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Abstract

We present a model and discretization that couples the Ericksen model of liquid crystals
with variable degree of orientation to the Allen-Cahn equations with a mass constraint. The
coupled system models liquid crystal droplets with anisotropic surface tension effects due
to the liquid crystal molecular alignment. The total energy consists of the Ericksen energy,
phase-field (Allen-Cahn) energy, and a weak anchoring energy that couples the liquid crystal
to the diffuse interface. We describe our discretization of the total energy along with a
method to compute minimizers via a discrete gradient flow algorithm which has a strictly
monotone energy decreasing property. Numerical experiments are given in three dimensions
that illustrate a wide variety of droplet shapes that result from their interaction with defects.
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1. Introduction

This paper presents a method for solving the Ericksen model coupled to the Allen-Cahn
equations [1, 2, 3] in order to model the equilibrium shapes of nematic liquid crystal (LC)
droplets with anisotropic surface tension [4, 5, 6]. LCs have a variety of applications, e.g.
electronic displays [7, 8, 9], in addition to a host of potential applications in material science
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. To the best of our knowledge,
coupling Ericksen to Allen-Cahn has never been done. The main contributions of the pa-
per are the numerical method and the three-dimensional simulations of LC droplets that
illustrate the coupled model.

Nematic droplets have been studied at the continuum level, including experiments [26,
27], modeling [28, 29, 30, 31, 32], and shape minimization of LC droplets [33]. Numerically,
molecular dynamics approaches [34, 22] and PDE techniques [35, 36, 37, 38, 39] added REFs
have been used to simulate LC droplets at equilibrium as well as dynamics. The above
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references use either a (regularized) Oseen-Frank type of model or the Landau-deGennes
model (Q-tensor) [40, 6]. Our paper, and [41], is the first to consider the Ericksen model in
the context of LC droplets.

Initial studies of dynamics and numerics for the Ericksen model can be found in [42, 43].
More recently, a method was developed in [44, 45, 46] to solve the Ericksen model without
any ad hoc regularization term. The method was justified via Γ-convergence, and simulations
were shown in three dimensions illustrating novel defect structures.

In this paper, we present a coupled model that combines the Ericksen model with
anisotropic surface tension to model energy minimizing shapes of LC droplets. The rest
of the paper is organized as follows. In Section 2, we present the coupled model at the
continuous level, and Section 3 describes our discretization of the continuous model using a
finite element method. Section 4 presents a gradient flow method for computing minimizers
of the discrete energy, and numerical examples in three dimensions are presented in Section
5. We conclude with some discussion in Section 6.

2. Coupled Model

We couple two energetic models (Ericksen and Allen-Cahn) to obtain an equilibrium
model of LC droplets. The Allen-Cahn energy [2, 3] models the separation of two immiscible
LC phases with anisotropic surface tension between the phases [4, 40, 47, 48, 49, 36, 35].
The Ericksen energy models the elasticity of the LC medium [5, 40, 6, 42] in each phase.

2.1. Phase Field Representation

Suppose we have a fixed hold-all domain Ω ⊂ Rd that partitions into two “phases.” For

simplicity, we assume both phases contain liquid crystal material, i.e. Ω ≡ int
(

Ω1
lc ∪ Ω2

lc

)
,

where Ωi
lc is the i-th liquid crystal phase (i = 1, 2). In order to avoid dealing with sharp

interfaces, we use a phase field function φ : Ω→ [−1,+1] to represent the coexistence of the
two phases, i.e. φ ≈ +1 in Ω1

lc and φ ≈ −1 in Ω2
lc [50].

2.2. Ericksen’s Model

The state of the liquid crystal is modeled by a director field n : Ω ⊂ Rd → Sd−1 with
unit length, and a scalar field s : Ω ⊂ Rd → (−1

2
, 1) called the degree-of-orientation [40, 46].

Essentially, n specifies the averaged orientation of LC molecules, and s represents how well
the individual LC molecules are aligned with n. The equilibrium state (s,n) is assumed to
minimize a “one-constant” energy.

2.2.1. Ericksen’s One-constant Energy

The equilibrium state (s,n) of the liquid crystal is assumed to minimize the following
energy functional:

Eerk(s,n) :=

∫
Ω

(
κ|∇s|2 + s2|∇n|2

)
dx,

Ebulk(s) :=

∫
Ω

ω(s)dx,

(1)
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where κ > 0. The function ω is C2, defined on −1/2 < s < 1, and satisfies [5, 51, 52]

1. lims→1 ω(s) = lims→−1/2 ω(s) =∞,

2. ω(0) > ω(s∗) = mins∈[−1/2,1] ω(s) = 0 for some s∗ ∈ (0, 1),

3. ω′(0) = 0.

2.2.2. Theoretical Framework

The initial theory for minimizers (and regularity) of (1) was developed in [51, 52], where
they introduced an auxiliary variable u = sn which allows for rewriting the energy Eerk(s,n)
as

Eerk(s,n) = Ẽ1(s,u) :=

∫
Ω

(
(κ− 1)|∇s|2 + |∇u|2

)
dx, (2)

which derives from the identity nT∇n = 0T because of the unit length constraint |n| = 1.
This suggests the following admissible class of solutions (minimizers) to be [51, 52]:

K :={(s,u) : Ω→ (−1/2, 1)× Rd : (s,u) ∈ [H1(Ω)]d+1, u = sn,n ∈ Sd−1}. (3)

Note: we use an abuse of notation and write (s,n) in K to be equivalent to (s,u) in K with
u = sn.

