3

2 r102k°1, 3
2 r102k°1]. Indeed, because y 2 D102k implies

y102k°1 = 6, for all x with x102k°1 = 3 and `0 2 [°3
2 r102k°1, 3

2 r102k°1] we have

≥x( k

2 r102k )°1X

i=0
1D102k

(S
i x)°

≥
T`

0
x
( k

2 r102k )°1X

i=0
1D102k

(S
i x) = 0.

Choosing k0 such that |a|, |b| < r102k0°1, the first 2 conditions hold. For the final
condition, let V = {x : d(T

ax,T
bx) > c}.

By the (mean) ergodic theorem, there exists N 2N such that

∫
≥n

x :
1

M

M°1X

i=0
1V (T

i x) > (1°")∫(V )
o¥

> 1°"

for all M ∏ N . Choosing r102k°1 > N we have (19).

We now use this to define ` j for j 2 {r + 1, . . . ,r + 2d r

16e}. Choose J as in
Lemma 4.11 and enumerate the elements of the set J as a1, . . . , a2d r

16 e. Let `r+ j

be given by Lemma 4.12 applied with a = a j and b = `¡(a j ) and where k is cho-
sen larger than the k0 needed for the 2d r

16e applications of Lemma 4.12, as well
as sufficiently large such that `i < 1

2 r102k°1 for all 1 ∑ i ∑ r . For each such j , we
define `r+ j to be the corresponding dk .

We now define `r+2d r

16 e+1, . . . ,`2r . Define V̂a to be the set of x such that

d(T
` j x,T

` j+r102a+1 x) < " for all j 2 J
c . Observe that for all large enough a, ∫(V̂a) >

1°". Let i1, ..., ir°2d r

16 e be an enumeration of J and define ` j+r+2d r

16 e = `i j
+r102a+1 .

So {` j }2r

j=r+2d r

16 e+1 = {` j 0 + r102a+1 } j 02J c .

We use this to prove the proposition:
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Proof of Proposition 4.4. Choose M = k

2 r102k , L = r102k+1, and set

B =
£1

3 k +2 max
j=1,...,2d r

16 e
{|`a j

|}, 1
2 k °2°2 max

j=1,...,2d r

16 e
{|`a j

|}
§

and
A =

©
x : x102k°1 = 3 and x102k 2 B

™
\Ŵ \ V̂ .

By Conclusion (i) of Lemma 4.12 and our choice that |` j | < r102k°1, we have
Conclusion (d) with jx as in Lemma 4.12. By Corollary 4.10 (see also the last
paragraph of Section 4.2.1) we have Conclusions (a) and (b) for {`i }r

i=1. Since

each `a1 , . . . ,`a2d r

16 e appears as both j and ¡( j ) in our construction of {`i }
r+2d r

16 e
i=r+1 ,

it follows outside a set of x with small measure, for each such x there exist,
p1, . . . , p2d r

16 e, a reordering of `i for r < i ∑ r+2d r

16e such that dY (T
`ai x,T

`pi x) < ".
For the remaining r < j ∑ 2r , the off diagonal joining ` j is built to be " close
to the corresponding `i . Thus Conclusion (b) follows for {`i }2r

i=r
. We have (c)

for N = max{Ni }r

i=1 (see the end of Section 4.2.1). Finally, by (19) and (ii) of
Lemma 4.12, we have (e). Indeed, by our choice of A we can apply (ii), and
by (19) this gives the desired distance bound of T

M+dk+`x from T
dk+`+ jx x.

4.3. Proof of Theorem 4.3. Let J∫ denote the self-joinings of (Y ,T,∫). Recall
that æx denotes a measure on Y , and not on {x}£Y .

LEMMA 4.13. Let " > 0, k1, . . . ,kr 2 Z, `1, . . . ,`2r ,L, N , M 2 Z, the set A, and jx 2
[°M , M ] be as in Proposition 4.4.

There exists
1

20 > ±> 0 such that if for some æ 2J∫ we have

∫

µΩ
x : dM (Y )

≥
æx,

≥ 1
2r

2rX

n=1
J (`n)

¥

x

¥
> ±

æ∂
< ±,(20)

then there exists Ã Ω A Ω Y and ∫(Ã) > 1
999 such that

i. æ({(x,y) 2 Ã£Y : dM (Y £Y )( 1
N

P
N

i=1±(T i x,T i y),
1
r

P
r

i=1 J (ki )) < 2"}) > 9
10∫(Ã).

ii. for all x 2 Ã, there exists Cx with æx(Cx) > 1
99999 and

1
L

L°1X

i=0
d(T

M+i y,T
jx+i y) < 2"

for all y 2Cx.

Moreover, under the additional assumption that there exist a,b 2 N and c > 0
such that d(T

ax,T
bx) > 3c for a set of x with measure

1
2 , then there exists Ex with

æx(Ex) > 1
99999 satisfying

iii.
1
L

ØØ©0 ∑ i < L : d(T
M+i y,T

jx+i y) > c

2

™ØØ> c

2 for all x 2 Ã and y 2 Ex.

Proof. Choose a compact set G with ∫(G) > 1° "
10000r

such that T
i |G is (uni-

formly) continuous for all |i | ∑ max{N ,L, M }. Let Ĝ = G \T2r

n=1 T
°`n G . There

exists ±> 0 such that if x 2G and d(x,y) < ±, then

d(T
i x,T

i y) < min{",10°7} for all |i |∑ max{N ,L, M }.(21)
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Thus we can choose A1 = A\Ĝ . If x 2 A1, y,y0 2 Ĝ , d(y,y0) < ±, and

dM (Y £Y )

≥ 1
N

NX

i=1
±(T i x,T i y),

1
r

rX

i=1
J (ki )

¥
< ",

then by (21) the definition of dM (Y £Y ) we have

dM (Y £Y )

≥ 1
N

NX

i=1
±(T i x,T i y0),

1
r

rX

i=1
J (ki )

¥
< 2".

Thus Condition (i) follows from Condition (c) of Proposition 4.4 (as well as (20)
and the measure bound on G). Setting

Cx = Ĝ \
r[

n=1
B(T

`n x,±),

then (ii) (without the measure bound) follows from (d). Setting

Ex = Ĝ \
r+2d r

16 e[

n=r+1
B(T

`n x,±),

then (iii) (without the measure bound) follows from (e). Let Ã be the subset
of A1 such that (20) holds, æx(A1) > 19

20 > 9
10 +± and so that æx(Cx), æx(Ex) >

1
99999 .

Before completing the proof of Theorem 4.3 we note the following. If (X ,T,µ)
is an Borel probability system and X is a compact metric space, then µ is ergodic
if and only if there exists a sequence Ni !1 such that for every f 2C (X ),

lim
i!1

1
Ni

Ni°1X

j=0
f (T

j
x)°

Z
f dµ= 0(22)

for µ-almost every x 2 X .

Proof of Theorem 4.3. We now produce a joining as close as desired (with re-
spect to dM (Y £Y )) to 1

2 (J(0)+ J(1)), which can thus be assumed to be different
from the product joining. Let k

(1)
1 = 0 and k

(1)
2 = 1. We apply Proposition 4.4 with

" < 1
10°3 < 1

10 min
x2Y

d(T x,x) to obtain `1, . . . ,`4, which we denote as k
(2)
1 , . . . ,k

(2)
4 .

We also obtain N1,L1, M1 and we then apply Lemma 4.13 to obtain ±1. Apply-
ing Proposition 4.4 with "2 = min{ 1

22 , ±1
2 } and k

(2)
1 , . . . ,k

(2)
4 and we also obtain

N2,L2, M2. We repeat the application of Lemma 4.13 to obtain ±2, which with-
out loss of generality we can assume is less than ±1

2 . We repeat this procedure,
inductively obtaining k

(r )
1 , . . . ,k

(r )
2r , which by Part (a) of Proposition 4.4 satisfies

∫

µΩ
x : dM (Y )

≥ 1
2r

2rX

i=1
J (k

(r )
i

)x,
1

2n

2nX

i=1
J (k

(n)
i

)x

¥
> ±n

≥
1° 1

2r°n

¥æ∂
< ±n

≥
1° 1

2r°n

¥

for all n < r . Applying Lemma 4.13 to obtain ±r , which again we take to be
bounded by ±n

2r°n for all n < r , we can repeat the application of Proposition 4.4,
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but with "r+1 = min{ 1
2r+1 , 1

2±r }. We pass to the weak*-limit of 1
2r

P2r

i=1 J(k
(i )
r ),

which we denote æ. By construction, we have that

∫

µΩ
x : dM (Y )

≥
æx,

1
2r

2rX

i=1
J (k

(r )
i

)x

¥
> ±r )

æ∂
∑ ±r(23)

for all r 2N. From this, it follows via Lemma 4.13 (i) and Proposition 4.4 (c),

æ

Ω
(x,y) 2 Y £Y : dM (Y £Y )

≥ 1
Nr

NrX

i=1
±(T i x,T i y),

1
2r°1

2r°1X

i=1
J (k

(r°1)
i

)
¥
> "r

æ

< 2"r ∑
1

2r°1 .

Thus lim
r!1

1
Nr

PNr

i=1±(T i x,T i y) is the weak*-limit of 1
2r

P2r

i=1 J(k
(r )
i

), which is æ, and

this holds for æ-almost every (x,y) 2 Y £Y . By the criterion given in (22), it
follows that æ is ergodic.

Thus to complete the proof of the theorem, it suffices to show that the as-
sumptions for Theorem 4.1 are satisfied. By (23) we can apply Lemma 4.13 with
æ and any 1

2r

P2r

i=1 J(k
(r )
i

) that we have produced. That is, it suffices to show

that for each c
0 > 0, for all large enough r , we have that 1

2r

P2r

i=1 J(k
(r )
i

) satisfies
the assumptions of Theorem 4.1 with Li = Lr , ni = Mr , as this then verifies the
assumptions of Theorem 4.1 for the weak* limit and with the same parameters
Lr , Mr . This gives us a sequence of sets Ãm such that for every x 2 Ãm we have
sets C

(m)
x ,E

(m)
x such that æx(C (m)

x ),æx(E
(m)
x ) > 1

99999 and

i. 1
L

P
L°1
i=0 d(T

M+i y,T
jx+i y) < 2" for all x 2 Ãm and y 2Cx giving Theorem 4.1 (ii)

as m !1 and we can choose "! 0. (This uses Proposition 4.4, part (d)
and Lemma 4.13, part (ii).)

ii. 1
L
|{0 ∑ i < L : d(T

M+i y,T
jx+i y) > c

2 }| > c

2 for all x 2 Ãm and y 2 Ex giving
Theorem 4.1 (iii). (This uses Proposition 4.4, part (e), and Lemma 4.13,
part (iii).)

iii. The assumption that æx(Cx),æx(Ex) > 1
99999 giving Theorem 4.1 (iv).

iv. Proposition 4.4, part (b) applied to r < d ∑ r + 2d r

16e combined with (20)
imply Theorem 4.1 (v).

Note that strictly speaking, M , L, Cx, Ex, and jx depend on m, but we omit the
dependency for the sake of readability. The choices of Cx and Ex are given by
Lemma 4.13 and we have that M and L are Mm and Lm introduced earlier in the
proof (which are required input for using Lemma 4.13). Thus we have proven
the assumptions needed to apply Theorem 4.1.

4.4. Poulsen simplex. We have assembled the tools to prove the last part of
Theorem 1.1, showing that the set of self-joinings of the constructed system
form a Poulsen simplex, meaning that they form a simplex such that the extreme
points are dense.

PROPOSITION 4.14. The self-joinings of the system (Y ,∫,T ) form a Poulsen sim-

plex.
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In the proof, we make use of a result of King:

THEOREM 4.15 (King [23, EJCL Theorem]). If ¥ is a self-joining of (Y ,∫,T ) and

T is rigid rank 1, then there exist real numbers Æ(k)
i

> 0 such that
P

i Æ
(k)
i

J(i )
converges in the weak*-topology to ¥.

