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ARTICLE INFO ABSTRACT

Msc: We present a method for speeding up equilibrium simulations of liquid crystals for two related models that are
65N30 degenerate with respect to defects: the Ericksen model and the uniaxially constrained Landau-de Gennes model.
49M25 The degeneracy induces a non-linear/non-smooth coupling between the two order parameters in both models
35370 that makes the discrete problems very stiff to solve. The technique described in this paper uses an alternating
Keywords: Schwarz domain decomposition method that isolates the degenerate region and alleviates some of the stiffness,
Liquid crystals and is easy to implement. We present numerical results illustrating the speed-up and how it is affected by the
Defects size of the sub-domains and the number of sub-iterations used within the degenerate region.
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1. Introduction

Liquid crystals (LCs) continue to be developed into new technologies
that take advantage of their optical, electric/magnetic, and mechanical
properties [1,2]. The most well-known aspect of LCs are their optical
properties [3-7] which have found newer uses in electronic shutters
[8] and novel types of lasers [9,10]. Moreover, LCs affinity for electric
and magnetic fields is well-established [11-13] which is used to enable
new types of devices [14,15]. Furthermore, LCs are an integral compo-
nent of elastomeric materials [16-19], which can enable dynamic shape
control of elastic bodies [20,21]. Indeed, a key requirement for creat-
ing complex structured materials [22,23] is to take advantage of novel
forms of self-assembly [24-26]. In particular, LCs coupled with colloidal
particle effects [27-30] can enable functionalized materials [31-33].

Naturally, numerical computation is a critical tool to enable the ex-
ploration of LC physics and device design [34-36]. An extensive body
of research exists on simulation methods for a variety of LC modeling
situations [37]. Some approaches focus on equilibrium states of LCs pos-
sibly coupled with external effects [38-45], while others tackle dynamic
LC systems [46-50]. See [51-60] for more references on the numerical
analysis of LCs.
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In this paper, we describe a method for speeding up equilibrium
simulations of LCs for two different, but related, models of LCs: the
Ericksen model [57,58,61], and the uniaxially constrained Landau-
deGennes model [62-64]. The hallmark of these models is that the Euler-
Lagrange equation is a degenerate elliptic partial differential equation
(PDE) [52,55,65,66]. The nature of the degeneracy induces a non-linear
coupling between the two order parameters of the system that leads
to a kind of non-standard “stiffness” when solving a linearized gradi-
ent flow to find local minimizers. We describe an alternating Schwarz
method that can alleviate some of this stiffness. Indeed, it is able to
reduce the simulation time (for finding a local minimizer) while pre-
serving our robust gradient flow methods (monotone energy decreasing)
[41,42,55-57], and is still easy to implement.

Remark 1 (Main Contribution). Computing minimizers of LC models,
when defects are present, is difficult. Indeed, applying straightforward
numerical procedures to these models suffer from slow convergence
to the minimizer because of the singular nature of defects. This paper
shows that isolating the defect region with a domain decomposition ap-
proach can help speed up gradient flow schemes and converge to the
minimizer faster.
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An outline is as follows. Section 2 reviews the Ericksen model and the
Landau-de Gennes (LdG) model of LCs; for the LdG model, the focus is on
including the uniaxial constraint which yields a model similar to the Er-
icksen model with respect to the singularity of defects. Section 3 reviews
the finite element discretization of the Ericksen model only (we defer to
[63,64] for the uniaxial LdG discretization). In Section 4, we describe
the gradient flow scheme for the discrete Ericksen energy (the scheme
for the uniaxial LdG method is similar and can be found in [63,64]). In
addition, we explain the domain decomposition approach that we use to
augment the gradient flow. Section 5 presents numerical results show-
ing how convergence is affected by the domain decomposition approach.
Section 6 gives some concluding remarks.

2. Liquid crystal models

A standard model for LCs is the Landau-deGennes model that uses
a mesoscopic order parameter Q, which is a d x d matrix in R¢, that
is motivated by an ensemble type of averaging [67,68]. With the tools
of classical continuum mechanics, one can formulate an energy func-
tional which the LC material minimizes at equilibrium (i.e. the Landau-
deGennes energy). Mathematical analysis of the Q-tensor model has
been done in several works; for instance, see [38,69-74].

On the other hand, the Oseen-Frank model is the simplest, macro-
scopic model of a nematic LC [68,75,76], which uses a unit vector field
n(x) € R? (the director) as the order parameter. The energy functional
(in the one-constant case) is given by /o|Vn|2. Despite being a work-
horse of the display industry [4,77,78], it suffers a major drawback in
that defects (discontinuities in n), such as point defects in R? and line
defects in R? have infinite energy.

In this paper, we focus on two different LC models. The first is the
one-constant Ericksen model (Section 2.1), and the second is a uniaxi-
ally constrained version of the Landau-deGennes Q-model (Section 2.2).
The hallmark of these models is an elliptic degeneracy that is directly
connected to fundamental symmetries in the LC material, which induces
a non-trivial kind of “stiffness” in the equations to solve to find a min-
imizer. The main contribution of this paper is an alternating Schwarz
method that is able to alleviate this stiffness which we justify with ex-
tensive computational evidence.

Throughout the paper, we assume Q is a bounded Lipschitz domain
in RY with d =2, or 3, representing the LC domain. We use standard
notation for L*(D), [L2(D)]?, [L*(D)]?*¢ inner products throughout:
(w.v)p = [puv, W, V)p 1= [pu-v, MY)p 1= [,M: Y, where D is a
generic domain. We simplify the notation with (u, v) := (4, v) when in-
tegrating over Q. Integrals over co-dimension 1 subsets, such as I C 9Q,
always use a subscript, e.g. (&, V)r.

2.1. Ericksen’s model

The Ericksen model uses two order parameters: a director field n :
Q — S i.e. a vector-valued function with unit length point-wise, and
a degree-of-orientation scalar field s : Q ¢ RY — [-1/(d — 1), 1]. The di-
rector represents an average alignment of LC molecules at a macroscopic
level. Since |n| = 1, it cannot describe a “loss of order” in the liquid crys-
tal material. The s variable models how well aligned the individual LC
molecules are with n and s may vanish which means the LC molecules
have no net alignment in any direction. See [57,68] for more details on
the meaning of n and s.

Remark 2. The use of a vector field for n has an important limitation.
Nematic LCs are usually treated as having a reflection symmetry along
their main axis, which means they are best represented by a line segment,
not a vector that has a direction. This means that the Ericksen model can-
not capture half-integer defects, which do occur in some LC experiments
(depending on boundary conditions) [71,72].

Despite this, Ericksen provides a simple model to demonstrate the
domain decomposition approach in this paper. In particular, integer de-
fects are modeled correctly by Ericksen and defects play a critical role in
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the speed of convergence of the algorithm. In Section 2.2, we introduce
the Q-model, which does not have this orientation limitation.