Enforcing boundary conditions on (s,u) is done in the following way. Let (Γs,Γu) be
open subsets of ∂Ω where we set Dirichlet boundary conditions for (s,u). This yields the
following restricted admissible class

K(g, r) := {(s,u) ∈ K : s|Γs = g, u|Γu = r} , (4)

for some given functions (g, r) ∈ [W 1
∞(Rd)]d+1 that satisfy the following in a neighborhood

of ∂Ω: −1/2 < g < 1 and r = gq, for some q ∈ Sd−1. If we further assume

g ≥ δ0 on ∂Ω, for some δ0 > 0, (5)

then n is H1 in a neighborhood of ∂Ω and satisfies n = g−1r = q ∈ Sd−1 on ∂Ω.
If s is a non-zero constant, the energy Eerk(s,n) in (1) effectively reduces to the Oseen-

Frank energy
∫

Ω
|∇n|2. When s is variable, it may vanish which relaxes the energy of defects.

Indeed, discontinuities in n (i.e. defects) may still occur in the singular set

S := {x ∈ Ω : s(x) = 0}, (6)

with finite energy: E[s,n] < ∞. Existence of minimizers was shown in [51, 52]. Some
analytical constructions can be found in [40], and several numerical examples are given in
[44].

The parameter κ in (1) influences whether defects occur or not. If the boundary condition
for s is positive well away from zero, and if κ is large, then

∫
Ω
κ|∇s|2dx dominates the energy

and s stays positive within Ω. So, defects are less likely to occur. If κ is small (say κ < 1),
then

∫
Ω
s2|∇n|2dx dominates, so s may vanish in some regions and induce a defect; see

[44, 45] for examples of this effect.
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2.3. Phase Field Model

2.3.1. Review of Allen-Cahn

LC droplets immersed in an isotropic medium induce an interface ∂Ωlc between the two
phases that exhibits surface tension. The energy of the interface Γ := ∂Ωlc, assuming a unit
surface tension coefficient γ0 ≡ 1, is given by

J(Γ) =

∫
Γ

γ0dS =

∫
Γ

1dS. (7)

In the phase field framework [53, 50, 54], the sharp interface is “smoothed out” and repre-
sented by steep transitions of φ, i.e. where |∇φ| is large. Indeed, the surface energy (7) is
replaced by a “diffuse” energy

Egr(φ) =
ε

2

∫
Ω

|∇φ|2dx, (8)

where ε > 0 is the “layer thickness” of the phase field approximation. The intuition here
is that the integrand in (8) approximates a Dirac delta function δΓ concentrated on the
interface Γ, i.e. ∫

Γ

1dS =

∫
Ω

δΓdx ≈
∫

Ω

ε

2
|∇φ|2dx.

Note that the oriented unit normal vector ν of Γ is approximated by ∇φ/|∇φ|.
In addition to Egr, a mixing energy is added to the total energy to penalize mixing of the

two phases:

Edw(φ) =
1

ε

∫
Ω

f(φ)dx, (9)

where f(t) = 1
4
(1−t2)2 is a double-well potential. Combining (8) and (9) yields the standard

Allen-Cahn energy:

Eac(φ) = Edw(φ) + Egr(φ) =
1

ε

∫
Ω

f(φ)dx+
ε

2

∫
Ω

|∇φ|2dx. (10)

The admissible class for φ is simply H1(Ω) without any boundary conditions imposed.

2.3.2. Anisotropic Surface Tension

For LC droplets, the orientation of the LC molecules are influenced by the two-phase
interface. This is usually modeled by adding a weak anchoring energy to the total energy of
the system [40]. In the sharp interface setting, one adds an energy of the form

E =

∫
Γ

γ(ν)dS,

where ν is the oriented unit normal vector of Γ. One possible choice for γ is given by [40]:

γ(ν,n) = α⊥(ν · n)2 + α‖[1− (ν · n)2], α⊥, α‖ ≥ 0, (11)
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where the first (second) term tends make the minimizing director field n perpendicular
(parallel) to ν. Therefore, following a similar derivation as for (8), and following [36, 35], we
arrive at the following weak anchoring energy:

Eanch,n(φ, s,n) :=
ε

2

∫
Ω

s2
{
α⊥(n · ∇φ)2 + α‖

[
|n|2|∇φ|2 − (n · ∇φ)2

]}
dx, (12)

where we included the degree-of-orientation s to model a loss of anisotropy when orientational
order vanishes. Note that the integral is weighted by ε so that it scales similarly to (8).

Lastly, we also add an energetic term penalizing s to agree with s∗ on the diffuse interface:

Eanch,s(φ, s) :=
ε

2

∫
Ω

(s− s∗)2|∇φ|2dx, (13)

which is needed to ensure that s does not trivially vanish on the interface, and so cause (12)
to vanish as well.

