GALOIS STRUCTURE OF THE HOLOMORPHIC DIFFERENTIALS OF CURVES
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ABSTRACT. Let X be a smooth projective geometrically irreducible curve over a perfect field k of positive
characteristic p. Suppose G is a finite group acting faithfully on X such that G has non-trivial cyclic
Sylow p-subgroups. We show that the decomposition of the space of holomorphic differentials of X into a
direct sum of indecomposable k[G]-modules is uniquely determined by the lower ramification groups and
the fundamental characters of closed points of X that are ramified in the cover X — X/G. We apply
our method to determine the PSL(2, F;)-module structure of the space of holomorphic differentials of the
reduction of the modular curve X (¢) modulo p when p and ¢ are distinct odd primes and the action of
PSL(2,F;) on this reduction is not tamely ramified. This provides some non-trivial congruences modulo
appropriate maximal ideals containing p between modular forms arising from isotypic components with
respect to the action of PSL(2,F,) on X (¥).

1. INTRODUCTION

Let k be a perfect field, and let X be a smooth projective geometrically irreducible curve over k. Denote
the sheaf of relative differentials of X over k by Q2x. The space of holomorphic differentials of X is the space
of global sections HY(X,€x). Suppose G is a finite group acting faithfully on the right on X over k. Then G
acts on the left on Qx and on HY(X,Qx). In particular, H*(X,Qx) is a left k[G]-module of k-dimension
equal to the genus g(X) of X. It is a classical problem, which was first posed by Hecke [20], to determine
the k[G]-module structure of H°(X,Qx). In other words, this amounts to determining the decomposition of
HY(X,Qx) into its indecomposable direct k[G]-module summands. In the case when k is algebraically closed
and its characteristic does not divide #G, this problem was solved by Chevalley and Weil [9] using character
theory (see also [23]).

For the remainder of the paper, we assume that the characteristic of k is a prime p that divides #G. Two
main difficulties then arise. One is the appearance of wild ramification and the other is that one needs to use
positive characteristic representation theory. In particular, there are indecomposable k[G]-modules that are
not irreducible.

If k is algebraically closed and the ramification of the Galois cover X — X/G is tame, then Nakajima [32,
Thm. 2] and, independently, Kani [25, Thm. 3] determined the k[G]-module structure of H’(X, Q) for an
arbitrary group G. In particular, Nakajima showed that if £ is any locally free G-sheaf of finite rank then
there is an exact sequence of k[G]-modules

(1.1) 0— H'(X,6) — L — L' — HY(X,E) —0

where L? and L' are projective k[G]-modules.
The case when G is a cyclic group and the ramification of X — X /G is arbitrary was initiated by Valentini
and Madan [37, Thm. 1] who considered cyclic p-groups (and also revisited cyclic p’-groups [37, Thm. 2]). The
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case of general cyclic G was treated by Karanikolopoulos and the third author [26, Thm. 7]. In these papers,
formulas are given of the multiplicities of the indecomposable direct k[G]-module summands of H°(X,Qy) in
terms of invariants introduced by Boseck [7] when constructing bases of holomorphic differentials. These
Boseck invariants have also been used by Rzedowski-Calderén, Villa-Salvador and Madan [34] and Marques
and Ward [29] for some other groups under additional hypotheses on the cover X — X/G. A different,
general approach to determining the decomposition of coherent cohomology groups into indecomposable
direct summands was developed by Borne in [6], using the notion of rings with several objects. Some formulas
concerning the case of cyclic groups and curves are given in [6, §7.2].

The goal of this article is to determine the decomposition of H?(X, Qx ) into a direct sum of indecomposable
k[G)-modules for every group G with non-trivial cyclic Sylow p-subgroups. Even though there are only finitely
many isomorphism classes of indecomposable k[G]-modules in this case, G can have quite a complicated
structure. For example, every finite simple non-abelian group has a non-trivial cyclic Sylow subgroup for at
least one prime (see, e.g., [21, Prop. 3] for a proof). Our main objective is to prove that the k[G]-module
structure of HY(X, Qx) is uniquely determined by the ramification data consisting of the lower ramification
groups and the associated characters of closed points of X that are ramified over X/G.

