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Abstract— An automated determination of Laguerre-Gaussian In this paper, we employ a CNN to automatically classify the
(LG) modes benefits cavity tuning and optical communication. In LG modes based on only the intensity profile of their unique
this paper, we employ machine learning techniques to  patterns obtained using two experimental setups and simulated
automatically detect the lowest sixteen LG modes of a laser beam. data. The intensity profile of the detected modes allows for
Convolutional neural networks (CNN) are trained by collecting  congiderable simplification of current measurement schemes
the experimental and simulated datasets of LG modes that relies 5,4 potentially results in lower error rates than the scale factors
only on the intensity images of their unique patterns. We . hniques. The substantial amount of labeled simulation and
demonstrate that the trained CNN model can detect LG modes experimental datasets were generated for the training

. . N )
with the maximum accuracy igreat.e}‘ than 96% a‘fter 60 epochs. validation, and testing in order to strengthen the CNN’s ability
The study evaluates the CNNs ability to generalize to new data to generalize and adapt to experimental conditions. Gaussian

d adapt t i tal ditions. . . . . )
an¢ adapt to experimental conditions noise, Poisson noise, speckle noise, and camera blur are added

Keywords— Convolutional neural networks, Laguerre-Gaussian to the simulated images in MATLAB to replicate imperfections

modes, cavity tuning, optical communication of r(_aal experim@ntal co_nditions. In .ortlier to train the CNN
architecture for interpreting and classifying the LG modes, we
I. INTRODUCTION re-train the Inception-v3 [12] model of the TensorFlow platform

[13], Google’s deep learning open source software. We
demonstrate that the trained CNN model using the theoretical
and experimental datasets can generalize to new data with the
maximum accuracy of >96% after 60 epochs. However, the
CNN model trained by the simulated images cannot effectively
adapt to the experimental data, so that its accuracy is evaluated
to be ~70% and ~50% for the first and second experiments,
respectively.

Laser beam profiling is necessary for most laser applications
ranging from optical communications [1] to atomic physics [2].
Orbital angular momentum (OAM) beams allow for increased
channel capacity in free-space optical communication.
However, Laguerre-Gaussian (LG) modes are prone to mode
loss and mode cross-talk [3, 4]. Therefore, identifying the mode
information using the scale factors such as centroid and radius
of a beam profile captured by a CCD or CMOS camera is

challenging [5]. Recently, convolutional neural networks The paper is organized as follows: Section II presents the
(CNNG) [6] and transfer learning approach [7] have been shown  theoretical framework of LG modes, and two experimental
to remarkably improve the automated image interpretation with  setups that are used to collect the training datasets, followed by
near human accuracy [8]. The technique has recently been a discussion of training procedure for a CNN model in Section
applied to the related task of detecting OAM modes [9] with  [II. In Section IV, we detail our results and assess the strengths
accuracies far better than those of the conjugate-mode sorting  and limits of the CNN model for automated identification of LG

method [10]. Hofer er al. [11] used a CNN to accurately  modes. Finally, Section IV summarizes our conclusions and the
determine the Hermite-Gaussian (HG) mode of a laser beam. potential future directions of the work.

Lohani et al. [1] demonstrated the ability of deep neural
networks to classify LG modes when the training and test
datasets are generated using computer simulation.
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II. DATA COLLECTION OF LG MODES

A. Collecting Theoretical dataset

Gaussian-beam modes are the solutions of the free-space
Maxwell’s equations within the paraxial approximation called
Laguerre-Gaussian (LG) modes in cylindrical coordinates and
Hermite-Gaussian (HG) modes in Cartesian coordinates. The
LG modes can be calculated by the theoretical expression below
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where 7, ¢ and z are cylindrical coordinates; / and p are the
azimuthal and radial indices, which are integers; p>O0;

C,° =\2pYz(l|+ p)! is a normalization constant; L‘ﬂ is the
associated Laguerre polynomial; A is the wavelength; k£ =27/ is
the wave number; o(z) = @, ,/1 +(z/z,)* is the beam waist; ,
is the beam waist at the beam focus; z, = 7@, / Ais the Rayleigh
R(2)=z[1+(z/z,)’]
{(z) =arctan(z/z,) is the Gouy phase. Equation (1) is used to

generate theoretical images dataset of the first 16 LG modes (1
and p vary from 0 to 3) for training the CNN model.
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B. Collecting Experiemntal Dataset

The experimental data is generated using two experimental
setups as follows:

1) First Experimental Setup

Figure 1 shows our first experimental setup that generates
LG modes. The laser beam with the wavelength of 633 nm is
coupled to a single mode fiber (SMF) before being collimated
with the Scm lens which helps us to clean the beam to a gaussian
beam. The collimated gaussian beam hits the SLM (spatial light
modulator) where desired LG modes are encoded
holographically. The SLM is programmable and the projected
light to the mask or hologram can be controlled through a
computer program. The reflected beam from SLM contains
many diffraction orders. We set our parameters such that the first
diffraction order is bright enough to be used for the experiment.
An iris placed at the Fourier plane acts as a filter to select the
desired diffraction order. The beam profile thus selected is
collimated with the final 25cm lens. A CCD camera at image
plane records the intensity profiles of desired LG modes.

