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ABSTRACT
Data-driven machine learning has become ubiquitous. A market-

place for machine learning models connects data owners and model

buyers, and can dramatically facilitate data-driven machine learn-

ing applications. In this paper, we take a formal data marketplace

perspective and propose the first enD-to-end model marketplace
with differential privacy (Dealer) towards answering the following

questions: How to formulate data owners’ compensation functions
and model buyers’ price functions? How can the broker determine
prices for a set of models to maximize the revenue with arbitrage-free
guarantee, and train a set of models with maximum Shapley coverage
given a manufacturing budget to remain competitive? For the former,

we propose compensation function for each data owner based on

Shapley value and privacy sensitivity, and price function for each

model buyer based on Shapley coverage sensitivity and noise sensi-

tivity. Both privacy sensitivity and noise sensitivity are measured

by the level of differential privacy. For the latter, we formulate two

optimization problems for model pricing and model training, and

propose efficient dynamic programming algorithms. Experiment

results on the real chess dataset and synthetic datasets justify the

design of Dealer and verify the efficiency and effectiveness of the

proposed algorithms.
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1 INTRODUCTION
Machine learning has witnessed great success across various types

of tasks and is being applied in an ever-growing number of in-

dustries and businesses. High usability machine learning models

depend on a large amount of high-quality training data, which
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makes it evident that data is valuable. Recent studies and practices

have approached the commoditization of data in various ways. A

data marketplace sells data either in the direct or indirect (derived)

forms. These data marketplaces can be generally categorized based

on what they sell and their corresponding pricing mechanisms:

1) (raw) data-based pricing, 2) query-based pricing, and 3) model-

based pricing.

Data marketplaces with data-based pricing sell datasets and al-

low buyers to access the data directly, e.g., Dawex [1], Twitter [3],

Bloomberg [4], Iota [5], and SafeGraph [6]. Data owners have lim-

ited or no control over their data usages, whichmakes it challenging

for the market to incentivize more data owners to contribute or re-

sults in a market lacking transparency. Also, it can be overpriced for

buyers to purchase the whole dataset when they are only interested

in particular information extracted from the dataset.

Data marketplaces with query-based pricing [26, 27], e.g., Google

Bigquery [2], partially alleviate these shortcomings by charging

buyers and compensating data owners on a per-query basis. The

marketplace makes decisions about data usage restrictions (e.g.,

return queries with privacy protection [30]), compensation alloca-

tion, and query-based pricing. However, most queries considered

by these marketplaces are too simplistic to support sophisticated

data analytics and decision making.

Datamarketplaceswithmodel-based pricing [8, 14, 23] have been

recently proposed. [14] focuses on pricing a set of model instances

depending on their model quality to maximize the revenue, while

[23] considers how to allocate compensation in a fair way among

data owners when their data are utilized for the model of 𝑘-nearest

neighbors (𝑘-NN). Notably, they focused on either the data owner

or the model buyer end of the marketplace but not both. Most

recently, [8] approaches it in a relatively more complete perspective,

and proposed strategies for the broker to set model usage charge

from model buyers, and to distribute compensation to data owners.

However, [8] oversimplifies the roles of the two end entities, i.e.,

data owners and model buyers. For example, data owners still have

no means to control the way that their data is used, while model

buyers do not have a choice over the quality of the model that best

suits their demands and budgets.

Gaps and Challenges. Though efforts have been made to ensure

the broker follows important market design principles in [8, 14, 23],

how the model marketplace should respond to the needs of both

data owners and model buyers are still understudied. It is therefore

tempting to ask: how can we build an end-to-end marketplace

957

https://doi.org/10.14778/3447689.3447700
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3447689.3447700


dedicated to machine learning models, which can simultaneously

satisfy the needs of all three entities, i.e., data owners, broker, and

model buyers. We summarize the gaps and challenges from the

perspective of each entity as follows.

• Data owners. Under the existing data marketplace solutions [8,

23], data owners receive compensation for their data usages

allocated by the broker. They have no means to set privacy pref-

erences when supplying their data to the broker. The challenge to

be addressed is: How to formulate data owners’ compensation func-
tions based on not only the fair sharing of revenues allocated by the
broker but also the data owners’ requisites on privacy preservation?

• Model buyers. As with the same practice of selling digital com-

modities in several versions, existing work [14] provides a set of

models for sale with different levels of quality. However, their

oversimplified noise injection-based version control quantifies

the model quality via the magnitude of the noise, which does not

directly align with model buyers’ demands on model utility. The

challenge is: How to formulate model buyers’ price functions based
on not only resistance on model noise but also the relative utility
of the model captured by the value of the data used to build the
model?

• Broker. Both data owners’ compensation functions and model

buyers’ price functions should be taken into consideration by the

broker when making market decisions. The challenge is: How
can the broker determine prices for a set of models to maximize the
revenue with arbitrage-free guarantee, and train a set of models
with maximum utility given a manufacturing budget to remain
competitive?

②Model Parameter Setting
⑤Model Pricing & Model Training

Data Owners

Model Buyers (Survey)

Model Buyers

① Data &
Compensation Function

③Model Parameter
(Coverage Rate,
& DP parameter)

④ Target Model & 
Purchasing Budget

(Price Function)

⑦ Target Model 
& Payment

⑨ Compensation

Figure 1: An end-to-end datamarketplace withmodel-based
pricing. Please see Algorithm 8 for a complete pipeline.

Contributions. In this paper, we bridge the above gaps and ad-

dress the identified challenges by proposing an enD-to-end model
marketplace with differential privacy (Dealer).

An illustration is provided in Figure 1, which includes three

entities (i.e., data owners, broker, and model buyers) and their ab-

breviated interactions. From the data owners’ perspective, Dealer
proposes privacy sensitivity of data owners to model their req-

uisites on privacy preservation and uses Shapley value to model

fair sharing of revenues. Each data owner has a unique compensa-

tion function based on both privacy sensitivity and Shapley value

[35]. From the model buyers’ perspective, Dealer proposes Shap-
ley coverage sensitivity and noise sensitivity of model buyers to

model their demands on Shapley coverage and resistance on model

noise. Each model buyer has a unique price function based on both

Shapley coverage sensitivity and noise sensitivity. Both privacy

sensitivity of data owners and noise sensitivity of model buyers

are uniformly measured by the level of differential privacy (DP)

[16, 17]. From the broker’s perspective, Dealer depicts the full mar-

ketplace dynamics through two important functions including: 1)

model pricing with the aim of maximizing revenue and at the same

time following the market design principle of arbitrage-freeness,

which prevents the model buyers from taking advantage of the

marketplace by combining lower-tier models sold for lower prices

into a higher-tier model to escape the designated price for that tier;

and 2)model training with the aim of maximizing Shapley coverage

given a manufacturing budget for each model version to remain

competitive.

We design efficient algorithms for both model pricing and model

training. Our goal in this paper is not to provide a complete solution

for the myriad problems involved in the model marketplace with

differential privacy, but rather to introduce a framework with which

to investigate some of the many questions and potentially open up

a new research direction. We briefly summarize our contributions

as follows.

• We present an end-to-end model marketplace with differential

privacy Dealer, which is the first systematic study that includes

all market participants. Dealer formalizes the abilities and restric-

tions of the three entities, formulates compensation functions

for data owners and price functions for model buyers, and pro-

poses the market decisions taken by the broker by formulating

two optimization problems: revenue maximization problem with

arbitrage-free constraint for model pricing and Shapley coverage

maximization problem for model training.

• For the revenue maximization problem of model pricing, we show

its complexity, discretize the search space, and propose an effi-

cient dynamic programming algorithm. For the Shapley coverage

maximization problem of model training, we show its complex-

ity and propose efficient dynamic programming, greedy, and

guess-based greedy algorithms with approximation guarantees.

• Experiments on the real chess dataset and synthetic datasets are

conducted, which verify the efficiency and effectiveness of the

proposed algorithms for model pricing and model training in

Dealer.
Organization.The rest of the paper is organized as follows. Section
2 presents the related work. Section 3 provides the preliminaries,

including the concept of Shapley value and its computation, ver-

sioning, arbitrage-free definition, and differential privacy related

definitions and properties. We provide an end-to-end model market-

place with differential privacy in Section 4. Efficient algorithms for

the optimization problems in Dealer are presented in Section 5. We

report the experimental results and findings in Section 6. Finally,

Section 7 draws a conclusion and discusses future work.

2 RELATEDWORK
In this section, we discuss related work on compensation allocation

and pricing mechanisms for data markets. For a more detailed

survey, please see [33].

2.1 Compensation Allocation
In data marketplaces, a common way for compensation allocation

is based on the importance of the data contributed by a data owner.

An acquiescent method to evaluate importance of a data point to

a model is leave-one-out (LOO) which compares the difference

between the predictor’s performance when trained on the entire

dataset with and without the data point [11]. However, LOO does
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not satisfy the properties (balance, symmetry, zero element, and

additivity) that we expect for the data valuation [35]. For example,

given a point 𝑝 in a dataset, if there is an exact copy 𝑝 ′ in the dataset,
removing 𝑝 from this datasets does not change the predictor since

𝑝 ′ is still there. Therefore, LOOwill assign zero value to 𝑝 regardless

of how important 𝑝 is, which violates the symmetry property.

Shapley value is a concept in cooperative game theory, which

was named in honor of Lloyd Shapley. In contrast to LOO, Shap-

ley value satisfies several desirable properties including balance,

symmetry, zero element, and additivity [35]. Combined with its

flexibility to support different utility functions, Shapley value has

been extensively employed in the data pricing field [8, 9, 19, 23]

to evaluate the data importance. One major challenge of applying

Shapley value is its prohibitively high computational complexity. A

number of approximation methods [9, 10, 18, 19] have been devel-

oped to overcome the computational hardness of the exact Shapley

value. The most representative method is Monte Carlo method

[10, 18], which is based on the random sampling of permutations.

In this paper, we allow data owners to set personalized compen-

sation functions and the corresponding compensation is not only

dependent on Shapley value but also based on privacy sensitivity.