2.1.1. Ericksen’s simple energy
Ericksen’s model seeks a minimizer (s, n) of a free energy functional,
whose simplest form is the following (dimensional) energy:

Eels,n] = E([s,n] + / w(s)dx,
Q

Efsn]: = %/ (b0|vs|2+k0s2|Vn|2)dx, )
Q

where by, ko > 0 are model parameters with typical physical values for
ko ~ 10711 J/m [79, Table 1, pg. 168]. We are unaware of experimental
data for by, so we assume b, = O(k).

The double well potential y is a C function defined on —1/(d — 1) <
s < 1 that satisfies [61,65,66]

® lim_;w(s) =limg, /41 w(s) = oo,
(i) w(0) > w(s*) = mingg_y yg—1),1 ¥(s) =0 for some s* € (0, 1),
(i) y'(0) = 0.

Remark 3. The form of y follows from the (uniaxial) Landau-deGennes
theory of nematic LCs [1,68]. Often, the following choice is made:
! 5 B/ 3 Cl 4

y(s) = %S - ?S + TS s 2

which is connected to the Landau-deGennes theory (see Section 2.2.2).
The parameters A’, B, C’ depend on the material with B’, C’ positive and
A’ having no definite sign. Usually, A’ is proportional to a temperature
difference [80] having the form A’ « (T —T*), where T is the actual
temperature and T* is the super-cooling temperature. Physical values
for A’, B’, and C’ are approximately 10° J/m? [79, Table 1, pg. 168].

Choosing (2) for y automatically satisfies property (iii). If A’ is
bounded by a sufficiently small positive number Ag, then property (ii)
is also satisfied (this corresponds to having a stable nematic phase). Al-
ternatively, if A’ is very large (positive), then the only stable phase is
the isotropic phase, meaning s = 0 everywhere. Property (i) is not sat-
isfied by (2). However, the s* term can be modified near the bounds
s =—1/(d — 1), +1 to enforce property (i), without affecting the stability
of the nematic phases.

To make the numerics simpler, we assume the form of (2) for y,
however, one can add barrier/penalty functions to enforce property (i).

When the degree of orientation s is a non-zero constant, the energy
E[s, n] is essentially the Oseen-Frank free energy /o|Vn|2. With dis-
continuities in n (i.e. defects), the degree of orientation s will vanish in
the vicinity of the defect to avoid a singular energy. Thus, defects in n
must occur in the singular set

{(xeQ: s(x)=0}. 3)

Existence of minimizers was shown in [65,66] and analytic solutions
for minimizers with defects were constructed in [68]. Minimizers with
other types of defect structures were discovered numerically in [55].

Remark 4. An obvious approach to the Ericksen energy is to regularize
it, e.g. replace Eg[s, n] by E¢[s,n] = %fg(b()IVsl2 + ko(s? + €2)|Vn|?) for
some finite € > 0 as was done in [52,81]. Unfortunately, this fundamen-
tally changes the Ericksen model into a variant of Oseen-Frank, implying
that point defects in two dimensions, and line defects in three dimen-
sions, will give E{[s,n] = +co. Therefore, when defects are important,
and they often are, a simple regularization approach does not work.

2.1.2. Non-dimensionalization
We now non-dimensionalize the energy in (1) (see also [80]); note
that s and n are already non-dimensional. Let A| be the characteristic

scale for the double well (see Remark 3), and define ey, := 4/k(/ (ABR(Z)),
where R, = diam(€) is the length scale. Then, (1) becomes
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— — — ] —
Eexls,n] = koRoEeyls,n],  Egls,n] = Egls,n] + —— Egy[s],

dw
Egyls] := /,u‘/(s)dX=(u7(s),1), w(s) = %u/(s), “)
Q 0
E[s.n] := %/E(BOWSF + s2|Vn|2)dx = %[BO(VS, Vs)+ (sVn,sVn)],

(&)

where by = by/ ko, ¥ (s), E[s,n], and Eg4,[s] are non-dimensional, as well
as the domains. For the rest of the paper, we deal with E_,[s,n] and
drop the “bar” from the non-dimensional quantities for simplicity (i.e.
we ignore the pre-factor kyR in Eqy [s, nl).

2.1.3. Function space framework
An auxiliary variable u := sn and identity was introduced in
[65,66] that allows the energy E[s, n] to be rewritten as

E[s.n] = E,[s,u] := %/ ((bo —DVs? + |Vu|2>a'x, )
Q

which follows from Vu=n@® Vs + sVn and the unit length constraint
In| = 1. This suggests the following choice for the (closed) admissible
set of minimizers [65,66]:

A:={(s,n) e H(Q)

X [L®()]? : (s,u,n) satisfies (8), with u € [H'(Q)]?}, Q)
where
u=sn, -1/(d-1)<s<1lae. inQ, and
nesS’lae ingQ, ®)

is called the structural condition of A. If we write (s, u, n) in A, we
mean that (s, n) in A, u in [H}(Q)19, and (s, u, n) satisfies (8). Note: the
identity (6) only holds for (s, u, n) in A.

Remark 5. The purpose of the variable u = sn is to make sense of the
functional analytic framework in which the Ericksen model, at the con-
tinuous level, makes sense. The numerical algorithm does not use u in
any way, but u is needed to justify the convergence of the method.

2.1.4. Boundary conditions
Boundary conditions are captured by functions g : RY - R, r.,q :
RY — R that satisfy the following.

Assumption 6 (Boundary Data is Regular). There exists g € W-*(R?),
r € (WheR))4, q € [L®(R?)]?, such that (g, r, q) satisfies (8) on R?,
i.e.r = gqand q € $’7! a.e. in R?. Furthermore, we assume there is a
fixed py > 0 such that

po<g=<1—0pg )
Note that q € [Wh°({|g] > eN]4, for all ¢ > 0.

Weak anchoring conditions [57,58,68] are sometimes used in LC
models as a way to enforce boundary conditions through energetic
penalty terms. For simplicity, we use strong (Dirichlet) boundary con-
ditions for both s and n on the whole boundary I' := 0Q. Thus, the ad-
missible class, with boundary conditions, is given by

A :={(smeA: slr=g nlr=q}, (10)

where we use a similar abuse of notation as above when writing (s,
u, n) in A(g, q). Note: n is H! in a neighborhood of I'. Therefore, the
minimization problem is as follows [65,66]

min(syn)eA(qu) E.[s,n]. (11)

This paper is concerned with a domain decomposition approach for
speeding up the computation of minimizers with defects for the Ericksen
and uniaxially constrained Landau-deGennes model. Hence, we refer to
[55,57,58] for more details on the theory behind the Ericksen model.
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2.2. The Landau-deGennes model

We follow [1,38,39,82] for the standard Landau-deGennes (LdG)
model.

