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Abstract—Models produced by machine-learning (ML) algo-
rithms, especially deep neural networks, are being used in
diverse domains where trustworthiness is a concern. The field
of adversarial machine learning investigates the generation of
inputs, termed adversarial examples, that cause the ML model
to produce incorrect output. However, most existing approaches
to generating adversarial examples and devising robust ML
algorithms mostly ignore the semantics and context of the overall
system containing the ML component. In addition, one may want
to prioritize the search for adversarial examples towards those
that significantly modify the desired semantics of the overall
system. Along the same lines, existing algorithms for constructing
robust ML algorithms ignore the specification of the overall
system. Such considerations are particularly relevant in resource-
constrained environments. In this paper, we present the paradigm
of semantic adversarial machine learning, in which the semantics
and specification of the overall system has a crucial role to play
in this line of research. We present preliminary research results,
and discuss directions for future work.

I. INTRODUCTION

Machine learning (ML) algorithms, fueled by massive
amounts of data, are increasingly being utilized in several
domains, including healthcare, finance, and transportation.
Models produced by ML algorithms, especially deep neural
networks (DNNs), are being deployed in domains where trust-
worthiness is a big concern, such as automotive systems [1],
finance [2], health care [3], and cyber-security [4]. Of par-
ticular concern is the use of ML (including deep learning)
in cyber-physical systems (CPS) [5], such as autonomous
vehicles, where the presence of an adversary can cause serious
consequences. However, in designing and deploying these
algorithms in critical cyber-physical systems, the presence of
an active adversary is often ignored.

Adversarial machine learning (AML) [6] is a field concerned
with the analysis of ML algorithms to adversarial attacks,
and the use of such analysis in making ML algorithms
robust to attacks. It is part of a broader agenda for safe
and verified ML-based systems (see, e.g., [7]). The major
focus has been on test-time adversarial attacks, in which
adversarial examples, inputs crafted by adding small, often
imperceptible, perturbations to existing data, force a trained
ML model to misclassify. In this paper, we contend that the
work on adversarial ML, while important and useful, is not
enough. In particular, we advocate for the increased use of
semantics in adversarial analysis and design of ML algorithms.
Semantic adversarial learning explores a space of semantic
modifications to the data, uses system-level semantic specifica-
tions in the analysis, utilizes semantic adversarial examples in
training, and produces not just output labels but also additional
semantic information. Focusing on deep learning, we explore
these ideas and provide initial experimental data to support
them. Although the focus of much of our paper is on deep

neural networks, the idea of semantic adversarial learning is
applicable to a broad class of machine learning systems.

Semantic adversarial machine learning can be particularly
relevant for developing robust ML models and ML-based
systems in resource-constrained environments. A semantic ap-
proach can show that traditional (e.g., “pixel-level”) adversar-
ial robustness is not necessary when those adversarial inputs do
not lead to system-level failures. By focusing efforts to make
the ML model robust to only those adversarial inputs that are
semantically meaningful and have system-level implications,
a semantic adversarial approach makes more efficient use of
resources that can be especially valuable in applications in
embedded systems and Internet-of-Things (IoT) devices.

We begin in Section II with some relevant background, and
then present our proposal for semantic adversarial learning in
Section III. Some directions for future work are skeched in
Section IV. An earlier version of this paper appeared at CAV
2018 [8].

II. BACKGROUND

Background on Machine Learning

We describe some general concepts in machine learning
(ML). We will consider the supervised learning setting. Con-
sider a sample space Z of the form X × Y , and an ordered
training set S = ((xi, yi))

m
i=1 (xi is the data and yi is

the corresponding label). Let H be a hypothesis space (e.g.,
weights corresponding to a logistic-regression model or a
neural network model). There is a loss function ` : H×Z 7→ R
so that given a hypothesis w ∈ H and a sample (x, y) ∈ Z,
we obtain a loss `(w, (x, y)). We consider the case where we
want to minimize the loss over the training set S,

LS(w) =
1

m

m∑
i=1

`(w, (xi, yi)) + λR(w).