2.2 Pricing Mechanisms
Envy-free query-based pricing. Ghosh et al. [20] initiated the

study of markets for private data using differential privacy. They

modeled the first framework in which data buyers would like to

buy sensitive information to estimate a population statistic. They

defined a property named envy-free for the first time. Envy-free

ensures that no individual would prefer to switch their payment

and privacy cost with each other. Guruswami et al. [21] studied

the optimization problem of revenue maximization with envy-free

guarantee. They investigated two cases of inputs: unit demand con-

sumers and single minded consumers, and showed the optimization

problem is APX-hard for both cases, which can be efficiently solved

by a logarithmic approximation algorithm. Li et al. [29–31] pre-

sented the first theoretical framework for assigning value to noisy

query answers as function of their accuracy, and for dividing the

revenue among data owners who deserve compensation for their

privacy loss. They defined an enhanced edition of envy-free, which

is named arbitrage-free. Arbitrage-free pricing ensures the data

buyer cannot purchase the desired information at a lower price by

combing two low-price queries.

Arbitrage-free query-based pricing. Lin et al. [32] proposed nec-
essary conditions for avoiding arbitrage and provide new arbitrage-

free pricing functions. They also presented negative results related

to the tension between flexible pricing and arbitrage-free, and il-

lustrated how this tension often results in unreasonable prices.

In addition to arbitrage-free, Koutris et al. [28] proposed another

desirable property for the pricing function, discount-free, which

requires that the prices offer no additional discounts than the ones

specified by the broker. In fact, discount-free is the discrete version

of arbitrage-free. Furthermore, they presented a polynomial time

algorithm for pricing generalized chain queries. Recently, Chawla

et al. [13] investigated three types of succinct pricing functions and

studied the corresponding revenue maximization problems.

Arbitrage-free model-based pricing. Due to the increasing per-

vasiveness ofmachine learning based analytics, there is an emerging

interest in studying the cost of acquiring data for machine learning.

Chen et al. [14] proposed the first and the only existing model-

based pricing framework which directly prices machine learning

model instances with different noises rather than pricing the data.

They formulated an optimization problem to find the arbitrage-free

price that maximizes the revenue of the broker and proved such

optimization problem is coNP-hard. However, 1) their work only

focuses on the interactions between the broker and model buyers

because the market research functionality of data owners can be

completely replaced by the broker; 2) they assume there is only

one (averaged) survey price point for each model, which is over-

simplified; and 3) they do not have an explicit privacy analysis and

guarantee for their proposed Gaussian mechanism that adds noise

to the models.

3 PRELIMINARIES
In this section, we introduce the preliminaries for our later devel-

opment and summarize the frequently used notations in Table 1

for the convenience to readers.

Table 1: The summary of notations.
Notation Definition

𝐷𝑖 the 𝑖𝑡ℎ data owner

𝐵 𝑗 the 𝑗𝑡ℎ model buyer

𝑀𝑘 the 𝑘𝑡ℎ model

U utility function

SV Shapley value

𝒛𝑖 the 𝑖𝑡ℎ date set

𝜖 DP parameter

𝜌𝑖 the privacy sensitivity of 𝐷𝑖

𝜎 𝑗 the utility sensitivity of 𝐵 𝑗

𝛾 𝑗 the noise sensitivity of 𝐵 𝑗

CR coverage rate function

MB manufacturing budget

(𝜖𝑘 , 𝑠𝑝𝑘 [ 𝑗 ]) survey price point

(𝜖𝑘 , 𝑝𝑘 [ 𝑗 ]) complete price point

3.1 Fairness and Shapley Value
Consider 𝑛 data owners 𝐷1, . . . , 𝐷𝑛 such that data owner 𝐷𝑖 owns

data set 𝒛𝑖 (1 ≤ 𝑖 ≤ 𝑛). We assume a utility function U(S)
(S ⊆ {𝒛1, . . . , 𝒛𝑛}) that evaluates the utility of a coalition S, which
consists of datasets from multiple data owners, for a task, such

as training a machine learning model. Shapley [35] lays out the

fundamental requirements of fairness in market, including balance,

symmetry, zero element, and additivity. Specifically, the Shapley

value is a measure that can be used to evaluate data importance for

allocation compensation while satisfying all the requirements. Shap-

ley value measures the marginal utility improvement contributed

by 𝒛𝑖 from data owner 𝐷𝑖 averaged over all possible coalitions of

the data owners.

SV𝑖 =
1

𝑛

∑
S⊆{𝒛1,...,𝒛𝑛 }\𝒛𝑖

U(S ∪ {𝒛𝑖 }) − U(S)(𝑛−1
|S |

) (1)

Computing the exact Shapley value has to enumerate all the sub-

sets and thus is prohibitively expensive. We adopt a commonly used

Monte Carlo simulation method [10, 18] to compute the approxi-

mate Shapley value. We first sample random permutations of data

sets from different data owners, and then scan each permutation

from the first data set to the last one, and calculate the marginal
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Algorithm 1:Monte Carlo Shapley value computation.

input :data sets 𝒛1, . . . , 𝒛𝑛
output :Shapley value SV𝑖 for each data set 𝒛𝑖 (1 ≤ 𝑖 ≤ 𝑛) , and 𝜏 > 0

1 initialize SV𝑖 = 0 (1 ≤ 𝑖 ≤ 𝑛) ;
2 for k=1 to 𝜏 do
3 let 𝜋𝑘 be a random permutation of {1, . . . , 𝑛};
4 for i=1 to n do
5 SV(𝒛

𝜋𝑘 (𝑖 ) ) =
U({𝒛

𝜋𝑘 (1) , . . . , 𝒛𝜋𝑘 (𝑖 ) }) − U({𝒛
𝜋𝑘 (1) , . . . , 𝒛𝜋𝑘 (𝑖−1) }) ;

6 SV
𝜋𝑘 (𝑖 )+ = SV(𝒛

𝜋𝑘 (𝑖 ) ) ;

7 return SV𝑖 , . . . , SV𝑛

contribution of every new data set. By examining a good number

of permutations, the final estimation of Shapley value is simply the

average of all the calculated marginal contributions. This Monte

Carlo simulation gives an unbiased estimate of the Shapley value

given enough number of permutations.

In practical applications, we can conduct Monte Carlo simulation

iteratively until the average has empirically converged, as shown

in Algorithm 1, where 𝜏 is the number of permutations. The larger

the value of 𝜏 , the more accurate the computed Shapley value tends

to be.

Based on the definition and the fair compensation property of

Shapley value, we can easily generalize the Shapley value of one

data set from one data owner to the Shapley value of a coalition of

data sets from multiple owners.

Corollary 3.1. Let S𝐷 ⊆ {𝐷1, . . . , 𝐷𝑛} be a subset of data own-
ers. Then,

SV(S𝐷 ) =
∑

𝑖:𝐷𝑖 ∈S𝐷

SV𝑖

is a Shapley value that can be used for compensation allocation to the
subset of data owners that satisfies all requirements of fairness.

3.2 Versioning
In a perfect world where the broker has infinite resource, the broker

can sell a personalized model to each model buyer at an individual-

ized price to maximize the revenue. However, such personalized

pricing is rarely possible in practical applications. There is a prac-

tical and frequently adopted way, i.e., offering a small number of

different versions of the product, which are designed to attract

different types of buyers. Under this strategy, which is called ver-

sioning [34], buyers segment themselves. A version chosen by a

buyer reveals the value that the buyer places on the data set and the

price the buyer is willing to pay. Following this industry practice, in

our model marketplace, the broker trains 𝑙 different model versions

with different model privacy parameters which are measured by

differential privacy.

3.3 Arbitrage-free Pricing
When multiple versions are available in a market, it is possible to

derive a more expensive version from one or multiple versions with

lower total cost. In such a scenario, arbitrage sneaks in. Arbitrage

complicates interactions between the broker and buyers. Buyers

have to carefully choose versions to achieve the lowest price, while

the broker may not maximize the revenue intended by the released

prices. Therefore, arbitrage-free pricing functions are highly desir-

able. A pricing function is arbitrage-free if it satisfies the following

two properties [14, 31]. It prevents model buyers from taking advan-

tage of the marketplace by combining lower-tier versions sold for

cheaper prices into a higher-tier version to escape the designated

price for that tier.

Property 1. (Monotonicity). Given a function 𝑓 : (R+)𝑛 → R+,
𝑓 is monotone if and only if for any two vectors x, y ∈ (R+)𝑛 , x ≤ y,
𝑓 (x) ≤ 𝑓 (y).

Property 2. (Subadditivity).Given a function 𝑓 : (R+)𝑛 → R+,
𝑓 is subadditive if and only if for any two vectors x, y ∈ (R+)𝑛 ,
𝑓 (x + y) ≤ 𝑓 (x) + 𝑓 (y).

3.4 Differential Privacy
Differential privacy [16, 17] is a formal mathematical framework

rigorously providing privacy protection. To the best of our knowl-

edge, none of the existing model marketplaces adopt or consider

differential privacy.

Definition 3.2. (Differential Privacy) A randomized algorithm A
is (𝜖, 𝛿)-differentially private, if for any pair of datasets S and S′

that differs in one data sample, and for all possible output OUT of

A, the following holds,

P[A(S) ∈ OUT] ≤ 𝑒𝜖P[A(S′) ∈ OUT] + 𝛿, (2)

where the probability is taken over the randomness of A.

In short, this formulation implies that the output of a differen-

tially private algorithm is indistinguishable between two datasets

that differ in one sample. 𝜖 captures the degree of indistinguishabil-

ity, which intuitively can be seen as the upper bound of the privacy

loss for each data sample. The smaller 𝜖 is, the more indistinguish-

able the outputs are, and the less the privacy loss is. The other

parameter 𝛿 captures the probability that the privacy loss is out of

the upper bound. Given a specified 𝜖 , the closer 𝛿 is to 0, the less the

probability of privacy breach is, and the better the algorithm is. In

practice, for a meaningful DP guarantee, the parameters are chosen

as 0 < 𝜖 ≤ 10, 𝛿 ≪ 1

𝑛 , where 𝑛 is the number of data owners [22].