2.2.1. The Q model
We first present the LdG model in R? (d = 3). LdG uses a tensor-
valued order parameter Q : Q — R3*3, which satisfies

QeA:={QeR*|Q=0Q", rQ=0}. 12)

i.e. is symmetric and traceless. To understand the meaning of Q, let us
express Q (at some point in Q) in its eigenframe:

Q=51 ®ny) +55(ny ®@my) — 3(s5; + )L, (13)

where n;, n, are orthonormal eigenvectors of Q, with eigenvalues given
by 4, = ZS‘;SZ, I = 252;”, Ay = —%, where 45 corresponds to the
eigenvector ny L ny,n,. For physical reasons, the eigenvalues should lie
in the interval [-1/3,2/3].

If all eigenvalues are equal, since Q is traceless, 4, = 4, = 43 =0 and
sy =5, =0, i.e. Q=0 and the distribution of LC molecules is isotropic

[68]. If two eigenvalues are equal, i.e.

A=A & s =5,
M=4 & 5 =0,
b=l & s=0, (14)

then we call this state uniaxial, because it has one main eigenvector (the
other two are indistinguishable). In this case, Q has the form

Q=s(n@n-11), (15)

where n is the main eigenvector with eigenvalue A = (2/3)s; the other
two eigenvalues equal —(1/3)s. Because of the range of the eigenvalues,
s € [-1/2,1]. If all three eigenvalues are distinct, then the state is called
biaxial, and Q has the general form (13).

Let us focus on the uniaxial case. The variable s has the same meaning
here as in Ericksen’s model. But now n has been replaced by n®n, which
does not suffer from the orientation issue (see Remark 2). Indeed, n®n
can represent the average orientation of the LC molecules in the sense
of line segments (i.e. no artificial orientation). In the biaxial case, four
parameters (s;, Sy, n;®n;, n,®n,) are necessary to capture the two
“modes” of alignment that LC molecules could have.

Remark 7. For the LdG model, the standard analytic treatment is to deal
with Q directly, i.e. we do not separate it into the constituent parts: s;,
S5, N;®Ny, N,®N,. Instead, we have

qu d12 413
QeA & Q= 4» 3| where gy i=—qy; — ), (16)
q33

where the lower triangular terms are, of course, determined by symme-
try. This makes the analytical framework more direct, and the numerical
method more straightforward than in the Ericksen model. However, a
drawback is that the computational effort may be higher because there
are five independent variables to compute. In addition, the structure of
uniaxial minimizers may not be respected [63,64] (see Section 2.3).

In two dimensions, i.e. Q : Q — R>2, Q always has the form
Q=s(n@n-11), an
wheren : Q > R2, and s € [-1, 1].

2.2.2. Landau-deGennes energy
The LdG model seeks a minimizer Q of a free energy functional. Of-

ten, the one-constant model is used, which is stated in dimensional terms
by [1,67,82]:

EggonelQl = %/QL1|VQ|2 dx + [qviac(Q)dx, (18)
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where L, is a material parameter (on the order of 10~!! J/m [79, Table 1,
pg. 168]), |[VQ|? := (01Q)(9;Q;) (we use the convention of summation
over repeated indices), and y4¢ is a “bulk” (thermotropic) potential.
More complicated energies can also be considered [1,67,82].

The bulk potential y4; is a double-well type of function that con-
trols the eigenvalues of Q, where the simplest form is given by

V1a6(Q = K + 2u(Q) - 2@ + £ (@), (19

where A, B, C are material parameters such that A has no sign, and
B, C are positive; K is a convenient constant to ensure non-negativity
of yi45(Q). Usually, A is temperature dependent, e.g. A = a(T —T%).
Standard physical values for these parameters are approximately 10°
J/m3 [79, Table 1, pg. 168].

If A is bounded by a sufficiently small constant, then it is well-known
[67] that the global minimizer Q* of (19) has a uniaxial form. Thus, the
double well functions (19) and (2) are connected in the following way.
Assuming Q is uniaxial (15), we have the following calculations (in three
dimensions)

2 2
tr(Q%) = 5sz, tr(Q%) = 533. (20)
Hence,
ViaG(Q) = K + 2222 BCO 3y SO @1

so then A’ = A(2/3), B’ = B(2/9), C' = C(4/9). Typical choices of these
parameters yield an asymmetric double-well function (in terms of s) with
two local minimizers located at s_ <0 and s, > 0 with s, being the
global minimizer.

In two dimensions, the double-well has a modified form. For a uni-
axial Q in R2, Q% = (s2/4)I, thus tr(Q?) = 5?/2 and tr(Q?) = 0. Therefore,
(21) becomes
Viac(Q) = K + 2252 4 L 2)
sothen A’ = A/2,B’=0, C’ = C/4. Clearly, (22) is symmetric in s. More-
over, A must be negative to yield a double well with two symmetric
global minimizers.

2.2.3. Non-dimensionalization
Following a similar approach in [80], we non-dimensionalize the en-
ergy in (18); note that Q is already non-dimensional. Let A, be the char-

acteristic scale for the double well (19), and define nz := /L, /(AOR(Q)),
where R, = diam(€) is the length scale. Then, (18) becomes

ELdG,()ne [Q] =L 1 RO ELdG.one [Q]’

ELdG,one[Q] = /7|VQ|2 dx + LZEb[Q]s (23)
Q )1B
Eb[Q] = fﬁ ‘I_/LdG(Q) dx, ll_/LdG(Q) = ALOWLdG(Q)v 24)

where ¥ 45(Q), WLdG, and fb[Q] are non-dimensional, as well as the
domains. For the rest of the paper, we deal with deG [Q] and drop the
“bar” from the non-dimensional quantities for simplicity (i.e. we ignore
the pre-factor L; Ry in E; 45 [QD.

2.2.4. Function space framework

We briefly review the function space setting of the LdG model, which
is mostly standard; see [38] for more details. The function space for Q
when seeking a minimizer is given by

V(G) :={Qe H'(Q|Qx €A VxeQ, Q|r =G}, 25)

where G € HL(Q) is arbitrary such that G(x) € A for all x € Q.
The minimization problem for the Landau-deGennes free energy
functional is as follows

Journal of Non-Newtonian Fluid Mechanics 283 (2020) 104335

o H Ercl @) )
where Qp € H'(Q) is given and Qp(x) € A for all x € Q. This min-
imization problem is not as delicate as (11); for instance, there is no
non-convex constraint. Existence of a minimizer for (26) is guaranteed
by standard elliptic PDE theory, i.e. from [38, Thm 6.3], we have the
following result.

Theorem 8 (regularity). Let Q be a bounded, open, connected set, and
assume Q is either convex or C1:1. Then any solution of (26) satisfies Q —
Qp € HA(Q)n HY(Q) provided Qp, € H*(Q).

Remark 9 (uniaxial boundary conditions). It is typical to choose Qp, of
theformQp =s*(v®v - %I), where v = [vk]i=1 is the unit outer normal
of T, and s* is the global min of y. We use this choice throughout.