2.3.3. Incompressible Droplets

We assume the LC droplets, as well as the surrounding isotropic medium are incompress-
ible, i.e. their total volume is conserved. It is well known [53, 50] that the H−1 gradient flow
of the energy (10) preserves the total volume in the sense that

∫
Ω
φ(t, x)dx =

∫
Ω
φ(0, x)dx,

for all t ≥ 0, where t is the gradient flow “time” variable.
In this paper, we are only concerned with the final energy minimizing shapes of LC

droplets (not the gradient flow history). Thus, we use a simpler L2 gradient flow to evolve
the phase variable φ, simultaneously with the LC variables (see Section 4). However, the L2

gradient flow does not preserve the volume, so we add the following constraint to enforce
volume conservation: ∫

Ω

φdx =

∫
Ω

φ0dx, (14)

where φ0 represents the initial distribution of the two phases. This gives the following
admissible set for the Allen-Cahn variable φ:

U(φ0) =

{
φ ∈ H1(Ω) :

∫
Ω

(φ− φ0)dx = 0

}
. (15)

2.4. Total Energy

We seek to minimize the total energy:

E(φ, s,n) = WerkEerk(s,n) +WbulkEbulk(s) + (Wac + 2Wanch)Edw(φ) +WacEgr(φ)

+Wanch [Eanch,n(φ, s,n) + Eanch,s(φ, s)] ,
(16)

over all (φ, s,n) in the admissible set A := U(φ0) × K(g, r). The weighting parameters
Werk,Wbulk,Wac,Wanch are all positive constants. Note that since Egr, Eanch,n, and Eanch,s all
scale with ε|∇φ|2, we choose the weight for Edw to be Wac + 2Wanch. This is done to ensure
that mixing and diffusion are of comparable magnitude; otherwise, if Edw is not sufficiently
penalized then the droplets will “diffuse away.”
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3. Discretization

We state how the continuous energies in (16) are approximated and give the variational
derivatives of the discrete energies, which are needed in the gradient flow scheme.

In order to streamline the development of the method, we adopt some notational con-
veniences. Let (·, ·) : L2(Ω) × L2(Ω) → R be the L2(Ω) inner product, and a (·, ·) :
H1(Ω)×H1(Ω)→ R be the H1(Ω) inner product, i.e.

(u, v) =

∫
Ω

uv, (v,w) =

∫
Ω

v ·w, a (u, v) =

∫
Ω

∇u · ∇v, a (v,w) =

∫
Ω

∇v · ∇w.

3.1. Domain Mesh

We discretize the domain Ω with a conforming simplicial triangulation Th = {T}. The
set of nodes (vertices) of Th is denoted Nh; the number of nodes is n. We require Th to be
weakly acute, namely

kij := −
∫

Ω

∇ηi · ∇ηj dx ≡ −a(ηi, ηj) ≥ 0 for all i 6= j,

where {ηi} are standard “hat” basis functions, with ηi associated with node xi ∈ Nh. This
condition is necessary in order to guarantee that the discrete Ericksen energy (21) is positive
semi-definite and has a monotonicity property with respect to normalizing the director field
(see Lemma 2).

The condition (17) imposes a restriction on the mesh Th [55, 56] (which is severe in three
dimensions). For d = 2, one can characterize (17) as follows.

Lemma 1 (weak acuteness in two dimensions). For any pair of triangles T1, T2 in Th in
two space dimensions that share a common edge e, let αi be the angle in Ti opposite to e (for
i = 1, 2). Then (17) holds if and only if α1 + α2 ≤ 180◦ for every edge e.

Generalizations of Lemma 1 to three dimensions, involving interior dihedral angles of
tetrahedra, can be found in [57, 58]. We point out that a non-obtuse mesh, which is auto-
matically weakly-acute, of a simple rectangular region is simple to generate.

3.2. Ericksen

3.2.1. Finite Element Spaces

We define the following finite element spaces on the mesh Th:

Sh := {sh ∈ H1(Ω) : sh|T is affine for all T ∈ Th},
Uh := {uh ∈ [H1(Ω)]d : uh|T is affine in each component for all T ∈ Th},
Nh := {nh ∈ Uh : |nh(xi)| = 1 for all nodes xi ∈ Nh},

where Nh imposes the unit length constraint at the nodes of the mesh.
Let Ih be the Lagrange interpolation operator for either Sh or Uh. With this, we define

the following discrete version of the admissible class:

Kh := {(sh,uh) ∈ Sh × Uh : −1/2 < sh < 1 in Ω, uh = Ih(shnh) where nh ∈ Nh}. (19)
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Next, take gh := Ihg and rh := Ihr to be the discrete Dirichlet data, and define the
discrete spaces that include (Dirichlet) boundary conditions

Sh(Γs, gh) := {sh ∈ Sh : sh|Γs = gh}, Uh(Γu, rh) := {uh ∈ Uh : uh|Γu = rh},

as well as the discrete admissible class with boundary conditions:

Kh(gh, rh) := {(sh,uh) ∈ Kh : sh ∈ Sh(Γs, gh),uh ∈ Uh(Γu, rh)} . (20)

Again, we use the abuse of notation where (sh,nh) in Kh(gh, rh) is equivalent to (sh,uh)
in Kh(gh, rh) with uh = Ih(shnh). Note that, because of (5), we can impose the Dirichlet
condition nh = Ih[g

−1
h rh] on ∂Ω.

3.2.2. Energy

The discrete form of the Ericksen energy Eerk is given by

Eh
erk(sh,nh) := κ

∫
Ω

|∇sh|2dx+
1

2

n∑
i,j=1

kij

(
sh(xi)

2 + sh(xj)
2

2

)
|nh(xi)− nh(xj)|2, (21)

which was derived and analyzed in [44]; note that the second term is a O(h) approximation
of
∫

Ω
s2|∇n|2. The advantage of the discrete form is that it can handle the (nodal) unit

length constraint as well as the degeneracy of the model without regularization; see [44] for
more information.

