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Abstract  
Although viruses in their natural habitats add up to less than 10 percent of the biomass, they 
contribute more than 90 percent of the genome sequences (1). These viral sequences or 
“viromes” encode viruses that populate the Earth’s oceans (2, 3) and terrestrial environments (4, 
5), where their infections impact life across diverse ecological niches and scales (6, 7), including 
humans (8-10). Most viruses have yet to be isolated and cultured (11-13), and surprisingly few 
efforts have explored what analysis of available data might reveal about their nature. Here we 
compiled and analyzed seven decades of one-step growth and other data for viruses from six 
major families, including their infections of archaeal, bacterial, and eukaryotic hosts (14-191). 
We found that the use of host cell biomass for virus production was highest for archaea at 10 
percent, followed by bacteria at 1 percent, and eukarya at 0.01 percent, highlighting the degree to 
which viruses of archaea and bacteria exploit their host cells. For individual host cells, the yield 
of virus progeny spanned a relatively narrow range (10-to-1000 infectious particles per cell) 
compared with the million-fold difference in size between the smallest and largest cells. Further, 
healthy and infected host cells were remarkably similar in the time they needed to multiply 
themselves or their virus progeny. Specifically, the doubling time of healthy cells and the delay 
time for virus release from infected cells were not only correlated (r = 0.71, p < 10-10, n = 101); 
they also spanned the same range from tens of minutes to about a week. These results have 
implications for better understanding the growth, spread and persistence of viruses in complex 
natural habitats that abound with diverse hosts, including humans and their associated microbes. 
 
Insight Box 
A major challenge in biology is to discover patterns of behavior that describe not just one 
species, but many. By compiling and analyzing data from over 100 virus-host pairs, we found 
that cells that take more time to divide also take more time to produce virus progeny. In other 
words, the same cell type infected with different viruses will release viral progeny on the same 
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time scale. This relationship underscores the extent to which virus production across the domains 
of life is coupled with biosynthetic processes needed for cell growth. 
 
Keywords: scaling; biomass; virome; one-step growth, burst size, delay period, kinetics; 
archaea, bacteria, eukarya   
 
Introduction 
The single-cycle or one-step growth behavior of viruses during infection of susceptible cultured 
host cells have served as a key measure of productive virus infection for 90 years. In pioneering 
work of 1930, Krueger and Northrop employed a virus or bacteriophage of S. aureus to show 
that host cellular growth was needed in order for phage to grow, that cell lysis correlated with the 
extracellular appearance of more than 100 infectious phage units per cell, and these phage units 
grew exponentially with time (192). Within a decade, Ellis and Delbrück refined and extended 
these methods to study a phage of E. coli (193). Later advances in animal tissue and cell 
cultivation enabled one-step growth measures of eukaryotic viruses (160, 194). Following the 
discovery and culture of halophilic hosts, such as Halobacterium cutirubrum and its phage, one-
step growth was measured for a virus from the Archaea (20), the third domain of life. 
 
In general, the one-step growth refers to the level of extracellular virus particles released from 
infected cells as a function of time post infection, features that may be quantitatively defined by 
a delay period and burst size (Fig. 1a). The variation of such parameters with specific virus 
strains, host cells and environmental factors reflect the diversity and breadth of virology studies. 
For example, measures of one-step growth have been used to quantify growth attenuation in 
gene-order variants of an RNA virus for vaccine applications (195, 196), to quantify how 
changes in pH, temperature and media constituents affect growth of lactic acid bacteria and their 
phage (197), and to show how the physiological state of E. coli growth impact the timing of 
phage production (35). Further, one-step growth measures of phage-induced killing of marine 
bacteria have revealed roles viruses play in biogeochemical and ecological processes (73, 77, 80, 
116, 198, 199).  
 