In the equation given above, λ > 0 and the term R(w) is
called the regularizer and enforces “simplicity” in w. Since
S is fixed, we sometimes denote `i(w) = `(w, (xi, yi)) as a
function only of w. We wish to find a w that minimizes the
loss LS(w) or, in other words, we wish to solve the following
optimization problem:

min
w∈H

LS(w)

Example: We will consider the example of logistic regression.
In this case X = Rn, Y = {+1,−1}, H = Rn, and the loss
function `(w, (x, y)) is as follows (· represents the dot product
of two vectors):

log
(

1 + e−y(wT ·x)
)
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If we use the L2 regularizer (i.e. R(w) =‖ w ‖2), then LS(w)
becomes:

1

m

m∑
i=1

log
(

1 + e−yi(w
T ·xi)

)
+ λ ‖ w ‖2

Classifiers. We focus on ML models that are classifiers, which
are functions from Rn to C, where R denotes the set of reals
and C is the set of class labels. To emphasize that a classifier
depends on a hypothesis w ∈ H , which is the output of the
learning algorithm described earlier, we will write it as Fw (if
w is clear from the context, we will sometimes simply write
F ). For example, after training in the case of logistic regression
we obtain a function from Rn to {−1,+1}. Vectors will be
denoted in boldface, and the r-th component of a vector x is
denoted by x[r].

Throughout the paper, we refer to the function s(Fw) as the
softmax layer corresponding to the classifier Fw. In the case of
logistic regression, s(Fw)(x) is the following tuple (the first
element is the probability of −1 and the second one is the
probability of +1):

〈 1

1 + ewT ·x ,
1

1 + e−wT ·x 〉

Formally, let c = | C | and Fw be a classifier, we let s(Fw) be
the function that maps Rn to Rc

+ such that ‖s(Fw)(x)‖1 =
1 for any x (i.e., s(Fw) computes a probability vector). We
denote s(Fw)(x)[l] to be the probability of s(Fw)(x) at label
l. Recall that the softmax function from Rk to a probability
distribution over {1, · · · , k} = [k] such that the probability
of j ∈ [k] for a vector x ∈ Rk is

ex[j]∑k
r=1 e

x[r]

Some classifiers Fw(x) are of the form
arg maxl s(Fw)(x)[l] (i.e., the classifier Fw outputs the
label with the maximum probability according to the
“softmax layer”). For example, in several deep-neural
network (DNN) architectures the last layer is the softmax
layer. We are assuming that the reader is a familiar with
basics of deep-neural networks (DNNs). For readers not
familiar with DNNs we can refer to the excellent book by
Goodfellow, Bengio, and Courville [9].

Background on Logic

Temporal logics are commonly used for specifying desired
and undesired properties of systems. For cyber-physical sys-
tems, it is common to use temporal logics that can spec-
ify properties of real-valued signals over real time, such as
signal temporal logic (STL) [10] or metric temporal logic
(MTL) [11].

A signal is a function s : D → S, with D ⊆ R≥0 an interval
and either S ⊆ B or S ⊆ R, where B = {>,⊥} and R is the
set of reals. Signals defined on B are called Booleans, while
those on R are said real-valued. A trace w = {s1, . . . , sn} is a
finite set of real-valued signals defined over the same interval
D. We use variable xi to denote the value of a real-valued
signal at a particular time instant.