It is convenient to rewrite Eh
erk with a multi-linear form. Define e (·, ·; ·, ·) : Sh × Sh ×

Uh × Uh → R by

e (sh, zh;vh,wh) :=
N∑

i,j=1

kij

(
sh(xi)zh(xi) + sh(xj)zh(xj)

2

)
·

· (vh(xi)− vh(xj)) · (wh(xi)−wh(xj)) ,

(22)

which is linear in each argument. Thus,

Eh
erk(sh,nh) = κa (sh, sh) +

1

2
e (sh, sh;nh,nh) , (23)

and the first variational derivatives are given by

δnh
Eh

erk(sh,nh;wh) = e (sh, sh;nh,wh) , (24)

δshE
h
erk(sh,nh; zh) = 2κa (sh, zh) + e (sh, zh;nh,nh) . (25)

As was shown in [44], Eh
erk satisfies the following monotonicity property with respect to the

unit length constraint.

Lemma 2. Let Eh
erk(sh,nh) be defined by (23) and assume the mesh Th satisfies (17). If

|nh(xi)| ≥ 1 at all nodes xi in Nh, then

Eh
erk(sh,nh) ≥ Eh

erk

(
sh,

nh
|nh|

)
.
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The double well energy is discretized in a standard way:

Eh
bulk(sh) :=

∫
Ω

ω(sh)dx, (26)

where φh ∈ Uh(φ0) is discussed in Section 3.3. The variational derivative of Eh
bulk is approxi-

mated by a convex splitting technique [59, 54, 60] for time-stepping purposes. First, we split
ω into a convex and concave part, i.e. let ωc, ωe be convex functions for all s ∈ (−1/2, 1) so
that ω(s) = ωc(s)− ωe(s). Then set

δshE
h
bulk(sk+1

h ; zh) :=
([
ω′c(s

k+1
h )− ω′e(skh)

]
, zh
)
, (27)

which yields the inequality

Eh
bulk(sk+1

h )− Eh
bulk(skh) ≤ δshE

h
bulk(sk+1

h ; sk+1
h − skh), (28)

for any skh and sk+1
h in Sh [44].

3.3. Allen-Cahn

We introduce the discrete version of (15):

Uh(φh,0) =

{
φh ∈ Sh :

∫
Ω

(φh − φh,0)dx = 0

}
, (29)

where φh,0 represents the (discrete) initial distribution of the two phases (e.g. φh,0 = Ihφ0);
thus, we replace φ by φh in Uh(φh,0). The standard Allen-Cahn energy terms, as well as
Eanch,s, are discretized in the usual way:

Eh
dw(φh) := Edw(φh), Eh

gr(φh) := Egr(φh), Eh
anch,s(φh, sh) := Eanch,s(φh, sh), (30)

with variational derivatives given by

δφhE
h
gr(φh;ψh) := εa (φh, ψh) ,

δφhE
h
anch,s(φh, sh;ψh) := ε

(
(sh − s∗)2∇φh,∇ψh

)
,

δshE
h
anch,s(φh, sh; zh) := ε

(
|∇φh|2(sh − s∗), zh

)
,

(31)

We discretize the double well f for the phase variable similar to ω, i.e. we write

f(t) =
1

4
(1− 2t2 + t4) =

1

4
(1 + ξ0t

2)− 1

4

[
(2 + ξ0)t2 − t4

]
=: fc(t)− fe(t), (32)

where ξ0 > 0 is sufficiently large. Then define

δφhE
h
dw(φk+1

h ;ψh) :=
1

ε

∫
Ω

[
f ′c(φ

k+1
h )− f ′e(φkh)

]
ψh dx, (33)
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which yields the inequality

Eh
dw(φk+1

h )− Eh
dw(φkh) ≤ δφhE

h
dw(φk+1

h ;φk+1
h − φkh), (34)

for all φkh and φk+1
h in Sh [59, 54, 60].

The anisotropic anchoring energy Eanch,n is handled using a “lumped” approach. Define
the multi-linear form c : Uh×P0×Uh×P0×Sh×Sh → R, where P0 is the space of piecewise
constant, vector-valued functions such that

c⊥ (vh,∇φh,wh,∇ψh; sh, zh) :=
∑
Tj⊂Th

∫
Tj

Ih {(shzh)(vh · ∇φh)(wh · ∇ψh)} ,

c‖ (vh,∇φh,wh,∇ψh; sh, zh) :=∑
Tj⊂Th

∫
Tj

Ih
{

(shzh)[(vh ·wh)(∇φh · ∇ψh)− (vh · ∇φh)(wh · ∇ψh)]
}
,

(35)

where Ih is the Lagrange interpolant. The finite element realization of (35) depends on
which variables are held fixed; in any case, the result is a block matrix, where each block is
an N ×N diagonal matrix.

With this, we define the discrete anchoring condition as

Eh
anch,n(φh, sh,nh) =

ε

2

[
α⊥c⊥ (nh,∇φh,nh,∇φh; sh, sh) + α‖c‖ (nh,∇φh,nh,∇φh; sh, sh)

]
,

(36)

Using [46, Lemma 6], Eh
anch,n satisfies the following monotonicity property with respect to

the unit length constraint.