Scaling “laws” arise from patterns or regularities in data from natural or engineered systems that 

may span many orders of magnitude (200). In animal biology, for example, Kleiber compiled 
and compared metabolic rates, from mouse-to-whale, where animal masses span 10-to-108 

grams, and he found that their metabolic rates were proportional to the ¾ power of their mass 
(201). In virology, Cui et al. compiled data from 88 viruses on particle volumes and genome 
lengths, which span 104–fold and 103–fold, respectively, and they found volumes scaled with 
genome length to the 1.5 power (202), and we found comparable scaling (see Supplementary 
Information). The archival literature contains a large and growing wealth of quantitative data on 
cells and their infections by viruses, which were tapped for the current study.  
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Results and Discussion 
We initially identified archival one-step growth data for 101 virus-host systems representing 
diverse virus classifications based on their genomes: dsDNA, dsRNA, ssDNA, ssRNA(+), 
ssRNA(-) and ssRNA-RT, summarized in Fig. 1b and Table 1. The number of infectious virus 
progeny (or plaque forming units, PFU) produced per infected host cell provides at its maximum 
value an average burst size or PFU per cell. In the absence of information about the number of 
host cells infected, virus growth curves were quantified based in most cases on PFU per ml, 
TCID50 per ml or FFU per ml (the number of focus-forming units per volume of supernatant), 
which we defined as the viral yield. All data were used as reported; no assumptions were made 
regarding loss of PFU from secondary binding of virus progeny particles to cells or cell 
fragments, particle aggregation, or degradation of infection activity. 
 
The virus growth kinetics reported on a per cell basis spanned about 100-fold range of burst sizes 
from 10 to 1000, with delay times varying from tens to thousands of minutes. To visualize the 
broad span of one-step growth curves, data were plotted on logarithm base 10 scales (Fig. 1c). 
For growth kinetics reported on a per volume basis, yields spanned from hundreds to tens of 
billions of PFU per ml, and delay times varied from tens to tens of thousands of minutes (Fig. 
1d). Note that the left-most data points on some curves, which correspond with the titers of the 
earliest samples following the start of infection, appear in some cases to be at high titers of 107-
108 PFU/ml; these likely reflect residual viral inoculum and cell levels (unreported) of 108 
cells/ml or fractional virus particles per cell. We compared the burst size (PFU/cell) and yield 
data (PFU/ml, TCID50/ml and FFU/ml) by converting their values to log scale and plotting their 
quantiles against each other. The linearity of the resulting quantile-quantile plot (Fig. 1e) 
provides evidence that the burst-size and yield data were similarly distributed. Based on these 
similar distributions, we combined the burst-size and yield data by normalizing each data set to 
its maximum burst size or yield, respectively, so normalized virus production ranged from zero 
to unity, while times post-infection encompassed the full range of all 101 one-step growth 
trajectories (Fig. 1f). 
 
To quantify how virus growth might depend on host-cell physiology or metabolism, one may 
consider the amount of material consumed by the production of infectious progeny viruses in 
comparison with the starting host cell material. Specifically, we estimated what fraction of the 
host cell volume would be occupied by all the viruses making up a burst of its virus progeny. 
Such volumes can be employed as a proxy for biomass and thereby reflect how the cell’s 

resources are reclaimed for virus production(203). We found that archaea used the largest 
fraction of resources for virus production at 10 percent, while bacteria and eukarya were about 
10-fold to 1000-fold lower with average volume fractions of 6.5×10-3 and 5.0×10-5, respectively 
(Fig. 2). Moreover, bacteria used a maximum of 35 percent of their cellular volume fraction to 
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make virus; archaea and eukaryotes followed with 11 percent and 1 percent, respectively. Others 
have estimated volume fractions for eukaryotic virus production of up to 5 percent (203) based 
on measures of simian immunodeficiency virus (SIV) RNA sequences(204), not functional viral 
RNA or infectious virus particles. For every 350 viral genomes or virus particles in SIV and HIV 
infections, it has been estimated that only one virus particle is infectious (205). Thus, the actual 
volume fraction for SIV and HIV infections may be closer to (5 percent)/350 or 1.4×10-4, which 
is closer to our estimate of 5.0×10-5 for eukaryotic viruses.  
 