Note that in our setting, we can utlize this result, as rigid rank 1 transforma-
tions have flat stacks. In fact, King establishes that the ergodic self-joinings of
transformations with flat stack lie in the weak closures of off diagonal joinings.
A different proof of this result is given in [4, Corollary 2.3] (see also [3, Corollary
0.3]).

Proof of Proposition 4.14. By King’s Theorem, it suffices to show that for any
integers n1, . . . ,nk and positive rationals Ø1, . . . ,Øk such that

P
Øi = 1, there exists

m such that dM (Y £Y )(J(m),
P
Øi J(ni )) < ". Without loss of generality, we may

assume that all of the rationals have a common denominator, writing Øi = mi

r

where all mi are positive integers. By Corollary 4.10, applied to n1, . . . ,nk where
each ni appears mi times, there exists m such that

dM (Y £Y )

≥
J (m),

1
r

X

i

miX

`=1
J (a

(i )
`

)
¥
< "

2
.

Thus dM (Y £Y )(J (m),
P
Øi J (ni )) < ".

4.5. These properties are residual.

THEOREM 4.16. A residual set of measure preserving transformations are not

quasi-simple.

If (h j ) j2N is a sequence of positive integers, we say a system (X ,T,µ) admits

special linked approximation of type (h j ,h j +1) if for each j 2N, there exist sets
A j ,C j Ω X satisfying the following five conditions:

i. lim
j!1

µ
°Sh j°1

i=0 T
i

A j

¢
= 1

2 = lim
j!1

µ
°Sh j

i=0 T
i
C j

¢
;

ii. The sets A j , . . . ,T
h j°1

A j ,C j , . . . ,T
h j C j are pairwise disjoint;

iii. lim
j!1

µ(T
h j A j\A j )
µ(A j ) = 1 = lim

j!1
µ(T

h j +1
C j\C j )

µ(C j ) ;

iv. Defining

R
( j )
A

=
h j°1G

i=0
T

i
A j and R

( j )
C

=
h jG

i=0
T

i
C j ,

there exist measurable sets J j Ω A j and a,b 2 N such that J j , . . . ,T
a+b°1

J j

are all pairwise disjoint, T
i
J j ΩR

( j )
A

for all 0 ∑ i ∑ a °1, and T
i
J j ΩR

( j )
C

for
all a ∑ i ∑ a +b °1 and lim

j!1
µ
°S

a+b°1
i=0 T

i
J j

¢
= 1;

v. For all "> 0, there exist measurable sets B
( j )
0 , . . . ,B

( j )
h j°1 and B̂

( j )
0 , . . . , B̂

( j )
h j

2 X

of diameter at most " such that

lim
j!1

h j°1X

i=0
µ(T

i
A j ‡B

( j )
i

) = 0 = lim
j!1

h jX

i=0
µ(T

i
C j ‡ B̂

( j )
i

).
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Condition (iv) distinguishes this from usual linked approximation, and is needed
to carry out the arguments of Section 4.2. This property is a residual property in
the space of measure preserving transformations. Indeed, it is conjugacy invari-
ant, and nonempty. Halmos [16, Theorem 1] showed that the conjugacy class
of any aperiodic measure preserving transformation is dense. Our conditions
(i)-(v) are the intersection of a countable number of open conditions and so the
property holds on a G± set. Thus it is a dense G±, that is residual, property.

We say a system (X ,T,µ) is rigid rank 1 if there exist numbers n j and sets I j

such that

i. lim
j!1

µ
°Sn j°1

i=0 T
i
I j

¢
= 1;

ii. The sets I j , . . . ,T
n j°1

I j are pairwise disjoint;

iii. lim
j!1

µ(T
n j I j\I j )
µ(I j ) = 1;

iv. For all " > 0, there exist measurable sets B
( j )
0 , . . . ,B

( j )
n j°1 2 X of diameter at

most " such that

lim
j!1

n j°1X

i=0
µ
°
T

i
I j ‡B

( j )
i

¢
= 0.

Note that this property is stronger than being both rigid and rank 1. Similarly
to the property of admitting a special linked approximation, rigid rank 1 is also
a residual property in the space of measure preserving transformations.

Any transformation that both admits a special linked approximation of type
(h j ,h j+1) and is rigid rank 1 has a self-joining that is not a distal extension of
(X ,T,µ). Indeed, these transformations have the following property: for any
pair of integers a,b 2N and "> 0, there exists m 2N and a pair of sets C ,D with
measure at least 1

2 °" so that

µ
°©

x 2C : d(T
a

x,T
m

x) > "
™¢

< " and µ
°©

x 2 D : d(T
b

x,T
m

x) > "
™¢

< ".

Using this property, rank 1 rigidity, and the ergodicity of µ, our construction
of the joining that is not a distal extension of (X ,T,µ) proceeds similarly to
Sections 4.2 and 4.3. More precisely, for sufficiently large j , we can choose

C =Sh j°1
i=0 T

i
A j , D =Sh j

i=0 T
i
B j , and m = a + (a °b)h j . The inductive construc-

tion of `1, . . . ,`r proceeds verbatim. Similarly for `r+1, . . . ,`r+2d r

16 e is almost ver-
batim (the described set in Lemma 4.12 is less explicit) and the construction of
`r+2d r

16 e+1, . . . ,`2r is verbatim (making use of the property that our transforma-
tion is rigid).

REMARK 4. Analogously, Proposition 4.14 can be generalized for any rigid rank
1 transformation that admits special linked approximation of type (h j ,h j +1).
Using this, it follows that there is a residual set of measure preserving transfor-
mations such that their self-joinings form a Poulsen simplex.

5. CODING AND RESULTS

Sections 5 and 6 are interrelated and technical, and these contain the argu-
ments that rule out an arbitrary, non-trivial factor. We do this by studying the
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Markov operators. As our system (Y ,∫,T ) has many self-joinings, it also has
many Markov operators on L

2(∫). The crux of our argument is that none of
these Markov operators can be projections, other than those corresponding to
trivial factors. A challenge, which offers some justification for the technical na-
ture of our proof, is that our arguments need to take into account that there
are two projections, with qualitatively different behaviors from each other, aris-
ing from the two different types of trivial factors: integration against ∫, which
arises via the factor map to the one point system, and the identity map, which
arises via a factor map that is an isomorphism. These arguments are carried
out in Section 6, which unfortunately is difficult to summarize at this point, as
it rules out non-trivial Markov operators that are not projections by treating
three possible cases. The rough idea of Section 6 is that if T has a non-trivial
factor P with Markov operator F , then there exists a measurable set A such that
hF 1A ,F 1T °1 Ai= 0 and (the contrapositive to) Lemma 5.6 shows that this Markov
operator corresponds to a factor to the one point system (and so the factor was
trivial). The idea of verifying the negation of Equation (26) in Lemma 5.6 is that
if F

0 is the Markov operator corresponding to a non-trivial self-joining of T , then
for any measurable set A of positive measure, there exists some iterate M of the
operator such that

≠
F
0M 1A ,F

0M 1T °1 A

Æ
> 0.(24)

To do this, we relate F
0 to

P
ÆiUT i (Theorem 5.1 and Corollary 5.2) and define

a notion called i -friends adapted to this property in Section 5.2, showing that
there is some small iterate i of the transformation T such that

≠
F
0M 1A ,F

0M 1T °i A

Æ

> 0. To study this quantity, we relate
P
ÆiUT i to

PrN

i=°rN

ØiUT i (this is the idea
of Section 5.3) for fixed N depending on A. We show that there exists some M ,
which depends on the choice of N , such that

ø
rNX

i=°rN

ØiU
M

T i 1A ,
≥ rNX

i=°rN

ØiUT i

¥
M

1T °1 A

¿
> 0.

This argument covers the first case of Section 6. Now, though, we can (and
do!) choose Æi such that

°P
ÆiUT i

¢
M is close to F

0M , we can not conclude thatPrN

i=°rN

ØiU
M

T i
is close to

P
ÆiUT i ; in particular, the closeness of

PrN

i=°rN

ØiUT i

to
P
ÆiUT i depends on N , but M also depends on N . However, we can show

that if these two quantities are not close then (24) still holds (this corresponds
to cases 2 and 3 of Section 6). Section 5 sets up the machinery for Section 6 and
is perhaps even more opaque, though it is motivated by explanations within
that section. As we are only concerned with factors, our results are all stated for
Markov operators corresponding to factors. (There are two simplifications in
the above description: In reality, we can not just consider

≠
F
0M 1A ,F

0M 1T °1 A

Æ
,

and instead we must consider
≠

F
0M 1A ,F

0M 1T °i A

Æ
for i 2 {1,2,3}. Additionally we

approximate
P
ÆiUT i by

P
Øi 1Bi

UT i where Bi Ω Y are cylinders.) Before start-
ing, we also give a short overview of Section 5. In Section 5.2 we introduce a
key definition i-friends and Lemma 5.6 whose contrapositive is used to show

JOURNAL OF MODERN DYNAMICS VOLUME 17, 2021, 213–265



A PRIME SYSTEM WITH MANY SELF-JOININGS 239

our system is prime. The application of this lemma makes use of an elaborate
inductive definition (see Definition 5.7), characterizing the relation between
the transformation T (or some of its small powers) and large powers of T . In-
formally, we call this reducing or the reduction of the power, as it gives us a
procedure by which to replace higher powers of T by lower ones. We study this
procedure in Lemmas 5.9 and 5.10 and throughout Section 5.4, showing how it
is connected to the notion of n-friends. This leads to a criterion for our process
to be prime, developed in Section 5.5. Namely, using Propositions 5.15 and 5.20,
we show that if T has a non-trivial factor, then the inductive procedure given in
Definition 5.7 only can produce small errors. We provide additional motivation
throughout this section.

5.1. The mechanism for showing (Y ,∫,T ) is prime. Throughout this section,
we continue to assume that (X ,µ,S) and (Y ,∫,T ) are the systems defined in Sec-
tion 3, maintaining all of the notation introduced in that section. The proof that
(Y ,∫,T ) is prime is based on showing that a factor map is either an isomorphism
or a map to the one point system. The first step is relating factor maps to linear
combinations of powers of T which holds for any rigid rank 1 transformation:

THEOREM 5.1. ([4, Theorem 2.2]) If P is a factor map of T and F is the corre-

sponding Markov operator, then F is the limit in the strong operator topology of

linear combinations of powers of UT with non-negative coefficients.

This theorem is stated in [4] for any Markov operator corresponding to any
self-joining of any rigid rank 1 transformation.

COROLLARY 5.2. If P is a factor map of T and F is the corresponding Markov

operator, then there exists a sequence of convex combinations
P

i2ZÆ
(k)
i

satisfying
P

i2ZÆ
(k)
i

= 1 and such that
P

i2ZÆ
(k)
i

UT i ! F in the strong operator topology as

k !1.

Proof. The existence of the sequence of Æ(k)
i

without the extra hypothesis that
P
Æ(k)

i
= 1 for each k follows from Theorem 5.1. For this last assumption, ob-

serve that F 1Y = 1Y , and so lim
k!1

P
i Æ

(k)
i

UT i 1Y = 1Y and we may assume the

(non-negative) coefficients add up to 1. Indeed, because Æ(k)
i

are all positive,

kP
i Æ

(k)
i

UT i 1Y k = P
i Æ

(k)
i

and we see that we may assume the
P

i Æ
(k)
i

is a con-
vex combination.

5.2. A condition for a factor to be the one point system. Recall that Zk and Wk

are defined in (3) and (4). Given n 2N, we say that x,y 2 Y are n-friends if
nX

j=0
1Zk

(S
j x) =

nX

j=0
1Zk

(S
j y)

for all but one k 2N,
ØØØØ

nX

j=0
1Zk

(S
j x)°

nX

j=0
1Zk

(S
j y)

ØØØØ= 1
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for exactly one k 2N, and
nX

j=0
1W`(S

j x) =
nX

j=0
1W`(S

j y)

for all ` 2N.