Lemma 3. Let Eh
anch,n(φh, sh,nh) be defined by (36). If |nh(xi)| ≥ 1 at all nodes xi in Nh,

then

Eh
anch,n(φh, sh,nh) ≥ Eh

anch,n

(
φh, sh,

nh
|nh|

)
.

The variational derivatives are as follows:

δφhE
h
anch,n(φh, sh,nh;ψh) = ε

[
α⊥c⊥ (nh,∇φh,nh,∇ψh; sh, sh) + α‖c‖ (nh,∇φh,nh,∇ψh; sh, sh)

δshE
h
anch,n(φh, sh,nh; zh) = ε

[
α⊥c⊥ (nh,∇φh,nh,∇φh; sh, zh) + α‖c‖ (nh,∇φh,nh,∇φh; sh, zh)

δnh
Eh

anch,n(φh, sh,nh;vh) = ε
[
α⊥c⊥ (nh,∇φh,vh,∇φh; sh, sh) + α‖c‖ (nh,∇φh,vh,∇φh; sh, sh)

(37)

which follow from the (multi-)linearity and symmetry of c⊥, c‖.

3.4. Total Discrete Energy

The discrete formulation is as follows. Define the admissible set Ah := Uh(φh,0) ×
Kh(gh, rh) and find (φh, sh,nh) ∈ Ah such that the following energy is minimized:

Eh(φh, sh,nh) = WerkE
h
erk(sh,nh) +WbulkE

h
bulk(sh) + (Wac + 2Wanch)Eh

dw(φh) +WacE
h
gr(φh)

+Wanch

[
Eh

anch,n(φh, sh,nh) + Eh
anch,s(φh, sh)

]
.

(38)
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4. Energy Minimization Scheme

We minimize the discrete energy Eh(φh, sh,nh) by an alternating direction method, i.e.
we take gradient descent steps with respect to nh, then with respect to sh, and then finally
with respect to φh. This procedure is iterated until numerical convergence is reached. To
this end, we introduce a “step-size” δt > 0 that is used when decreasing the energy in each
direction.

Remark 4. Gamma-convergence of the discrete Ericksen energy Eh
erk(sh,nh) → Eerk(s,n)

has been analyzed in [44, 46]. In addition, the Gamma-convergence for a phase-field Cahn-
Hilliard/Ericksen model was proved in [41]. The Gamma-convergence of the coupled Allen-
Cahn/Ericksen model considered here essentially follows from the same arguments as in [41],
and is not repeated here.

We emphasize that Γ-convergence does not provide a rate of convergence. In fact, it only
implies convergence of minimizing sequences up to subsequences, unless the limiting problem
has a unique minimizer. In general, we do not expect the functional E(φ, s,n) in (16) to
have a unique minimizer. In this case, the Γ-convergence result only says that a sequence of
global discrete minimizers of (38) will converge to a global minimizer of (16).

4.1. Decrease With Respect to Director

The director n is updated along the tangent space. Thus, we introduce a “tangent space”
variation of Uh in (18):

U⊥h (nh) = {vh ∈ Uh : vh(xi) · nh(xi) = 0, for all nodes xi ∈ Nh}, (39)

which preserves the unit length constraint to first order. With this, given (skh,n
k
h) in

Kh(gh, rh), φkh in Sh, we find tkh ∈ U⊥h (nkh) ∩H1
Γn

(Ω) such that

ρ
(
tkh,vh

)
= −Werkδnh

Eh
erk(skh,n

k
h + tkh;vh)−Wanchδnh

Eh
anch,n(φkh, s

k
h,n

k
h + tkh;vh),

or

ρ
(
tkh,vh

)
= −Werke

(
skh, s

k
h;n

k
h + tkh,vh

)
−Wanchε

[
α⊥c⊥

(
nkh + tkh,∇φkh,vh,∇φkh; skh, skh

)
+ α‖c‖

(
nkh + tkh,∇φkh,vh,∇φkh; skh, skh

) ]
,

(40)

for all vh ∈ U⊥h (nkh) ∩H1
Γn

(Ω), where ρ > 0 is a damping factor. Using standard techniques,
[44, 46], one can show this decreases the total energy, i.e. Eh(φkh, skh,nkh+tkh) ≤ Eh(φkh, skh, tkh).

Next, we apply a simple, node-wise, projection to enforce the unit length constraint, i.e.

nk+1
h (xi) :=

nkh(xi) + tkh(xi)

|nkh(xi) + tkh(xi)|
at all nodes xi ∈ Nh. (41)

This step also decreases the total energy [61, 62, 44, 46], i.e.

Eh(φkh, skh,nk+1
h ) ≤ Eh(φkh, skh,nkh + tkh).