As described in our Methods, the one-step growth data were initially used to estimate four 
parameters: host cell volume (HV), host cell doubling time (HT), infected cell burst size or yield 
associated with virus production (IBS or IY), and infected cell delay time associated with virus 
release (IT). Distributions of host cell volume (HV) spanned nearly one million-fold (106 or six 
orders of magnitude) from the smallest bacterial cell to the largest eukaryotic cell, with bacteria 
spanning almost 105-fold and archaeal cells centered with the distribution of bacterial volumes 
(Fig. 3a). Distributions of cell doubling times (HT) spanned a 103-fold range with bacteria 
represented across the full range, where the longest bacterial doubling times were represented by 
cyanobacteria, overlapping with the 102-fold range of doubling times exhibited by eukaryotic 
cells (Fig. 3b). Both sets of host cell parameters, HV and HT, exhibited two peaks in their 
distributions, represented by bacteria and eukarya centered at lower and higher values, 
respectively. In contrast with these double-peaked distributions of normal-cell characteristics, 
parameters associated with the production of viruses by infected cells exhibited distributions 
with single peaks. Specifically, burst size of virus progeny (IBS) spanned a nearly 103-fold range 
with significant overlap of the distributions from infected bacteria and eukarya (Fig. 3c), and the 
distribution of delay times associated with the release of viral progeny (IT) spanned a similar 103-
fold range (Fig. 3d).   
 
To explore potential relationships between measures of normal and infected cells, we determined 
correlation coefficients between all six pairs of cell and infected cell parameters, as shown in 
Fig. 3e (see Supplementary Information for expanded extents of correlation between parameter 
pairs). A correlation was found between the host cell parameters HT and HV  (r = 0.63, p < 10-5, n 
= 48), shown in Fig. 3f, as anticipated from laboratory observations, where smaller bacteria 
typically grow with shorter doubling times (or higher rates) than larger mammalian cells. Based 
on our past measures of virus production from relatively large eukaryotic and small bacteria cells 
(35, 196, 206), we expected that larger cells would in general produce more virus progeny. 
However, as shown in Fig. 3g, little correlation was found between burst size and host cell 
volume (r = 0.26, p = 0.07, n = 47). Instead, we found that delays in the release of virus progeny 
correlated with the host cell doubling time (r =0.71, p <10-10, n = 101), as shown in Fig. 3h. 
(Note that the size of the parameter set for burst sizes is more than two-fold smaller than the set 
for delay times because they correspond with the data from Fig. 1c and Fig. 1f, respectively.) We 
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explored further relationships between rates of virus production and rates of host cell growth, 
defined using volume equivalents or genome size equivalents, but no correlations were apparent 
(see Supplementary Information). 
 
Why might cells with longer doubling times (slower growth rates) release virus with longer 
delays? In a study of phage T7 one-step growth on E. coli bacterial hosts, lower rates of cell 
doubling correlated with lower capacities and rates of protein synthesis (35), a resource that is 
essential for both cell growth as well as virus replication. The effects of cellular resources on 
virus growth have yet to be systematically and quantitatively studied for a specific system or 
across a diversity of virus-host-cell systems. However, progress has been made toward 
developing data-driven mechanistic models of virus one-step growth for diverse viruses (207-
213), as recently reviewed (214). Variation in the productivity of infections of bacterial and 
mammalian viruses have been found to depend on physiological state of the host cell, with more 
rapid bacteria growth and pre-division stages of the mammalian cell cycle associated with higher 
virus yields and shorter times to production of intracellular virus (35, 182, 215). Extensions of 
such studies to the current work may be to quantify the capacity and rate of protein synthesis for 
cells of varying size (or physiological state) across the domains of life. The dependence of all 
viruses on protein synthesis and cell-to-cell differences in the capacity and rate of protein 
synthesis across diverse host cells may correlate with their associated delay times to virus release 
when infected. 
 