Let Σ = {σ1, . . . , σk} be a finite set of predicates σi :
Rn → B, with σi ≡ pi(x1, . . . , xn) C 0, C ∈ {<,≤}, and
pi : Rn → R a function in the variables x1, . . . , xn. An STL
formula is defined by the following grammar:

ϕ := σ | ¬ϕ |ϕ ∧ ϕ |ϕ UI ϕ (1)

where σ ∈ Σ is a predicate and I ⊂ R≥0 is a closed non-
singular interval. Other common temporal operators can be
defined as syntactic abbreviations in the usual way, like for
instance ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2), FI ϕ := > UI ϕ, or
GI ϕ := ¬FI ¬ϕ. Given a t ∈ R≥0, a shifted interval I is
defined as t+I = {t+ t′ | t′ ∈ I}. Let w be a trace, t ∈ R≥0,
and ϕ be an STL formula. The qualitative (Boolean) semantics
of ϕ is inductively defined as follows:

w, t |= σ iff σ(w(t)) is true
w, t |= ¬ϕ iff w, t 6|= ϕ

w, t |= ϕ1 ∧ ϕ2 iff w, t |= ϕ1 and w, t |= ϕ2

w, t |= ϕ1UIϕ2 iff ∃t′ ∈ t+ I s.t. w, t′ |= ϕ2 and
∀t′′ ∈ [t, t′], w, t′′ |= ϕ1

(2)

A trace w satisfies a formula ϕ if and only if w, 0 |= ϕ, in short
w |= ϕ. STL also admits a quantitative or robust semantics,
which we omit for brevity. This provides quantitative infor-
mation on the formula, telling how strongly the specification
is satisfied or violated for a given trace.

Adversarial Robustness

The field of adversarial machine learning has grown rapidly
in recent years, and a full survey is beyond the scope of this
paper; we refer the reader to other papers on the topic [6], [8].
Instead, in this section, we present a general formulation of
adversarial robustness [12] to test-time attacks that captures
all the formulations in the literature that we are aware of.

In such adversarial attacks, the adversary starts with a given
example x ∈ X and pertubs it so as to produce “wrong”
output. Formally, let X̃ ⊆ X be a set of allowed perturbed
inputs, µ : X×X → R≥0 be a quantitative function (such as a
distance, risk, or divergence function), D : (X×X)×R→ B
be a constraint defined over µ, A : X × X × R → B be a
target behavior constraint, and α, β ∈ R be parameters. Then
the problem of finding a set of inputs that falsifies the ML
model can be cast as a decision problem as follows

Definition 1. Given x ∈ X , find x∗ ∈ X such that the
following constraints hold:

1) Admissibility Constraint: x∗ ∈ X̃;
2) Distance Constraint: D(µ(x, x∗), α), and
3) Target Behavior Constraint: A(x, x∗, β).

The Admissibility Constraint (1) ensures that the adver-
sarial input x∗ belongs to the space of admissible perturbed
inputs. The Distance Constraint (2) constrains x∗ to be no
more distant from x than α. Finally, the Target Behavior
Constraint (3) captures the target behavior of the adversary as
a predicate A(x, x∗, β) which is true iff the adversary changes
the behavior of the ML model by at least β modifying x to x∗.
If the three constraints hold, then we say that the ML model
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has failed for input x. We note that this is a so-called “local”
robustness property for a specific input x, as opposed to other
notions of “global” robustness to changes to a population of
inputs (see [8], [13]).

Typically, the problem of finding an adversarial example x∗

for a model f at a given input x ∈ X as formulated above, is
formulated as an optimization problem in one of two ways:
• Minimizing perturbation: find the closest x∗ that alters
f ’s prediction. This can be encoded in constraint (2) as
µ(x, x∗) ≤ α;

• Maximizing the loss: find x∗ which maximizes false
classification. This can be encoded in the constraint (3)
as L(f(x), f(x∗)) ≥ β.

Definition 2. The optimization version of Definition 1 is to
find an input x∗ such that either x∗ = argminx∗∈X α or x∗ =
argmaxx∗∈X β, subject to the constraints in Definition 1.

We refer the reader to [12] for a description of how the
variants of adversarial robustness published in the literature
can all be captured by the definitions above.