In this paper, the broker will train a set of models with differential

privacy guarantees. According to the robustness of post-processing

of differential privacy, any post-processing of the models by the

model buyers will not incur additional privacy loss. For simplicity,

we use a uniform small value 𝛿 and different 𝜖 for different versions

of models.

Lemma 3.3. (Simple Composition [17]) Considering that there are 𝐽
randomized algorithms and each of them is (𝜖 𝑗 , 𝛿 𝑗 )-differentially pri-
vate for 𝑗 ∈ {1, . . . , 𝐽 }, then sequentially applying these 𝐽 algorithms
satisfies (∑𝐽

𝑗=1
𝜖 𝑗 ,

∑𝐽
𝑗=1

𝛿 𝑗 )-differential privacy.

Lemma 3.3 is essential for DP mechanism design and analysis,

which enables algorithm designers to compose elementary DP oper-

ations into amore sophisticated one. Importantly, wewill show later

that it plays a crucial role inmodel market design as well. Lemma 3.3

suggests that differential privacy is an appropriate mechanism for

versioning models with arbitrage-free pricing. The challenge is how

to ensure the pricing of the versioned models is arbitrage-free.

To train a model satisfying differential privacy, a popular method

is objective perturbation [12], which perturbs the objective function
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Algorithm 2: Objective perturbation for differentially pri-

vate model training.

input :𝒁𝑡𝑟𝑎𝑖𝑛 and (𝜖, 𝛿) .
output :𝒘𝐷𝑃 .

1 Sample 𝑵1 ∼ N(0𝑑 , 𝜎2

1
𝑰𝑑 ) , where 𝜎1 =

20𝐿2 log(1/𝛿 )
𝜖2

and 𝐿 is a 𝐿2-Lipschitz

constant [22];

2 Objective Perturbation: L𝑂𝑃 (𝒘) = L(𝒘;𝒁𝑡𝑟𝑎𝑖𝑛 ) + 𝜆 ∥𝒘 ∥2
2
+ 1

𝑛 ⟨𝑵1,𝒘 ⟩;
3 Optimize L𝑂𝑃 (𝒘) to obtain 𝛼 approximate solution 𝒘̂;

4 Sample 𝑵2 ∼ N(0𝑑 , 𝜎2

2
𝑰𝑑 ) , where 𝜎2 =

40𝛼 log(1/𝛿 )
𝜆𝜖2

;

5 return 𝒘𝐷𝑃 = 𝑝𝑟𝑜 𝑗Ω (𝒘̂ + 𝑵2) ;

of the model by quantified noise. For the perturbed objective, we

adopts gradient descent-based iterative optimization algorithms

to obtain an approximate solution, which is popular in practical

machine learning model training. However, as pointed out in [22],

conventional objective perturbation establishes DP guarantee for

the exact optimum of the perturbed objective function, while the

DP guarantee is unknown for the approximate solution. In order

to allow the broker to utilize the practical iterative training algo-

rithms and still achieve differential privacy, in this paper, we follow

the enhanced objective perturbation called approximate minima
perturbation, which allows solving the perturbed objective up to

𝛼 approximation. It uses a two-phase noise injection strategy that

perturbs both the objective and the approximate output. The idea

is summarized in Algorithm 2. In particular, Line 2 perturbs the

model with calibrated noise 𝑵1, Line 3 optimizes the perturbated

model followed by an output perturbation with noise 𝑵2 in Line 4.

Finally,𝒘𝐷𝑃 is obtained by a projection to the constrained set Ω. As
shown by the next lemma, Algorithm 2 trains an (𝜖, 𝛿)-DP model

based on training dataset 𝒁𝑡𝑟𝑎𝑖𝑛 , which outputs model parameter

𝒘𝐷𝑃 .

Lemma 3.4. (Theorem 1 in [22]) Algorithm 2 is (𝜖, 𝛿)-differentially
private.

In Dealer, the broker will train a series of differentially private

models by invoking Algorithm 2.

4 DEALER: STRUCTURE AND PARTIES
In this section, we propose a model marketplaceDealer. We describe

the structure of Dealer including the parties and their operations

in the marketplace. We first give an overview of Dealer and then

specify the roles and mechanisms in detail.

4.1 Overview
The objective of Dealer is to bridge the supplies from data owners

and the demands from model buyers. We assume one broker who

collects data from multiple data owners, designs and builds models,

and sells the models to multiple model buyers. Data owners, broker,

and model buyers have different concerns and requirements.

Data owners have two concerns. First, they are concerned about

privacy protection. The less privacy protection in models built, the

more compensation data owners ask for. Moreover, data owners

expect fair sharing of revenues from models sold to model buyers.

In Dealer, we propose privacy sensitivity of data owners to model

their requisites on privacy preservation and use Shapley values to

model fair sharing of revenues.

Model buyers are concerned about the utility or accuracy of the

model which is captured by the coverage of the Shapley value of the

data used to build a model and the noise added to achieve privacy

preservation. The more coverage of the data and the less noise

added, the higher the value a model to buyers. InDealer, we propose
Shapley coverage sensitivity and noise sensitivity of model buyers

to model their demands on Shapley coverage and resistance to

noise, respectively. To capture the economic constraints, we assume

that each model buyer has a budget. The broker can accordingly

calculate the Shapley coverage of a given model, which is captured

by the Shapley value of the selected data used to train the model. We

assume that model buyers always buy the cheapest model satisfying

their demands.

The broker defines and builds models using data collected from

data owners and sells the models to model buyers. Without loss of

generality, we assume that the broker is neutral and does not charge

any cost in model building, i.e., the total revenue from model sales

is fully and fairly distributed to data owners. To practice Dealer, the
broker can easily factor in a percentage of total revenue for model

building and other cost, which does not affect our mechanisms. The

objective of the broker is to maximize the total revenue.

To keep our discussion simple, we assume that all parties in

Dealer, including data owners, broker, and model buyers, are honest.

That is, no cheating activities exist in the marketplace. We also

assume the broker is trusted, i.e., it has access to the raw data of the

data owners. Future work may consider settings where the broker

is untrusted by incorporating techniques such as local differential

privacy [36] and federated learning [24].

4.2 Data Owners
We assume 𝑛 data owners 𝐷1, . . . , 𝐷𝑛 . For the sake of clarity, we

overload the symbol 𝐷𝑖 (1 ≤ 𝑖 ≤ 𝑛) to also denote the data owned

by 𝐷𝑖 . Each data owner 𝐷𝑖 (1 ≤ 𝑖 ≤ 𝑛) is willing to share her data

with the broker for compensation. The compensation requested

depends on the data owner’s privacy disclosed through the models

sold by the broker. Moreover, 𝐷𝑖 expects the fair sharing of the

revenues with other data owners based on the utility of the data

contributed.

In this paper, we use 𝜖-differential privacy to quantify possible

user privacy disclosure. Technically, we use a monotonic compen-
sation function 𝑐𝑖 for data owner 𝐷𝑖 to model the data owner’s

requested compensation for a model that uses data 𝐷𝑖 and satisfies

𝜖-differential privacy.
𝑐𝑖 (𝜖) = 𝑏𝑖 · 𝑠𝑖 (𝜖) (3)

where 𝜖 ≥ 0 is the differential privacy parameter, and 𝑏𝑖 is the base

price and should be proportional to the Shapley value of 𝐷𝑖 with

regard to all data sets {𝐷1, . . . , 𝐷𝑛} by other peers contributed to

building models. Function 𝑠𝑖 (𝜖) reflects the user’s belief of privacy
in price. The larger the value of 𝜖 , the less protection provided

by 𝜖-differential privacy, and thus the higher the compensation

requested. In general, any monotonic function with respect to 𝜖

can be used. Notice that factor 𝑒𝜖 in the definition of 𝜖-differential

privacy controls the tolerance of privacy disclosure. The larger the

value of 𝑒𝜖 , the less privacy protection. In this paper, we use the

following function for 𝑠𝑖 (𝜖) in our discussion.

𝑠𝑖 (𝜖) = (𝑒𝜖 )𝜌𝑖 = 𝑒𝜌𝑖 ·𝜖 (4)
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Parameter 𝜌𝑖 ≥ 0 tunes the marginal increase of the user’s price

elasticity of privacy, and is called the user’s privacy sensitivity.
When 0 ≤ 𝜌𝑖 < 1, 𝑠𝑖 (𝜖) grows sub-linearly with respect to 𝑒𝜖 ; when

𝜌𝑖 > 1, the growth is super-linear; and when 𝜌𝑖 = 1, the growth is

the same as 𝑒𝜖 . A very privacy-conservative data owner can have a

super-linear function, which means a higher compensation if her

data is used, but may not get selected for model building because

the broker has limited manufacturing budget.

It is worth noting that in our current formulation, 𝑏𝑖 is based

on the Shapley value of 𝐷𝑖 which is computed based on the model

without any perturbation (corresponding to 𝜖 = ∞). We can show

that the four axioms of Shapley value still hold for 𝑐𝑖 (𝜖) for general 𝜖
values. Alternatively, one can compute Shapley value for eachmodel

trained with different 𝜖-DP. However, this will significantly increase

the computation cost. In addition, it cannot be guaranteed that the

more privacy does a data owner sacrifice, the more compensation

she gets, because the broker cannot control the relationship between

privacy risk and compensation.

4.3 Model Buyers
We assume 𝑚 model buyers 𝐵1, . . . , 𝐵𝑚 , each carrying budgets

𝑉1, . . . ,𝑉𝑚 , respectively, where 𝑉𝑗 > 0 (1 ≤ 𝑗 ≤ 𝑚). It is intu-
itive to price the models according to the model accuracy. However,

this formulation is not amenable to the arbitrage-free constraints

that we aim to achieve. In this paper, we measure the relative utility

of the model using the coverage of the Shapley values of the data

being used for building the model and the noise added to the model

for privacy protection. This allows us to theoretically achieve the

arbitrage-free constraints while providing a practical and transfer-

able utility measure based on the relative marginal contribution

of the data owners as compared to the absolute accuracy. We note

that more data (higher Shapley values) and less noise does not

guarantee, but does lead to, higher accuracy in general as we will

show later in our experiments.