LEMMA 5.3. If x and y are ≥x(n)-friends, then 0 < |≥y(n)°≥x(n)|∑ 3.

Proof. Since Y = X ‡
°S

`›{10k : k∏2} Z`[
S1

k=1 Wk

¢
and since x and y are n-friends,

it follows that ØØØØ
≥x(n)X

j=0
1Y (S

j x)°
≥x(n)X

j=0
1Y (S

j y)
ØØØØ= 1.

Assume
P≥x(n)

j=0 1Y (S
j y) =P≥x(n)

j=0 1Y (S
j x)°1, and so ≥y(n) = ≥x(n)+m where m is

the least integer such that
mX

j=1
1Y (S

j
S
≥x(n)y) = 1.

To prove the statement, we are left with showing that m ∑ 3. If z 2 X , ` 2Z, and
S
`z,S

`+1z › Y , then one of the two iterates lies in Z1 (the only D` with 1st index
not 6) and the other lies in

S1
`=2 D`, and so (S

`+2z)1 › {6,7} which means it lies
in Y . It follows that m ∑ 3, completing the proof.

We record part of the proof for future reference:

COROLLARY 5.4. For every x 2 Y , n 2Z we have |≥x(n)|∑ 3|n|.

NOTATION 5.5. We introduce notation (namely Hn,") that is crucial for estab-
lishing that T is prime, and is used extensively starting in Section 5.4. To mo-
tivate its meaning, sets with k-friends play a key role in the proof, being used
in Lemma 5.6 to establish a criterion that rules factors not being to the one
point system. To do this, we invoke Lusin’s Theorem and use that many pairs of
friends share their initial entries. We keep this in mind and make the definition
precise.

Given j 2Z, we say that 2 disjoint measurable sets A j ,B j Ω Y of equal mea-
sure and a measure preserving map G j : A j ! B j are an (n,")-triple for j if
∫(A j ) = ∫(B j ) > ", x and G j (x) are ≥x( j )-friends, and xk = G(x)k for all k ∑ n.
(Note this terminology is local and is only used in this definition.) We define:

Hn," = { j : there exists an (n,")-triple for j .}(25)

The next lemma is not used until Section 5.5, but as we aim to prove num-
bers are in Hn," in Section 5.4, and we set up useful definitions to do this in
Section 5.3, it is placed here for motivation. In the next lemma we approximate
a non-explicit measurable set by cylinders.

LEMMA 5.6. Assume that (Y ,∫,T ) has a non-trivial factor (Z ,Ω,R) with associ-

ated factor map P : Y ! Z . Let F : L
2(∫) ! L

2(∫) be the Markov operator defined

by P and further assume that F is the limit (as k !1) of
P
Æ(k)

i
UT i , in the strong
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operator topology where Æ(k)
i

∏ 0 for all i ,k and
P

i Æ
(k)
i

= 1 for all k. Then for

all small enough " > 0 there exists N0 = N0(F,") such that for all N ∏ N0 and

sufficiently large m,

X

j2HN ,"̂

Æ(m)
j

< ".(26)

Note that the proof only uses that the factor is not to a 1 point system, but is
phrased this way for consistency with the results in Section 5.5.

Proof. Since T is weakly mixing, R is aperiodic and by Rokhlin’s Lemma, for any
± > 0, there exists V Ω Z such that Ω(V ) > 1

4 °± and such that V ,RV ,R
2
V ,R

3
V

are pairwise disjoint. Define g : Z !C by setting

g = 1V +
p
°11RV °1R2V °

p
°11R3V

and define f : Y !C by f = g ±P to be the pullback of g to Y . Choose f̃ , taking

values in {
p
°1

j
}3

j=0, to be a finite linear combination of characteristic functions

of cylinder sets such that ∫({x : f̃ (x) 6= f (x)}) < ±, and let k be the largest defining
index out of all of these cylinder sets. We claim that if N > k +1 and n 2HN ,"̂,
then

∫
°©

x : |UT n f̃ (x)° f̃ (x)| > 1p
2

™¢
> "̂°11±.

To prove the claim, assume that Gn : An !Bn is the measure preserving bijec-
tion given in the definition of Hn," and define

G(x) =

8
><

>:

Gn(x) if x 2An

G
°1
n

(x) if x 2Bn

x otherwise.

We restrict our attention to the set of points y of measure at least "°10± that
satisfy the following properties:

i. the points lie in An .
ii. the points satisfy f̃ (y) = f (y) and f̃ (G(y)) = f (G(y)).

iii. the points are such that P (T
ny) and P (G(T

ny)) lie in V [RV [R
2
V [R

3
V .

Then for any such point y, we have that f̃ (y) = f̃ (G(y)) (because yi =G(y)i for
every i in the defining indices of the cylinders defining f̃ ) and furthermore for
some 1 ∑ m ∑ 3 (which may depend on y) we have

f̃ (T
ny) = f (T

ny) =
p
°1

m

f (T
n

G(y)) =
p
°1

m

f̃ (T
n

G(y))

(the second equality follows from Lemma 5.3). Thus either f̃ (y) 6= f̃ (T
ny) or

f̃ (G(y)) 6= f̃ (T
n

G(y)). Since f̃ takes values in {
p
°1

j
}3

j=0, if f̃ (x) 6= f̃ (z) then

| f̃ (x)° f̃ (z)|∏
p

2 and the claim follows.
By construction kF ( f̃ )° f̃ k2 < 4±. However, if

kU
T

n j f̃ ° f̃ k2 > c, for some c > 0 and ∞ j ∏ 0 satisfying
X
∞ j ∑ 1,

then by taking a convex combination it follows that
∞∞X

∞ jU
T

n j f̃ ° f̃

∞∞
2 >C c

2(27)
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for some constant C > 0. Indeed, using that kUT f̃ k2 = k f̃ k2 = 1 we see that≠P
∞ jU

T
n j f̃ , f̃

Æ
∑ h f , f i ° c

2. Because h f , g i = k f k2 · kgk2 cos(\( f , g )), either

kP
∞ jU

T
n j f̃ k2 ∑ k f k2 ° c

2

2 or cos(\( f̃ ,
P
∞U

T
n j f̃ )) ∏ c

2

2 and in either case (27)
follows. Similarly, if X

{ j : kU
T

n j f̃ ° f̃ k2>c}

∞ j > ",

then kP
∞ jU

T
n j f̃ ° f̃ k2 >C"2

c
2. Since ± is arbitrary, the lemma follows.

5.3. Recoding of time scales. This section is devoted to relating T iterated a
large number of times to T iterated a smaller number of times, or perhaps sev-
eral smaller powers with accompanying subsets of Y . This procedure, which
we call reducing or the reductions, is carried out via Definition 5.7, which also
contains a parameter for testing how good this relation is. The defect of it is
related to the notion of n-friends in the next section. To carry out the reduction,
the next definition is a mechanism for computing the “order of magnitude" of
the relevant power of T . Note that this order of magnitude is used to identify
cylinders where friends are contained.

NOTATION. Let

æn = max{i : di (n) 6= 0},(28)

where di is defined as in (10).
Set

E = {10k : k ∏ 2}.(29)

Now if æm › E it is relatively easy to see that m 2 Hæm°1," (see Lemma 5.11,
whose proof uses æm to identify the explicit cylinders which can be chosen to be
the domain and codomain of Gm). If æm 2 E , we seek to obtain m

0 where T
m is

“close" to T
m

0
and æm0 <æm . In this way, if æm 2 E and æm0 › E we can still show

that m 2Hæ
m0°1,": first using Lemma 5.11, this time applied to m

0, and second
using the closeness of T

m to T
m

0
, which is made precise in Lemma 5.9, to show

these same cylinders contain the domain and codomain of G j ; see Lemma 5.14.
(While this specific example motivates reducing, we note that this is not the
only way reductions are used, and in particular it is used in Cases 1 and 2 in
Section 6.) We now consider two motivating examples: T

r102k+1+2 º T
2, because

off of a small measure set (T
r102k+1+2x) j = (T

2x) j for all j < 102k+1. There is a
more complicated situation, T

r102k +2 is roughly T
2 on {y 2 Y : y102k < k} (off of a

set of small measure) and T
r102k +2 is roughly T on {y 2 Y : y102k ∏ k} (off of a set

of small measure). Note that æ(r102k+1 +2) = 102k+1 and similarly for the other
powers. We make this recoding precise below by triples which keep track of the
new powers in the first coordinate, the set where this approximation is relevant
in the second coordinate and the measure of the set where this approximation
fails in the third coordinate. Note, the third coordinate can also be related to
friends (Lemma 5.12). The next definition defines an inductive procedure, and
the relevant initial conditions are deferred until Definition 5.8.
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DEFINITION 5.7. Fix N 2 N and " > 0. For r ∏ 1 and a set of triples Hr (N ,") Ω
Z£B(Y )£ [0,1], we inductively define the set of triples Hr+1(N ,") as follows: if
( j , A,Ω) 2Hr (N ,") and at least one of the following conditions holds

i. æ j › E

ii. j = 0
iii. æ j ∑ N

iv. Ω > ",

then ( j , A,Ω) 2 Hr+1(N ,"). Otherwise we modify the triple, depending on the
value of æ j :

i. If æ j 2 {102`+1 : `∏ 1}, then
µ

j °dæ j
( j )r j , A,Ω+

|dæ j
( j )|

aæ j

∂
2Hr+1(N ,").

ii. If æ j 2 {102` : `∏ 1}, then both
µ

j °dæ j
( j )r j , A\

[

`<
aæ j

2

Cæ j
(`),Ω+

|dæ j
( j )|

aæ j

∂
2Hr+1(N ,")

and
µ

j °dæ j
( j )r j +dæ j

( j ), A\
[

`∏
aæ j

2

Cæ j
(`),Ω+

|dæ j
( j )|

aæ j

∂
2Hr+1(N ,").

DEFINITION 5.8. Fix N 2 N and " > 0. Define F(N ,") to be the collection of
triples Hr (N ,") that stabilize with respect to r , meaning that

F(N ,") =Hr (N ,") when Hr (N ,") =Hr+1(N ,").

Define F (N ,") to keep track of the measure of the sets in F(N ,"), meaning that

F (N ,") = {(n,∫(A),Ω) : (n, A,Ω) 2F(N ,")}.

If H0(N ,") = (i , [0,1],0) for some i 2N, we define Fi (N ,") to be the set F (N ,").
Similarly, define Hr,i (N ,") to be Hr (N ,") if H0(N ,") = {(i , [0,1],0)}. We simi-

larly define Fi (N ,") to be F(N ,") when H0(N ,") = {(i , [0,1],0)}.

Note that æn is defined in (28), ai are defined in (1), and ri are defined in (9).
We state a lemma that motivates the sets given in Definition (5.8). In particular,
it shows how these definitions relate T to a large power to T to a smaller power,
or possibly two smaller powers with relevant sets.

LEMMA 5.9. Given n 2N, let C be a cylinder defined by positions in E that are

greater than æn.

i. Assume æn is an odd power of 10. Setting ñ = n °dæn
(n)ræn

, we have

∫
°©

x 2C : (T
ñx)i 6= T

n(x)i for some i <æn

™¢
< 4∫(C )

|dæn
(n)|

aæn

.
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ii. Assume æn is an even power of 10. Setting n
0 = n°dæn

(n)(ræn
°1) and defin-

ing A1 = {x : xæn
∏ aæn

2 }, we have

∫
°©

x 2 A1 : (T
n
0
x)i 6= T

n(x)i for some i <æn0
™¢

< 4∫(C \ A1)
|dæn

(n)|
aæn

.

Furthermore, setting n
00 = n °dæn

(n)ræn
, and defining A2 = {x : xæn

< aæn

2 },
we have

∫
°©

x 2 A2 : (T
n
00

x)i 6= T
n(x)i for some i <æn00

™¢
< 4∫(C \ A2)

|dæn
(n)|

aæn

.