III. SEMANTIC ADVERSARIAL ANALYSIS AND TRAINING

A central tenet of this paper is that the analysis of deep
neural networks (and machine learning components, in gen-
eral) must be more semantic. In particular, we advocate for
the increased use of semantics in several aspects of adversarial
analysis and training, including the following:
• Semantic Modification Space: Recall that the goal of ad-

versarial attacks is to modify an input vector x with an
adversarial modification δ so as to achieve a target misclas-
sification. Such modifications typically do not incorporate
the application-level semantics or the context within which
the neural network is deployed. We argue that it is essential
to incorporate more application-level, contextual semantics
into the modification space. Such semantic modifications
correspond to modifications that may arise more naturally
within the context of the target application. For example, for
a DNN used for perception in an autonomous vehicle, the
semantic space would be the 3-dimensional scene around
the vehicle, including the location and characteristics of
vehicles and other agents. We view this approach not as
ignoring arbitrary modifications (which are indeed worth
considering with a security mind set), but as prioritizing the
design and analysis of DNNs towards semantic adversarial
modifications. Sec. III-A discusses this point in more detail.

• System-Level Specifications: The goal of much of the work
in adversarial attacks has been to generate misclassifica-
tions. However, not all misclassifications are made equal.
We contend that it is important to find misclassifications that
lead to violations of desired properties of the system within
which the DNN is used. Therefore, one must identify such
system-level specifications and devise analysis methods to
verify whether an erroneous behavior of the DNN compo-
nent can lead to the violation of a system-level specification.
System-level counterexamples can be valuable aids to repair
and re-design machine learning models. See Sec. III-A for
a more detailed discussion of this point.

Controller Plant

Environment

Learning‐Based Perception

Sensor Input

Fig. 1. Automatic Emergency Braking System (AEBS) in closed loop. An
image classifier based on deep neural networks is used to perceive objects in
the ego vehicle’s frame of view.

• Semantic Loss Functions for Training: Most machine learn-
ing models are trained with the main goal of reducing
misclassifications as measured by a suitably crafted loss
function. We contend that it is also important to train the
model to avoid undesirable behaviors at the system level.
For this, we advocate using methods for semantic training,
where a semantic loss function is used that incorporates
semantic properties including system-level specifications
and confidence levels in the training process. Sec. III-B
explores a few ideas along these lines.

• Semantic Data Set Augmentation: An important way to (re-
)design ML models is to augment the data set with carefully
generated or selected data so as to improve the depend-
ability of the model without losing much accuracy on the
original data set. We advocate for the use of data generated
via semantic adversarial analysis for such augmentation.
In particular, counterexample-guided data augmentation, in
which counterexamples generated via semantic adversarial
analysis are utilized for training and testing, shows a great
deal of promise in improving ML models. We present some
ideas and results in Sec. III-B.

A. Compositional Falsification

We discuss the problem of performing system-level analysis
of a deep learning component, using recent work by the
authors [14], [15] to illustrate the main points. The material
in this section is mainly based on [16].

We begin with some basic notation. Let S denote the model
of the full system under verification, E denote a model of its
environment, and Φ denote the specification to be verified.
C is an ML model (e.g. DNN) that is part of S. Let x be
an input to C. We assume that Φ is a trace property – a set
of behaviors of the closed system obtained by composing S
with E, denoted S‖E. The goal of falsification is to find
one or more counterexamples showing how the composite
system S‖E violates Φ. In this context, semantic analysis
of C is about finding a modification δ from a space of
semantic modifications ∆ such that C, on x+ δ, produces
a misclassification that causes S‖E to violate Φ.

1) Example Problem: As an illustrative example, consider
a simple model of an Automatic Emergency Braking System
(AEBS), that attempts to detect objects in front of a vehicle
and actuate the brakes when needed to avert a collision.
Figure 1 shows the AEBS as a system composed of a controller
(automatic braking), a plant (vehicle sub-system under control,
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System‐Level
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(projected) UROU
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Correct / Incorrect (+ counterexamples)

Fig. 2. Compositional Verification Approach. A system-level verifier cooper-
ates with a component-level analysis procedure (e.g., adversarial analysis of
a machine learning component to find misclassifications).

including transmission), and an advanced sensor (camera along
with an obstacle detector based on deep learning). The AEBS,
when combined with the vehicle’s environment, forms a closed
loop control system. The controller regulates the acceleration
and braking of the plant using the velocity of the subject
(ego) vehicle and the distance between it and an obstacle.
The sensor used to detect the obstacle includes a camera
along with an image classifier based on DNNs. In general,
this sensor can provide noisy measurements due to incorrect
image classifications which in turn can affect the correctness
of the overall system.