10



4.2. Decrease With Respect to Degree-of-Orientation

The degree-of-orientation is updated with a standard gradient flow step. Given (skh,n
k+1
h )

in Kh(gh, rh), φkh in Sh, we find sk+1
h in Sh(Γs, gh) such that(

sk+1
h − skh
δt

, zh

)
= −WerkδshE

h
erk(sk+1

h ,nk+1
h ; zh)−WbulkδshE

h
bulk(sk+1

h ; zh)

−Wanch

[
δshE

h
anch,n(φkh, s

k+1
h ,nk+1

h ; zh) + δshE
h
anch,s(φ

k
h, s

k+1
h ; zh)

]
,

or (
sk+1
h − skh
δt

, zh

)
= −Werk

[
2κa

(
sk+1
h , zh

)
+ e

(
sk+1
h , zh;n

k+1
h ,nk+1

h

)]
−Wbulk

([
ω′c(s

k+1
h )− ω′e(skh)

]
, zh
)

−Wanchε
[
α⊥c⊥

(
nk+1
h ,∇φkh,nk+1

h ,∇φkh; sk+1
h , zh

)
+ α‖c‖

(
nk+1
h ,∇φkh,nk+1

h ,∇φkh; sk+1
h , zh

) ]
−Wanchε

(
|∇φkh|2(sk+1

h − s∗), zh
)
,

(42)

for all zh ∈ Sh ∩ H1
Γs

(Ω). Again, this step decreases the energy: Eh(φkh, sk+1
h ,nk+1

h ) ≤
Eh(φkh, skh,nk+1

h ) [44, 46].

4.3. Decrease With Respect to Phase

The phase is updated with a standard gradient flow step, with a constraint imposed by
a Lagrange multiplier to enforce volume conservation (recall (29)). Given (sk+1

h ,nk+1
h ) in

Kh(gh, rh), φkh in Uh(φh,0), we find φk+1
h in Uh(φh,0), and λk+1 in R, such that(

φk+1
h − φkh
δt

, ψh

)
=
λk+1

δt
(1, ψh)−WacδφhE

h
gr(φ

k+1
h ;ψh)− (Wac + 2Wanch)δφhE

h
dw(φk+1

h ;ψh)

−WanchδφhE
h
anch,n(φk+1

h , sk+1
h ,nk+1

h ;ψh)−WanchδφhE
h
anch,s(φ

k+1
h , sk+1

h ;ψh),

1

δt

(
φk+1
h − φh,0, 1

)
= 0,

or (
φk+1
h − φkh
δt

, ψh

)
=
λk+1

δt
(1, ψh)−Wacεa

(
φk+1
h , ψh

)
− (Wac + 2Wanch)

ε

([
f ′c(φ

k+1
h )− f ′e(φkh)

]
, ψh
)

−Wanchε
[
α⊥c⊥

(
nk+1
h ,∇φk+1

h ,nk+1
h ,∇ψh; sk+1

h , sk+1
h

)
+ α‖c‖

(
nk+1
h ,∇φk+1

h ,nk+1
h ,∇ψh; sk+1

h , sk+1
h

) ]
−Wanchε

(
(sk+1
h − s∗)2∇φk+1

h ,∇ψh
)
,

1

δt

(
φk+1
h − φh,0, 1

)
= 0,

(43)

11



for all ψh ∈ Sh.
The saddle-point system (43) can be eliminated by a priori solving for λk+1. Choosing

ψh = 1 reduces (43) to

λk+1

δt
= Cλf

′
c(1)

(
φk+1
h , 1

)
− Cλ

(
f ′e(φ

k
h), 1

)
, Cλ :=

(Wac + 2Wanch)

ε|Ω|
, (44)

where we used that
(
φk+1
h − φkh, 1

)
= 0. Plugging (44) into (43) yields the following varia-

tional problem: given (sk+1
h ,nk+1

h ) in Kh(gh, rh), φkh in Uh(φh,0), we find φk+1
h in Uh(φh,0) such

that(
φk+1
h − φkh
δt

, ψh

)
= Cλf

′
c(1) (1, ψh)

(
φk+1
h , 1

)
− Cλ

(
f ′e(φ

k
h), 1

)
(1, ψh)

−Wacεa
(
φk+1
h , ψh

)
− (Wac + 2Wanch)

ε

([
f ′c(φ

k+1
h )− f ′e(φkh)

]
, ψh
)

−Wanchε
[
α⊥c⊥

(
nk+1
h ,∇φk+1

h ,nk+1
h ,∇ψh; sk+1

h , sk+1
h

)
+ α‖c‖

(
nk+1
h ,∇φk+1

h ,nk+1
h ,∇ψh; sk+1

h , sk+1
h

) ]
−Wanchε

(
(sk+1
h − s∗)2∇φk+1

h ,∇ψh
)
,

(45)

for all ψh ∈ Sh. The solution φk+1
h decreases the energy by standard arguments similar

to those in [44, 46]. In order to handle the “outer-product” term in solving (45), e.g.
(1, ψh)

(
φk+1
h , 1

)
, we used the Sherman-Morrison method.

Remark 5. Using a Lagrange multiplier to enforce global mass conservation is convenient
because it eliminates the need to solve a modified Cahn-Hilliard system (which is fourth or-
der), which also gives global mass conservation. For the purposes of investigating equilibrium
phenomena (as done in this paper), this is sufficient. However, in the context of coarsening
dynamics [38, 39], using Allen-Cahn with a Lagrange multiplier or Cahn-Hilliard leads to
different dynamics.

4.4. Energy Decrease

During each iteration of our algorithm, the three steps in Sections 4.1, 4.2, and 4.3
are solved sequentially in a Gauss-Seidel type of approach. Each step is derived from a
gradient flow step with respect to one of the variables, followed by applying a semi-implicit
“time”-discretization. This has the advantage of removing any time-step restriction while
guaranteeing that each step monotonically decreases the energy. Thus, the entire scheme is
monotone energy decreasing and so is robust, i.e. the numerical scheme will always produce a
(local) minimizer, regardless of the time-step. Of course, in principle, the choice of time-step
can affect the minimizer found but we did not experience this.

