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Abstract— An automated determination of Laguerre-Gaussian 
(LG) modes benefits cavity tuning and optical communication. In 
this paper, we employ machine learning techniques to 
automatically detect the lowest sixteen LG modes of a laser beam. 
Convolutional neural networks (CNN) are trained by collecting 
the experimental and simulated datasets of LG modes that relies 
only on the intensity images of their unique patterns. We 
demonstrate that the trained CNN model can detect LG modes 
with the maximum accuracy greater than 96% after 60 epochs. 
The study evaluates the CNN’s ability to generalize to new data 
and adapt to experimental conditions.

Keywords—Convolutional neural networks, Laguerre-Gaussian 
modes, cavity tuning, optical communication

I. INTRODUCTION

Laser beam profiling is necessary for most laser applications 
ranging from optical communications [1] to atomic physics [2].
Orbital angular momentum (OAM) beams allow for increased 
channel capacity in free-space optical communication. 
However, Laguerre-Gaussian (LG) modes are prone to mode 
loss and mode cross-talk [3, 4]. Therefore, identifying the mode 
information using the scale factors such as centroid and radius 
of a beam profile captured by a CCD or CMOS camera is 
challenging [5]. Recently, convolutional neural networks
(CNNs) [6] and transfer learning approach [7] have been shown 
to remarkably improve the automated image interpretation with 
near human accuracy [8]. The technique has recently been 
applied to the related task of detecting OAM modes [9] with 
accuracies far better than those of the conjugate-mode sorting 
method [10]. Hofer et al. [11] used a CNN to accurately 
determine the Hermite-Gaussian (HG) mode of a laser beam. 
Lohani et al. [1] demonstrated the ability of deep neural 
networks to classify LG modes when the training and test 
datasets are generated using computer simulation.

In this paper, we employ a CNN to automatically classify the 
LG modes based on only the intensity profile of their unique 
patterns obtained using two experimental setups and simulated 
data. The intensity profile of the detected modes allows for 
considerable simplification of current measurement schemes 
and potentially results in lower error rates than the scale factors 
techniques. The substantial amount of labeled simulation and 
experimental datasets were generated for the training, 
validation, and testing in order to strengthen the CNN’s ability 
to generalize and adapt to experimental conditions. Gaussian 
noise, Poisson noise, speckle noise, and camera blur are added 
to the simulated images in MATLAB to replicate imperfections 
of real experimental conditions. In order to train the CNN 
architecture for interpreting and classifying the LG modes, we 
re-train the Inception-v3 [12] model of the TensorFlow platform 
[13], Google’s deep learning open source software. We 
demonstrate that the trained CNN model using the theoretical 
and experimental datasets can generalize to new data with the 
maximum accuracy of >96% after 60 epochs. However, the 
CNN model trained by the simulated images cannot effectively
adapt to the experimental data, so that its accuracy is evaluated
to be ~70% and ~50% for the first and second experiments, 
respectively.

The paper is organized as follows: Section II presents the 
theoretical framework of LG modes, and two experimental 
setups that are used to collect the training datasets, followed by 
a discussion of training procedure for a CNN model in Section
III. In Section IV, we detail our results and assess the strengths 
and limits of the CNN model for automated identification of LG 
modes. Finally, Section IV summarizes our conclusions and the 
potential future directions of the work.
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II. DATA COLLECTION OF LG MODES

A.Collecting Theoretical dataset
Gaussian-beam modes are the solutions of the free-space 

Maxwell’s equations within the paraxial approximation called 
Laguerre-Gaussian (LG) modes in cylindrical coordinates and 
Hermite-Gaussian (HG) modes in Cartesian coordinates. The 
LG modes can be calculated by the theoretical expression below 
[14],

    (1)

where r, φ and z are cylindrical coordinates; l and p are the 
azimuthal and radial indices, which are integers; p>0; 

2 ! ( )!LG
lpC p l p is a normalization constant; l

pL is the 
associated Laguerre polynomial; λ is the wavelength; k =2π/λ is 
the wave number; 2

0( ) 1 ( )Rz z z is the beam waist; 0

is the beam waist at the beam focus; 2
0Rz is the Rayleigh 

range; 2( ) [1 ( ) ]RR z z z z is the radius of curvature; 
( ) arctan( )Rz z z is the Gouy phase. Equation (1) is used to 

generate theoretical images dataset of the first 16 LG modes (l 
and p vary from 0 to 3)  for training the CNN model.