More precisely, for each closed point z € X, let mx , be the maximal ideal of the local ring Ox , and let
k(z) be the residue field of z. For i > 0, the i'" lower ramification subgroup G ; of G at z is the subgroup
of all elements ¢ € G that fix x and that act trivially on Ox ,/ m?i The fundamental character of the
inertia group G, of x is the character 0, : G, 0 — k(z)* = Aut(mx,m/mg(’x) giving the action of G5 on
the cotangent space of x. Here 6, factors through the maximal p’-quotient G, /Gy 1 of Gz . Our main
result is as follows.

Theorem 1.1. Suppose G has non-trivial cyclic Sylow p-subgroups. Then the k[G]-module structure of
HO(X,Qx) is uniquely determined by the lower ramification groups and the fundamental characters of closed
points x of X that are ramified in the cover X — X/G.

There are two main differences between Theorem 1.1 and previous literature on this subject. The first
is that we do not require the group G to be solvable or any restrictions on the ramification of the G-cover,
but we only require the Sylow p-subgroups of G to be cyclic. The second difference is that we work mostly
locally rather than globally and we phrase our results only in terms of ramification groups and fundamental
characters. In particular, our results do not involve invariants constructed from equations for successive
Artin-Schreier extensions of function fields. In previous work, such equations were involved in defining the
invariants necessary to calculate the Galois structure of the holomorphic differentials. Here we only use
Artin-Schreier extensions in our proof, but the statement of Theorem 1.1 does not involve invariants associated
to solutions of such equations.

Our work is relevant to the study of classical modular forms of weight two. Suppose IV > 3 is an integer
prime to p, and let I'(IN) be the principal congruence subgroup of SL(2,7Z) of level N. Let F' be a number
field that is unramified over p and that contains a primitive N*® root of unity (. Suppose A is a Dedekind
subring of F that has fraction field F and that contains Z[+,(n]. By [27, 28] (see also [24]), there is a
proper smooth canonical model X' (N) of the modular curve associated to T'(IV) over A. The global sections
HO(X(N),Qx(n)) are naturally identified with the A-lattice S(A) of holomorphic weight 2 cusp forms for
T'(N) that have g-expansion coefficients in A at all the cusps, in the sense of [27, §1.6]. See §5 for details.
Note that in the classic references, such as [35], the action of elements of SL(2,Z) on S(A) is on the right. As
usual, one can turn any right action of a group on a module into a left action by letting the left action of a
group element equal the right action of its inverse.



Let V(F, p) be the set of places v of F' over p, and let O, be the ring of integers of the completion F, of
F at v. We now suppose A is contained in Op, for all v € V(F, p). We further suppose that N = ¢ is an odd
prime number, and we let G = PSL(2,Z/N) = PSL(2,F;). By analyzing the action of G on the holomorphic
differentials of the reduction of X'(¢) modulo p, we will show the following result on the structure of the
holomorphic differentials of X (¢) as an Op,,[G]-module.

Theorem 1.2. Suppose A C Op,, for allv € V(F,p), N = { is an odd prime number with £ # p and p > 3.
For all v € V(F,p), the Op,|G]-module

O ©a HO(X(0),Qx(0) = Opp ©a S(A)

is a direct sum over blocks B of Op |G of modules of the form Pg®Ug in which Pg is a projective B-module
and Ug is either the zero module or a single indecomposable non-projective B-module. One can determine Ppg
and the reduction Up of Ug modulo the mazimal ideal mp ., of OF, from the ramification data associated to
the action of G on X () modulo p.

The fact that at most one non-projective indecomposable module Up is associated to each block B is
fortuitous. When p > 3 we show how this follows from work of Nakajima [32, Thm. 2], and in particular from
(1.1). When p = 3 the result is more difficult because the ramification of the action of G on X (¢) modulo 3 is
wild. We determine the module structure of the holomorphic differentials of X'(£) modulo 3 in Theorem 1.4
below, and this leads to Theorem 1.2 in this case. Note that the Sylow 2-subgroups of G are not cyclic, so
the methods of this article are not sufficient to treat the case when p = 2.

We now describe one approach to defining congruences modulo p between modular forms. This basically
follows the approach in [33]. However, we consider weight 2 cusp forms for the principal congruence subgroup
I'(N) (rather than for I'g(N) or I'; (V) and we allow more general rings T of Hecke operators to act (see
below). We then show how Theorem 1.2 enables us to characterize when such congruences can arise from
the decomposition of F ®4 S(A) into G-isotypic pieces. We refer to [35, Chap. 3] for a discussion of Hecke
operators and their actions on modular forms.