Other optimization techniques are possible, such as non-linear conjugate gradient or
quasi-newton methods [63]. However, one may need to sacrifice robustness when using a
faster method.
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4.5. Implementation

The resultant algorithm is as follows. Given (φkh, s
k
h,n

k
h), we solve (in sequence) (40), (41)

to obtain nk+1
h , followed by (42) to get sk+1

h , and then (45) to get φk+1
h . We implemented

our method using the MATLAB/C++ finite element toolbox FELICITY [64, 65]. For all
3-D simulations, we used the algebraic multi-grid solver (AGMG) [66, 67, 68, 69] to solve all
linear elliptic systems.

5. Numerical Experiments

We present the results of several simulations that demonstrate the capabilities and lim-
itations of the model. We start with two examples illustrating the effects of homeotropic
and planar anchoring, followed by an example of the formation of a lens. Finally, we present
the results of two simulations originally intended to produce the Saturn-ring defects. The
domain Ω in all cases is a unit cube, and all simulations were run on a 100× 100× 100 mesh
with ε = 0.03, Werk = 1, Wbulk = 100, Wac = 1, Wanch = 20, and κ = 1.

5.1. Expelling a Defect From a Droplet

We simulate a point defect moving to its equilibrium position from inside a droplet with
planar anchoring. For this simulation we set α‖ = 0, α⊥ = 1, and we start with a point
defect at the center of an ellipsoidal droplet in one corner of the domain. The exact initial
conditions are

s = s∗ = 0.7,

n(x, y, z) =
(x, y, z)− (0.351, 0.32, 0.35)

|(x, y, z)− (0.351, 0.32, 0.35)|
,

φ(x, y, z) =

{
1 (x−0.351)2

0.222
+ (y−0.32)2

0.162
+ (z−0.35)2

0.182
< 1

−1 elsewhere on Ω
.

The boundary conditions for s are the same as the initial conditions for s. The boundary
conditions for n specify a point defect near the upper right-hand corner of the domain:

n(x, y, z) =
(x, y, z)− (0.75, 0.75, 0.75)

|(x, y, z)− (0.75, 0.75, 0.75)|
.

The simulation was run with δt = .05 for 700 time steps, after which the system essentially
attained equilibrium.

The evolution of the droplet is shown in Figure 1, and several views of the final state
of the system are shown in Figure 2. Since planar anchoring is favored by the droplet,
having a point defect inside the droplet is not energetically favorable. Hence, the point
defect inside the droplet is expelled and obtains an equilibrium position essentially dictated
by the boundary conditions for n. The droplet changes shape to best accommodate planar
anchoring on the interface. Since the droplet’s boundary is a closed surface, this causes two
“corners” to develop. The main “axis” of the droplet is basically aligned with the director
field n.
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Figure 1: Evolution of the droplet over a period of 700 time steps (Section 5.1). The blue arrows represent
the director field, and the green region is the droplet (represented by the φ = 0 iso-contour). The red “dot”
is the s = 0.3 iso-contour, which represents the point defect.
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Figure 2: Three views of the final state of the system (Section 5.1). Figures 2a and 2b show the entire system
from the top and side, respectively. Figure 2c shows the director field (blue arrows) at the surface of the
droplet (green). The red “dot” is the s = 0.3 iso-contour, which represents the point defect. The minimum
value of s at the final time step was 0.12.

14



5.2. Moving a Droplet via Boundary Conditions

We repeat the previous simulation with homeotropic anchoring, i.e. we let α‖ = 1 and
α⊥ = 0. The initial and boundary conditions are the same as in the previous section. This
simulation was run for 8000 time steps with δt = 0.05.

The evolution of the droplet is shown in Figure 3, and the final state of the system is
shown in Figure 4. In this case, homeotropic anchoring prevents the defect from escaping the
droplet for the following reason. Homeotropic anchoring prefers n to be normal to the surface
of the droplet. Since the droplet is close to spherical, and a point defect has n pointing in a
radial fashion, it is energetically favorable for the defect to stay inside the droplet near its
center. Note that if Wanch were much smaller, then this may not necessarily be the case.

Therefore, the droplet (and internal defect) move toward the upper corner in order to
accommodate the (outer) boundary conditions for n. Thus, one can position a droplet
through appropriate boundary conditions.
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Figure 3: Evolution of the droplet over 8000 time steps (Section 5.2). Format is the same as Figure 1.
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Figure 4: Three views of the final state of the system (Section 5.2). Figures 4a and 4b show the entire system
from top and side, respectively. Figure 4c shows the director field at the surface of the droplet. In this case,
the director field is perpendicular to the droplet surface in the equilibrium state. The minimum value of s
at the final time step was 0.10.

5.3. Forming a Lens

The boundary conditions for n can significantly affect the droplet shape, as this example
shows. For this simulation, we set α‖ = 1, α⊥ = 0, and we start with a point defect inside a
LC droplet of radius 0.2. The exact initial conditions are

s = s∗ = 0.7,

n(x, y, z) =
(x, y, z)− (0.5, 0.5, 0.5)

|(x, y, z)− (0.5, 0.5, 0.5)|
,

φ(x, y, z) =

{
1 (x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 = 0.22

−1 otherwise
.