2.3. The uniaxially constrained Landau-deGennes model

Many thermotropic LCs do not exhibit biaxiallity, i.e. they are purely
uniaxial [67, Section 4.1]; indeed, only relatively recently was a biaxial
thermotropic LC found [83-85]. However, minimizing the one-constant
Landau-deGennes energy Ej 4 one [Q] (23) does not guarantee that the
minimizer will be uniaxial (15); indeed, they may have a biaxial escape,
especially near a defect [86-88]. Thus, the standard LdG model does not
explicitly respect the structure of many common LC materials.

Therefore, we consider the so-called uniaxially constrained Landau-
deGennes one-constant model. This constrained model has many simi-
larities with the Ericksen model, yet it is still capable of modeling line
fields and capturing half-integer defects.

2.3.1. Model derivation

For a uniaxially constrained Q-tensor as in (15), we write ® = n ® n,
which will be treated as a control variable in minimizing (23). Define
the set

LT = (A e R : there existsn € S*!, A=n®n}, 27

which can be identified with the real projective space RP?~! through
the map

n®n+— {n,—n}.

Hence, the uniaxially constrained (LdG) model takes into account the
molecular direction but not the orientation, so it does not have the same
orientational bias as the Oseen-Frank and Ericksen models.

Taking d to be the dimension, recalling (15), (17), and noting VQ =
Vs ® (0 — 21) + VO, we have

2
IVQI? = |Vs[*|® — %1' +52|Ve)? +25[VS ® ((—) - %1)] | V0.

Since |© — §I|2 = dd;‘ and [Vs ® (O — 51] 1 VO =0, we get |VQ|? =
dT_I|Vs|2 +s2|VO|?%. So enforcing the uniaxial constraint directly in

(23) leads to the following (non-dimensionalized) energy functional

1
ELdG,one[Q] = Euni[s’e] = Euni—m[sa 9] + _zEdw[S]’
g
_1fd-1 2 2 2
Eiimls,0O] i= - —— [ |Vs|“dx+ [ s°|VO|~dx |, (28)

which is the exact same form as (4), (5) except O replaces n and b,
replaces (d — 1)/d.

2.3.2. Function space and boundary conditions
Following the same outline as in Section 2.1.3, we introduce a change
of variable U = s@® and rewrite
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~ 1 1
Emﬂmxn=EmHJ&m:=§<—E/ﬁvwwx+/WVWHM) (29)
Q Q
Hence, the admissible class is

Api : ={(,0) e H'(Q)
X [L®(Q)]% : (5,U, @) satisfies (31), with u € [H ()19}, (30)

with the structural condition

U=50, -1/(d-1)<s<lae inQ, and® € L ! ae. in Q. @31)

Moreover, we make similar assumptions on the boundary data as in
Assumption 6.

Assumption 10 (Boundary Data is Regular). There exists ge&
Whe(R), R € [WhoR)]>4, M € [L*(R?)]?*, such that (g, R, M)
satisfies (31) on R¢, i.e. R=gM and M € L?~! a.e. in R?. Furthermore,
we assume that g satisfies (9).

Therefore, the minimization problem is as follows
Ming e 4, (e,M) Eunils; O, (32)
on the admissible class

Apmi@M) i={(s,m) € Ay & slp=g. Ol =M}, (33)

See [63,64] for more details on this constrained model.

3. Finite element discretization

We briefly describe the discretization approach to the Ericksen
model in order to fully explain our domain decomposition approach in
Section 4.2. More details about the discretization scheme can be found
in [55,57]. Since the uniaxially constrained LdG model and Ericksen
model are very similar, especially with regard to singularity of defects,
we defer description of the discretization of (28) to [63,64] for more
details.

3.1. Finite element spaces

We adopt an approach similar to [55, Sec. 2.2], except we discretize
the Ericksen energy differently. First, approximate Q by €, which comes
from a conforming shape regular triangulation 7, = {7;} consisting of
simplices. For simplicity, we assume that Q = Q, i.e. there is no geo-
metric error caused by the triangulation. Furthermore, let NV, be the set
of nodes (vertices) of 7, and let N be the cardinality of V), (with some
abuse of notation).

Next, define continuous piecewise linear finite element spaces on
Q:

Sy 1= 1{s, € HY(Q) : sply € P{(T),VT € Ty},

U, :={u, € [H' Q)] : u,l; € P(T),VT € T},

N, :=1{n, €U, : In,(x;)| = 1,Vx; € N}, }, (34)
where the unit length constraint is enforced in Nj at the nodes (ver-

tices) of the mesh. Dirichlet boundary conditions are included via the
following discrete spaces:

Su(gn) =15, €Sy * splr, = &n}>
Up(ry) = {u, €Uy 1 wylp, =714},

Np(@y) @ ={n, € Ny 1yl =q,},

where g, = Ig, 1, := Iyr, and qj = I;,q is the discrete Dirichlet data.
This leads to the following discrete admissible class with boundary con-
ditions:
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AMgp.qp) 2 = {(s.my) € Sy(gp)
X Nj,(qy) : (s, up,m,) satisfies (36), with u, € U, ()},
(35)

where

w, = Iy(spmy), —1/2<s,<1inQ, and [ny(x,)| = 1,¥x, € N, (36)

is called the discrete structural condition of A". If we write (s, Uy, ny) in
A", then this is equivalent to (s, ny) in A", u, in Uy, and (s, uy, ny)
satisfies (36).

3.2. Discrete energy

The discretization of E[s, n] and Eg,, [s] is done in a standard way,
ie.

1
E"[s4,my] :=z/gl(b0|Vsh|2+si|Vnh|2>dx, EP [s,] :=/Qx//(sh)dx.
37

Remark 11. The energy E"[s,.n,] is not the same as what was con-
sidered in [55]. An advantage of (37) is that it is more easily imple-
mented with a standard finite element package than the energy in [55].
However, proving I'-convergence is more involved but can be done by
adapting the techniques in [58] and combining with the results in [55].

The term /[, sianhl2 dx obeys a monotonicity property which will
be useful in our minimization scheme (see Section 4.1). To better ex-
plain this, we introduce the standard piecewise linear “hat” function ¢;
associated with a node x; € N, (i.e. {¢;} are the basis functions of the
spaces in (34)). Next, define the entries of the local (weighted) stiffness
matrix corresponding to an element 7' € 7

l_cl.Tj(sh) 1= / si V¢, - V¢; dx, for all nodes i, j associated to 7. (38)
T

If all elements in the mesh 7;, are non-obtuse (i.e. interior angles < 90°),
then k] (s,) satisfies the following property

l_ciTj(sh) <0, foralli#j, forall T € 7,,. 39)

Thus, defining k;;(s) := —fg sdiS,- - V¢;, for all global indices i j,
then

kij(sp) 20, for all i # j, (40)

which follows by simply summing up the local stiffness matrices in the
usual finite element methodology. Of course, requiring a non-obtuse
mesh is a severe restriction, especially in three dimensions. However, the
domains we consider allow for easy construction of non-obtuse meshes.