Proof. For convenience, in this proof we assume dæn
> 0 (the case dæn

< 0 is
similar). Recall that D j is defined in (6). Observe that if T

n(x) = S
dæn

(n)qæn (T
ñx),

then T
n(x) j = T

ñ(x) j for all j <æn , and (by Lemma 3.3) this holds if

dæn
(n)qæn

°1X

i=0
1S1

j=æn
D j

(S
i x) = 0.(30)

First we consider the case of æn = 10 j for j odd.
Since æn 2 {102k+1 : k ∏ 1}, we have that Dæn

=; and so (30) fails for a set of x
of µ measure at most

dæn
(n)

aæn

qæn
µ

µ 1[

j=æn+1
D j

∂
∑

dæn
(n)

aæn

.(31)

Furthermore,

∫({x 2 Y :
dæn

(n)qæn
°1X

i=0
1S1

j=æn
D j

(S
i x) 6= 0}) ∑ 3dæn

(n)qnµ(Zæn+1 ) = 3 · 1
8

dæn
(n)

aæn

.

(Restricting to x 2 Y and converting from µ to ∫ changes this by a factor of less
than 3.)

The next two cases are similar, but a bit more complicated as Dæn
is not

empty, but is equal to W` for some `. If x 2 A1, then the conclusion holds if

dæn
(n)qæn

°1X

i=0
1S1

j=æn
D j

(S
i
T

n
0
x) = 0.

Indeed, if
Pqæn

°1
i=0 1S1

j=æn
D j

(S
i y) = 0, then this follows from Lemma 3.3 and the

fact that
Pqæn

°1
i=0 1S1

j=æn
D j

(S
i 0) = 1. So,

T
ræn (y) j =

(
(T

°1y) j for j 6=æn

(T
°1y) j +1 for j <æn .

Thus this case follows analogously to (31) above after estimating

µ

µΩ
y 2 A1 : S

i y 2 A1 ‡
≥ 1[

j=æn

D j

¥
= A1 ‡

≥ 1[

j=æn+1
D j

¥
for all i ∑ dæn

(n)qæn

æ∂
.

This is at most dæn
(n)

aæn

.
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The third case is similar: if x 2 A2, then the conclusion holds if

dæn
(n)qæn

°1X

i=0
1S1

j=æn+1 D j
(S

i x) = 0

and
dæn

(n)qæn
°1X

i=0
1Dæn

(S
i x) = dæn

(n),

where 102` =æn . The remainder of the proof is analogous to the first case.

Motivated by the sets in Lemma 5.9, we make a few more definitions. If
(n, A,Ω) 2Hr,i (N ,"), let

Pr (n, A,Ω) = {x 2 A : (T
nx) j 6= (T

i x) j for some j ∑æn}

and

Qr (n, A,Ω) = {x 2 A : (T
nx) j = (T

i x) j for all j ∑æn}.

Define

Pr =
[

(n,A,Ω)2Hr (N ,")
Pr (n, A,Ω)(32)

and

Qr =
[

(n,A,Ω)2Hr (N ,")
Qr (n, A,Ω).(33)

LEMMA 5.10. Assume æi 2 E and let A be a cylinder with all defining indices at

least æi . Let H0(N ,") = {(i , [0,1],0)}. There exist cylinders C1, . . . ,C` defined in

positions greater than or equal to æi such that the following hold:

i. A\P1 Ω
S`

j=1 C j .

ii. 99∫(A\P1) > ∫
°S`

j=1 C j

¢
.

Proof. We treat i with æi 2 {102k+1}. Consider the set of y 2 Y such that (30)
fails. We cover this set by cylinders and show that ∫(P ) is proportional to the
union of these cylinders. The set D` requires that x j = a j°2 for all j < `, and so
S
°dæi

(i )qæi (
S1
`=æi+1 D`) is contained in at most dæi

(æi )+1 cylinders defined by
the position æi . Furthermore,

P æ
Ω

y 2 Y :
dæi

(i )qæi
°1X

j=0
1Dæi +1 (S

j y) = 1 and
ny°1X

j=0
1Dæi +1 (S

j y) = 0
æ

,

where ny is the first coordinate of (ny,B ,Ω) 2 H1(N ,") and y 2 B . This set has

measure at least
°1

8 ° 1
103

¢dæi
(i )

aæi

. The argument for i with æi 2 {102k } is similar,

but slightly complicated analogously to the proof of Lemma 5.9, because Dæi
=

W 1
2 aæi

.
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5.4. Obtaining friends. This section illustrates how the imperfections in the
reduction process and the termination of the reduction process are related to
the presence of n-friends. Indeed, we show the parameter Ω in Definition 5.7
is proportional to the measure of a set of points that have friends and if æn › E

then n 2Hæn°1, 1
99

.
The proofs are technical and so we outline the strategy and complications.

The idea is similar to the proof of Proposition 3.4. As in that proof, we identify
a sequence of particular sets (in the proof of Proposition 3.4 this is Z10k°k

) and
produce n-friends by choosing pairs of points where one lands in the set and
the other does not. (In the proof of Proposition 3.4, the points in Bi hit this D j

and the points in Ai do not.) There are two complications in the proofs of this
section that do not arise in the proof of Proposition 3.4.

The first issue is that in Proposition 3.4, we can choose the iterates, but Theo-
rem 5.1 does not have this freedom because we can not pick which coefficients
Æ(k)

i
in Corollary 5.2 are non-negative. This forces us to analyze various cases,

depending on whether æi › E (Lemma 5.11) or æi 2 E (Lemma 5.12), where E

is the set defined in (29). Furthermore, when æi › E , there are further cases
to consider, depending whether either of æi+1 or æi°1 are in E (see the proof
of Lemma 5.11). Additionally, we need to use a more “pointwise approach."
Rather than having two sets, Ai , Bi such that ªz(i ) is constant on each set and
ªy(i )°ªx(i ) = 1 for all (y,x) 2 Bi £Ai , as we did in Proposition 3.4, we define a set
A and a map G such that x and G(x) are ≥x(m)-friends for all x 2 A. In particular,
we do not claim ≥z(m) is well behaved as z varies in A. (Recall that ª and ≥ are
morally “inverses" of each other and while ª was more convenient for the proof
of Proposition 3.4, ≥ is more convenient here and in the remainder of the proof.)

The second issue is that we have to take care that our arguments work with
the recoding procedure introduced in Section 5.3. This is carried out in Lem-
mas 5.13 and 5.14, which are versions of Lemma 5.11 and 5.12 adapted to the
recoding procedure. These complications are already reflected in Lemmas 5.11
and 5.12, as it no longer suffices to produce cylinders where a definite propor-
tion of their points that can be paired to be i -friends, but rather we require
entire cylinders that can be paired in this manner.

LEMMA 5.11. If æm › E, then m 2Hæm°1, 1
99

. Furthermore, if G : Am !Bm is the

measure preserving bijection associated to Hæm°1, 1
99

as defined in (25), then Am

and G(Am) can be chosen to be a union of cylinders whose defining indices are a

subset of æm °1, æm, and æm +1.

Proof. Assume æm › E and set k =æm . Recall that dk = dk (m) is defined in (10).
Assume that dk 2 {1,2,3,4} (the case that dk 2 {°1,°2,°3,°4} is analogous). Set
xk = 0, xk°1 = 5, and xk+1 = 4 for whichever of k °1 and k +1 do not lie in E .
Whenever k °1 or k +1 lies in E , we stipulate that xk°1 or xk+1 2 ( ak°1

2 , ak°1 °3).
Set yk = 7 and x j = y j for all other j . We claim that if x,y 2 Y are as above, then
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they are ≥x = ≥x(m)-friends . We first check that

≥xX

j=0
1Z`(S

j y) =
≥xX

j=0
1Z`(S

j x)

for all ` < k. To see this, note that the inclusion S
j z 2 Z` depends only on

z1, . . . , z` and we have that x j = y j for all j < k. Likewise if 102` < k, then
P≥x

j=0 1W`(S
j y) =P≥x

j=0 1W`(S
j x). Also note that since S

j (x)k+1, S
j (y)k+1 6= ak+1°2

for all j ∑ ≥x, we have

≥xX

j=0
1Z`(S

j y) =
≥xX

j=0
1Z`(S

j x) = 0

for all `> k +1 and
≥xX

j=0
1W`(S

j y) =
≥xX

j=0
1W`(S

j x) = 0

for all 102` > k +1. Now, if k +1 › E , then since (S
j x)k+1, (S

j y)k+1 6= ak+1 °1 we
have

≥xX

j=0
1Zk+1 (S

j y) =
≥xX

j=0
1Zk+1 (S

j x) = 0.

If k +1 2 E , then since yk+1 = xk+1 > ak+1
2 , we have

≥xX

j=0
1W`(S

j y) =
≥xX

j=0
1W`(S

j x) = 0,

where 10` = k +1.
Lastly, since ≥x > 5

8 ak qk°1, we have that by the condition on the digits k and
k °1 of y,

≥xX

j=0
1Zk

(S
j y) = 1.

But since ≥x < 5qk , using that xk = 1 we have that (S
j x)k < 7 for all 0 ∑ j ∑ ≥x and

so
P≥x

j=1 1Zk
(S

j x) = 0. This proves the claim that x and y are ≥x = ≥x(m)-friends

and G is the bijection taking x to y. (That is, changing the k
th entry from 0 to

7.)

LEMMA 5.12. If æm 2 E, then there exist cylinder sets K1, . . . ,Kr defined on the

entries æm +1, æm, and æm °1 such that

∫
≥ r[

j=1
K j

¥
> 1

2
· 1

3
·
|dæm

(m)|
aæm

· 1
64

(34)

and there exists a measure preserving map G :
S

r

j=1 K j ! Y ‡S
r

j=1 K j defined by

changing the æm +1 entry such that if x 2 S
r

j=1 K j , then x and G(x) are ≥x(m)-

friends . Moreover, K1, . . .Kr ,G(K1), . . .G(Kr ) are disjoint cylinders.
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Proof. Let 10k = æm and assume that d10k (m) > 0 (the case that d10k (m) < 0 is
similar). Let x10k+1 = 0 and y10k+1 = 7. Let

y10k 2
©
k °2,k °3, . . . ,k °1°min{d10k (m), 1

3 ak }
™

and set y10k°1 = 5. Furthermore, set x` = y` for all ` 6= 10k +1. It is straightfor-
ward that

P≥x(m)
j=0 1Z10k+1

(S
j x) = 0 and

P≥x(m)
j=0 1Z10k+1

(S
j y) = 1.

We claim that 1V (S
j x) = 1V (S

j y) for all | j | ∑ ≥x(m), where V is either Z` for
` 6= 10k +1 or V is any W`. To see this, for Z` with ` < 10k and W` with ` ∑ k,
this holds since y and x agree in the relevant entries. Furthermore, (S

j x)10k+1
and (S

j y)10k+1 are not 6 in this range and so we never land in Z` for `> 10k +1
or in W` for ` > k, proving the claim. Assuming K j is a cylinder set as in the
statement, define G(x) to change the 10k +1 entry from 0 to 7 (leaving all the
other entries unchanged). Thus G satisfies all of the announced properties. Now

µ

µΩ
x : x10k 2

©
k °2,k °3, . . . ,k °1°min{d10k (m), 1

3 ak }
™
,

x10k+1 = 0, and x10k°1 = 5

æ∂
∏ 1

3
·
|dæm

(m)|
k

· 1
64

.

Considering the set of such x 2 Y so that y 2 Y as well with xi = yi for all i 6=
æm+1 = 10k+1 and y10k+1 = 7 and (trivially) converting to ∫ establishes (34).