The boundary conditions for s are the same as the initial conditions for s. The boundary
conditions for the director are simply n = (0, 0, 1). We ran this simulation for 400 time steps
with δt = 0.2.

The choice of boundary conditions for n and homeotropic anchoring on the droplet causes
a “frustration” in the director field, which immediately induces a point defect below the
droplet (in addition to the point defect inside the droplet). As the gradient flow proceeds,
the two point defects move together which acts to further deform the droplet. Eventually,
the external point defect enters the droplet and coalesces with the point defect in the center
of the droplet (annihilating both defects), and helps to reduce the elastic energy Eerk. This
is shown in Figures 5 and 6.

5.4. Breakup of “Saturn Ring”: Homeotropic Anchoring

A well-known phenomenon in liquid crystals is the so-called Saturn ring defect [70, 71].
The physical setting for its occurrence is to have a rigid inclusion (e.g. a spherical particle in
the LC domain) on which strong homeotropic boundary conditions are imposed. The outer
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(a) Time Step 0 (b) Time Step 133

(c) Time Step 266 (d) Time Step 400

Figure 5: A spherical droplet becoming a lens (Section 5.3). Four two-dimensional slices are shown at various
time steps (droplet interface in green). The red circles correspond to the s = 0.3 iso-contour.fig:up_boundary

boundary conditions are vertical for the director. The result (at equilibrium) is for a line of
defect to occur on a circular curve that “orbits” the equator of the particle.

In this example, we investigate how weak anchoring and a deformable droplet affects the
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(a) Time Step 133 (b) Time Step 400

Figure 6: Three dimensional view of lens droplet (Section 5.3). The final droplet shape is an ellipsoidal disk
with a “corner” on the lateral side. No defects are present.

LC defect structure. Using the same constants as in Section 5.3, we initialized a point defect
at (0.5, 0.5, 0.5) and a LC droplet centered at the same point with a radius of 0.2. The exact
initial conditions are

s = s∗ = 0.7,

n(x, y, z) =
(x, y, z)− (0.5, 0.5, 0.5)

|(x, y, z)− (0.5, 0.5, 0.5)|
,

φ(x, y, z) =

{
1 (x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 = 0.22

−1 otherwise
.

The boundary conditions for s are the same as the initial conditions for s. The boundary
conditions for the director are to have n pointing inwards along the sides of the domain Ω,
with a smooth transition to up and down at the top and the bottom of Ω; this is done to
avoid having a defect on the outer boundary of the LC domain. We ran this simulation for
900 time steps with δt = 0.2.

However, the Saturn ring does not form (see Figures 7 and 8). Instead, the ring appears
to “breakup” into eight point defects, which slowly coalesce and disappear, with only one
point defect remaining. As for the shape of the droplet, the homeotropic anchoring interacts
with the single point defect, creating a wedge like shape. The corners (or edges) of the
wedge are penalized by the Allen-Cahn energy Eac, which results in the slightly rounded
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wedge (similar to the rounded corners in the previous examples).
In [46], they were able to simulate the Saturn ring when a rigid colloidal particle is

included. In their case, weak anchoring (similar to (12), (13)) was also used, but the penalty
parameter was more than a factor of 10 higher than our Wanch. Hence, one can interpret the
results in [46] as being for a rigid sphere with (effectively) strong homeotropic anchoring.
In order to approximate this setting with our method, we would need to increase Wanch for
“stronger” weak anchoring and increase Wac by an even larger amount to force the droplet to
stay close to spherical. In addition, we would need to decrease ε to maintain phase separation
in our phase-field model, which would require a much smaller mesh spacing. Unfortunately,
this is outside the abilities of our current code implementation.

5.5. Breakup of “Saturn Ring”: Planar Anchoring

We ran the same set of conditions as in Section 5.4, except planar anchoring is used (i.e.
α‖ = 0, α⊥ = 1). Again, we used 900 time steps with δt = 0.2.

Again, the Saturn ring does not form (see Figures 9 and 10). The simulation quickly
acquires a single point defect. The shape of the droplet is drastically affected. Planar
anchoring and the single point defect create a triangular wedge shape (compared to Section
5.4). Moreover, the point defect is along an edge of the droplet, instead of at a corner point.
As in Section 5.4, the corners (or edges) of the wedge are penalized by the Allen-Cahn energy
Eac, which results in a slightly rounded wedge.

6. Conclusions

We introduced an Allen-Cahn phase field/Ericksen model and finite element scheme for
two-phase nematic LC droplets. We used a gradient flow method to explore gradient flow
dynamics for finding energy minimizers. We presented several numerical examples of how
LC droplet shapes interact with defects and boundary conditions. Specifically, we showed
that droplets can be moved and reshaped by choosing appropriate boundary conditions.
Furthermore, droplets can develop faceting and corners or edges. The Saturn ring breakup
phenomena suggests some interesting stability questions regarding defects and droplets. For
example, how stable is the Saturn ring defect with respect to surface tension forces and
anchoring penalty?

This work can be extended to include more general liquid crystal energies, and/or electro-
static effects, or even flexo-electric effects. The method could be used compute optimal
shapes of LC droplets, e.g. tactoids [33], nematic droplets on fibers [32], and nematic shells
[72]. Another interesting application is to couple Maxwell’s equations to the liquid crystal
system as a way to model micro lasers based on LC droplets [18].
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