We can now derive an alternate form for E/[s;,n,|. Note that for all

X; € N},

N N
Zk,j(sh):—z:/siv¢,.~v¢jdx=0,
j=1 j=178

because Zj\’:l ¢; =1 in the domain Q. So, if S, > w);, = Zi’il w,(X)P;,
then

N N
/ shlVwyPdx = = Y k(w1 = Y ki (s, (x)wy(x)),
Q i=1 ij=1i#j
and using k;;(s;) = — ¥, k;;(s;,) and the symmetry k;;(s,) = kj;(s;), we
get
N
/st,lehlzdx = D ke (s)wp(x) (w3 (x) — wy(x)))
ij=1
1 N
3 2 ki n) (wax) = wy(x)?
ij=1
1 N
5 ‘Z kij (1) (815w) 4D

=1
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where we define
0wy 1= wp(X;) — Wy(X;),  6;;Wy 1= Wu(X;) — Wy(X;), (42)
for any wy, € Sy and wy, € Uy,. Thus, we can write E”[s,,n,] as
N
El[sp,m,] = %/ﬂb0|Vsh|2 dx+% 21 k()16 my] % 43)
ij=

Writing the energy in this way leads to the following monotonicity re-
sult.

Proposition 12. Suppose the mesh T,, is non-obtuse, namely (40) holds.
Then, (43) has the following property:

E![sp,w,] = E! [s,,,l,,lw—"l], for all w, € U,,. (44)
Wi

Proof. The proof follows the same arguments as can be found in
[51,55,89]. O

We need the following variational derivatives in Section 4.1:

5n,,Esh [sh,wh;vh] =/sfle,, : Vv, dx, (45)
Q
h R 2
Sy, Eq [sh,wh,zh] —/ (boVsy, « Vzp, + 5,2, VW, [*)dx, (46)
Q

which are defined for any s, 2, € Sy, Wy, v, € Up,. Moreover, we use
the following convex splitting of y(s) [90,91]:

A"+ D
Velsn) = =5
D’ B’ c’
Wo(sy) = 7531 + Tsf, - 752 = w(sp) = w(sy) — wlsy), @7

where D’ > 0 is chosen sufficiently large, i.e. if 5, € [-1/2,1], then y,
and y, are both convex functions if D’ > 0 is large enough. Hence, the
variational derivative of the double well potential is given by

8y, E Lsp:zp] 1= /ﬂ v (sp)z) dx = /Q (w!(sp) = wi(sy)) zpdx, 48)

where, for time-stepping purposes, the s; variable can be lagged in the
y/é term (see (52)).

4. Computing local minimizers

We begin by describing a robust, monotonically energy decreasing
gradient flow scheme for the discrete Ericksen system (see [55,57]), fol-
lowed by our domain decomposition (DD) approach that speeds up con-
vergence by isolating defects. A heuristic explanation of the DD method
is given in Section 4.3. A variant of this gradient flow scheme is used
for the uniaxially constrained LdG model (28) (see [63,64] for more
details).

4.1. Discrete gradient flow

We present a gradient descent type scheme for finding discrete (lo-
cal) minimizers of Ee”rk [sh, nh] ; it is a variant of the minimization algo-
rithms that can be found in [41,42,55,57]. To this end, because of the
unit length constraint at the nodes in Nj, (see (34)), we introduce the
space of discrete tangential variations:

Uirmy) = {v;, € Uy, : v;(x,) - my(x;) = 0 for all nodes x; € N}, }, (49)

as well as an effective inner product a,( -, ) on U, hL(n,,) and an inner
product a;(-, -) on Sp.
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Algorithm 1 Gradient flow algorithm for the Ericksen model.

Set 6t > 0. Given (sg,ng) in S,(g,) X Ny, (qp),iterate steps (1)-(2) for k >
0.

1. Descent for ny,.
(a) Tangent update. Find t{*! € U;l(nk) n H\(Q) such that, for
all v, € U;-(n¥) n HL(Q), we have (see (45))

k1 B[k skt Sl .k gk
an (6,7, vh) = =8, Egy [ W, s va], T =m0
(50)
(b) Normalization. Update nf to n*! via
k k+1
n; +t;
nf*!i= ———— . atall nodes x; € Nj. (51)
[+t

2. Gradient descent for s, Find s;*! € S,(g) such that, for all z; €
Sy N HL(Q), we have (see (46) and (48))

k+1 _ ok
N - S
h h _ B [k+l k1.
“:<Tﬁzh>— 5ShEerk[Sh ., ,zh]. (52)

The algorithm terminates when the change in the energy E e”rk [s ho nh] is
below a certain tolerance.

The minimization scheme for Eehrk[sh’ n,] is an alternating direction,
semi-implicit method, where energy decreasing steps are taken with re-
spect to ny and s, consecutively. The following result guarantees that
this scheme is energy decreasing.

Theorem 13 (energy decrease). Suppose the mesh T, is non-obtuse,
namely (40) holds. Then, for any 6t > 0, the iterate (s}*',nf*') of
Algorithm 1 exists and satisfies

ho [kl kel h [k ok 1 K+l _ ok ok+l _ k
Eoc 1Sy My, ]SEerk[sh’nh]_EaS(sh =SS, = 8y)- (53)

Equality holds if and only if (si*', nk*") = (s¥,nk) (a local minimizer).

Proof. The proof follows a similar argument as in [55, Thm. 4.2]. [

4.2. Domain decomposition approach

We describe an alternating Schwarz method, with overlapping sub-
domains, for enhancing the gradient flow scheme in Section 4.1. Our
focus is on a small number of sub-domains, say two, but we present it
for any number of sub-domains, say M. Let {Q} ,Ai , be an overlapping
decomposition of Q, i.e. Uf‘i & = & where each Q7 is an open subset of
Q. Moreover, we define the sub-domain boundaries T'; := 0Q.

Next, define K¥[(s;.n,)] to be k iterations of Algorithm 1, with ini-
tial guess (sy, ny), but restricted to sub-domain Q;. In other words, we
replace Q with QF in the gradient flow, and impose boundary condi-
tions on I';, whose boundary values are given by the initial guess: (s,
ny) restricted to I';. Moreover, K*[(s;,n,)] denotes the gradient flow
algorithm on Q with boundary conditions imposed on I'. The variable
sub-domain Schwarz method we consider is the following.

Remark 14. If the sub-domains are fixed throughout all iterations, and
if k; = o0, for i = 1,..., M, then Algorithm 2 becomes the classic contin-
uous Schwarz alternating method, where each sub-problem is solved
exactly.