LEMMA 5.13. Assume r ∏ 1, " < 1
8·99 , H0(N ,") = {(i , [0,1],0)}, (n, A,Ω) 2Hr (N ,")

and æn 2 E. We can choose B1, . . . ,B` Ω A to be cylinders whose defining indices

are at least æn°1 such that ∫
°S`

j=1 B j

¢
> 1

6·64 · |dæn
(n)|

aæn

and such that there exists

B̃ ΩS`
j=1 B j with

∫(B̃) ∏ (1°4 ·99Ω)∫
≥ [̀

j=1
B j

¥
,(35)

G : B̃ ! Y a measure preserving injection, defined by changing the æn+1 position,

and thus G(B̃) Ω A, such that x and G(x) are ≥x(i )-friends and x j =G(x) j for all

j <æn.

Proof. Let B̂1, . . . , B̂` be the cylinders and Ĝ be the function given by Lemma 5.12
applied with m = n. Set Bi = B̂i \ A and let B̃ be the set of points in

S`
j=1 B j \

Qr \G
°1(Qr ). Let (n

0, A,Ω0) 2 Hr°1(N ,") be the predecessor of (n, A,Ω). We
claim that because æn0 >æn +1, if x,y 2Qr then for all k.

≥x(n)X

j=0
1Zk

(S
j x)°

≥x(n)X

j=0
1Zk

(S
j y) =

≥x(i )X

j=0
1Zk

(S
j x)°

≥x(i )X

j=0
1Zk

(S
j y).(36)

We first consider the case of k < æn0 . The sums on the left hand side of (36)
are either b n

qk

c or d n

qk

e, while on the right hand side they are either b i

qk

c or d i

qk

e;
the choice of b·c or b·c+1 = d·e depends on comparing x j and (S

nx) j for the left
sums on each side, and similarly y j and (S

ny) j for the right sums on each side,
for j ∑ k. By our assumption that x, y 2Qr , we have that (S

nx) j is the same as
(S

i x) j for all j ∑ k < n
0 and so whether the first sum on the left hand side is the
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floor function or one more is the same for the first sum on the right hand side.
The case of y is identical.

Next consider the case of k >æn+1 (since æn +1 <æn0 this covers k ∏æn0). We
have that

P≥x(n)
j=0 1Zk

(S
j x) = b ≥x(n)

qk

c and
P≥x(n)

j=0 1Zk
(S

j y) = b ≥y(n)
qk

c by the argument
in Lemma 5.12. (This argument only depends on the cylinders with defining
entries in positions æn °1, æn , and æn +1 that define the cylinders in the proof
of Lemma 5.12 and these entries are the same for B̂i .) For the right hand side, as
above (S

nx) j = (S
i y) j for j 2 {n,n +1}, so whether we take the floor or ceiling in

the summands on the right hand side depends on j > n+1. These are the same
for x and y by construction, giving (36). So in the left hand side both summands
take the floor and for the right hand side they either both take the floor or both
take the ceiling, establishing (36).

A similar computation yields

≥x(n)X

j=0
1W`(S

j x)°
≥x(n)X

j=0
1W`(S

j y) =
≥x(i )X

j=0
1W`(S

j x)°
≥x(i )X

j=0
1W`(S

j y).(37)

To complete the lemma we are left with establishing (35). To check this, we
claim that it suffices to show that Qr can be chosen to be unions of cylinders
defined by entries with positions at least 10log10(æn )+1. This follows from the
following:
Claim. For all ±> 0, there exists k 2N such that if C1,C2 are cylinders with the
smallest entry defining C2 at least k larger than the largest entry defining C1,
then

∫(C1 \C2)
∫(C1)∫(C2)

2 [1°±,1+±].(38)

Proof of Claim. Let L be the smallest entry defining C2. Let U1, . . . .,Um be the
cylinders given by proscribing the first L°1 terms that intersect Y . All but one
of these cylinders are also a cylinders in X , and so they all have the same ∫ mea-
sure. If Ui is the one cylinder set in Y that is not also a cylinder set in X , then
Ui has smaller ∫ measure than the other m °1 cylinders. Assume U1, . . . ,Um0

are those cylinders that are contained in C1. If i 2 {1, . . . ,m
0}, then ∫(C1 \C2) <

∫(C1)∫(C2), but it is at least m
0°1

m0 ∫(C1)∫(C2). Similarly, if i › {1, . . . ,m
0}, then

∫(C1 \C2) < ∫(C1)∫(C2), but it is at most m

m°1∫(C1)∫(C2). Since B̃ is a union of
the sets Bi that pairwise satisfy this condition, the claim follows.

Finally we check that the sufficient condition, meaning that Qr can be chosen
to be unions of cylinders defined by entries with positions at least 10log10(æn )+1,
holds. Namely, by iterating Lemma 5.10 and using the assumption that "< 1

8·99 ,
we obtain the complement of the cylinders that cover P and so the ∫ measure
of these cylinders contained in Qr is at least 1

2 ; indeed, by Lemmas 5.9 and 5.10
the ∫ measure of the cylinders that cover P are at most 4 ·99Ω.

LEMMA 5.14. Assume r ∏ 1, "< 1
8·99 , H0(N ,") = {(i , [0,1],0)}, (n, A,Ω) 2Hr (N ,"),

and æn › E. Let (n
0, A

0,Ω0) 2Hr°1(N ,") so that A Ω A
0
. Then there exist cylinders

B1, . . . ,B` Ω A
0

defined by positions whose entries are at least æn ° 2, such that
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there exists B̃ ΩS`
j=1 B j with ∫(B̃) > 1

999∫(A) ∏ 1
2 ·

1
999∫(A

0) and a map G : B̃ ! Y

such that x and G(x) are ≥x(i )-friends for all x 2S`
j=1 B j . Moreover, x j =G(x) j for

all j <æn. Thus G(B̃) Ω A
0

as well.

Proof. We first prove the statement under the assumption that æn 6=æn0 °1. In
this case, let B̂1, . . . , B̂` be the cylinders and let Ĝ : Â ! B̂ be the map given by
Lemma 5.11 for m = n. Let B j = B̂ j \ A and B̃ =S`

j=1 B j \Qr \Ĝ
°1

Qr .
Repeating the proof used to derive (38), we obtain cylinders defined in entries

at most æn°2, with the entry before the last place defining the cylinders in B j

(and also smaller than the cylinders defining Qr and A). As in that proof, one of
these cylinders differs from the cylinder with the same defining entries in X . On
all the other cylinders, B j intersects A\Qr as expected and the lemma follows
using an argument analogous to the proof of (38).

Now we treat the remaining case, æn = æn0 ° 1 and the largest entry of the
cylinders defining B j overlaps with the smallest entry of the cylinders defining A.
In this case, we consider A

0 whose defining entries are all larger than æn (they
are at least 10k+1 where the smallest entry defining A is 10k ). Then (n

0, A
0,Ω0) has

two descendants in Hr (N ,"), (n, A,Ω) and (ñ, Ã, Ω̃). One is A\ {x : x10k ∏ k

2 } and
so by the definition of B j in Lemma 5.11 has nonempty intersection with the
cylinders B̂1, . . . , B̂`. The proof then follows as above, via the same arguments
used to conclude the proof of Lemma 5.13.

5.5. Restricting factors. In this section, we develop our main criteria to rule out
factors, Propositions 5.15 and 5.20 and Corollary 5.16. Morally, Proposition 5.15
and Corollary 5.16 rely on the assumption that the factor map is not to the 1
point system, while Proposition 5.20 relies on the assumption that the factor
map is not an isomorphism, though for technical reasons it is helpful not to
disambiguate these situations (in particular the proof of Proposition 5.20 uses
Proposition 5.15).

For approximating, we make use of a metric giving rise to the strong oper-
ator topology on L

2(∫). While any such metric suffices for our purposes, it is
convenient to choose one that simplifies the computations:

NOTATION. Let B =B(L
2(∫)) denote the set of continuous linear operators on

L
2(∫) and let { fi }1

i=1 be an orthonormal basis for L
2(∫) such that k fik1 = 1 for

all i . Set D : B£B ! [0,1) to be the metric defined by

D(U ,V ) =
1X

i=1
2°ikU fi °V fik2.(39)

Note that restricting D to the set (the choice of 10 is any arbitrary positive
real)

©
(U ,V ) 2B£B : kUkOP +kV kOP ∑ 10

™

endows this set with the strong operator topology.
Recall that the notation Fi (N ,") is introduced in Definition 5.8.
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PROPOSITION 5.15. Assume that (Y ,∫,T ) has a non-trivial factor with associated

factor map P : Y ! Z and let F : L
2(∫) ! L

2(∫) be the Markov operator defined

by P and limk!1 D(
P

i Æ
(k)
i

UT i ,F ) = 0 where Æ(k)
i

∏ 0 for all i ,k and
P

i Æ
(k)
i

= 1
for all k. Then for all "> 0, there exists N0 such that for all N > N0 and all large

enough k,

X

i

Æ(k)
i

X

{(n,Ø,Ω)2Fi (N ,") : æn>N }
Ø< ".(40)

We record an immediate corollary for later use:

COROLLARY 5.16. Assume that (Y ,∫,T ) has a non-trivial factor with associated

factor map P : Y ! Z and let F : L
2(∫) ! L

2(∫) be the Markov operator defined

by P, then for all small enough "> 0 there exists N0 and ±> 0 such that if ai ∏ 0,P
ai = 1 and

D

≥X

i

aiUT i ,F

¥
< ±

then for all N ∏ N0 X

i

ai

X

{(n,Ø,Ω)2Fi (N ,") : æn>N }
Ø< ".

Proof of Proposition 5.15. Let " > 0 be small enough such that Lemma 5.6 is
satisfied. We proceed by contradiction, and show that if

X

i

Æ(k)
i

X

{(n,Ø,Ω)2Fi (N ,") : æn>N }
Ø> 10c,

then
X

i2H
N , c"

9999

Æ(k)
i

> c.(41)

Then by taking N sufficiently large, we obtain a contradiction via Lemma 5.6.
Let J ΩN be the set of indices i such that

X

{(n,Ø,Ω)2Fi (N ,") : æn>N }
Ø> c.

Since
P

i›J Æ
(k)
i

P
{(n,Ø,Ω)2Fi (N ,") : æn>N }Ø∑ c, it follows that

P
i2J Æ

(k)
i

> c.

CLAIM 5.17. For any i 2 J , we have i 2HN , c"
9999

.

To check this, the triples defined in Definition 5.7 give the two possible rea-
sons for (n, A,Ω) 2 F(N ,") with æn > N . The first is that æn › E , in which case
Lemmas 5.11 and 5.14 give a set of points, contained in A, which have i -friends
of measure at least 1

999∫(A) and a map G defined on these symbols, identifying
the point with its friend so that G(x) j = x j for all j <æn . The second is that Ω > ",
in which case Lemmas 5.12 and 5.13 similarly give cylinders with measure at
least 1

6·64" · (1°4 ·99")∫(A). So if i is such that
P

{(n,Ø,Ω)2Fi (N ,") : æn>N }Ø> c, then
since the Ø are the measure of the sets A mentioned in the previous 2 sentences,
we have i 2HN , c"

9999
.
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The next two lemmas (Lemmas 5.18 and 5.19) are only used in the proof of
Proposition 5.20.

LEMMA 5.18. Assume that (Y ,∫,T ) has a non-trivial factor with associated factor

map P : Y ! Z and assume that F : L
2(∫) ! L

2(∫) is the Markov operator defined

by P. Then for all c,"> 0, there exists N0 such that for all N > N0 we have that

X

i2Bc,"

Æ(k)
i

<
p
",(42)

where

Bc," =
Ω

i : D

≥
UT i ,

X

(n,A,Ø)2Fi (N ,")
1A ·UT n

¥
> 10

p
"+ c

æ
.

This notation Bc," is local and only used until the end of this section.

Proof. We claim that for all c > 0 and small enough " > 0, there exists N such
that if S1, S2 are measure preserving transformations such that ∫({x : (S1x) j =
(S2x) j for all j < N }) > 1°" then D(US1 ,US2 ) < c +3

p
".

To prove the claim, given N 2N, set

A(N ) = {x 2 X : (S1x) j = (S2x) j for j < N }.