Define S(F) = F ® 4 S(A) to be the space of weight two cusp forms that have g-expansion coefficients in
F at all cusps, in the sense of [27, §1.6]. Let T be a ring of Hecke operators acting on S(F'). Suppose there is
a decomposition

(1.2) S(F)=E, @ E,

into a direct sum of F-subspaces that are stable under the action of T. Let a be an ideal of A. Following [33],
a non-trivial congruence modulo a linking F7 and F5 is defined to be a pair of forms f € S(4) N E; and
g € S(A) N E5 such that

f=¢g moda-S(A) but fda-S(A4).

Congruences of this kind have played an important role in the development of the theory of modular forms,
Galois representations and arithmetic geometry. For further discussion of them, see for example [15, 16].

Our results are relevant to a method for producing congruences of the above kind. Letting N = ¢ and
G = PSL(2,F,) as before, we can form a decomposition (1.2) in the following way. Write 1 in F[G] as the
sum e; + es of two orthogonal central idempotents. Define

(13) E1 = 618(F) and E2 = €28(F)

We will call a decomposition (1.2) of the form in (1.3) a G-isotypic T-stable decomposition of S(F').
In an appendix in §7 we show how to construct non-trivial G-isotypic T-stable decompositions of S(F)

when T is the ring of Hecke operators that have index prime to ¢ (see Proposition 7.1). In this case, one can
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take F; = ¢;S(F) when {ej, es} is any pair of orthogonal central idempotents of F[G] such that 1 =e; + ey
and each e; is fixed by the conjugation action of PGL(2,F,) on G.
We will show the following theorem regarding non-trivial congruences arising from G-isotypic T-stable

decompositions of S(F).

Theorem 1.3. With the assumptions of Theorem 1.2, suppose further that F contains a root of unity of
order equal to the prime to p part of the order of G. Let a be the mazimal ideal over p in A associated to
v € V(F,p). A T-stable decomposition (1.2) that is G-isotypic, in the sense that it arises from idempotents as
n (1.3), results in non-trivial congruences modulo a between modular forms if and only if the following is true.
There is a block B of Op |G| such that when Pg and Up are as in Theorem 1.2, Mp = Pg & Ug is not equal
to the direct sum (MpNeiMp)® (Mg NeaMp). For a given B, there will be orthogonal idempotents ey and
ey for which this is true if and only if B has non-trivial defect groups, and either Pp # {0} or F, ®o,, Up
has two non-isomorphic irreducible constituents.

To describe the module structure of the holomorphic differentials of X' (¢) modulo 3, let £ # 3 be an odd
prime number. Let P3 be a maximal ideal of A containing 3, define k(Ps) = A/P5 to be the corresponding
residue field, and let k be an algebraically closed field containing k(P3). Define the reduction of X'(¢) modulo
3 over k to be

X3(l) = k @p(py) (k(Ps) ®a X(0)).
If £ = 5 then X3(¢) has genus 0. For £ > 7, we obtain Theorem 1.4 below; for more detailed versions of part
(i) of this theorem, see Propositions 6.4.1 - 6.4.4. For a discussion of uniserial modules over Artin algebras,
see, e.g., [2, §IV.2].

Theorem 1.4. Let ¢ > 7 be a prime number, and define G = PSL(2,F,). Let Ps, k(Ps) and k be as above,
and define X = X5({) to be the reduction of X (£) modulo 3 over k.
(i) Let e = +1 be such that £ =€ mod 3. Write { —e = 2-3" - m where 3 does not divide m, and let
On,1 be the Kronecker delta. If T is a simple k[G]-module, then U;i) denotes a uniserial k|G]-module
of length b whose socle is isomorphic to T. There exists a projective k[G]-module Q, such that the
following is true:
(1) Suppose £ =1 mod 4 and £ = —1 mod 3. For 0 <t < (m —1)/2, let T; be representatives of
simple k[G]-modules of k-dimension ¢ — 1 such that Ty belongs to the principal block of k[G]. As
a k[G]-module,
(m—1)/2
HO(X,Qx) 2 Qr & (1— 6,1) U; >(3H 2 ® EB ;G; L

(2) Suppose £ = —1 mod 4 and £ =1 mod 3. Let Ty be a simple k[G]-module of k-dimension £.
For 1<t < (m—1)/2, let Ty be representatives of simple k[G]-modules of k-dimension ¢ + 1.
As a k[G]-module,
(m—1)/2

HO(X,Qx) 2 Qe ® (1 —6n1) U}Gz gn-141 D @ (G) 2.3n-1"