First, buyers’ offer prices are sensitive to the coverage of the

value of the data used. The ideal model takes all data sets from

all data owners 𝐷1 . . . , 𝐷𝑛 . A model buyer may set an expectation

requirement on the percentage of the Shapley values of the data

that should be used to build the model, and the price that the buyer

is willing to pay may change accordingly. We emphasize that when

using different subsets of data to build amodel, not only the quantity

of the data, but values of the data or their contributions to the model

matters for the final accuracy of the model. Hence we define the

coverage as the ratio of Shapley values of the subset to measure

the relative utility instead of the ratio of the subset size.

Formally, for a model𝑀 that is built using𝑘 data sets𝐷𝑖1 , . . . , 𝐷𝑖𝑘

from their data owners, the coverage rate of the model𝑀 is

CR(𝑀) = CR(𝐷𝑖1 , . . . , 𝐷𝑖𝑘 ) =
SV({𝐷𝑖1 , . . . , 𝐷𝑖𝑘 })
SV({𝐷1, . . . , 𝐷𝑛})

(5)

Technically, a model buyer 𝐵 𝑗 (1 ≤ 𝑗 ≤ 𝑚) can set a coverage
expectation 𝜃 𝑗 (0 < 𝜃 𝑗 ≤ 1). The price 𝐵 𝑗 is willing to pay for a

model𝑀 with respect to coverage rate 𝐶𝑅(𝑀) can be

𝑃𝑟𝑖𝑐𝑒𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝐵 𝑗 ) = 𝑉𝑗 ·
1

1 + 𝑒−𝛿 𝑗 (𝐶𝑅 (𝑀)−𝜃 𝑗 )
(6)

where parameter 𝛿 𝑗 > 0 is 𝐵 𝑗 ’s coverage sensitivity, which controls

how quickly the buyer loses interest in the model if the model does

not meet the Shapley coverage expectation 𝜃 𝑗 . The larger the value

of 𝛿 𝑗 , the sharper the change of the price at the expectation point

𝜃 𝑗 .

Second, buyers’ offer prices are also sensitive to noise added to

the model. The ideal model does not add any noise. The effect of

noises added for privacy protection can be measured quantitatively

by the parameter 𝜖 in the 𝜖-differential privacy mechanism. In 𝜖-

differential privacy, no noise is added when 𝜖 = ∞. Technically, a

model buyer 𝐵 𝑗 (1 ≤ 𝑗 ≤ 𝑚) can set a noise expectation 𝜂 𝑗 (𝜂 𝑗 > 0)
and a parameter 𝛾 𝑗 (𝛾 𝑗 > 0), called noise sensitivity, to express the

buyer’s price sensitivity with respect to noise: the larger the value

of 𝛾 𝑗 , the more sensitive the buyer is with respect to noise.

Putting the above two aspects together, for a buyer 𝐵 𝑗 (1 ≤
𝑗 ≤ 𝑚), let 𝑉𝑗 be the buyer’s total budget to purchase a model,

𝜃 𝑗 the expectation on Shapley coverage in Shapley value, 𝛿 𝑗 the

Shapley coverage sensitivity, 𝜂 𝑗 the expectation on model noise in

differential privacy, and 𝛾 𝑗 the noise sensitivity. Then, for a model

𝑀 that is built using data sets 𝐷𝑖1 , . . . , 𝐷𝑖𝑘 from data owners and

satisfies 𝜖-differential privacy, we use the following price function
for model buyer 𝐵 𝑗 on model𝑀

𝑃 (𝐵 𝑗 , 𝑀) = 𝑉𝑗 ·
1

1 + 𝑒−𝛿 𝑗 (𝐶𝑅 (𝑀)−𝜃 𝑗 )
· 1

1 + 𝑒−𝛾 𝑗 (𝜖−𝜂 𝑗 )
(7)

Clearly, 𝑃 (𝐵 𝑗 , 𝑀) reflects model buyer 𝐵 𝑗 ’s assessment of the value

of model𝑀 , thus is also called the model value of𝑀 for 𝐵 𝑗 .

4.4 Broker
The broker collects data from data owners, builds and sells models

to model buyers. To accommodate different data owners’ require-

ments on privacy preservation and various model buyers’ demands

on Shapley coverage and noise sensitivity, multiple versions of a

model may be developed. In practice, the number of versions made

available to model buyers is often kept small. We also call a version

of a model simply a model.

Assume that the broker builds 𝑙 versions of a model,𝑀1, . . . , 𝑀𝑙 .

A model 𝑀𝑘 (1 ≤ 𝑘 ≤ 𝑙) is specified as a tuple 𝑀𝑘 = (𝜇𝑘 , 𝜖𝑘 , 𝑝𝑘 ),
where 𝜇 = 𝐶𝑅(𝑀𝑘 ) is the coverage rate of the model, 𝜖𝑘 is the

level of differential privacy guarantee, and 𝑝𝑘 is the price set by the

broker. To make the marketplace concise, we list the models in 𝜇

value and 𝜖 value ascending order, that is, 𝜇𝑘1 ≤ 𝜇𝑘2 and 𝜖𝑘1 ≤ 𝜖𝑘2 if

𝑘1 ≤ 𝑘2. Let 𝑟 (𝑀𝑘 , 𝐷𝑖 ) be the compensation allocated to data owner

𝐷𝑖 who contributes the data to model 𝑀𝑘 . The compensation is

decided by the broker.

In model marketplace Dealer, we make the following assump-

tions about the participants’ behavior.

• (Participation) A data owner 𝐷𝑖 contributes the data to a

model𝑀𝑘 as long as the broker can allocate a payment no

less than the data owner asks for, i.e., 𝑟 (𝑀𝑘 , 𝐷𝑖 ) ≥ 𝑐𝑖 (𝜖𝑘 ). A
data owner participates in and collects compensation from

every model that meets the requirements.

• (Fairness) For any model 𝑀𝑘 and data owners 𝐷𝑖1 and 𝐷𝑖2

who contribute their data to the model,

𝑟 (𝑀𝑘 , 𝐷𝑖1 )
𝑐𝑖1 (𝜖𝑘 )

=
𝑟 (𝑀𝑘 , 𝐷𝑖2 )
𝑐𝑖2 (𝜖𝑘 )
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that is, the compensation among all contributing data owners

within each model is fair.

• (Cost minimization purchase) A model buyer 𝐵 𝑗 buys one

and only one model as long as there exists a model𝑀𝑘 such

that 𝜃 𝑗 ≤ 𝜇𝑘 𝑎𝑛𝑑 𝜂 𝑗 ≤ 𝜖𝑘 (8)

If there is no model𝑀𝑘 satisfying Eq. 8, then 𝐵 𝑗 purchases

nothing; if there is only one model 𝑀𝑘 satisfying Eq. 8,

then 𝐵 𝑗 purchases 𝑀𝑘 with budget 𝑃 (𝐵 𝑗 , 𝑀𝑘 ); if there are
multiple models𝑀𝑘1 , . . . , 𝑀𝑘𝑙′ satisfying Eq. 8, then 𝐵 𝑗 pur-

chases model with argmin𝑘∈{𝑘1,...,𝑘𝑙′ }𝜖𝑘 , i.e., the model hav-

ing the lowest 𝜖 with the lowest price for 𝐵 𝑗 , with budget

𝑃 (𝐵 𝑗 , 𝑀argmin𝑘∈{𝑘
1
,...,𝑘𝑙′ }

𝜖𝑘 ).
• (Neutral broker) For each model 𝑀𝑘 that uses data sets

𝐷𝑖1 , . . . , 𝐷𝑖𝑛′ and is purchased by model buyers 𝐵 𝑗1 , . . . , 𝐵 𝑗𝑚′ ,∑
𝑖∈{𝑖1,...,𝑖𝑛′ } 𝑟 (𝑀𝑘 , 𝐷𝑖 ) =𝑚′ · 𝑝𝑘 , i.e., the revenue produced

by each model is fully distributed to all data contributors. In

this paper, we assume a neutral broker to keep our discussion

simple. In practice, a broker can easily factor in a percentage

of total revenue for model building and other cost, which

does not affect our mechanisms and algorithms.

The broker is responsible for defining versions of model. Ideally,

the arbitrage-free guarantee may be applied to both 𝜇𝑘 and 𝜖𝑘 . How-

ever, the arbitrage-free guarantee is only applied to one variable

in the existing works [14, 29–31]. It is not clear or feasible how we

can apply the arbitrage-free guarantee to two variables. Because 𝜖𝑘
has much greater impact than 𝜇𝑘 on model accuracy (Figure 6), in

this paper, the broker ensures arbitrage-free guarantee with respect

to 𝜖𝑘 . Now we are ready to state the optimization problem in Dealer.
Given a set of data owners, a set of model buyers, and the number

of models 𝑙 , the broker needs to define 𝑙 models 𝑀1, . . . , 𝑀𝑙 such

that the total revenue

∑𝑙
𝑘=1

𝑝𝑘 · 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 (𝑝𝑘 ) is maximized, where

𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 (𝑝𝑘 ) is the number of model buyers purchasing𝑀𝑘 . In the

rest of the paper, we refer to this problem as revenue maximization
problem.

5 DEALER: MODEL PRICING AND MODEL
TRAINING

In this section, we study the revenue maximization problem for

model pricing in Section 5.1. Given the maximized revenue from

model buyers, the broker needs to maximize the Shapley coverage

for each model version to remain competitive and see if the Shap-

ley coverage satisfies the predefined Shapley coverage. We study

the Shapley coverage maximization problem for model training in

Section 5.2. We also summarize the complete Dealer dynamics in

Section 5.3.

5.1 Revenue Maximization Problem for Model
Pricing

Prior to releasing models and setting the prices for sale, the broker

needs to conduct a market survey to collect each model buyer’s

price function 𝑃 (𝐵 𝑗 , 𝑀𝑘 ) in order to price the models to maximize

the revenue, which can be done by the broker herself or third-party

companies. Let the survey size be𝑚′
, i.e.,𝑚′

potential model buyers

are recruited to provide their price function 𝑃 (𝐵 𝑗 , 𝑀𝑘 ). Given a

set of models the broker plan to train with coverage rate 𝜇𝑘 and

DP parameter 𝜖𝑘 , for the 𝑗𝑡ℎ survey participant 𝐵 𝑗 , the broker

calculates (𝑡𝑚 𝑗 , 𝑣 𝑗 ) according to Eq. 8 if there is at least one model

satisfying 𝐵 𝑗 ’s requirements on both Shapley coverage and model

noise, where 𝑡𝑚 𝑗 indicates the target model of 𝐵 𝑗 and 𝑣 𝑗 is the

budget by the buyer for purchasing 𝑡𝑚 𝑗 . We call each (𝑡𝑚 𝑗 , 𝑣 𝑗 ) a
survey price point in the following.