Suppose we want to verify whether the distance between
the ego vehicle and a preceding obstacle is always larger
than 2 meters. In STL, this requirement Φ can be written
as G0,T (‖xego − xobs‖2 ≥ 2). Such verification requires the
exploration of a very large input space comprising of the
control inputs (e.g., acceleration and braking pedal angles) and
the machine learning (ML) component’s feature space (e.g.,
all the possible pictures observable by the camera). The latter
space is particularly large — for example, note that the feature
space of RGB images of dimension 1000×600px (for an image
classifier) contains 2561000×600×3 elements.

This case study has been implemented in Matlab/Simulink1

in two versions that use two different Convolutional Neural
Networks (CNNs): the Caffe [17] version of AlexNet [18]
and the Inception-v3 model created with Tensorflow [19], both
trained on the ImageNet database [20]. Further details about
this example can be obtained from [14].

2) Approach: A key idea in our approach is to have a
system-level verifier that abstracts away the component C
while verifying Φ on the resulting abstraction. This system-
level verifier communicates with a component-level analyzer
that searches for semantic modifications δ to the input x of C
that could lead to violations of the system-level specification
Φ. Figure 2 illustrates this approach.

We formalize this approach while trying to emphasize the
intuition. Let T denote the set of all possible traces of the
composition of the system with its environment, S‖E. Given
a specification Φ, let TΦ denote the set of traces in T satisfying
Φ. Let UΦ denote the projection of these traces onto the state
and interface variables of the environment E. UΦ is termed as
the validity domain of Φ, i.e., the set of environment behaviors
for which Φ is satisfied. Similarly, the complement set U¬Φ

is the set of environment behaviors for which Φ is violated.

1https://github.com/dreossi/analyzeNN

Our approach works as follows:

1) The System-level Verifier initially performs two analyses
with two extreme abstractions of the ML component.
First, it performs an optimistic analysis, wherein the ML
component is assumed to be a “perfect classifier”, i.e., all
feature vectors are correctly classified. In situations where
ML is used for perception/sensing, this abstraction as-
sumes perfect perception/sensing. Using this abstraction,
we compute the validity domain for this abstract model of
the system, denoted U+

Φ . Next, it performs a pessimistic
analysis where the ML component is abstracted by a
“completely-wrong classifier”, i.e., all feature vectors are
misclassified. Denote the resulting validity domain as
U−Φ . It is expected that U+

Φ ⊇ U
−
Φ .

Abstraction permits the System-level Verifier to operate
on a lower-dimensional search space and identify a region
in this space that may be affected by the malfunctioning
of component C — a so-called “region of uncertainty”
(ROU). This region, UC

ROU is computed as U+
Φ \ U

−
Φ .

In other words, it comprises all environment behaviors
that could lead to a system-level failure when component
C malfunctions. This region UC

ROU , projected onto the
inputs of C, is communicated to the ML Analyzer.
(Concretely, in the context of our example of Sec. III-A1,
this corresponds to finding a subspace of images that
corresponds to UC

ROU .)
2) The Component-level Analyzer, also termed as a Machine

Learning (ML) Analyzer, performs a detailed analysis
of the projected ROU UC

ROU . A key aspect of the ML
analyzer is to explore the semantic modification space
efficiently. Several options are available for such an anal-
ysis, including the various adversarial analysis techniques
surveyed earlier (applied to the semantic space), as well
as systematic sampling methods [14]. Even though a
component-level formal specification may not be avail-
able, each of these adversarial analyses has an implicit
notion of “misclassification.” We will refer to these as
component-level errors. The working of the ML analyzer
from [14] is shown in Fig. 3.