(3) Suppose =1 mod 4 and £ =1 mod 3. Let Ty be a simple k|G]-module of k-dimension £.
For1<t < (m/2—1), let Ty be representatives of simple k[G]-modules of k-dimension ¢ + 1.
There exists a simple k[G]-module Ty 1 of k-dimension (£ + 1)/2 such that, as a k[G]-module,

m/2—1

HY(X, Qx) = Qe @ (1= 6n1) Uél,i,zs"*lﬂ @ UToi 2.3n-1 P EB U; )23n v
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(4) Suppose £ = —1 mod 4 and £ = —1 mod 3. For 0 <t < (m/2—1), let T, be representatives
of simple k[G]-modules of k-dimension { — 1 such that Ty belongs to the principal block of k|G).
There exists a simple k[G]-module Ty 1 of k-dimension (¢ —1)/2 such that, as a k[G]-module,

m/2—1
~ (@) @
HO(X7 QX) EQed (1 - 5”,1) UTO’(37171,1)/ oU TO 1,371 ® @ UT 3n—1°

The multiplicities of the projective indecomposable k[G]-modules in Qg are known explicitly. The
isomorphism classes of the uniserial k[G]-modules occurring in parts (1) through (4) are uniquely
determined by their socles and their composition series lengths. In parts (3) and (4), there are two
conjugacy classes of subgroups of G, represented by Hy and Hs, that are isomorphic to the symmetric
group Xs such that the conjugates of Hy (resp. Ha) occur (resp. do not occur) as inertia groups of
closed points of X. This characterizes the simple k[G)-module Ty 1 in parts (3) and (4) as follows.
The restriction of Ty to Hy (resp. Hz) is a direct sum of a projective module and a non-projective
indecomposable module whose socle is the trivial simple module (resp. the simple module corresponding
to the sign character).

(ii) Let k1 be a perfect field containing k(Ps) and let k be an algebraic closure of k1. Define X1 =
k1 ®p(py) (K(P3) ®a X(£)). Then

k@, HO(X1,Qx,) = HY (X, Qx)

as k[G]-modules, and the decomposition of H®(X1,8x,) into indecomposable k1|G]-modules is uniquely
determined by the decomposition of HO(X,Qx) into indecomposable k[G]-modules. Moreover, the
k1[G]-module H°(X1, Qx,) is a direct sum over blocks By of k1G] of modules of the form Pp, ® Up,
wn which Pp, is a projective Bi-module and Up, is either the zero module or a single indecomposable
non-projective Bi-module. Moreover, one can determine Pg, and Up, from the ramification data
associated to the cover X — X/G.

The main ingredients in the proof of Theorem 1.4 are Theorem 1.1 together with a description of the
blocks of k[G] and their Brauer trees in [8].

We now describe the main ideas of the proof of Theorem 1.1.

We first use the Conlon induction theorem [12, Thm. (80.51)] to reduce the problem of determining the
k[G]-module structure of H°(X,Qx) to the problem of determining the k[H]-module structure of restrictions
of H(X,Qx) to the so-called p-hypo-elementary subgroups H of G. These p-hypo-elementary subgroups are
semi-direct products of the form H = P x C, where P is a normal cyclic p-subgroup of H and C is a cyclic
p’-group.

We then prove Theorem 1.1 in the case when G = H is p-hypo-elementary. The proof in this case is
constructive and can be used as an algorithm to determine the decomposition of H(X, Qx) into a direct sum
of indecomposable k[H|-modules, see Remark 4.4. More precisely, let H = P x C' be a p-hypo-elementary
group as above, and let x : C — F} be the character determining the action of C'on P. Let I < P be the
(cyclic, characteristic) subgroup of P generated by all inertia groups of the cover X — X/P, say I = (7). If
M is a k[I]-module or a sheaf of k[I]-modules on a scheme, we use the notation M), for 0 < j < #I — 1, to
denote the kernel of the action of (7 — 1) on M Let m : X — X/I be the quotient morphism. For ease

of notation, we write 2% )

instead of (m,Qx)U). We prove that the quotient sheaves Qgﬂ)/ﬂg) are line
bundles for O, isomorphic to x I @ Q x/1( j) for effective divisors D; on X/I which may be explicitly
determined by the lower ramification groups of the cover X — X/I. Using a dimension count, we show that
there is an isomorphism

(1.4) HO(X, Qx )0+ /HO(X, Q)@ = HO(X, Q0T /Q@)
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of k[H/I]-modules for 0 < j < #I — 1. Then we use that X/I — X/H is tamely ramified, together with
(1.1), to prove that the k[H/I]-module structure of H°(X, Qg+1)/9§)), for 0 < j < #I — 1, is uniquely
determined by the p’-parts of the (non-trivial) inertia groups of the cover X — X/H and their fundamental
characters. Finally, we argue, using (1.4), that this is sufficient to obtain the k[H]-module structure of
HO(X, Qx).