With the 𝑚′
tuples computed from the surveyed buyers, the

broker will price each model in the aim of maximizing revenue

and at the same time following the market design principle of

arbitrage-free pricing. The revenue maximization (RM) problem

is formulated as follows.

arg max

⟨𝑝 (𝜖1),...,𝑝 (𝜖𝑙 ) ⟩

𝑙∑
𝑘=1

𝑚′∑
𝑗=1

𝑝 (𝜖𝑘 ) · I(𝑡𝑚 𝑗 == 𝑀𝑘 ) · I(𝑝 (𝜖𝑘 ) ≤ 𝑣 𝑗 ),

(9)

𝑠 .𝑡 . 𝑝 (𝜖𝑘1 + 𝜖𝑘2 ) ≤ 𝑝 (𝜖𝑘1 ) + 𝑝 (𝜖𝑘2 ), 𝜖𝑘1 , 𝜖𝑘2 > 0, (10)

0 < 𝑝 (𝜖𝑘1 ) ≤ 𝑝 (𝜖𝑘2 ), 0 < 𝜖𝑘1 ≤ 𝜖𝑘2 , (11)

where I(𝑡𝑚 𝑗 == 𝑀𝑘 ) indicates whether 𝐵 𝑗 ’s target model is 𝑀𝑘 ,

I(𝑝 (𝜖𝑘 ) ≤ 𝑣 𝑗 ) indicates whether the price for model𝑀𝑘 (𝑝𝑘 or 𝑝 (𝜖𝑘 )
from the DP parameter perspective) with DP parameter 𝜖𝑘 is less

than or equal to the budget of 𝐵 𝑗 for purchasing𝑀𝑘 . The optimal

solution of this revenue maximization problem has the arbitrage-

free guarantee since Eq. 10 ensures subadditivity (Property 2) and

Eq. 11 ensures monotonicity (Property 1). We note that our problem

formulation does not assume that all model buyers can afford the

target models or all models will have buyers. It is interesting future

work to consider such additional constraints.

We refer to the maximum revenue for RM as𝑀𝐴𝑋 (RM) and
use (𝜖𝑘 , 𝑠𝑝𝑘 [ 𝑗]) to denote the 𝑗𝑡ℎ lowest survey price point inmodel

𝑀𝑘 with DP parameter 𝜖𝑘 . For example, we assume 𝜖1 = 1, 𝜖2 = 2,

and 𝜖3 = 3 in Figure 2. We have six survey points (participants)

shown in black disk (1, 𝑠𝑝1 [1] = 1), (1, 𝑠𝑝1 [2] = 4), (2, 𝑠𝑝2 [1] =

3), (2, 𝑠𝑝2 [2] = 7), (3, 𝑠𝑝3 [1] = 5), and (3, 𝑠𝑝3 [2] = 8), where
(2, 𝑠𝑝2 [1] = 3) means one model buyer would like to purchase

model𝑀2 with DP parameter 𝜖2 using budget 3. These survey price

points make up a survey price space.
A special case of the RM problem has been studied earlier [14]

given one (averaged) survey price point for each model. Given

one survey price point (𝜖𝑘 , 𝑠𝑝𝑘 [1]) for each model𝑀𝑘 , 𝑘 = 1, ..., 𝑙 ,

determining whether there exists a pricing function 𝑝 (𝜖𝑘 ) that 1) is
positive, monotone, and subadditive; and 2) ensures 𝑝 (𝜖𝑘 ) = 𝑠𝑝𝑘 [1]
for all 𝑘 = 1, ..., 𝑙 , has been shown as a co-NP hard problem. It is

easy to see that this co-NP hard problem is a special case of the RM
problem which has multiple survey price points for each model.

In order to overcome the hardness of the original optimization

RM problem, we seek to approximately solve the problem by

relaxing the subadditivity constraint. We relax the constraint of

𝑝 (𝜖𝑘1 + 𝜖𝑘2 ) ≤ 𝑝 (𝜖𝑘1 ) + 𝑝 (𝜖𝑘2 ) in Eq. 10 to

𝑝 (𝜖𝑘1 )/𝜖𝑘1 ≥ 𝑝 (𝜖𝑘2 )/𝜖𝑘2 , 𝜖𝑘1 ≤ 𝜖𝑘2 , (12)

which still satisfies the requirement of arbitrage-free pricing be-

cause this new constraint is sufficient but not necessary for the

subadditivity constraint. We refer to this relaxed problem as re-

laxed revenue maximization (RRM) problem. Intuitively, we want

to make sure that the unit price for large purchases is smaller than

or equal to the unit price for small purchases.
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In the following, we show the maximum revenue for RRM,

𝑀𝐴𝑋 (RRM), has a lower bound with respect to the maximum

revenue for RM,𝑀𝐴𝑋 (RM).

Theorem 5.1. The maximum revenue for RM has the following
relationship with the maximum revenue for RRM,

𝑀𝐴𝑋 (RRM) ≥ 𝑀𝐴𝑋 (RM)/2.

Proof. Due to the limited space, please see our technical report

[7] for the detailed proof. The same to the following theorems. □

Dynamic Programming Algorithm. We show an efficient dy-

namic programming algorithm to solve the relaxed revenue maxi-

mization problem.

1

4

3

7

5

8

5

10

0

price

model risk

ǫ1 ǫ2 ǫ3

Figure 2: Revenue maximization example.

At first glance, for each model, it seems that all possible values in

the price range can be an optimal price, which makes the problem

arguably intractable to solve. In the following, we show how to

construct a complete price space in the discrete space and prove the

complete price space is sufficient to obtain the maximum revenue.

Constructing Complete Price Space. It is easy to see that those

survey price points could be potential solutions. For each survey

price point (𝜖𝑘 , 𝑠𝑝𝑘 [ 𝑗]), it determines unit price 𝑠𝑝𝑘 [ 𝑗]/𝜖𝑘 and

price 𝑠𝑝𝑘 [ 𝑗]. The general idea is that if we choose (𝜖𝑘 , 𝑠𝑝𝑘 [ 𝑗]) as
the optimal price point in model𝑀𝑘 , it affects the price for models

𝑀𝑘′, 𝑘
′ = 1, ..., 𝑘 −1 due to the monotonicity constraint and the unit

price for models𝑀𝑘′, 𝑘
′ = 𝑘 + 1, ..., 𝑙 due to the subadditivity con-

straint. If we set the optimal price in model𝑀𝑘 as 𝑠𝑝𝑘 [ 𝑗], the unit
price of the following models after model𝑀𝑘 cannot be larger than

𝑠𝑝𝑘 [ 𝑗]/𝜖𝑘 . Therefore, for each survey price point (𝜖𝑘 , 𝑠𝑝𝑘 [ 𝑗]), we
draw one line 𝑙 (𝜖𝑘 ,𝑠𝑝𝑘 [ 𝑗 ]) through survey price point (𝜖𝑘 , 𝑠𝑝𝑘 [ 𝑗])
and the original point. For each model 𝑀𝑘′ with DP parameter

𝜖𝑘′ , we draw one vertical line 𝑙𝜖𝑘′ through (𝜖𝑘′, 0). By intersect-

ing line 𝑙 (𝜖𝑘 ,𝑠𝑝𝑘 [ 𝑗 ]) and line 𝑙𝜖𝑘′ , we obtain 𝑙 − 𝑘 new price points

(𝜖𝑘′,
𝑠𝑝𝑘 [ 𝑗 ]
𝜖𝑘

𝜖𝑘′) for 𝑘 ′ = 𝑘 + 1, ..., 𝑙 . We note that we do not need to

generate the price points as candidates for 𝑘 ′ = 1, ..., 𝑘 − 1 because

the unit price of model 𝑀𝑘 can only constrain the unit price of

model 𝑀𝑘′, 𝑘
′ = 𝑘 + 1, ..., 𝑙 (due to the subadditivity constraint).

Furthermore, for each model, its price is also determined by the

survey price points of its right neighbors (due to the monotonicity

constraint). Therefore, we need to add the survey price points of

model 𝑀𝑘 to models 𝑀𝑘′, 𝑘
′ = 1, ..., 𝑘 − 1. The detailed algorithm

for constructing the complete price space is shown in Algorithm 3.

In Lines 11-15, we use 𝑓 (𝜖𝑘 , 𝑝𝑘 [ 𝑗]) to distinguish the survey price

points from the other points in the complete price space. For ease of

presentation, we name the price point in the complete price space

from Line 1 as SU (survey) point, the price point from Line 8 as

Algorithm 3: Constructing complete price space for the

relaxed revenue maximization problem.

input :Model with noise parameter 𝜖𝑘 and the 𝑗𝑡ℎ lowest survey price point for model

with noise parameter 𝜖𝑘 , denoted as (𝜖𝑘 , 𝑠𝑝𝑘 [ 𝑗 ]) .
output :Complete price space.