3) When the Component-level (ML) Analyzer finds
component-level errors (e.g., those that trigger misclas-
sifications of inputs whose labels are easily inferred), it
communicates that information back to the System-level
Verifier, which checks whether the ML misclassification
can lead to a violation of the system-level property Φ. If
yes, we have found a system-level counterexample. If no
component-level errors are found, and the system-level
verification can prove the absence of counterexamples,
then it can conclude that Φ is satisfied. Otherwise, if the
ML misclassification cannot be extended to a system-
level counterexample, the ROU is updated and the revised
ROU passed back to the Component-level Analyzer.

The communication between the System-level Verifier and
the Component-level (ML) Analyzer continues thus, until we
either prove/disprove Φ, or we run out of resources.

3) Sample Results: We have applied the above approach to
the problem of compositional falsification of cyber-physical

https://github.com/dreossi/analyzeNN
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Fig. 3. Machine Learning Analyzer: Searching the Semantic Modification Space. A concrete semantic modification space (top left) is mapped into a
discrete abstract space. Systematic sampling, using low-discrepancy methods, yields points in the abstract space. These points are concretized
and the NN is evaluated on them to ascertain if they are correctly or wrongly classified. The misclassifications are fed back for system-level
analysis.

systems (CPS) with machine learning components [14]. For
this class of CPS, including those with highly non-linear
dynamics and even black-box components, simulation-based
falsification of temporal logic properties is an approach that
has proven effective in industrial practice (e.g., [21], [22]).
We present here a sample of results on the AEBS example
from [14], referring the reader to more detailed descriptions
in the other papers on the topic [14], [15].

In Figure 4 we show one result of our analysis for the
Inception-v3 deep neural network. This figure shows both
correctly classified and misclassified images on a range of
synthesized images where (i) the environment vehicle is moved
away from or towards the ego vehicle (along z-axis), (ii)
it is moved sideways along the road (along x-axis), or (iii)
the brightness of the image is modified. These modifications
constitute the 3 axes of the figure. Our approach finds misclas-
sifications that do not lead to system-level property violations
and also misclassifications that do lead to such violations. For
example, Figure 4 shows two misclassified images, one with
an environment vehicle that is too far away to be a safety
hazard, as well as another image showing an environment
vehicle driving slightly on the wrong side of the road, which
is close enough to potentially cause a violation of the system-
level safety property (of maintaining a safe distance from the
ego vehicle).

For further details about this and other results with our

Misclassifications

Corner case
Image  

Potential hazard (system‐
level safety violation)

Misclassification not of concern

Fig. 4. Misclassified Images for Inception-v3 Neural Network (trained on
ImageNet with TensorFlow). Red crosses are misclassified images and green
circles are correctly classified. Our system-level analysis finds a corner-case
image that could lead to a system-level safety violation.

approach, we refer the reader to [14], [15].

B. Semantic Training

In this section we discuss two ideas for semantic training
and retraining of deep neural networks. We first discuss
the use of hinge loss as a way of incorporating confidence
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Fig. 5. CNN architecture.

levels into the training process. Next, we discuss how system-
level counterexamples and associated misclassifications can
be used in the retraining process to both improve the ac-
curacy of ML models and also to gain more assurance in
the overall system containing the ML component. A more
detailed study of using misclassifications (ML component-
level counterexamples) to improve the accuracy of the neural
network, termed counterexample-guided data augmentation, is
presented in [23].