B.Collecting Experiemntal Dataset
The experimental data is generated using two experimental 

setups as follows:

1) First Experimental Setup
Figure 1 shows our first experimental setup that generates 

LG modes. The laser beam with  the wavelength of 633 nm is 
coupled to a single mode fiber (SMF) before being collimated 
with the 5cm lens which helps us to clean the beam to a gaussian 
beam. The collimated gaussian beam hits the SLM (spatial light 
modulator) where desired LG modes are encoded 
holographically. The SLM is programmable and the projected 
light to the mask or hologram can be controlled through a
computer program. The reflected beam from SLM contains 
many diffraction orders. We set our parameters such that the first 
diffraction order is bright enough to be used for the experiment. 
An iris placed at the Fourier plane acts as a filter to select the 
desired diffraction order. The beam profile thus selected is 
collimated with the final 25cm lens. A CCD camera at image 
plane records the intensity profiles of desired LG modes.

2) Second Experimental Setup

The second experimental setup for LG modes generation is 
depicted in Fig. 2. We use 795 nm laser that is coupled into a 
single-mode fiber and propagates through a telescope formed by 
two lenses to increase the size of the laser beam and illuminate 
as much SLM area as possible. The beam is pass through iris for 
additional mode cleaning, and then the wave plate and 
polarization beam splitter combo are used for controlling the 
light power, as well as for making sure the light polarization is

Fig.1. First experimental setup for generating arbitrary LG beams.

Fig.2. Second experimental setup for generating arbitrary LG beams.

correct at the SLM. The edge mirror reflects beam to SLM, and 
then a regular mirror picks up the reflected beam. The 
combination of three lenses after SLM is to focus the beam at 
the iris that cleans up any higher diffraction orders, shrink the 
beam back to small size and focus it on camera. In the second 
experimental setup, the light travels through more optical 
elements and lenses and thereby the quality of mode is lower
than the first experimental setup. As such, this experiment data 
will diversify the training data with more spatial dislocation and 
non-uniform intensity in LG modes.

III. MACHINE LEARNING METHOD

A Convolutional Neural Networks within a deep learning 
framework uses multilayer convolution to extract features and 
combine the features automatically as shown in Fig. 3. The CNN 
extracts spatial features that are then passed to aggregation 
layers (averaging, pooling, etc.) and additional layers of filters 
for extracting higher-order features (patterns) that are combined 
at the top layer for LG mode interpretation and classification as 
shown in Fig.3. During the training steps, all the weights were
obtained using forward- and backward- propagations through 
the CNN architecture.

We employ the CNN architecture and retrain the Inception-
v3 [12] model of the TensorFlow platform [13], Google’s deep 
learning open source software, in interpreting and classifying the 
LG modes. TensorFlow has the advantages of high availability, 
high flexibility, and high efficiency. Transfer learning extracts 
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existing knowledge learned from one environment to solve the 
other new problems such that the pretrained CNNs takes the 
advantage of training with a lower amount of data for the new 
problem and significantly shortened the training time. The 
labeled datasets were generated for training CNNs including a 
simulated dataset using Eq.(1) and an experimental dataset using 
the setups of a spatial light modulator (SLM) and beam profiler.  
To examine the CNN’s ability to generalize to new data, two 
transforms were used during training.  In the first transform, the 
training data is only selected from theory dataset whereas the 
second transform includes both theory and experiment datasets 
to increase the diversity of the CNN’s training data.

The maximum amplitude of simulated modes is scaled to the 
experimental data by adjusting the contrast and beam waist at 
the beam focus. Gaussian noise, Poisson noise, speckle noise, 
and camera blur are also added to the simulated mode images to 
replicate imperfections of real experimental scenario. The 
standard deviations of the noises are randomly changed with a 
standard deviation of σ = 0.02. The training, validation, and test 
datasets consist of 200, 40, and 40 JPEG images (300×300 
pixels) respectively for each of the LG modes, where p and l
ranging from 0 to 3. For the optimization algorithm, we used 
stochastic gradient descent (SGD) with image batch size of 16 
and learning rate equal to 0.01.