1 add all the survey price points (𝜖𝑘 , 𝑠𝑝𝑘 [ 𝑗 ]) to the complete price space;

2 for each survey price point (𝜖𝑘 , 𝑠𝑝𝑘 [ 𝑗 ]) do
3 draw a line 𝑙 (𝜖𝑘 ,𝑠𝑝𝑘 [ 𝑗 ]) through this point and the original point;

4 for each model with noise parameter 𝜖𝑘 do
5 draw a vertical line 𝑙𝜖𝑘 ;

6 for each line 𝑙𝜖𝑘′ do
7 for each line 𝑙 (𝜖𝑘 ,𝑠𝑝𝑘 [ 𝑗 ]) do

8 add point (𝜖𝑘′ ,
𝑠𝑝𝑘 [ 𝑗 ]

𝜖𝑘
𝜖𝑘′ ) by intersecting line 𝑙𝜖𝑘′ and line 𝑙 (𝜖𝑘 ,𝑠𝑝𝑘 [ 𝑗 ])

to the complete price space for 𝑘′ = 𝑘 + 1, ..., 𝑙 ;

9 for each survey price point (𝜖𝑘 , 𝑠𝑝𝑘 [ 𝑗 ]) do
10 add price point (𝜖𝑘′ , 𝑠𝑝𝑘 [ 𝑗 ]) to the complete price space for 𝑘′ = 1, ..., 𝑘 − 1;

11 for each price point (𝜖𝑘 , 𝑝𝑘 [ 𝑗 ]) in the complete price space do
12 if (𝜖𝑘 , 𝑝𝑘 [ 𝑗′ ]) is a survey price point then
13 𝑓 (𝜖𝑘 , 𝑝𝑘 [ 𝑗 ]) = 1;

14 else
15 𝑓 (𝜖𝑘 , 𝑝𝑘 [ 𝑗 ]) = 0;

SC (subadditivity constraint) point, and the price point from Line

10 asMC (monotonicity constraint) point.

Example 5.2. We show a running example of Algorithm 3. In Fig-

ure 2, we add the survey price points (1, 𝑠𝑝1 [1] = 1), (1, 𝑠𝑝1 [2] = 4),
(2, 𝑠𝑝2 [1] = 3), (2, 𝑠𝑝2 [2] = 7), (3, 𝑠𝑝3 [1] = 5), and (3, 𝑠𝑝3 [2] = 8)
to the complete price space in Line 1. In Line 2, for the survey price

point (1, 1), we draw a line 𝑙 (1,1) through this point and the original

point in Line 3. In Line 4, for model 𝑀1 with privacy parameter

𝜖1 = 1, we draw a vertical line 𝑙𝜖1 . In Lines 6-8, for 𝑙 (1,1) and 𝑙𝜖2 ,

we add intersection point (𝜖2, 𝑠𝑝
1 [1]
𝜖1

𝜖2) = (2, 2) to the complete

price space. In total, we have six such new price points shown in

box. In Line 9, for survey price point (3, 𝑠𝑝3 [1]) = (3, 5), we add
price points (2, 5) and (1, 5) to the complete price space in Line 10.

Similarly, we also have six such new price points shown in circle.

Therefore, for the complete price space, we have six price points

for models 𝑀1 and 𝑀3. We have five price points for model 𝑀2

because the intersection point of (𝜖2, 𝑠𝑝
1 [2]
𝜖1

𝜖2) = (2, 8) is same as

the MC point (𝜖𝑘 , 𝑠𝑝3 [2]) = (2, 8) for 𝑘 = 2. In Lines 12-15, we

have 𝑓 (2, 3) = 1 and 𝑓 (2, 5) = 0.

Theorem 5.3. The complete price space constructed by Algorithm
3 is sufficient for finding the optimal solution of the relaxed revenue
maximization problem.

A recursive solution.We define the revenue of an optimal solution

recursively in terms of the optimal solutions to subproblems. We

pick as our subproblems the problems of determining the maximum

revenue𝑀𝐴𝑋 [𝑘, 𝑗], where𝑀𝐴𝑋 [𝑘, 𝑗] denotes the revenue of the
optimal solution by considering the first 𝑘 models and taking the

𝑗𝑡ℎ lowest price point in the complete price space of model𝑀𝑘 . For

the full problem, the maximum revenue would be max{𝑀𝐴𝑋 [𝑙, 𝑗]}
for all the price points (𝜖𝑙 , 𝑝𝑙 [ 𝑗]) in the complete price space in

model𝑀𝑙 . For the price points in the complete price space of model

𝑀1, we can directly compute 𝑀𝐴𝑋 [1, 𝑗] for all the price points

because there is no initial constraint. For the price points in the
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Algorithm4:Dynamic programming algorithm for finding

an optimal solution of the relaxed revenue maximization

problem.

input :Model with DP parameter 𝜖𝑘 and its corresponding price points in the complete

price space.

output :𝑀𝐴𝑋 (RRM) .
1 for each model𝑀𝑘 do
2 sort the price points in the complete price space in decreasing order;

3 use (𝜖𝑘 , 𝑝𝑘 [ 𝑗 ]) to denote the 𝑗𝑡ℎ lowest price point;

4 𝑀𝑅 [𝑘, |𝑝𝑘 | ] = 𝑝𝑘 [ |𝑝𝑘 | ] 𝑓 (𝜖𝑘 , 𝑝𝑘 [ |𝑝𝑘 | ]) ;
5 for 𝑗 = |𝑝𝑘 | − 1 to 1 do

6 𝑀𝑅 [𝑘, 𝑗 ] = 𝑝𝑘 [ 𝑗 ]∑|𝑝𝑘 |
𝑘′=𝑗 𝑓 (𝜖𝑘 , 𝑝

𝑘 [𝑘′ ]) ;

7 for 𝑗 = 1 to |𝑝1 | do
8 𝑀𝐴𝑋 [1, 𝑗 ] = 𝑀𝑅 [1, 𝑝1 [ 𝑗 ] ];
9 for each model𝑀𝑘 , 𝑘 = 2, ..., 𝑙 do
10 for each price point (𝜖𝑘 , 𝑝𝑘 [ 𝑗 ]) do
11 𝑀𝐴𝑋 [𝑘, 𝑗 ] = max{𝑀𝐴𝑋 [𝑘 − 1, 𝑗′ ] } +𝑀𝑅 [𝑘, 𝑗 ], where

𝑝𝑘−1 [ 𝑗′ ] ≤ 𝑝𝑘 [ 𝑗 ]&&𝑝𝑘−1 [ 𝑗′ ]/𝜖𝑘−1 ≥ 𝑝𝑘 [ 𝑗 ]/𝜖𝑘 ;
12 𝑝 (𝐿.𝑀𝐴𝑋 [𝑘, 𝑗 ]) = 𝑝𝑘−1 [ 𝑗′ ] that makes𝑀𝐴𝑋 [𝑘, 𝑗 ] achievable in Line

11;

13 𝑀𝐴𝑋 (𝑅𝑅𝑀) = max{𝑀𝐴𝑋 [𝑙, 𝑗 ] } for 𝑗 = 1, ..., |𝑝𝑙 |;

complete price space of other models, we need to consider both the

monotonicity constraint and the subadditivity constraint. We have

a recursive equation as follows.

𝑀𝐴𝑋 [𝑘, 𝑗] = max{𝑀𝐴𝑋 [𝑘 − 1, 𝑗 ′]} +𝑀𝑅 [𝑘, 𝑗], (13)

where𝑝𝑘−1 [ 𝑗 ′] ≤ 𝑝𝑘 [ 𝑗]&&𝑝𝑘−1 [ 𝑗 ′]/𝜖𝑘−1 ≥ 𝑝𝑘 [ 𝑗]/𝜖𝑘 and𝑀𝑅 [𝑘, 𝑗]
denotes the revenue from model𝑀𝑘 if we price model𝑀𝑘 as 𝑝𝑘 [ 𝑗].

Computing the maximum revenue. Now we could easily write

a recursive algorithm in Algorithm 4 based on recurrence Eq. 13,

where |𝑝𝑘 | is the number of complete price points in model 𝑀𝑘 .

We compute𝑀𝑅 [𝑘, 𝑗] for all the price points of the complete price

space in Lines 1-6 and 𝑀𝐴𝑋 [𝑘, 𝑗] for the price points in the first

model and the other models in Line 8 and Line 11, respectively.

Theorem 5.4. Algorithm 4 can be finished in 𝑂 (𝑁 2𝑙2) time.

Example 5.5. In model 𝑀1 of Figure 2, we have 𝑀𝐴𝑋 [1, 𝑗] for
𝑗 = 1, ..., 6 shown in Table 2. For computing𝑀𝐴𝑋 [2, 2], there is only
one price point (1, 3) satisfying both the monotonicity constraint

and the subadditivity constraint within model𝑀1. Therefore, we

have𝑀𝐴𝑋 [2, 2] = 𝑀𝐴𝑋 [1, 2] +𝑀𝑅 [2, 2] = 3 + 6 = 9. Similarly, we

can fill the entire table shown in Table 2.

Finding optimal pricing. Although Algorithm 4 determines the

maximum revenue of RRM, it does not directly show the opti-

mal price for each model 𝑝 (𝜖𝑘 ). However, for each price point

(𝜖𝑘 , 𝑝𝑘 [ 𝑗]) in the complete price space, we record the price point

𝑝 (𝐿.𝑀𝐴𝑋 [𝑘, 𝑗]) in model𝑀𝑘−1, which has the maximum revenue

in those price points that satisfy both the monotonicity constraint

and the subadditivity constraint with (𝜖𝑘 , 𝑝𝑘 [ 𝑗]) in Line 12 of Algo-

rithm 4. Therefore, we can recursively backtrack the optimal price

point in model𝑀𝑘−1 from the optimal price point in model𝑀𝑘 . We

need𝑂 (𝑛𝑙) time to find the maximum value in𝑀𝐴𝑋 [𝑙, 𝑗] and𝑂 (𝑙)
time to backtrack. In total, we can construct an optimal solution

in 𝑂 (𝑁𝑙) time. We note that such a solution may be one of several

solutions that can achieve the maximum value.

We show a running example in Table 2.We first obtain𝑀𝐴𝑋 [3, 4]
which has the maximum value among 𝑀𝐴𝑋 [3, 𝑗] for 𝑗 = 1, ..., 6.

Therefore, we set 𝑝 (𝜖3) = 8. We backtrack to𝑀𝐴𝑋 [2, 4] in model

𝑀2 and set 𝑝 (𝜖2) = 7. And then we backtrack to 𝑀𝐴𝑋 [1, 3] in
model 𝑀1 and set 𝑝 (𝜖1) = 4. Finally, an optimal pricing setting is

⟨𝑝 (𝜖1), 𝑝 (𝜖2), 𝑝 (𝜖3)⟩ = ⟨4, 7, 8⟩.

Table 2: Example for finding optimal pricing.