2) Second Experimental Setup

The second experimental setup for LG modes generation is
depicted in Fig. 2. We use 795 nm laser that is coupled into a
single-mode fiber and propagates through a telescope formed by
two lenses to increase the size of the laser beam and illuminate
as much SLM area as possible. The beam is pass through iris for
additional mode cleaning, and then the wave plate and
polarization beam splitter combo are used for controlling the
light power, as well as for making sure the light polarization is
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Fig.1. First experimental setup for generating arbitrary LG beams.
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Fig.2. Second experimental setup for generatmg arbltrary LG beams.

correct at the SLM. The edge mirror reflects beam to SLM, and
then a regular mirror picks up the reflected beam. The
combination of three lenses after SLM is to focus the beam at
the iris that cleans up any higher diffraction orders, shrink the
beam back to small size and focus it on camera. In the second
experimental setup, the light travels through more optical
elements and lenses and thereby the quality of mode is lower
than the first experimental setup. As such, this experiment data
will diversify the training data with more spatial dislocation and
non-uniform intensity in LG modes.

III. MACHINE LEARNING METHOD

A Convolutional Neural Networks within a deep learning
framework uses multilayer convolution to extract features and
combine the features automatically as shown in Fig. 3. The CNN
extracts spatial features that are then passed to aggregation
layers (averaging, pooling, etc.) and additional layers of filters
for extracting higher-order features (patterns) that are combined
at the top layer for LG mode interpretation and classification as
shown in Fig.3. During the training steps, all the weights were
obtained using forward- and backward- propagations through
the CNN architecture.

We employ the CNN architecture and retrain the Inception-
v3 [12] model of the TensorFlow platform [13], Google’s deep
learning open source software, in interpreting and classifying the
LG modes. TensorFlow has the advantages of high availability,
high flexibility, and high efficiency. Transfer learning extracts

Authorized licensed use limited to: Louisiana State University. Downloaded on May 01,2021 at 22:25:25 UTC from IEEE Xplore. Restrictions apply.



existing knowledge learned from one environment to solve the
other new problems such that the pretrained CNNs takes the
advantage of training with a lower amount of data for the new
problem and significantly shortened the training time. The
labeled datasets were generated for training CNNs including a
simulated dataset using Eq.(1) and an experimental dataset using
the setups of a spatial light modulator (SLM) and beam profiler.
To examine the CNN’s ability to generalize to new data, two
transforms were used during training. In the first transform, the
training data is only selected from theory dataset whereas the
second transform includes both theory and experiment datasets
to increase the diversity of the CNN’s training data.

The maximum amplitude of simulated modes is scaled to the
experimental data by adjusting the contrast and beam waist at
the beam focus. Gaussian noise, Poisson noise, speckle noise,
and camera blur are also added to the simulated mode images to
replicate imperfections of real experimental scenario. The
standard deviations of the noises are randomly changed with a
standard deviation of o = 0.02. The training, validation, and test
datasets consist of 200, 40, and 40 JPEG images (300x300
pixels) respectively for each of the LG modes, where p and /
ranging from O to 3. For the optimization algorithm, we used
stochastic gradient descent (SGD) with image batch size of 16
and learning rate equal to 0.01.

IV. RESULT AND DISCUSSION

Figure 4 shows the training and validation accuracy versus
epoch (number of times the entire dataset is passed through the
CNN) for two training datasets of only simulated images and
both simulated and experimental images. It can be observed that
training the CNN model with theory dataset reaches the
maximum accuracy of 100% after 7 epochs while training with
the second dataset that includes both theory and experiment
images needs 33 epochs to reach the same maximum accuracy
due to the diversity of the images. Similarly, the validation
accuracy of 100% is achieved after 58 and 350 epochs for the
two training datasets, one consisting of only the simulated
images and the other containing both the simulated and
experimental images, respectively. The inset table in Fig. 4
shows the accuracy of the CNN model on 10% test images of
datasets at 6, 60, and 350 epochs. A maximum accuracy of 92%
and 81.7% are achieved after 6 epochs on the simulated dataset
and both simulated and experimental dataset, respectively. The
values reach to 99.2% and 96.3% after 60 epochs.