The main purpose of introducing this domain decomposition (DD)
method is to isolate regions that contain defects, i.e. the singular set (3).
Numerical experience shows that the speed of the (weighted) gradient
flow is dictated by the motion of defects. Therefore, the procedure for
determining the sub-domains is based on 52 (the degree of orientation
parameter). The first sub-domain captures the singular region and the
remaining sub-domains simply partition the “regular” region.
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Sh
update nyp
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Algorithm 2 Alternating Schwarz method for the Ericksen model.

Set integers kj.ky,...ky >0. Given (sp.m,)°=(s9,nd) in S,(g,) x
N, (qy,), iterate the following procedure for / > 0:

1. Determine an overlapping sub-domain decomposition {Qf}f‘:l
from s;l using (56). Note that we suppress the dependence of
{Q )M on 1.

2. Fori=1,2,..,M do:

i ) i-1
(a) Let (5,.m,)"# :=le." [(sh,nh)“'ﬁ], ie. run the sub-

domain gradient flow.

(b) Update:
i 5,1, 9, on O
(spomp3r o= { O O (54)
(spmp) ™ H, on Q\ QF

3. Goto 1.

Define the following general sets of nodes in terms of s
Sp(a,b) 1= {x; € N}y | a < [5,(x))| < b},
Zy(a,b,r) := {x; € N}, | dist(x;, Sy(a, b)) < r}, (55)

where b > a > 0, r > 0, and consider the following two domain decom-
position (M =2):

Nyt i=Zp(ag,by,r)) U{x; € N} | s, changes sign on some T 5 x; },
Ny o= Zh(“zvbzyrz),
Q= {T €7, | T contains a point x; € Nh,j}, for j=1,2, (56)

where the constants a;, ay, by, by, 1y, Iy are chosen to ensure Qf, Q7 are
non-empty, and have some overlap. Basically, we choose the constants
so that Q”l‘, which contains the defect region, is much smaller than Q;.
In Section 5, we explore different choices of these constants.

The iteration numbers k;, k, are chosen to reduce the overall com-
puting time. Since Q] is a region much smaller than Q7, k; can be much
larger than k, and still allow Step 2(a) of Algorithm 2 to take the same
amount of time for each sub-domain. The advantage of this is that apply-
ing more iterations in the singular region ensures the defect will move
closer to its equilibrium position, than with the standard (non-DD) ap-
proach, for the same computational effort. In Section 5, we explore dif-
ferent choices for k; and k.

Remark 15. A variant of the gradient flow scheme, Algorithm 1, is used
for the uniaxially constrained LdG model (28) (see [63,64] for more
details). Moreover, the DD approach for (28) is exactly the same, since
it is based on the degree of orientation parameter s, which has the same
meaning in both models.

4.3. Heuristic explanation for speedup

Fig. 1 illustrates why the gradient flow scheme may perform slowly
(for simplicity, we consider the problem in one dimension). If the direc-
tor field ny, is forced to have a defect because of boundary conditions,
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Fig. 1. Illustration of how defects impede gradient flow
scheme in Algorithm 1 (one dimensional example). The
presence of a defect tightly couples n;, and s;. Since they
are updated in separate steps, updating ny, is limited by s,
and vice-versa (see blue arrows).

then s, will develop a degenerate region in one or two iterations (see left
side of Fig. 1), because the scheme is energy decreasing. However, dur-
ing subsequent iterations, the n, and s; variables are tightly coupled near
the defect. In other words, when computing Step 1(a) of Algorithm 1,
sy, is held fixed, which means the discontinuity in nj (the defect) can-
not move too far from where s, is nearly zero. This is because the term
Ja sianh |? dx in the energy would be very large if the defect had moved
to a region where s;, is well away from zero. Since the scheme is energy
decreasing, this cannot happen. Similarly, when computing Step 2 of
Algorithm 1, ny, is held fixed, which means that the degenerate region
of s, cannot move far from the defect in n;. We emphasize that this
issue is exacerbated when the mesh size decreases because the term
Jo 521V, | dx is more singular.

Clearly, updating ny and s separately is not optimal in terms of con-
vergence rate to a minimizer. However, the gradient flow scheme is
extremely robust, which is a feature we would like to preserve given
the non-linear, non-convex, and degenerate nature of the models. This
is what inspired the DD approach in Section 4.2. It is clear that the
tight coupling is only present in a relatively small region surrounding
the defect. So it is natural to use more iterations of the gradient flow
in the “small” sub-domain containing the defect in order to move the
defect further along toward a minimizer. Our numerical experiments in
Section 5 validate this intuition.

Remark 16. If there is no defect present in the problem, then the gradi-
ent flow scheme performs efficiently. For smooth solutions, the scheme
converges to a minimizer in about 10 to 15 iterations. This is because we
use weighted (e.g. H'(Q)) inner products for the gradient flow, which
act as effective “pre-conditioners” that eliminate any “stiffness” when
solving the linear systems. Thus, no additional acceleration is necessary
in this case.

However, a weighted gradient flow (a linear concept) cannot remove
the stiffness induced by defects because of their non-linear and degener-
ate nature. Other techniques, such as Newton’s method, are also prob-
lematic because the solutions are not smooth; even with finite h, one
must provide an extremely good initial guess to have any hope of con-
vergence.

5. Numerical results

We explore the DD approach of Section 4.2 for both the Ericksen
model and the uniaxially constrained Q-tensor model. The examples
we use all exhibit defects of differing types. In particular, we illustrate
the DD approach for different choices of sub-domain size and iteration
count.

We implemented our method using the Matlab/C + + finite element
toolbox FELICITY [92]. For all 3-D simulations, we used the algebraic
multi-grid solver (AGMG) [93-96] to solve the linear systems for up-
dating n; and s;. In 2-D, we simply used the “backslash” command in
Matlab.

In all experiments, Q] contains the singular region. After some exper-
imentation, we found that it was best to choose Q; =Qandsetk, =1,
i.e. for each outer iteration of the gradient flow, we solve in the singular
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region Q7 several times, followed by one solve over the entire domain.
Furthermore, in all cases (except Section 5.3.2), we first run 10 itera-
tions of the standard gradient flow scheme over the entire domain so
that the s variable can be used to identify the singular region. For each
experiment, we list the inner products a,( -, ) and a;( -, -) used in
Algorithm 1.

In measuring the convergence performance, we use the scalar s vari-
able, and u = sn for the Ericksen model (recall (8)) and U = s® for the
uniaxial LdG model (recall (31)). Using n (or ©) is not appropriate be-
cause they are not very regular.

5.1. Choice of double well

In two and three dimensions (d = 2, 3), the double well potential sat-
isfies
s %07, w(s) x s*, for s » —1/(d — 1), +1.
(57

w(s) =0, wO=1,

For numerical convenience, we do not modify y to diverge at s =
—1/(d — 1), +1; none of the simulations ever exhibited s; near the phys-
ical bounds, so this is acceptable.