Model

the 𝑗𝑡ℎ lowest

price point 1 2 3 4 5 6

𝑀1 2 3 4 0 0 0

𝑀2 6 9 9 11 4 null

𝑀3 15 18 19 19 11 4

5.2 Shapley Coverage Maximization Problem
for Model Training

Given 𝐷1, ..., 𝐷𝑛 , the broker builds 𝑙 versions of model, 𝑀1, ..., 𝑀𝑙

under manufacturing budget (maximized revenue in model pricing)

and attempts to train the best model for each model version to

remain competitive. For each model 𝑀𝑘 , each participating data

owner 𝐷𝑖 receives compensation 𝑐𝑖 (𝜖) (or 𝑐𝑖 for the sake of sim-

plicity) when applicable. Under manufacturing budget MB, the

broker needs to select a subset S, so that the Shapley coverage

of the trained model will be maximized. We formalize the subset

selection of S as a Shapley coverage maximization SCM problem

as follows.

arg max

S⊆{𝐷1,...,𝐷𝑛 }

∑
𝑖:𝐷𝑖 ∈S

SV𝑖 , (14)

𝑠 .𝑡 .
∑

𝑖:𝐷𝑖 ∈S
𝑐𝑖 (𝜖) ≤ MB . (15)

We prove the above problem is NP-hard in Theorem 5.8. Given

the NP-hard complexity, we present three approximation algo-

rithms. First, we present a pseudo-polynomial time algorithm using

dynamic programming. Then, we present a greedy algorithm with

the worst case bound if each data owner’s compensation is not

too large. Finally, we propose an enumerative guess-based greedy

algorithm with the worst case bound by relaxing the compensation

constraint, which uses the greedy algorithm as a subroutine.

NP-hardness proof.We prove that SCM is NP-hard by showing

that the well-known partition problem is polynomial time reducible

to SCM.

Definition 5.6. (Decision Version of SCM) Given a data set S
of 𝑛 data owners with their corresponding privacy compensation

𝑐1, ..., 𝑐𝑛 and Shapley value SV1, ...,SV𝑛 , the decision version of

SCM has the task of deciding whether there is a subset S1 ⊆ S
such that

∑
𝑖:𝐷𝑖 ∈S1

𝑐𝑖 ≤ 𝐵 and

∑
𝑖:𝐷𝑖 ∈S1

SV𝑖 ≥ 𝑉 .

Definition 5.7. (Decision Version of Partition Problem) [25]

Given a set S of 𝑛 positive integer values 𝑣1, ..., 𝑣𝑛 , the decision

version of partition problem has the task of deciding whether the

given set S can be partitioned into two subsets S1 and S2 such that

the sum of the integers in S1 equals the sum of the integers in S2.

Theorem 5.8. The decision version of SCM is an NP-hard prob-
lem.

Pseudo-polynomial time algorithm. We first present a pseudo-

polynomial time algorithm for SCM. Pseudo-polynomial means
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Algorithm 5: Pseudo-polynomial time algorithm for

SCM.

input :𝑐𝑖 , MB, and SV𝑖 for 𝑖 = 1, ..., 𝑛.
output :S.

1 for j=0:a:MB do
2 SV[0, 𝑗 ] = 0;

3 for i =1 to n do
4 for j=0:a:MB do
5 if 𝑐𝑖 > 𝑗 × 𝑎 then
6 SV[𝑖, 𝑗 ] = SV[𝑖 − 1, 𝑗 ];
7 else
8 SV[𝑖, 𝑗 ] =𝑚𝑎𝑥 {SV [𝑖 − 1, 𝑗 ], SV[𝑖 − 1, 𝑗 × 𝑎 − 𝑐𝑖 ] + SV𝑖 };

9 backtrack from SV[𝑛, ⌈MB
𝑎 ⌉ ] to SV[1, 0] to find the selected 𝐷𝑖 ;

Algorithm 6: Greedy algorithm for SCM.

input :𝑐𝑖 , MB, and SV𝑖 for 𝑖 = 1, ..., 𝑛.
output :S.

1 for i=1 to n do
2 compute SV𝑖 /𝑐𝑖 ;
3 sort SV𝑖 /𝑐𝑖 for 𝑖 = 1, ..., 𝑛 in decreasing order and denote as

SV1/𝑐1 ≥ SV2/𝑐2 ≥ ... ≥ SV𝑛/𝑐𝑛 ;
4 B=0;

5 i=1;

6 while 𝐵 ≤ MB do
7 add 𝑐𝑖 to B;

8 i=i+1;

9 return the corresponding 𝐷𝑖 of those 𝑐𝑖 in B;

that the algorithm has the polynomial time complexity in terms

of MB rather than the traditional number of data owners 𝑛. We

divide MB into ⌈MB
𝑎 ⌉ parts, where 𝑎 is the greatest common

divisor in 𝑐𝑖 for all 𝑖 = 1, ..., 𝑛. We define SV[𝑖, 𝑗] as the maximum

SCM that can be attained with manufacturing budget ≤ 𝑗 × 𝑎

by only using the first 𝑖 data owners. The idea is to simplify the

complicated problem of computing SV[𝑛, ⌈MB
𝑎 ⌉] by breaking it

down into simpler subproblems in a recursive manner. The detailed

algorithm is shown in Algorithm 5. In Line 5, if the manufacturing

budget is not enough, we do not need to consider the 𝑖𝑡ℎ data owner.

Otherwise, we can take 𝐷𝑖 if we can get more Shapley value by

replacing some data owners from 𝐷1, ..., 𝐷𝑖−1 in Line 8.

Greedy algorithm. The time cost of Algorithm 5 is extremely

dominated by MB and 𝑎. We propose a greedy algorithm based

on the ratio between Shapley value SV𝑖 and compensation 𝑐𝑖 in

Algorithm 6, which is not sensitive to MB and 𝑎. The idea is to

choose data owners with a highSV but low compensation demand.

We sort the data owners in decreasing order of Shapley value per

compensation SV𝑖/𝑐𝑖 in Line 3. In Lines 6-8, we proceed to take

the data owners, starting with as high as possible of SV𝑖/𝑐𝑖 until
there is no budget. We present a lower bound for Algorithm 6 in

Theorem 5.9, where𝑀𝐴𝑋 is the maximum value that we can obtain

in Eq. 14.

Theorem 5.9. If for all 𝑖 , 𝑐𝑖 ≤ 𝜁MB, Algorithm 6 has a lower
bound guarantee (1− 𝜁 )𝑀𝐴𝑋 and can be finished in𝑂 (𝑛 log𝑛) time.

Lemma 5.10. There are at most ⌈ 1𝛼 ⌉ data owners having compen-
sation 𝑐𝑖 such that their corresponding Shapley value SV𝑖 is at least
𝛼𝑀𝐴𝑋 in any optimal solution.

Lemma 5.10 is easy to see, otherwise, the optimal solution value

is larger than𝑀𝐴𝑋 , which is a contradiction.

Algorithm 7: Enumerative guess-based greedy algorithm

for SCM.

input :𝑐𝑖 , MB, and SV𝑖 for 𝑖 = 1, ..., 𝑛.
output :S.

1 for i=1 to h do
2 choose 𝑖 data owner(s) to compose a subset S′

;

3 we have

∑ℎ
𝑖=1

(𝑛
𝑖

)
such subsets;

4 for j=1 to
∑ℎ
𝑖=1

(𝑛
𝑖

)
do

5 compute the manufacturing budget of the data owners in S′
;

6 delete those S′
if their manufacturing budget is larger than MB;

7 we have 𝑟 remaining subsets S′
1
, S′

2
, ..., S′

𝑟 ;

8 for each subset S′
𝑗
, 𝑗 = 1, ..., 𝑟 do

9 let 𝐷𝑎 be the data owner with the least Shapley value in S′
𝑗
, remove all data

owners in S𝑗 − S′
𝑗
if their Shapley value is larger than SV𝑎 and get a new

subset S′′
𝑗
;

10 run Algorithm 6 in S′′
𝑗
with remaining manufacturing budget MB −∑|S′

𝑗
|

𝑖=1
𝑐𝑖 ;

11 return the data owners in S′
𝑗
and S′′

𝑗
, where S′

𝑗
and S′′

𝑗
have the highest Shapley

value among 𝑗 = 1, ..., 𝑟 ;

Enumerative guess-based greedy algorithm. Although Algo-

rithm 6 can achieve (1−𝜁 )𝑀𝐴𝑋 , the requirement of 𝑐𝑖 ≤ 𝜁MB is a

little strict. We present another algorithm with the same worst case

bound but without the above requirement. The idea is to guess the

ℎ most profitable data owners in an optimal solution and compute

the rest greedily as in Algorithm 6. The detailed algorithm is shown

in Algorithm 7. Let 𝛼 ∈ (0, 1) be a fixed constant and ℎ = ⌈ 1𝛼 ⌉. We

first enumerate all the subsets with data owner size ≤ ℎ in Lines

1-3. We delete those subsets with higher manufacturing budget

thanMB in Lines 4-6. In Lines 7-10, for each remaining subset, we

call Algorithm 6 to maximize the Shapley value with the remaining

budget after taking the ≤ ℎ data owners.

Theorem 5.11. Algorithm 7 runs in 𝑂 (𝑛 ⌈ 1

𝛼
⌉ ) time with (1 −

𝛼)MAX worst case bound.

5.3 Complete Dealer Dynamics
We summarize the completeDealer dynamics in Algorithm 8, which

integrates all the proposed algorithms in the previous sections. We

assume that the broker can set appropriate parameters 𝑙 , 𝜖𝑘 , and 𝜇𝑘
based on her market experiences. If the maximized revenue cannot

cover the stated Shapley coverage rates, the broker needs to reset

the parameters for the 𝑙 models.

6 EXPERIMENTS
In this section, we present experimental studies validating: 1) our

proposed algorithms for pricing models can generate more revenue

for the data owners and the broker, and significantly outperform

the baseline algorithms in terms of efficiency, and 2) our proposed

algorithms for subset selection in model training are efficient and

effective.