By Lusin’s Theorem and uniform integrability, for any f 2 L
2(∫), there exists N 2

N such that if A = A(N ), then k( f ±S1)1A ° ( f ±S2)1Ak2 < c. As in the definition
of D , let { fi }1

i=1 be an orthonormal basis of L
2(∫) with k fik1 = 1 for all i 2 N.

Given 1
4 > " > 0, choose k such that 2°k < " and pick N sufficiently large such

that the associated set A = A(N ) ensures that k( fi ±S1)1A ° ( fi ±S2)1Ak2 < c for
i = 1, . . . ,k. Then ∫(A) > 1°" for some "> 0 and so (the definition of the metric
D is given in (39))

D(US1 ,US2 ) ∑ c +
1X

i=1
2°i

≥Z

1Ac

| fi ±S1 ° fi ± f2|2d∫
¥1/2

+
1X

i=k+1
k fi ±S1 ° fi ±S2k2

∑ c +2
p
"+2"∑ c +3

p
",

proving the claim.
We now complete the proof by contraposition. Take N1 = N where N is suffi-

ciently large such that the above claim holds. Then for any N > N1, if

D

≥
UT i ,

X

{(n,A,Ω)2Fi (N ,")}
1A ·U n

T

¥
> c +10

p
",

then the claim implies that

∫
°©

x : (T
i x) j 6= (T

nx) j for j > N and x 2 A where (n, A,Ω) 2Fi (N ,")
™¢

> 3".

By Lemma 5.9, for each i such that this claim holds, we have
X

{(n,Ø,Ω)2Fi (N ,")}
ΩØ> ".

Further observe that if such a triple (n,Ø,Ω) has Ω > ", then æn > N . Assuming
the negation of (42), we check that this gives the opposite of the bound in (40).
Taking N0 as in Proposition 5.15 for F and ", then if N > N0 we have that F is
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given by the factor map to the one point system. Taking N0 in the statement of
Lemma 5.18 to be the maximum of N1 and the N0 from Proposition 5.15, the
statement follows.

LEMMA 5.19. Let ([0,1],R,ø) be an ergodic measure preserving system, and let

(Z ,R
0,ø0) be a factor with factor map P that is not an isomorphism, and let F

be the Markov operator defined by P. Then there exists a set B Ω [0,1) such that

ø(B) ∏ 1
3 and (F 1B )(x) < 1

2 for all x 2 B.

Proof. By disintegration of measures, there exist probability measures øP (x) car-
ried on P

°1(P (x)) such that ø=
R

Z
øz dø0(z). Let mx = ess inf{y : øP (x)([0, y]) > 1

2 }.
We claim that

1
3
∑ øP (x)([0,mx )) ∑ 1

2
.(43)

Indeed, if øP (x) is non-atomic, then øP (x)([0,mx )) = 1
2 . If øP (x) is atomic, then

by assumption there are at least two atoms and by ergodicity the atoms are of
equal size. Because the largest atom of øP (x) has measure at most 1

2 , and there
are a sum of atoms with measure between 1

3 and 1
2 inclusive, we have (43).

We claim that x 7! mx is a Borel measurable function. First recall that by
disintegration of measures, the map x 7! øP (x) is Borel. Next, for every interval
[0, a], we have that the map from Borel measures to real numbers, p 7! p([0, a])
is a Borel map. It follows that the function h(x, y) = øP (x)[0, y] is Borel and so
h
°1°( 1

2 ,1]
¢

is Borel and for each x, mx = ess inf{y : (x, y) 2 h
°1°( 1

2 ,1]
¢
}. Note that

since øP (x) is a probability measure this is the same as

min
n

ess inf
©

y : (x, y) 2 h
°1°( 1

2 ,1]
¢™

,1
o

.

Now if A Ω [0,1]2 is Borel, then x 7! min{ess inf{y : (x, y) 2 A},1} = mx is Borel
measurable. Indeed, the set of such A is a monotone class containing the alge-
bra generated by rectangles. To see this, for countable nested unions,

max
Ω

ess inf
n

y : (x, y) 2
1[

i=1
Ai

o
,1

æ
= lim

n!1
min

Ω
ess inf

n
y : (x, y) 2

n[

i=1
Ai

o
,1

æ
.

For countable nested intersections, min
©
ess inf

©
y : (x, y) 2T1

i=1 Ai

™
,1

™
can be

defined piecewise as
(

1 if {y : (x, y) 2T1
i=1 Ai } is a zero set

lim
n!1

min
©
ess inf

©
y : (x, y) 2T

n

i=1 Ai

™
,1

™
otherwise.

By the Monotone Class Theorem it is defined on the smallest æ-algebra contain-
ing rectangles, which is the Borel æ-algebra. We set B =S

x2[0,1][0,mx ). Then for
almost every x, øP (x)([0,mx )) ∑ 1

2 and so F (1B )(x) ∑ 1
2 1B (x) for all x 2 B .

Note that this lemma holds for any Lebesgue space and in particular for
(Y ,∫,T ).
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PROPOSITION 5.20. Assume that (Y ,∫,T ) has a non-trivial factor with associated

factor map P : Y ! Z and let F be the Markov operator defined a factor map P.

Let lim
k!1

D(
P

i Æ
(k)
i

UT i ,F ) = 0 where Æ(k)
i

∏ 0 for all i ,k and
P

i Æ
(k)
i

= 1 for all k.

Then for all
1

99 > "> 0, there exists N0 such that for any N > N0 and all sufficiently

large enough k, we have

X

i

Æ(k)
i

X

{(n,Ø,Ω)2Fi (N ,") : n 6=0}
Ø> 1

3
·
≥1

2
°3"

¥
.(44)

Proof. Because F 6= Id, for almost every x 2 Y we have P
°1(Px) is at least two

points, and so there exists a set B as in Lemma 5.19. By assumption and
Lemma 5.18, there exist k1, N1 such that for all k ∏ k1 and N > N1 we have

∫

µΩ
x :

ØØØ(F 1B )(x)°
X

i

Æ(k)
i

X

(n,A,Ω)2Fi (N ,")
1A(x)(UT n 1B )(x)

ØØØ>
"

9

æ∂
< "

9
.(45)

By the non-negativity of the Æ(k)
i

, for almost every x 2 Y we have
≥X

i

Æ(k)
i

X

(n,A,Ω)2Fi (N ,")
1AUT n 1B

¥
(x) ∏

X

i

Æ(k)
i

X

{(n,A,Ω)2Fi (N ,") : n=0 and x2A}
1B (x).

If (44) does not hold, then there is a set of x of measure at least 2
3 +" such that

X

i

Æ(k)
i

≥ X

{(n,A,Ω)2Fi (N ,") : n=0 and x2A}
Ø
¥
> 1

2
+".

But then there is a set of x 2 B of measure at least " such that for each x in this
set, ≥X

i

Æ(k)
i

X

(n,A,Ω)2Fi (N ,")
1A(x)UT n 1B

¥
(x) > 1

2
+"∏ (F 1B )(x)+ "

2
,

a contradiction of (45).

6. THE BEHAVIOR OF A PROJECTION

6.1. Overview of the proof that (Y ,∫, T ) is prime. In this section, we show that
our constructed system is prime:

THEOREM 6.1. The system (Y ,∫,T ) is prime.

We start with an overview of the proof and then proceed to study differ-
ent cases. We assume that (Y ,∫,T ) has a non-trivial factor Z with factor map
P : Y ! Z and assume that F : L

2(∫) ! L
2(∫) is the Markov operator defined by

P . We further assume that F is the limit, as k !1, of
P
Æ(k)

i
UT i in the strong

operator topology (Corollary 5.2). Given " > 0, by Proposition 5.15 we can as-
sume that there exists N0 2N such that for all N > N0 and sufficiently large k,
we have that X

i

Æ(k)
i

X

(n,A,Ω)2Fi

1AUT n

gives a good approximation to
P
Æ(k)

i
UT i (which in turn leads to a good approx-

imation for F ). The general idea in the proof of Theorem 6.1 is that we rule
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out the possibility that
P
Æ(k)

i
UT i is close to a non-trivial projection. The key

facts used are that the composition of projections is still a projection and by
properties of the strong operator topology, we may assume that for any fixed M ,
for all large enough k,

°P
Æ(k)

i
UT i

¢
±
°P

Æ(k)
i

UT i

¢
± · · ·±

°P
Æ(k)

i
UT i

| {z }
M times

¢
(46)

is close to F
M = F , and this is also close to

P
Æ(k)

i
UT i . We then use the fact

that (46) is

X

(i1,...,iM )

≥ MY

m=1
Æ(k)

im

¥
UT

P
im ,(47)

and apply Definition 5.7 to (47). That is, we study

X

(i1,...,iM )

≥ MY

m=1
Æ(k)

im

¥ X

(n,A,Ω)2FP
M

j=1 i j

(N , "2 )
1AUT n .

Treating 3 different cases, this allows us to produce friends and obtain a contra-
diction via Lemma 5.6. We now make this precise.

6.2. Set up for the proof of Theorem 6.1. We begin a proof by contradiction,
assuming that there is a Markov operator F coming from a non-trivial factor
map. By Theorem 5.1, there exists Æ(k)

i
∏ 0 with

P
i Æ

(k)
i

= 1 for all i such that
P

i Æ
(k)
i

UT i converges in the strong operator topology to F .
We assume that " > 0 is sufficiently small such that all of the Lemmas and

Propositions in Section 5 hold. That is, " < min{ 1
8·99 , 1

9999 } and small enough
such that Lemma 5.6 holds. We also assume that

"< 1
105 ·9999

,(48)

which is to be used in Lemma 6.6. Furthermore, we choose N1 > 6 (this choice
is made to simplify the analysis in the third case we consider) to be sufficiently
large such that Lemma 5.6 holds for N1

2 and "8 and such that

2° N1
2 < "4.(49)

Setting

GN =
Ω

n :
X

{(i ,c,∞)2Fn ( N

2 ,"2) : æi> N

2 }

c < "4
æ

,

our choices imply that for all sufficiently large k,
X

n2GN

Æ(k)
n

> 3
4

.(50)

Indeed, by Claim 5.17 if n ›GN then n 2H
N , "

2"4
9999

. Since "6

9999 > "8, by Lemma 5.6

this contradicts the fact that our factor map is not to the 1 point system. We set
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s = min{10 j : 10 j°1 ∏ N }, set s
0 = min{10` : 10` ∏ N }, and recall that ri is defined

in (9). Define

M = MN = rs°2

2rN

.(51)

Although M = MN depends on N , as N is fixed at this point, we omit it from
the notation, except at one step in the proof of Proposition 6.3. The motivation
behind this definition of M is given by the following lemma (this plays a role in
the proof of Proposition 6.3):

LEMMA 6.2. For all sufficiently large N , we have that M
1
8 > rs0+1, where M is

defined as in (51). Moreover, for any " > 0, for all sufficiently large N we have

8(1°")10k < r10k°1 < 8(1+")10k

.

Proof. We first claim that for all "> 0, there exists k such that

8(1°")10k < r10k°1 < 8(1+")10k

.(52)

For all ` › E , we have that r`+1 = a`+1r`°1. Thus there exists `0 with r`+1 ∏
81° "

2 r` for all `∏ `0 and the lower bound follows. For the upper bound, we have
rk ∑ qk ∑ 8k

Qblog10 kc
j=1 j . It is straightforward that for all "> 0, there exists k0 such

that 8k
Qblog10 kc

j=1 j < 8(1+")k for all k ∏ k0.
For all large enough N , by (52) we have

M = MN = rs°1

2rN

>
1
8 rs

2rs0
> 8(1°")10k

8(1+")10k°1
> 8 ·88.5(1+")10k°1 > r

8
s0+1,

where the second to last inequality holds for all sufficiently large N .