IV. RESULT AND DISCUSSION

Figure 4 shows the training and validation accuracy versus 
epoch (number of times the entire dataset is passed through the 
CNN) for two training datasets of only simulated images and 
both simulated and experimental images. It can be observed that 
training the CNN model with theory dataset reaches the 
maximum accuracy of 100% after 7 epochs while training with 
the second dataset that includes both theory and experiment 
images needs 33 epochs to reach the same maximum accuracy 
due to the diversity of the images. Similarly, the validation 
accuracy of 100% is achieved after 58 and 350 epochs for the 
two training datasets, one consisting of only the simulated 
images and the other containing both the simulated and 
experimental images, respectively. The inset table in Fig. 4 
shows the accuracy of the CNN model on 10% test images of 
datasets at 6, 60, and 350 epochs. A maximum accuracy of 92% 
and 81.7% are achieved after 6 epochs on the simulated dataset 
and both simulated and experimental dataset, respectively. The 
values reach to 99.2% and 96.3% after 60 epochs.

Although the CNNs achieved high accuracy on test set of the 
simulated and experimental datasets, the model trained by the
simulated images cannot fully generalize to experiment data, so 
that its accuracy is evaluated ~70% and ~50% for the first and 
second experimental setups, respectively. Figure 5 shows the 
prediction confidence on two LG modes (l=1, p=3 and l=1, 
p=1) obtained from the first experimental setup. For the CNN 
model that trained using the simulated images and tested on 
experiment data (dark red and dark blue), the LG mode of l=1, 
p=3 is correctly predicted in left graph with about 5 percent 
margin, however the LG mode of l=1, p=1 is incorrectly 
predicted as l=1, p=2 in the right graph. These prediction 
confidences are increased to 97% and 99% for the LG modes of 
l=1, p=3 and l=1, p=1, respectively, when the CNN models are 
trained using the both simulated and experiment data.

Fig.3. Training dataset of first 16 LG modes (l and p vary from 0 to 3) 
are passed to the CNN model that extracts spatial features using 
aggregation layers (averaging, pooling, etc.) and additional filter layers 
that are eventually combined at the top layer to predict and classify the 
new image of LG mode.

Fig.4. Training and validation accuracies versus epoch for two CNN 
models that are trained using the datasets of only simulated images 
(solid lines) and both simulated and experimental images (dashed 
lines). Inset table depicts the accuracy of the CNN models on 10% test 
images of the datasets at 6, 60, and 350 epochs.

Figure 6 shows the prediction confidence on two LG modes 
(l=0, p=1 and l=3, p=1) obtained from the second experimental 
setup. For the CNN model that trained using the simulated 
images and tested on experiment data (dark red and dark blue in 
left graph), the LG mode of l=0, p=1 is correctly predicted with 
the confidence of 88% and margin of ~85% from second and 
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Fig. 5. Prediction confidence on two LG modes: (a) l=1, p=3 and (b) 
l=1, p=1 that are obtained from the first experimental setup. The dark 
red and dark blue indicate the results of the CNN models trained using 
the simulated images while the light red and light blue indicate the 
results of the CNN models trained using both the simulated and 
experiment images.

Fig. 6. Prediction confidence on two LG modes: (a) l=0, p=1 and (b) 
l=3, p=1 that are obtained from the second experimental setup. The 
dark red and dark blue indicate the results of the CNN models trained 
using the simulated images while the light red and light blue indicate 
the results of the CNN models trained using both the simulated and 
experiment images.

third possible mode (l=0, p=2). In the right graph, however, the 
LG mode of l=3, p=1 is incorrectly predicted as l=3, p=2 with 
prediction confidence of 38%. These prediction confidences are 
increased to 98.7% when the CNN model is trained using both 
the simulated and experimental data.

V. SUMMARY AND CONCLUSION

We have demonstrated that a convolution neural network 
can be used to automatically detect and classify the lowest 
sixteen unique Laguerre-Gaussian modes of a laser cavity. To 
effectively train the CNN, we prepared a large dataset consisting
of both simulated and experimental images for each LG mode. 
The classification accuracy of 100% is achieved for the training
dataset consisting of both simulated and experiment images of 
LG modes. However, the CNN trained only using the simulated 
data reaches to ~70% and ~50% accuracies for the first and 

second experimental setups respectively. The difference is 
mainly due to the degree of imperfections like spatial dislocation 
and non-uniform illumination present in the experimental 
images of beam profiles.