6.1 Experiment Setup
We ran experiments on a machine with an Intel Core i7-8700K and

two NVIDIA GeForce GTX 1080 Ti running Ubuntu with 64GB

memory. We employed Support Vector Machine (SVM) as our ma-

chine learning model and used both synthetic datasets and a real

chess dataset [15] in our experiments. The chess dataset includes

3196 data tuples, each having 36 attributes.
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Figure 3: Model pricing effectiveness (independent distribution).

Algorithm 8: The complete Dealer dynamics.

1 %% Data collection;

2 collect dataset {𝐷1, ..., 𝐷𝑛 } along with compensation function 𝑐𝑖 (𝜖) for 𝑖 = 1, ..., 𝑛

based on Shapley value computed in Algorithm 1;

3 %% Model parameter setting;

4 decide a set of 𝑙 models to train with coverage rate 𝜇𝑘 and DP parameter 𝜖𝑘 for

𝑘 = 1, ..., 𝑙 ;

5 %% Model pricing;

6 perform market survey among𝑚′
sampled model buyers (survey participants) based on

each model buyer’s pricing function 𝑃 (𝐵 𝑗 , 𝑀𝑘 ) : collect market survey results of

model demand 𝑡𝑚 𝑗 and valuation 𝑣𝑗 for 𝑗 = 1, ...,𝑚′
;

7 call Algorithms 3 and 4 to compute the optimal price 𝑝 (𝜖𝑘 ) of model𝑀𝑘 for 𝑘 = 1, ..., 𝑙 ;

8 %% Model training and release;

9 for k=1 to l do
10 data selection: call Algorithm 5, 6, or 7 to select training subset S𝑘

with

manufacturing budget 𝑝 (𝜖𝑘 ) · 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 (𝑝 (𝜖𝑘 )) to maximize SV(S𝑘 ) ;

11 if for all k, SV(S𝑘 )
SV({𝐷

1
,...,𝐷𝑛 }) ≥ 𝜇𝑘 then

12 model training: train the model with subset S𝑘
by Algorithm 2;

13 model release: release model𝑀𝑘 , its coverage ratio 𝜇𝑘 , DP parameter 𝜖𝑘 , and

model price 𝑝𝑘 ;

14 %% Model transaction;

15 model buyers send their target models and payment to the broker, and the broker sends

the corresponding models to model buyers.

16 %% Compensation allocation;

17 for k=1 to l do
18 allocate the corresponding compensation to 𝐷𝑖 based on its compensation

function 𝑐𝑖 (𝜖𝑘 ) if 𝐷𝑖 is used to train Model𝑀𝑘 ;

For model pricing, we compare our proposed algorithm with

several baseline algorithms as follows.

• DPP: applying the dynamic programming algorithm in Al-

gorithm 4 to the survey price space.

• DPP+: applying the dynamic programming algorithm in

Algorithm 4 to the complete price space.

• Linear: taking the lowest survey price from model𝑀1 and

the highest survey price from model 𝑀𝑙 and using linear

interpolation for the remaining models 𝑀2, ..., 𝑀𝑙−1 based
on the two end-prices.

• Low: taking the lowest price in each model.

• Median: taking the median price in each model.

• Base: applying the exhaustion-based approach to the survey

price space.

• Base+: applying the exhaustion-based approach to the com-

plete price space.

For model training, we compare the three subset selection al-

gorithms we proposed with two baseline algorithms as follows.

• PPDP: the pseudo-polynomial dynamic programming algo-

rithm in Algorithm 5.

• Greedy: the greedy algorithm in Algorithm 6.
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Figure 5: Training efficiency.

• GuessGreedy: the guess based greedy algorithm in Algo-

rithm 7.

• ALL: selecting the entire chess training dataset.

• RAND: randomly selecting a subset of the entire tuples

given the manufacturing budget.

6.2 Model Pricing

Efficiency.We experimentally study the efficiency of the proposed

algorithms for pricing models. Because Linear, Low, and Median

algorithms only need to scan the survey price points once, the

time cost is very low. For the ease of presentation, we omit the

experimental results for the three algorithms.

Figure 4 shows the time cost of DPP, DPP+, Base, and Base+

on varying number of survey price points, i.e., the number of sur-

veyed model buyers. Both DPP and DPP+ linearly increase with the

number of survey price points, which verifies the efficiency of the

proposed dynamic programming algorithm. The time cost of both

Base and Base+ is prohibitively high due to the enormous volume

of the price combinations for different models.

Effectiveness. We experimentally study the revenue gain of the

proposed algorithms on datasets with different distributions. We

omit Base+ due to the prohibitively high cost. We generate two

datasets with 100 survey price points according to simulated price

functions and Eq. 8 (i.e., from 100 model buyers). The number of

survey price points on each model follows uniform distribution

and Gaussian (mean=3, standard deviation=1.2) distribution, respec-

tively. For the first model of both datasets, we generate the survey

price points following uniform distribution with range [1000, 5000].
The remaining four models follow a 1000 increase on both the lower

bound and the upper bound of the range.

Figures 3(a)(b)(c)(d) show the survey price points, final model

price, affordability ratio (fraction of the model buyers that can

afford to buy a model), and revenue on a uniformly distributed

dataset, respectively. Figure 3(a) shows the survey price points on
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Figure 6: Model training effectiveness.

5 models with differential privacy parameters 𝜖 = 0.001, 0.01, 0.1, 1,

and 10, respectively. Figure 3(b) shows that DPP+ and DPP have

similar optimal price settings. All models in DPP have different

prices. For the price setting of DPP+, the second model and the

third model have the same price, which maximizes the revenue

compared to DPP and verifies the effectiveness of the complete

price space construction. Figure 3(c) shows that DPP+ has the high-

est affordability ratio except for Low. For the most critical metric

revenue, DPP+ outperforms the other algorithms at least 3%, which

verifies the gain of the complete price space construction. Further-

more, DPP has the same performance with Base, which has the

optimal revenue. That is, although we relaxed the constraint of

𝑝 (𝜖𝑘 ) + 𝑝 (𝜖𝑘′) ≥ 𝑝 (𝜖𝑘 + 𝜖𝑘′) in Eq.10 to 𝑝 (𝜖𝑘 )/𝜖𝑘 ≥ 𝑝 (𝜖𝑘′)/𝜖𝑘′ , the
relaxed problem has the same optimal revenue with the original.

All algorithms have similar performances on Gaussian distribution

dataset as on uniform distribution dataset [7].

6.3 Model Training

Efficiency. Figure 5 shows the time cost of Greedy, PPDP, and

GuessGreedy with varying number of data owners on synthetic

datasets. PPDP has the intermediate time cost among the three al-

gorithms. Greedy significantly outperforms both PPDP and Guess-

Greedy due to its simplicity. GuessGreedy costs the highest time

because it needs to enumerate

(𝑛
ℎ

)
subsets, where 𝑛 is the total num-

ber of data owners and ℎ is the size of the sampled subsets during

enumeration. In our experiments, the time cost for GuessGreedy is

prohibitively high even when we set ℎ = 2. We skip some results of

PPDP and GuessGreedy in the figure due to their high cost.

Effectiveness. We experimentally study the effectiveness of the

proposed subset selection algorithms PPDP, Greedy, and Guess-

Greedy. We simulate five models by adding DP noise with parame-

ters 𝜖 = 0.001, 0.01, 0.1, 1, and 10 in the training processing follow-

ing Algorithm 2, and each model hasMB𝑘 = 𝜖𝑘/𝜖1
∑𝑛
𝑖=1 𝑐𝑖 (𝜖𝑘 ) for

𝑘 = 1, ..., 5, respectively.

Figure 6(a) shows the number of tuples selected by PPDP, Greedy,

GuessGreedy, ALL, and RAND, respectively. We employed 3000

tuples as the training dataset. Given the manufacturing budget, our

proposed algorithms select more tuples than RAND. Figure 6(b)

shows the sum of Shapley value of the tuples in the subsets selected

by different algorithms. We used the absolute value of the Shapley

value in order to select those data points that affect themodel perfor-

mance both positively and negatively. Because ALL has the entire

tuples, it has the highest sum of Shapley value. All our proposed

algorithms, outperforms RAND. Furthermore, PPDP outperforms

Greedy and GuessGreedy, which verifies the effectiveness of the

proposed dynamic programming algorithm. Figure 6(c) shows the

accuracy of the models trained on the subsets selected by PPDP,

Greedy, GuessGreedy, ALL, and RAND, respectively. Given the man-

ufacturing budget, our proposed subset selection algorithms only

choose around 800 tuples. However, the accuracy of the proposed

algorithms is even higher than ALL, which verifies the effective-

ness of Shapley value in selecting important data tuples for training

high utility model. Comparing the proposed algorithms, PPDP has

the highest accuracy with the corresponding highest sum of Shap-

ley value in Figure 6(b). That is, given the limited manufacturing

budget, we can choose the subset with the higher sum of Shapley

value to obtain higher accuracy. Also the accuracy is predominantly

determined by DP parameter 𝜖 . Figure 6(d) shows the relationship

between Shapley coverage and accuracy. We can see that the accu-

racy increases with respect to the increasing Shapley coverage in

general.

7 CONCLUSION AND FUTUREWORK
In this paper, we proposed the first end-to-end model marketplace

with differential privacy Dealer. Data owners specify their desired

compensation functions based on privacy sensitivity and Shapley

value. If the compensation proposed by data owner 𝐷𝑖 is too high,

there is a risk that the broker won’t choose 𝐷𝑖 to train the model.

Model buyers provide their price functions that they are willing

to pay based on Shapley coverage sensitivity and noise sensitiv-

ity. If the price provided by model buyer 𝐵 𝑗 is too low, there is

a risk that 𝐵 𝑗 cannot purchase the model from the broker. Based

on the compensation functions from data owners and the price

functions from model buyers, the broker builds 𝑙 versions of mod-

els with different Shapley coverage rates and DP parameters, and

presents an arbitrage-free model pricing mechanism to price the

model versions to maximize the revenue (model pricing). Given the

maximized revenue, the broker maximizes the Shapley coverage

for each model version to remain competitive (model training). We

proposed efficient algorithms for both optimization problems of

model pricing and model training. Experimental results show that

the proposed algorithms are efficient and effective.
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