6.3. The three cases: This leads us to consider three possibilities for the behav-
ior of the projection F on L

2(µ) (recall that D is the metric defined in (39)):
Case 1:

D

µ X

(i1,...,iM )

MY

m=1
Æ(k)

im

UT
P

im ,
≥X

i

Æ(k)
i

X

{ j : ( j ,A,Ω)2Fi (N ,"):æ j<N }
UT j 1A

¥
M

∂
< "

1
4 .(53)

Case 2: Case 1 does not hold and

X

n

Æ(k)
n

X

{( j ,Ø,Ω)2Fn (N ,"2) : æ j>N }
Ø< "2

M
.(54)

Case 3: Case 1 does not hold and

X

n

Æ(k)
n

X

{( j ,Ø,Ω)2Fn (N ,"2) : æ j>N }
Ø∏ "2

M
.(55)

We analyze each of these cases separately.
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6.4. Case 1: Fix " > 0 and assume that (53) holds. Roughly speaking, the as-
sumption means that when we iterate the approximation of our transformation
given by Definition 5.7 up to M times, we remain close to the original map.

PROPOSITION 6.3. There exists N3 such that if N > N3 and ∞ is a probability

measure supported on {°2rN ,°2rN +1, . . . ,°1,0,1, . . . ,2rN } with ∞({0}) < 1
7 , and

M corresponds to N as in (51), then

∞M

µΩ
(i1, . . . , iM ) : rs°2 >

ØØØ
MX

j=1
i j

ØØØ> rs0+1

æ∂
> 1

9
.

Proof. Let (≠,P) be a probability space and let F1, . . . ,FM : (≠,P) ! Z be a se-
quence of independent ∞ distributed random variables, let Z =P

M

i=1 Fi°MEP(F1),
and let æ be the variance of F1. Then the variance of Z is Mæ.

By our choice of M = MN , we have that |PM

j=1 i j |∑ 2rN M < rs°2 for all i j in
the support of ∞ and the remainder of the proof is devoted to showing the lower
bound.

By Lemma 6.2, for sufficiently large N , we have that M
1
8 is bounded from

below. The proof splits into two cases. In the first, |EP(F1)| is not too small
and we make use of Chebyshev’s Inequality (as in the proof of the weak law of
large numbers). In the second case, |EP(F1)| is small, and using the central limit
theorem we show that for many !, |Z (!)|ª

p
Mæ.

First assume that 1
99 < |EP(F1)|. We compute EP(Z

2) and apply Chebyshev’s
Inequality. By independence of the Fi , we have that

EP(Z
2) = MEP

°
(F

2
1 °2F1EP(F1)+EP(F1)2)

¢
.

Applying Hölder’s Inequality, we bound kF
2
i
k by kFik1 ·kFik. By Lemma 6.2, we

have that kFik ∑ 2rN < M
1
8 and similarly, kFik1 < M

1
8 . Then EP(Z

2) ∑ M M
1
4

and so it follows from Chebyshev’s Inequality that P({x : | f (x)| > "
R

f
2

dP})| <
1

"2
R

f 2dP
. Therefore,

EP({! : |Z (!)| < 4M
3
4 }) > 1

2
.

Since
P

Fi = MEP(F1)+Z and |MEP(F1)| > M

99 , we have that if |Z (!)| < 4M
3
4 , then

ØØØ
MX

i=1
Fi (!)

ØØØ>
M

99
°4M

3
4 > M

1
2 .

Now we consider the case that 1
99 ∏ |EP(F1)|. Under this assumption, because

∞({0}) < 1
7 and is supported on integers, we have that

ØØEP(F1 °EP(F1)2)
ØØ∑ 6

7

≥
1° 1

99

¥2
,

which implies that the variance æ is at least 1
8 .

Let "> 0. There exists N0 such that for all N ∏ N0, and any probability mea-
sure p on [°rN ,rN ], we have

1

(MN )
k

2

Z
|t |k dp(t ) < "

2k
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for all k ∏ 3. It follows that ¡t = Ee

i t Zp
Mæ is bounded by ° t

2

2 +c(t ), where |c(t )| < ".
We use Lévy’s Continuity Theorem to complete the proof. Namely, we repeat

this process for a sequence of N j tending to infinity and obtain Z j , M j , and æ j

such that ¡( j )
t

= EPe

i t Z jp
M j æ j ! e

° t
2

2 pointwise. Since e
°t

2/2 is continuous at 0, it

follows that that
Z jp
M jæ j

converges in distribution. Thus for sufficiently large j ,

it follows that the probability that |Z j | >
p

M j

16 is at least 1/9. If the expectation
of F1 is nonnegative, this implies that

∞M

≥n
(i1, . . . , iM ) :

MX

j=1
i j > rs0+1

o¥
> 1

9
.

Otherwise,

∞M

≥n
(i1, . . . , iM ) :

MX

j=1
i j <°rs0+1

o¥
> 1

9
,

and the result follows.

Notation. Let "̃ be as in Section 6.2, that is less than 1
105·9999 and small enough

such that Lemma 5.6 holds. Let N2 be chosen according to Corollary 5.16 for "̃2.
Let Ñ ∏ max{N1, N2, N3} and M = M

Ñ
. Let k̃ be chosen large enough such that

(A) D((
P

i Æ
(k̃)
i

UT i )M ,F ) < ± where ± is as in Corollary 5.16 for "= "̃ and N0 = Ñ

(B) (49) with G
Ñ

and (50) hold.

Concluding the proof of Theorem 6.1 in Case 1: Let

A =
©
(i1, . . . , iM ) :æP

i j
> Ñ and æP

i j
› E

™
.

Let ∞ be the probability measure on Z given by ∞(i ) =Æ(k̃)
i

. By Proposition 5.20,

we have ∞(0) < 1
7 . By Proposition 6.3, applied to ∞M we have that

P
A

Q
M

j=1Æ
(k̃)
i j

>
1
2 . Indeed if

P
M

j=1 i j 2 (rs0 ,rs°1), then æP
i j
› E . By (47) and our choice of k̃, we

obtain a contradiction of Corollary 5.16. Thus this case can not occur.

6.5. Case 2: In the absence of the first case, we are left with showing that for
at least "̃2 of the sums

P
M

j=1 i j , for at least "̃2 points we have
P

M

j=1 i j -friends.

Roughly speaking, the idea is that
Q

M

j=1 U
i j

T
under iteration does not stay close

to
Q

Fi j
(Ñ ,"̃)

P
(`,A,Ω)2Fi j

(Ñ ,"̃) 1AU
`
T

, and so the sum

X

(i1,...,iM )2ZM

µ
MY

j=1
Æ(k̃)

i j

∂ X

{( j ,Ø,Ω)2FP
M

`=1 i`
(Ñ ,"̃) : æ j>Ñ }

Ø

becomes significant. To make this precise, we deal with two cases separately,
depending on the sizes of the sums in (54) and (55).
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We start with Case 2. That is we are assuming:

X

n

Æ(k̃)
n

X

{( j ,Ø,Ω)2Fn (Ñ ,"̃2) : æ j>Ñ }

Ø< "̃2

M
.

Given n 2N, set H0 = {(n, [0,1],Ω)} and define the reduction redk (n)[x] = (m, A,Ω),
where

• (m, A,Ω) 2Hr (Ñ , "̃) for some (smallest) r ,
• x 2 A, and
• æm ∑ 10k or (m, A,Ω) 2F(N , "̃) (that is, m › E or Ω > "̃).

Let gredk (n)[x] denote the first coordinate of redk (n)[x]. We say that the sumP
j i j is treatable if X

{(k,Ø,Ω)2Fi j
(N ,"2) : æk>N }

Ø< "̃

for all choices of i j and the sum
P

j i j is x-treatable if for all i j , the elements
(n, A,Ω) 2 Fi j

(N , "̃) satisfy x 2 A has æn ∑ N . (Recall, Fi j
(N , "̃) is not necessarily

a singleton, but each x 2 Y is in the second coordinate of exactly one triple in
Fi j

(N , "̃).)

LEMMA 6.4. Assume
P

i j is x-treatable, A Ω Y so that (n, A,Ω) = redk (
P

M

j=1 i j )[x],

gredk

≥ MX

j=1
i j

¥
[x] 6=

MX

j=1

gredk (i j )[x](56)

and k is maximal with this property. Then redk+1(
P

M

j=1 i j )[x] or redk (
P

M

j=1 i j )[x]

lies in FP
M

j=1 i j
(Ñ , "̃).

Proof. Set

m =
MX

j=1

gredk+1(i j )[x] =gredk+1(
MX

j=1
i j )[x].(57)

First, because i j is x-treatable, we have

gredk+1(i j )[x]°gredk (i j )[x] 2
©
d10k+1 (gredk+1(i j )[x])r10k+1 ,

d10k+1 (gredk+1(i j )[x])r10k+1 +d10k+1 (gredk+1(i j )[x])
™

for all j . Let n = P
j

°gredk+1(i j )[x]°gredk (i j )[x]
¢

and by our assumption that k

is maximal satisfying (56), n 6=gredk+1(m)[x]°gredk (m)[x]. We now treat a series
of cases, each of which is straightforward. If ægredk+1(m)[x] > 10k+1, then because

|gredk+1(m)[x]|∑ Mr10k+1+1 < r10k+2°1, æ|gredk+1(m)[x] › E . Thus the reduction algo-

rithm given in Definition 5.7 halts and the lemma follows. If ægredk+1(m)[x] = 10k+1,
then by choice of M and N we have

ØØØ
X

j

gredk (i j )([x])
ØØØ< r10k+1°2.(58)
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Also, because gredk+1(m)[x]°gredk (m)[x],gredk+1(i j )[x]°gredk (i j )[x] are all multi-
ples of either r10k+1 or r10k+1+1 (depending on x10k+1 ), we have that gredk+1(m)[x]°
gredk (m)[x] = n+p where |p|∏ r10k+1 . By the algorithm for representing numbers
in terms of di , we have that if |p|∏ ræ`+2 then |p| > 5|`| and so

æ`+p ∏æp °1.(59)

Thus by Equation (58),

ægredk (m)[x] =æP
j
gredk (i j )[x]°p

∏ 10k+1 °1 > 10k .

Therefore, by the definition of redk (·)[x] we must have that redk (m)[x] 2 (N , "̃),
that is, the algorithm halts in this case as well. In the final case, ægredk+1(m)[x] <
10k+1 we have that n = 0 and either ægredk+1(m)[x] ∑ 10k in which case redk (m)[x] =
redk+1(m)[x] and this is

Pgredk (i j )[x] a contradiction, or 10k < ægredk+1(m)[x] <
10k+1 and so the algorithm stops.

Concluding the proof of Theorem 6.1 in Case 2. Let

I (x, M) =
Ω

(i1, . . . , iM ) :
X

i j is x-treatable and
MX

j=1

gred(i j )[x] 6=gred
≥ MX

j=1
i j

¥
[x]

æ
.

We assume that we are not in the first case and moreover (54) holds. Thus for a
set of x of measure at least "̃, we have

X

{(i1,...,iM ) : (i1,...,iM )2I (x,M)}

MY

j=1
Æ(k̃)

i j

∏ "̃.

For each such x, (i1, . . . , iM ) there exists m, A Ω [0,1], Ω ∏ 0 such that x 2 A and
(m, A,Ω) 2FP

M

j=1 i j
(Ñ , "̃) and æm = k > Ñ . Thus we have

X

(i1,...,iM )2ZM

µ
MY

j=1
Æ(k̃)

i j

∂ X

{( j ,Ø,Ω)2FP
M

`=1 i`
(Ñ ,"̃) : æ j>Ñ }

Ø∏ "̃2

By Corollary 5.16 and our choices of Ñ , k̃ (see (A)), this establishes Case 2.

6.6. Case 3 (we assume neither of the conditions in Case 1 or in Case 2 holds).
We say that n is good for reduction if

X

{(i ,c,∞)2Fn ( Ñ

2 ,"̃4) : æi> Ñ

2 }

c < "̃4

and we say n is bad for reduction if
X

{(i ,c,∞)2Fn (Ñ ,"̃2) : æi>Ñ }

c > "̃.