The paper is organized as follows. In §2, we recall some well known definitions regarding finite groups
acting on schemes and sheaves. In §3, we show how to reduce the proof of Theorem 1.1 to the case of
p-hypo-elementary subgroups H of G, using the Conlon induction theorem (see Lemma 3.2). We also reduce
to the case when k is algebraically closed. In §4, we first prove Theorem 1.1 when G = H is p-hypo-elementary;
see Propositions 4.1 and 4.3 for the key steps. We then summarize these key steps of the proof in Remark 4.4.
In §5, we discuss the holomorphic differentials of the reductions of the modular curves X' (£) modulo p, and
we prove Theorems 1.2 and 1.3 when p > 3. In §6, we fully determine the k[PSL(2,F,)]-module structure of
HO(X3(¢), Qx,(r) when k is an algebraically closed field containing F3; see Propositions 6.4.1 - 6.4.4 for the
precise statements. In particular, this proves Theorem 1.4, which we then use to prove Theorems 1.2 and 1.3

when p = 3.

2. FINITE GROUPS ACTING ON SCHEMES AND SHEAVES

In this section, we recall some well known definitions regarding finite groups acting on schemes and sheaves.
We will also set up some notation which will be used later in this paper.

Let X be a Noetherian scheme, locally separated over a field k, and let H be a finite group acting on the
right on X over k. We view H as a constant group scheme over k, and we write m : H x; H — H for the
group law and e : K — H for the identity section of H. Let ¥ : X X, H — X denote the right action of H
on X, which on points we denote by (x,h) — x - h. Let p; : X X H — X denote the natural projection.

We recall from [36, §1.2] (see also [31, §1.3]) the notion of a quasi-coherent Ox-H-module F. The concept
of an Ox-H-module goes back to Grothendieck (see, for example, [17, Chap. V]). Such an F is also called a
quasi-coherent H-sheaf (or H-equivariant sheaf) on X. An F of this kind is defined to be a quasi-coherent
sheaf of Ox-modules, together with an isomorphism of Ox x, g-modules

¢ F — piF.
This isomorphism ¢ must be associative, in the sense that it satisfies the cocycle condition

(2.1) (P12@) o (U x 11)"¢) = (1x x m)"¢

on X X H X3 H, where p15 : X X H X, H— X X} H denotes the projection onto the first and second
components. On the stalk level, the cocycle condition says that the isomorphism F, pp = F, is the same
as the composition Fi.py.n = Frn = Fy, ie., the associativity of the group action. The unitarity of
the group action is also a consequence. Namely, applying (1x X e X e¢)* to both sides of (2.1) we get
(Ix xe)*po(1x xe)*¢p = (1x x e)*¢ and so (1x x e)*¢ is the identity.

Equivalently (compare with [10, §1.2.5]), a quasi-coherent Ox-H-module can be defined to be a quasi-
coherent sheaf F of Ox-modules with a compatible action of H in the following sense. Suppose z € X and
h € H. The action of h € H on X and on F gives isomorphisms of stalks Ox 5., — Ox , and Fy.p, — F,
which we will both denote by h. We require h(a - f) = h(a) - h(f) for a € Ox p.p, and f € Fyop.

If F is moreover coherent (resp. locally free coherent) as an Ox-module, we will call F a coherent (resp.
locally free coherent) Ox-H-module.

The concept of an Ox-H-module can be viewed as the sheafification of the concept of modules for skew

group algebras. More precisely, if B is a k-algebra and H acts by left k-algebra automorphisms on B, we can
6



form the skew group algebra

Bx[H]:{th-h;bheB}.

heH
Here addition on B x [H] is natural and multiplication is defined distributively using h - b = h(b) - h, where
h(b) denotes the image of b € B under the action of h € H. If U = Spec(B) is an affine open set of X that is
taken to itself by the action of H, and F is an Ox-H-module, then F(U) is just a module for the skew group
algebra B x [H].