By employing one-step growth data, our analysis is limited by what it can reveal about viruses in 
nature. First, in diverse host cells, there can be a complex interplay between ecological and 
biological factors in both host cellular and virus growth (216), including the prevalence of viral 
co-infections of the same host (217), infectious virus aggregates (218), defective interfering 
particles (219),  or collective properties of infectivity (220), features not usually considered by 
one-step growth kinetic behavior measured in the lab. Second, we did not include viruses that are 
latently carried along with their host genomes; such viruses may contribute a significant fraction 
of viruses detected by metagenomics analysis (221). Third, longer delays in the release of virus 
particles from slower doubling cells might well depend on factors beyond the biosynthetic 
capacity of the host, such as the more complex structure and mechanisms of intracellular 
transport associated with infections of slower doubling eukaryotic cells (222). Finally, we did not 
consider any viruses that infect plants, although plants dominate in their contribution to the 
global biomass (223). Plant viruses typically spread from one infected cell to the next without an 
extracellular phase (224), or they are transmitted between plant hosts by insect vectors, so one-
step growth measures are not used to study viruses that infect plants.  
 
While the current work has focused on virus growth at the level of their cell-level hosts, the 
growth and spread of viruses in nature entail higher levels of complexity. For example, natural 
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infections often engage host defensive responses: anti-phage restriction enzymes, acquired 
immunity(CRISPR) in bacteria, or interferon-mediated innate immune signaling in animal host 
cells. Such host responses can be triggered on similar time scales as the virus infection, 
impacting the timing and productivity of subsequent rounds of infection. The mechanisms and 
dynamics of infections over multiple cycles, within host tissues, and entailing transmission 
between hosts, combine both physical and biological processes (225, 226). For a limited number 
of virus-host systems, the dynamics of transmission and immune activation have suggested 
scaling with host body size (227-229), and efforts for more extensive compilations of data and 
their analysis, particularly for viruses of human health relevance have begun (230). We 
anticipate that emerging automated approaches to identify and extract data from the archival 
literature will in coming years facilitate data-intensive efforts to reveal further facets of virus 
growth and infection behaviors shared across diverse hosts. 
 
CONCLUSION 
The diversity of cellular life is reflected in part by the range of cell sizes and 
growth rates across the eukarya, archaea, and bacteria. The largest cells occupy a 
million-fold larger volume than the smallest, and the slowest growing cells double 
their numbers at a rate that is 100-to-1000 fold less than the fastest. When such 
cells are infected by viruses, cell size has little impact on the outcome; larger 
infected cells do not make more virus progeny. Instead, timing appears to be 
important; cells that normally take longer to double in number, when infected, also 
take longer to make virus. 
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METHODS 
  
Data extraction and estimation of parameters. Healthy host-cell volumes (HV) and viral 
particle volumes (VV) were estimated from their linear dimensions. For example, Staphylococcus 
carnosus, a Gram-positive bacteria used in the ripening of dry sausage, appeared from 
microscopy images to be spherical with an average diameter of about one micron or volume of 
( /6) (1 m)3 or 0.523 m3 (32). Healthy host-cell doubling times (HT) were either directly 
reported values, or they were calculated from reported specific growth rates or generation times:  
 

𝑐𝑒𝑙𝑙 𝑑𝑜𝑢𝑏𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =  
𝑙𝑛(2)

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒
 =  𝑙𝑛(2) ×  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒               (1) 

 
Data from virus one-step growth curves were extracted from archival figures using Engauge 
Digitizer Software (http://markummitchell.github.io/engauge-digitizer/). Parameters of one-step 
growth were estimated using MATLAB (Mathworks, Natick, MA). Specifically, virus burst size 
(IBS) or virus yield (IY), were estimated using an arithmetic average of all virus titer measures 
within 95 percent of the maximum reported value.  The delay period (IT) was estimated by linear 
interpolation between data points of the one-step growth data plotted on a linear scale; the delay 
period corresponds with the time where virus titer has risen to 50 percent of the virus burst size.   
 