1) Experimental Setup: As in the preceding section, we
consider an Automatic Emergency Braking System (AEBS)
using a DNN-based object detector. However, in these ex-
periments we use an AEBS deployed within Udacity’s self-
driving car simulator, as reported in our previous work [15].2

We modified the Udacity simulator to focus exclusively on
braking. In our case studies, the car follows some predefined
way-points, while accelerating and braking are controlled by
the AEBS connected to a convolutional neural network (CNN).
In particular, whenever the CNN detects an obstacle in the
images provided by the onboard camera, the AEBS triggers
a braking action that slows the vehicle down and avoids the
collision against the obstacle.

We designed and implemented a CNN to predict the pres-
ence of a cow on the road. Given an image taken by the
onboard camera, the CNN classifies the picture in either “cow”
or “not cow” category. The CNN architecture is shown in
Fig. 5. It consists of eight layers: the first six are alternations
of convolutions and max-pools with ReLU activations, the last
two are a fully connected layer and a softmax that outputs the
network prediction (confidence level for each label).

We generated a data set of 1000 road images with and
without cows. We split the data set into 80% training and 20%
validation data. Our model was implemented and trained using
the Tensorflow library with cross-entropy cost function and the
Adam algorithm optimizer (learning rate 10−4). The model
reached 95% accuracy on the test set. Finally, the resulting
CNN is connected to the Unity simulator via Socket.IO
protocol.3 Fig. 6 depicts a screenshot of the simulator with
the AEBS in action in proximity of a cow.

2) Hinge Loss: In this section, we investigate the relation-
ship between multiclass hinge loss functions and adversarial
examples. Hinge loss is defined as follows:

l(ŷ) = max(0, k + max
i6=l

(ŷi)− ŷl) (3)

2Udacity’s self-driving car simulator: https://github.com/udacity/
self-driving-car-sim

3Socket.IO protocol: https://github.com/socketio

Fig. 6. Udacity simulator with a CNN-based AEBS in action.

Toriginal Tcountex

k acc log-loss acc log-loss
0 0.69 0.68 0.11 0.70

- 0.01 0.77 0.69 0.00 0.70
-0.05 0.52 0.70 0.67 0.69
-0.1 0.50 0.70 0.89 0.68
-0.25 0.51 0.70 0.77 0.68

TABLE I
HINGE LOSS WITH DIFFERENT k VALUES.

where (x, y) is a training sample, ŷ = F (x) is a prediction,
and l is the ground truth label of x. For this section, the output
ŷ is a numerical value indicating the confidence level of the
network for each class. For example, ŷ can be the output of a
softmax layer as described in Sec. II.

Consider what happens as we vary k. Suppose there is an
i 6= l s.t. ŷi > ŷl. Pick the largest such i, call it i∗. For
k = 0, we will incur a loss of ŷi∗ − ŷl for the example
(x, y). However, as we make k more negative, we increase
the tolerance for “misclassifications” produced by the DNN
F . Specifically, we incur no penalty for a misclassification
as long as the associated confidence level deviates from that
of the ground truth label by no more than |k|. Larger the
absolute value of k, the greater the tolerance. Intuitively, this
biases the training process towards avoiding “high confidence
misclassifications”.

In this experiment, we investigate the role of k and explore
different parameter values. At training time, we want to
minimize the mean hinge loss across all training samples. We
trained the CNN described above with different values of k
and evaluated its precision on both the original test set and a
set of counterexamples generated for the original model, i.e.,
the network trained with cross-entropy loss.

Table I reports accuracy and log loss for different values
of k on both original and counterexamples test sets (Toriginal
and Tcountex, respectively).

Table I shows interesting results. We note that a negative k
increases the accuracy of the model on counterexamples. In
other words, biasing the training process by penalizing high-
confidence misclassifications improves accuracy on counterex-
amples! However, the price to pay is a reduction of accuracy
on the original test set. This is still a preliminary result and
further experimentation and analysis is necessary.