In two dimensions, the double-well potential, with convex splitting,
is given by

W (s) = w.(s) — y,(s)
= (26.20577s% + 1) — (—4.16493135* + 30.287452).

In three dimensions, the double-well potential is given by

w(s) = w.(s) — w,(s)
= (36.7709s2 + 1) — (=7.39101s5* + 4.51673s> + 39.2716152).

5.2. The Ericksen model

5.2.1. A point defect in 2-D

We simulate a point defect moving to the center of the domain
(Q is the unit square). The time-step is 6t = 1.0, the maximum mesh
size is h =0.00913533, and the inner products are a,(n,v)= (n,v)+
0.5((s*)>Vn, Vv) (where sk is known), and a,(s, z) = (s, z) + 0.5(Vs, Vz).
We set b, = 1, ¢4, = 0.2, and impose the following Dirichlet boundary
conditions for s and n

" (x,y) = (0.5,0.5)
s=s, n=—F"———=_ onl :=0Q. (58)
[(x,») = (0.5,0.5)]
Initial conditions on Q for the gradient flow are: s = s* and a point defect

located at (0.7167,0.2912). Fig. 2 depicts the equilibrium solution.
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Fig. 2. Point defect at its equilibrium state
(Section 5.2.1). Left: director n is shown colored
according to the degree of orientation s; the mini-
mum value of s is 9.384 x 10~2. Right: a view of the
sub-domain Qj in black.

Table 1
Error (in 7 ) between the final result with 0 iterations and 4, 8 iterations,
respectively (Section 5.2.1).

Iter 4 (A) Iter 4 (B) Iter 8 (A) Iter 8 (B)

s 2.541928E-07
u  2.859279E-07

2.541928E-07
2.859279E-07

2.541928E-07
2.859279E-07

2.541928E-07
2.859279E-07

Fig. 3 shows the convergence to equilibrium versus the run-time for
different choices of the parameters in the DD approach. The singular
sub-domain Q7 is defined by

a, =0, b =01, andr =02, or 03. (59)

The number of (inner) iterations used in Q;‘ was k; =0, 4, or 8. Con-
vergence for each iteration case (0, 4, 8) was measured with respect to
the final result for that case. Table 1 shows the error between the final
result of the 0 iteration case and the final results of the 4 and 8 iteration
cases. The DD approach shows a clear speed-up.

5.2.2. A saturn-ring like defect in 3-D

The domain Q is taken to be a long rectangular “tube” (vertically ori-
ented) with a spherical hole at its center (see [57] for a full description
of the domain). The boundary of Q partitions into two disjoint connected
pieces 0Q =T, UT,, where T', is the outer part of the tube, and I’; is the
boundary of the inner spherical hole.

The time-step is 6¢ = 1.0, the mesh size is & = 0.0785036, and the in-
ner products are a,(n,v) = (n,v) + 0.5((s*)?>Vn, Vv) (where sk is known),
and a(s, z) = (s,z) + 0.5(Vs, Vz). We set b, = 1, ¢, = 0.3, and impose the

following Dirichlet boundary conditions
n=v,onl;, s=s" onoQ, (60)

and n smoothly interpolates between (0,0, —1)” and (0, 0, 1)T onT,. The
initial conditions in Q for the gradient flow are: s = s* and

(0,0,-17,
(0,0,+1)7,

ifz<0,
if z>0.

n(x, y,z) =
n(x, y,z) =

Fig. 4 depicts the equilibrium solution.

Fig. 5 shows the convergence to equilibrium versus the run-time for
different choices of the parameters in the DD approach. The singular
sub-domain QF is defined by

a, =0, b =025 andr =025 or 0.5. (61)

The number of (inner) iterations used in Q’l‘ was k; =0, 4, or 8. Con-
vergence for each iteration case (0, 4, 8) was measured with respect to
the final result for that case. Table 2 shows the error between the final

result of the 0 iteration case and the final results of the 4 and 8 iteration
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Fig. 3. Ericksen point defect convergence results for s and u (Section 5.2.1) using the #_ norm of the error. Plot (A) corresponds to r; = 0.2; Plot (B) corresponds to

ry = 0.3. Number of iterations is for the singular sub-domain Q7.
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Table 2
Error (in ) between the final result with O iterations and 4, 8 iter-
ations, respectively (Section 5.2.2).

Iter 4 (A) Iter 4 (B) Iter 8 (A) Iter 8 (B)
s 1.450184E-05 1.451180E-05 0.071109 1.450584E-05
u  4.153856E-05 4.156694E-05 0.167288 4.155104E-05

cases. The DD approach achieves some speed-up here over the standard
method, but not as dramatic as in Section 5.2.1. Moreover, Table 2 indi-
cates that a different minimizer was found for the case of 8 sub-iterations

// /,

Fig. 4. Ericksen version of the Saturn ring defect at its equi-
librium state (Section 5.2.2). Left: director n is shown on a
vertical slice through Q colored according to the degree of
orientation s; the minimum value of s is 0.1057. The spheri-
cal inclusion is shown and the sub-domain Q7 is depicted in
black. Right: an oblique view of the same vertical slice with
the s = 0.2 iso-surface shown.

with r; = 0.25 (A). Note that the minimization problem (11) is not con-
vex; indeed, LC problems typically exhibit multiple minima.

5.3. The uniaxially constrained Q-Model

5.3.1. A +1/2 defect in 2-D

We simulate a +1/2 degree defect moving to the center of the
domain (Q is the unit square). The time-step is 6t = 0.01, the mesh
size is h =0.00913533, and the inner products are a,(n,v)=(n,v)+
0.5((s*)?Vn, Vv) (where s* is known), and a,(s, z) = (s, z) + 0.5(Vs, Vz).
Weset by = (d — 1)/d = 1/2, ng = 0.25, and impose the following Dirich-
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Fig. 5. Ericksen Saturn ring defect convergence results for s and u (Section 5.2.2) using the #_ norm of the error. Plot (A) corresponds to r, = 0.25; Plot (B)
corresponds to r; = 0.5. Number of iterations is for the singular sub-domain Q7.

Fig. 6. A +1/2 degree defect at its equilibrium state
(Section 5.3.1). Left: director n (as a line-field) is
shown colored according to the degree of orientation
s; the minimum value of s is 6.071 x 1073, Right: a view
of the sub-domain Q7 in black.

ARMTT N W N

let boundary conditions for s and n Table 3
Error (in 7)) between the final result with O iterations and 4, 8
iterations, respectively (Section 5.3.1).

s=s" n(x,y)=(cosd,sinb)T,

0(x,y) = (1/2)arctan(x — 0.5,y — 0.5), on T := 0Q, (62)

Iter 4 (A) Iter 4 (B) Iter 8 (A) Iter 8 (B)

where arctan : R?\ {0} — [-x, z] is the four quadrant inverse tangent
function. Initial conditions on Q for the gradient flow are: s = s* and a
+1/2 degree defect located at (0.7167,0.2912). Fig. 6 depicts the equi-
librium solution.