Although the CNNs achieved high accuracy on test set of the
simulated and experimental datasets, the model trained by the
simulated images cannot fully generalize to experiment data, so
that its accuracy is evaluated ~70% and ~50% for the first and
second experimental setups, respectively. Figure 5 shows the
prediction confidence on two LG modes (/=1, p=3 and /=],
p=1) obtained from the first experimental setup. For the CNN
model that trained using the simulated images and tested on
experiment data (dark red and dark blue), the LG mode of /=1,
p=3 is correctly predicted in left graph with about 5 percent
margin, however the LG mode of /=1, p=I is incorrectly
predicted as /=1, p=2 in the right graph. These prediction
confidences are increased to 97% and 99% for the LG modes of
[=1, p=3 and I=1, p=1, respectively, when the CNN models are
trained using the both simulated and experiment data.
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Fig.3. Training dataset of first 16 LG modes (I and p vary from 0 to 3)
are passed to the CNN model that extracts spatial features using
aggregation layers (averaging, pooling, etc.) and additional filter layers
that are eventually combined at the top layer to predict and classify the
new image of LG mode.
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Fig.4. Training and validation accuracies versus epoch for two CNN
models that are trained using the datasets of only simulated images
(solid lines) and both simulated and experimental images (dashed
lines). Inset table depicts the accuracy of the CNN models on 10% test
images of the datasets at 6, 60, and 350 epochs.

Figure 6 shows the prediction confidence on two LG modes
(=0, p=1 and [=3, p=1I) obtained from the second experimental
setup. For the CNN model that trained using the simulated
images and tested on experiment data (dark red and dark blue in
left graph), the LG mode of /=0, p=1 is correctly predicted with
the confidence of 88% and margin of ~85% from second and

Authorized licensed use limited to: Louisiana State University. Downloaded on May 01,2021 at 22:25:25 UTC from IEEE Xplore. Restrictions apply.



100
@
S Prediction on
80 Training Experimental
Data Data
60 Only Theory [I(CRINETEES
Theory and
Experiment

a~
o

Prediction Conficence (%)
N
o

Experimental

o

p23

—

[N

=] .
=

Q
(5]

13 p33 12 pll p21

Fig. 5. Prediction confidence on two LG modes: (a) /=1, p=3 and (b)
[=1, p=1 that are obtained from the first experimental setup. The dark
red and dark blue indicate the results of the CNN models trained using
the simulated images while the light red and light blue indicate the
results of the CNN models trained using both the simulated and
experiment images.
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Fig. 6. Prediction confidence on two LG modes: (a) /=0, p=1 and (b)
/=3, p=I that are obtained from the second experimental setup. The
dark red and dark blue indicate the results of the CNN models trained
using the simulated images while the light red and light blue indicate
the results of the CNN models trained using both the simulated and
experiment images.

third possible mode (/=0, p=2). In the right graph, however, the
LG mode of /=3, p=1 is incorrectly predicted as /=3, p=2 with
prediction confidence of 38%. These prediction confidences are
increased to 98.7% when the CNN model is trained using both
the simulated and experimental data.

V. SUMMARY AND CONCLUSION

We have demonstrated that a convolution neural network
can be used to automatically detect and classify the lowest
sixteen unique Laguerre-Gaussian modes of a laser cavity. To
effectively train the CNN, we prepared a large dataset consisting
of both simulated and experimental images for each LG mode.
The classification accuracy of 100% is achieved for the training
dataset consisting of both simulated and experiment images of
LG modes. However, the CNN trained only using the simulated
data reaches to ~70% and ~50% accuracies for the first and

478

second experimental setups respectively. The difference is
mainly due to the degree of imperfections like spatial dislocation
and non-uniform illumination present in the experimental
images of beam profiles.

The trained CNN model can be used to automatically detect
LG modes in optical communications or tune the LG mode
output of a laser cavity. This paper is only an initial exploration
of this technique and further work needs to be done in pre-
processing the theoretical data to comply with experimental
data. This work contributes to determining the image data from
the superpositions of various of OAM in a multiplexed beam
without explicitly demultiplexing the beam with optics. An
automated technique for demultiplexing of Hermite-Gaussian
(HG) and Laguerre-Gaussian (LG) modes can enhance the
information capacity of optical communication systems.
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