3) System-Level Counterexamples: Counterexample-guided
data augmentation [23] is a technique for augmenting an
existing data set with carefully chosen semantic adversarial

https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://github.com/socketio
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Fig. 7. Semantic counterexamples: obstacle configurations leading to property
violations (in red).

examples that produce incorrect output at the ML component
level. In this work, we show that a combination of semantic
modifications and analysis of the generated counterexamples
can improve the accuracy of a state-of-the-art DNN for object
detection and classification in autonomous vehicles by around
10% over the original accuracy and in comparison with
other state-of-the-art augmentation methods. The question we
consider in this paper is: can we use such an approach at the
system level to completely eliminate counterexamples?

By using the composition falsification framework presented
in Sec. III-A, we identify orientations, displacements on the
x-axis, and color of an obstacle that leads to a collision of the
vehicle with the obstacle. Figure 7 depicts configurations of
the obstacle that lead to specification violations, and hence, to
collisions.

In an experiment, we augment the original training set with
the elements of Tcountex, i.e., images of the original test set
Toriginal that are misclassified by the original model (see
Sec. III-B2).

We trained the model with both cross-entropy and hinge
loss for 20 epochs. Both models achieve a high accuracy
on the validation set (≈ 92%). However, when plugged into
the AEBS, neither of these models prevents the vehicle from
colliding against the obstacle with an adversarial configuration.
This seems to indicate that simply retraining with some se-
mantic (system-level) counterexamples generated by analyzing
the system containing the ML model may not be sufficient to
eliminate all semantic counterexamples.

Interestingly, though, it appears that in both cases the impact
of the vehicle with the obstacle happens at a slower speed
than the one with the original model. In other words, the
AEBS system starts detecting the obstacle earlier than with
the original model, and therefore starts braking earlier as
well. This means that despite the specification violations,
the counterexample retraining procedure seems to help with
limiting the damage in case of a collision. Coupled with a
run-time assurance framework (see [24]), semantic retraining
could help mitigate the impact of misclassifications on the
system-level behavior.

IV. CONCLUSION

In this paper, we introduced the idea of semantic adver-
sarial machine (deep) learning, where adversarial analysis
and training of ML models is performed using the semantics
and context of the overall system within which the ML
models are utilized. We identified several ideas for integrating
semantics into adversarial learning, including using a semantic
modification space, system-level formal specifications, and
semantic training using counterexamples and more semantic
loss functions. Initial results not only show the promise of
these ideas, but also indicate that much remains to be done.
We outline below some of the interesting directions for further
research; see [7] for more details.
Programmatic Modeling of the Semantic Feature Space: High-
dimensional semantic feature spaces require more structured
representations. A promising approach is to design domain-
specific programming languages to represent the semantic
feature space in a way that is easy to understand, modify,
and use to guide semantic adversarial learning. In particular,
probabilistic programming languages such as Scenic [25]
provide this capability while also permitting a way to repre-
sent distributional assumptions and enable tasks such as data
generation, inference, and verification.
Efficient Algorithms to Search Semantic Space: In addition
to devising suitable representations of the semantic space is
devised, we need efficient algorithms to search the resulting
high-dimensional space. The VerifAI toolkit [26] is an initial
step to develop such algorithmic methods for the design and
analysis of AI/ML-based systems. Another promising direction
is the combination of “standard” adversarial machine learning
methods with differentiable renderers/simulators (e.g., [27]).
Formal Specification for Machine Learning and Deep Learn-
ing: An important direction is to develop formalisms to
capture properties of the ML model and the ML-based system
that enable semantic adversarial analysis. While some initial
progress has been made in this regard [13], [12], much more
remains to be done.
Exploring Trade-Offs between Semantic Robustness and
Resource-Efficient Implementation: As discussed in Sec. I,
a semantic approach can help make an ML model robust
in a resource-efficient manner. In fact, evidence from past
work on error-resilient system design (e.g., [28]) suggests that
using semantic/system-level specifications can enable targeting
scarce resources to exactly those components that need to be
made robust. This offers a fruitful direction for further research
on robust ML implementations.

In summary, the field of semantic adversarial learning
promises to be a rich domain for research at the intersection
of machine learning, formal methods, design automation,
programming languages, and related areas.
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