Fig. 7 shows the convergence to equilibrium versus the run-time for
different choices of the parameters in the DD approach. The singular
sub-domain Q7 is defined by

s 0.00561450  0.00501270  0.00574467  0.00497920
U 0.00491533  0.00445426  0.00505201 0.00459453

The number of (inner) iterations used in Q’l“ was k; =0, 4, or 8. Con-
vergence for each iteration case (0, 4, 8) was measured with respect to
a;=0, b =01, andr, =02, or 0.3. (63) the final result for that case. Table 3 shows the error between the final
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Fig. 7. Uniaxial LdG +1/2 degree defect convergence results for s and U (Section 5.3.1) using the ¢ norm of the error. Plot (A) corresponds to r; = 0.2; Plot (B)

corresponds to r; = 0.3. Number of iterations is for the singular sub-domain Q;.

result of the 0 iteration case and the final results of the 4 and 8 iteration
cases. The DD approach achieves some speed-up here over the standard
method, but not as dramatic as in Section 5.2.1. Moreover, the errors
in Table 3 indicate that the converged solutions are close, but not ex-
act. Furthermore, Fig. 7 indicates that using fewer sub-iterations, but a
larger sub-domain, gives better performance (contrary to Fig. 3).

5.3.2. The Saturn-ring defect in 3-D

The domain Q is the same as in Section 5.2.2. The time-step is
6t =0.001, the mesh size is h =0.0785036, and the inner products
are a,(n,v) = ((s¥)?Vn, Vv) (where sk is known), and a,(s,z) = (s,2) +
(Vs,Vz). We set by =(d — 1)/d =2/3, ng = 0.3, and impose the follow-
ing Dirichlet boundary conditions

n=v,onl;, n=(0,0,1)7, onl,, s=s* onodQ. (64)

The initial conditions in Q for the gradient flow are: s = s* and n=
0,0, )T,

The equilibrium solution is shown in Fig. 8. The structure of the di-
rector field is not the same as in Fig. 4; this is a consequence of the direc-
tor being non-orientable. In Fig. 8, the cross-section of the director (line)
field over the defect region clearly exhibits a —1/2 degree point defect,
which is consistent with experimental evidence [97] of the Saturn-ring;
see [98] for an analytical solution.

Fig. 9 shows the convergence to equilibrium versus the run-time for
different choices of the parameters in the DD approach. The singular
sub-domain Q7 is defined by

a, =0, b =025 andr =025 or 0.5. (65)

The number of (inner) iterations used in Q;‘ was k; =0, 4, or 8. Con-
vergence for each iteration case (0, 4, 8) was measured with respect to

Table 4
Error (in 7)) between the final result with 0 iterations and 4, 8
iterations, respectively (Section 5.3.2).

Iter 4 (A) Iter 4 (B) Iter 8 (A) Iter 8 (B)
s 0.0128284 0.000379576 0.0161736 0.000596018
U 0.0128879 0.00220264 0.0178509 0.00392691

the final result for that case. Table 4 shows the error between the final
result of the O iteration case and the final results of the 4 and 8 iteration
cases. The DD approach achieves some speed-up here over the standard
method, but not as dramatic as in Section 5.2.1. Moreover, the errors
in Table 3 indicate that the converged solutions are close, but not ex-
act. Using a larger sub-domain appears to give a solution that is a better
match. This could also be due to the fact that the minimization problem
(32) is not convex, thus exhibiting multiple minima.

6. Conclusions

We presented a domain decomposition approach to accelerate gra-
dient flow schemes for a special class of degenerate elliptic models of
liquid crystal equilibrium states. The key idea is to apply more gradi-
ent flow steps in a small region that contains the degenerate part of the
solution, which is computationally cheaper than updating the solution
over the entire domain. We emphasize that applying Newton’s method
to these degenerate models is not at all robust. Indeed, the initial guess
for a Newton solver must be extremely close to the solution, which is
never the case in practice.
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Fig. 8. Uniaxial LdG version of the Saturn ring defect
at its equilibrium state (Section 5.3.2). Left: director
n (as a line field) is shown on a vertical slice through
Q colored according to the degree of orientation s; the
minimum value of s is 9.303 x 1072. The spherical in-
clusion is shown and the sub-domain Q; is depicted in
black. Right: an oblique view of the same vertical slice
with the s = 0.2 iso-surface shown.
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Fig. 9. Uniaxial LdG Saturn ring defect convergence results for s and U (Section 5.3.2) using the #_, norm of the error. Plot (A) corresponds to r; = 0.25; Plot (B)

corresponds to r; = 0.5. Number of iterations is for the singular sub-domain Q7.

The gradient flow schemes considered in this paper use an alternat-
ing direction approach, i.e. where we fix s and update n (or ©) and
vice-versa. This splitting of the variables leads to a kind of non-standard
“stiffness” in the equations when defects are present. Our domain de-
composition approach provides a way to augment the gradient flow
scheme in a way to partially account for the non-linear/non-smooth
stiffness caused by the degeneracy of defects. Note that when defects
are not present, the gradient flow schemes converge to a minimizer in
about 10 to 15 iterations without any domain decomposition technique.

The amount of acceleration varied between the two models, with the
uniaxial LdG model benefiting a bit less. This is partially due to the fact

that the uniaxially constrained LdG model is more complicated than the
Ericksen model. This means the assembly of the discrete finite element
matrices is more time-consuming in the uniaxial LdG model than in Er-
icksen. In order to obtain a reduction in computational run-time, one
needs to take full advantage of having a smaller linear system to solve
in the degenerate region, i.e. only assemble the necessary contributions
to the matrix and reuse the known sparsity structure.

The performance of the DD approach presented here, with respect to
changes in discretization parameters, has not been fully explored. The
number of outer iterations (i.e. solving over the whole domain) is cer-
tainly reduced with the DD approach, but the total computational time
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may not be improved. This is at least partly due to our implementation
not being fully optimized. Again, assembly of the finite element matrices
should be highly optimized to take advantage of this approach. Further-
more, since both models have non-convex energies, there can be some
issue of convergence to a particular minimizer. But this is a typical issue
in these models and is present regardless of what method is used to find
the minimizer.

The DD technique can be combined with parallelization, such as
when solving over the whole domain, i.e. a fixed decomposition of the
entire domain can be used. Solving on the singular region could also be
done in parallel, but there are issues of load balancing or of redistribut-
ing the degenerate region to the sub-processors. Other improvements of
our technique could be to use more sub-domains, but more theoretical
understanding of the method is needed to determine how best to parti-
tion the domain. Another option is to abandon the gradient flow scheme
in the singular region, and use a global optimizer instead. If the singular
region is not too large, then the added cost of a global optimizer could
be mitigated.
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