Quantile-quantile analysis. The most informative population measure of one-step growth 
behavior for production of infectious virus progeny is the average number of plaque-forming 
units per cell or (PFU/cell) because it can provide the average cell productivity across the 
population of cells. Less informative, but still valuable, are kinetic measures from synchronized 
infected cells that do not quantify production of infectious virus particles on a per cell basis, for 
example: the number of plaque forming units per volume of culture supernatant (PFU/ml), the 
number of focus-forming units per volume of supernatant (FFU/ml), or the concentration at 
which 50 percent of the cells are infected by a dilution of sample, also called the tissue-culture 
infectious dose or (TCID50/ml).  A quantile-quantile or Q-Q plot enables one to assess whether 
two data sets arise from a similar or common population. The method compares the population 
distribution of one data set against the distribution of other data set; the lowest 10 percent of the 
first data set is plotted against the lowest 10 percent of the second data set, and such plotting is 
carried out from the lowest to the highest deciles (or more generally, quantiles) of each data set. 
If the distributions are linearly related, then their Q-Q plot will appear linear. For our extracted 

one-step growth curves we divided the data into two sets: the first based on measures of 

PFU/cell (Fig. 1c) and the second based on all other measures, including PFU/ml, FFU/ml and 

TCID50/ml (Fig. 1d). Then, virus burst size (IBS) and virus yield (IY), were extracted as 95 

percent of the maximum reported value of each curve in each data set, and both of the resulting 
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datasets were sorted based on magnitude; we used the qqplot function in MATLAB to calculate 

Q-Q plots for IBS and IY, as shown in Fig. 1e. 

 
Composite parameters. Host-virus interactions may be studied by estimating the level and rate 
of viral material production. We defined several composite parameters to describe collective 
viral genomic and molecular material: total viral genomes using the product of infection burst 
size and viral genome size (𝑉𝐺𝑆

𝑡𝑜𝑡 =  𝐼𝐵𝑆  ×  𝑉𝐺𝑆), and total viral volume using the product of 
infection burst size and viral particle volume (𝑉𝑉

𝑡𝑜𝑡 =  𝐼𝐵𝑆  ×  𝑉𝑉). Furthermore, we can 
approximate the time scale of viral production using infection delay time (IT); the total viral 
genome production rate (𝑉𝐺𝑆

𝑡𝑜𝑡/𝐼𝑇) and total viral volume production rate (𝑉𝑉
𝑡𝑜𝑡/𝐼𝑇) were defined 

accordingly. Similarly, we approximated the time scale of host cell reproduction using host cell 
doubling time (HT); the host cell genome production rate (𝐻𝐺𝑆/𝐻𝑇) and host cell volume 
production rate (𝐻𝑉/𝐻𝑇). 
 
Statistical analysis and visualization. Linear regressions were estimated by least squares 
methods and two-tailed t-tests were applied using MATLAB. They were applied to all the 
systems for which relevant data were available.  
 
Since parameter values often spanned many orders of magnitude, they were reported as their 
geometric averages with geometric standard deviations instead of arithmetic averages and 
standard deviations used when values are the same order of magnitude. Geometric average (μ) 

and geometric standard deviation factor (G) are defined as: 

𝜇 =  √∏ 𝑥𝑖

𝑛

𝑖=1

𝑛

                                                                            (2) 

𝐺 =  𝑒𝑥𝑝( 
1

𝑛 − 1
∑(𝑙𝑛(𝑥𝑖)  −  𝑙𝑛(𝜇

𝑛

𝑖=1

) ))                                                  (3) 

where n is sample size, and xi is sample value. 
 
Following Kirkwood (231), the uncertainty of the parameters was estimated and reported as 
[μ÷G, μ×G].   
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