By our assumption on k̃ and the estimate for sufficiently large k̃ given in (50),
we have:

LEMMA 6.5. Let G = {~i 2ZM : i j is good for reduction for at least
M

2 choices of j },

then
P
~i2G

Q
M

j=1Æ
(k̃)
i j

∏ 1
2 .
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LEMMA 6.6. If j is bad for reduction and k and m are good for reduction, then

j °k +m 2H
Ñ ,"̃4 .

Similarly, if j and m are good for reduction and k is bad for reduction, then

j °k +m 2H
Ñ ,"̃4 .

Note that we separate the roles of the terms k and m to make it easier to
apply the lemma (see Corollary 6.7).

Proof. We establish the first claim, as the second is similar. First, if j is bad
for reduction, then by Claim 5.17 we have that j 2 H

Ñ , "̃3
9999

. Taking A j and

G j as in Notation 5.5, we have that when x 2 A j there exists 0 < |`| ∑ 3 such
that (T

`
T

j x)i = (T
j (G j x))i for all i ∑ Ñ . Recall that the sets Da are defined

in (6). Now if (T
n+`+ j x)i 6= (T

n+ j (G j x))i for some i ∑ Ñ , then there exists a > Ñ

such that either S
b

T
`+ j x 2 Da for |b| ∑ 3|n| ∑ |≥

T `+ j x(b)| or S
b

T
j
G j x 2 Da for

|b|∑ 3|n|∑ |≥T j G j x(b)|. This uses Corollary 5.4. If æn ∑ Ñ

2 , then the measure of
such points is at most

4 ·3n

X

a>Ñ

µ(Da) < 2° Ñ

2 .

Let d 2 Z, (n, A,Ω) 2 Fd ( Ñ

2 , "̃4), and x 2 A j \ A (which implies that G j (x) 2 A).
If (T

`+ j x)i = (T
j (G j x))i for all i ∑ Ñ but (T

d
T
`

T
j x)i 6= (T

d
T

j (G j x))i for some
i ∑ Ñ , then x 2 Pr for some r . Since k and m are good for reduction, by it-
erating Lemma 5.10 when d = k or m, we have that the measure of the set of
such points is at most 40"̃4. Combining these two estimates and considering
(n, A,Ω) 2Fd ( Ñ

2 , "̃4) with æn > Ñ

2 , we obtain that

j °k +m 2H
Ñ , "̃3

9999°2·("̃4+40"̃4+2° Ñ

2 )
.

By the assumptions (48) and (49) on Ñ and "̃, the lemma follows.

COROLLARY 6.7. Assume
P

M

`=1 i` is good for reduction and j` is such that j` = i`

except at one place where i` is good for reduction and j` is bad for reduction.

Then
P

M

`=1 j` 2HN ,"4 . Similarly if j` = i` except at one place where i` is bad for

reduction and j` is good for reduction, then
P

M

`=1 j` 2H
Ñ ,"̃4 .

Proof. We prove the first case and the second is similar. For concreteness we
assume that j1 6= i1. So

P
M

`=1 j` = j1 ° i1 +
P

M

`=1 i` satisfies the assumptions of
Lemma 6.6, completing the proof.

Set A = {i : i is good for reduction}, set B = {i : i is bad for reduction}, and set
C = Z‡ (A [B). We define two closely related partitions P and P

0 of ZM . We
index the partition elements of both P and P

0 by elements of A
a £B

b £C
c ,

where a,b,c ∏ 0 and a +b +c = M °1. Given some triple (~x,~y ,~z) 2 A
a £B

b £C
c ,

let P(~x,~y ,~z) be the set of all M-tuples (i1, . . . , iM ) such that there exists e1 < ·· · <
ea , f1 < ·· · < fb , g1 < ·· · < gc satisfying that for each ` in the allowed ranges,
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ie` = x`, i f`
= y` and ig` = z`. Moreover if j is the unique element of {1, . . . , M }‡

{e1, . . . ,ea , f1, . . . , fb , g1, . . . , gc } then j > ea and i j 2 A. Set

P =
©
P(~x,~y ,~z) : (~x,~y ,~z) 2 A

a £B
b £C

c where 0 ∑ a,b,c and a +b + c = M °1
™
.

We give another way to describe this. The partition elements are subsets of ZM

so that each M-tuple has a+1 terms in A, b terms in B and c terms in C . We fix
all the terms that are in B and the order they come in relative to the other terms
that are in B (but not relative to the terms that are in A and C ), and similarly
for C . For A, we fix all but the last term that is in A that appears and their order
relative to the other terms of A (but not relative to the terms of B and C ). The
last term that is in A which appears is allowed to be any element of A.

We now define P
0 by switching the roles of A and B . That is, we define P

0
(~x,~y ,~z),

to be the set of all (i1, . . . , iM ) such that there exists e1 < ·· · < ea , f1 < ·· · < fb , g1 <
·· · < gc such that for each ` in the allowed ranges, ie` = x`, i f`

= y`, and ig` = z`.
Moreover if j is the unique element of {1, . . . , M }‡ {e1, . . . ,ea , f1, . . . , fb , g1, . . . , gc },
then j > fb and i j 2 B . Set

P
0 =

©
P
0
(~x,~y ,~z) : (~x,~y ,~z) 2 A

a £B
b £C

c where 0 ∑ a,b,c and a +b + c = M °1
™
.

LEMMA 6.8. For any a + b + c = M ° 1, (~x,~y ,~z) 2 A
a £B

b £C
c
, if any element

of P(~x,~y ,~z) is good for reduction, then no element of P
0
(~x,~y ,~z) is good for reduction,

and the analogous statement holds when the roles of P(~x,~y ,~z) and P
0
(~x,~y ,~z) are ex-

changed.

Proof. Let (i1, . . . , iM ), (i
0
1, . . . , i

0
M

) 2 P(~x,~y ,~z) [P
0
(~x,~y ,~z). There exists a permutation

º such that i j = i
0
º( j ) except for at most one j . Moreover, if k 2 P(~x,~y ,~z) and

` 2 P
0
(~x,~y ,~z), then this is a change from a good for reduction element to a bad for

reduction element. By Corollary 6.7 if
P

M

j=1 i j is good for reduction, then
P

M

j=1 i
0
j

is not good for reduction. Thus if there exists one element in P(~x,~y ,~z) that was
good for reduction, then this argument shows every ` 2 P

0
(~x,~y ,~z) is not good for

reduction and similarly vice versa.

We define one more partition N of ZM . If u, v, w ∏ 0 and u + v +w = M , let

Nu,v,w =
©
(i1, . . . , iM ) : |{ j : i j 2 A}| = u, |{ j : i j 2 B}| = v, |{ j : i j 2C }| = w

™
.

PROPOSITION 6.9. If the conditional probability that
P

M

j=1 i j is good for reduc-

tion given that (i1, . . . , iM ) 2N(u,v,w) is greater than
1
2 , then the conditional prob-

ability that
P

M

j=1 i j is not good for reduction given that (i1, . . . , iM ) 2N(u+1,v°1,w)

is at least
1
2

Observe that both P and P
0 are finer partitions than N .

LEMMA 6.10. For (~x,~y ,~z) 2 A
a£B

b£C
c
, the conditional probability of an element

in N(a+1,b,c) is in P (~x,~y ,~z) is the same as the conditional probability of an element

in N(a,b+1,c) being in P
0
(~x,~y ,~z).
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Proof. Let u1 = P
i2AÆ

(k̃)
i

, u2 = P
i2B Æ

(k̃)
i

, and u3 = 1° (a +b) = P
i2C Æ

(k̃)
i

. The
conditional probability of being in a particular P(~x,~y ,~z) with (~x,~y ,~z) 2 A

a£B
b£C

c

given that one lies in N(a+1,b,c) is

aY

i=1

vi

u1

bY

i=1

wi

u2

cY

i=1

xi

u3
.(60)

This is also the conditional probability of being in P
0
(~x,~y ,~z) given that one is in

N(a,b+1,c).

Combining Lemmas 6.10 and 6.8, Proposition 6.9 follows.
If (≠,P) is a probability space and H : ≠! {0,1, . . .} is P measurable, we say i

is (H ,±)-spread if

max
©
P(H

°1(i +1)),P(H
°1(i °1))

™
> ±P(H

°1(i )).

We say H is ±-spread if P(
S

i , (H ,±)-spread H
°1(i )) > ±.

LEMMA 6.11. There exists C such that if Fi : (≠,P) ! {0,1} are independent, iden-

tically P distributed random variables satisfying
±
K

∑ P(F
°1
i

(0)) ∑ 1 ° ±
K

, then

H(!) =P
K

i=1 Fi (!) is min{±
2

C
, 1

C
}-spread.

Proof. If C > 218 and ±∑ 9, 0 is (H ,min{ 1
C

, ±
2

C
})-spread and has a definite prob-

ability of occurring, which proves the lemma. Thus we assume ± > 9. Let
p = P(F

°1
i

(0)). Due to the symmetry, we can assume that p ∑ 1
2 , and by the

assumption on ±, we can assume that p > 9
K

. Thus

P({! :
P

K

i=1 Fi (!) = n +1})

P({! :
P

K

i=1 Fi (!) = n})
=

°
K

n+1

¢
(p)n+1(1°p)K°n°1

°
K

n

¢
(p)n(1°p)K°n

√
K

n

!

(p/K )n(1° (p/K ))K°n

= K °n °1
n °1

p(1°p)°1.

If n 2 [ 1
3 K p, 5

3 K p], then this is greater than min{ 1
99 , 1

99 K p}. Since 1
99 K p ∏ 1

99±
the result follows if at least half of the ! lie in this range. To check this, note
that we have
Z

≠

≥ KX

i=1
Fi (!)°p

¥2
dP=

Z

≠

X
Fi (!)2

dP= K
°
(1°p)2(p)+ (°p)2(1°p)

¢
< 3

2
pK .

Note that the first inequality uses that Fi (!)°p and F j (!)°p are independent
and have integral 0 for all i 6= j . Thus by Chebyshev’s Inequality,

P

µΩ
! :

ØØØ
KX

i=1
Fi (!)°K p

ØØØ> 2
p

pK

æ∂
< 1

2
.

Since pK ∏ 9, we have 2
p

pK ∑ 2
3 K p, establishing the necessary condition.
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Concluding the proof of Theorem 6.1 in Case 3. In this proof only, we introduce
some terminology for clarity: we say i is decisive if it is either good or bad for
reduction. Let ∞(k̃) be the probability measure on {0,1} defined by

∞(k̃)({0}) =
P

i is bad for reductionÆ
(k̃)
i

P
i is decisiveÆ

(k̃)
i

and

∞(k̃)({1}) =
P

i is good for reductionÆ
(k̃)
i

P
i is decisiveÆ

(k̃)
i

.

Note that ∞(k̃)({0}) is the conditional probability that i is bad for reduction given
that it is decisive and ∞(k̃)({1}) is the conditional probability that i is good for
reduction given that it is decisive. As we are not in Case 2, it follows that
∞(k̃)({0}) > "̃2

M
. Thus by Lemma 6.11,

P
n

j=0∞
(k̃) is at least "̃4

64 spread. We partition

ZM into sets N(a,b,c) [N(a+1,b°1,c) where a is even. This gives rise to partitions
of these elements into P(~x,~y ,~z) and P

0
(~x,~y ,~z). By Lemma 6.8, for each (~x,~y ,~z) one

of P(~x,~y ,~z) or P
0
(~x,~y ,~z) contain no good for reduction elements. By Lemma 6.10

and the fact that
P

M°c°1
i=0 ∞(k̃) is "̃4 spread (so long as c < M

8 ) it follows from
Lemma 6.5 that at least 1

2 "̃
8 of the points in N(a,b,c) [N(a+1,b°1,c) are not good

for reduction. Once again this contradicts Corollary 5.16 and our choices.
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