The trained CNN model can be used to automatically detect 
LG modes in optical communications or tune the LG mode 
output of a laser cavity. This paper is only an initial exploration 
of this technique and further work needs to be done in pre-
processing the theoretical data to comply with experimental
data. This work contributes to determining the image data from 
the superpositions of various of OAM in a multiplexed beam 
without explicitly demultiplexing the beam with optics. An 
automated technique for demultiplexing of Hermite-Gaussian 
(HG) and Laguerre-Gaussian (LG) modes can enhance the 
information capacity of optical communication systems.

REFERENCES

[1] S. Lohani, E. M. Knutson, M. O’Donnell, S. D. Huver, and R. T. Glasser, 
"On the use of deep neural networks in optical communications," Applied 
optics, vol. 57, no. 15, pp. 4180-4190, 2018.

[2] M. Clifford, J. Arlt, J. Courtial, and K. Dholakia, "High-order Laguerre–
Gaussian laser modes for studies of cold atoms," Optics Communications, 
vol. 156, no. 4-6, pp. 300-306, 1998.

[3] B. Ndagano, N. Mphuthi, G. Milione, and A. Forbes, "Comparing mode-
crosstalk and mode-dependent loss of laterally displaced orbital angular 
momentum and Hermite–Gaussian modes for free-space optical 
communication," Optics letters, vol. 42, no. 20, pp. 4175-4178, 2017.

[4] M. A. Cox, L. Maqondo, R. Kara, G. Milione, L. Cheng, and A. Forbes, 
"The resilience of Hermite-and Laguerre-Gaussian modes in turbulence," 
Journal of Lightwave Technology, vol. 37, no. 16, pp. 3911-17, 2019.

[5] L. R. Hofer, R. V. Dragone, and A. D. MacGregor, "Scale factor 
correction for Gaussian beam truncation in second moment beam radius 
measurements," Optical Engineering, vol. 56, no. 4, p. 043110, 2017.

[6] S. Hoo-Chang et al., "Deep convolutional neural networks for computer-
aided detection: CNN architectures, dataset characteristics and transfer 
learning," IEEE transactions on medical imaging, vol. 35, no. 5, p. 1285, 
2016.

[7] A. Quattoni, M. Collins, and T. Darrell, "Transfer learning for image 
classification with sparse prototype representations," Proceedings of the 
IEEE conference on computer vision and pattern recognition (CVPR) 
2008, pp. 1-8.

[8] Y. Taigman, M. Yang, M. A. Ranzato, and L. Wolf, "Deepface: Closing 
the gap to human-level performance in face verification," Proceedings of 
the IEEE conference on computer vision and pattern recognition (CVPR),
2014, pp. 1701-1708.

[9] T. Doster and A. T. Watnik, "Machine learning approach to OAM beam 
demultiplexing via convolutional neural networks," Applied optics, vol. 
56, no. 12, pp. 3386-3396, 2017.

[10] G. Gibson et al., "Free-space information transfer using light beams 
carrying orbital angular momentum," Optics express, vol. 12, no. 22, pp. 
5448-5456, 2004.

[11] L. Hofer, L. Jones, J. Goedert, and R. Dragone, "Hermite–Gaussian mode 
detection via convolution neural networks," JOSA A, vol. 36, no. 6, pp. 
936-943, 2019.

[12] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking 
the inception architecture for computer vision," Proceedings of the IEEE 
conference on computer vision and pattern recognition (CVPR), 2016, pp. 
2818-2826.

[13] M. Abadi et al., "Tensorflow: a system for large-scale machine learning," 
Operating Systems Design and Implementation (OSDI), 2016, vol. 16, pp. 
265-283.

[14] A. E. Siegman, "Lasers university science books," Mill Valley, CA, vol. 
37, no. 208, p. 169, 1986.

478

Authorized licensed use limited to: Louisiana State University. Downloaded on May 01,2021 at 22:25:25 UTC from IEEE Xplore.  Restrictions apply. 