An important example of a coherent Ox-H-module, which will be of interest to us, is the sheaf Qx of
relative differentials of X over k with the natural action of H on 2x resulting from the action of H on Ox.
If X is a smooth projective curve over k, then 2x is moreover locally free of rank one as an Ox-module.

By [18, Exposé V, Prop. 1.8], a necessary and sufficient condition for the existence of a quotient scheme
7 = X/H is that the H-orbit of every point of X is contained in an open affine subset of X. Equivalently, X
can be covered by affine open sets of the form U = Spec(B) that are taken to themselves by the action of H.
This will always be the case, for example, if X is quasi-projective.

Suppose now that the quotient scheme Z = X/H exists, and let I be a subgroup of H. By [18, Exposé
V, Cor. 1.7], the quotient scheme Y = X/I also exists, and we let 7 : X — Y = X/I denote the quotient
morphism. Let F be a quasi-coherent Ox-H-module. Then 7,Ox is a sheaf of rings on Y, and m,.F is a
quasi-coherent sheaf of 7,0 x-modules with an action of H that is compatible with the action of H on 7,Ox
over Oy. We have a natural homomorphism Oy — 7w,0Ox of sheaves of rings on Y. Therefore, we can
view m,.F as a quasi-coherent Oy-H-module. Note that if F is coherent (resp. locally free coherent) as
an Ox-module, then so is 7, F as an Oy-module. Moreover, if G is a quasi-coherent Oy -H-module then
m.F ®o, G is also a quasi-coherent Oy-H-module by letting H act diagonally.

Suppose finally that I is a normal subgroup of H, and that J is an ideal of k[I] that is taken to itself
by the conjugation action of H on I. Since I acts trivially on Oy, we can regard m.F as a module for the
sheaf of group rings Oy [I] on Y. We define the kernel K = KC(F, 1, J) of J acting on 7. F to be the sheaf of
Oy-modules having sections over each open set V' of Y equal to the kernel of J acting on 7, F (V). Since J
was assumed to be taken to itself by the conjugation action of H on k[I], K will in fact be a quasi-coherent
Oy-H-module.

3. REDUCTION TO p-HYPO-ELEMENTARY SUBGROUPS AND ALGEBRAICALLY CLOSED BASE FIELDS

Let k be a perfect field of positive characteristic p, and suppose G is a finite group such that p divides
#G. In this section, we show how we can reduce the problem of finding the k[G]-module structure of a
finitely generated k[G]-module M to determining the k[H]-module structure of the restrictions of M to all
p-hypo-elementary subgroups H of G. We follow [12, §80D] and [4, §5.6]. At the end of this section, we show
how we can further reduce to the case when k is algebraically closed.

Definition 3.1. (a) Let a(k[G]) be the representation ring, also called the Green ring, of k[G]. This is
the ring consisting of Z-linear combinations of symbols [M], one for each isomorphism class of finitely
generated k[G]-modules M, with relations

[M]+ [M'] = [M & M'].
Multiplication is defined by the tensor product over k
[M] - [M'] = [M @ M|

where G acts diagonally on M ®j M’. Since the Krull-Schmidt-Azumaya theorem holds for finitely
generated k[G]-modules, it follows that a(k[G]) has a Z-basis consisting of all [M] with M finitely
7



generated indecomposable. Moreover, [M] = [M’] if and only if M = M’ as k[G]-modules. Define
A(k[G]) = Q @z a(k[G])

which is called the representation algebra. Then a(k[G]) is embedded into A(k[G]) as a subring, and
both have the same identity element [kg], where kg denotes the trivial simple k[G]-module. We also
have induction maps

a(k[H]) — a(k[G]) and A(K[H]) — A(K[G))

for each subgroup H < G.
(b) A p-hypo-elementary group is a group H such that H = P x C, where P is a normal p-subgroup and
C is a cyclic p’-group. We denote the set of p-hypo-elementary subgroups of G by H'.

The Conlon induction theorem [12, Thm. (80.51)] says that there is a relation

(3.1) kel = Y op [Indf (ku)]

HeH'
in A(k[G]), for certain rational numbers ay. Since by [11, Cor. (10.20)],

M &y Indg(kH) = Indfl(MH Rk k‘H) = Indg(MH)

for every finitely generated k[G]-module M, (3.1) implies that we have the relation
(3:2) [M] = Y ay [Ind§j(Mg)]

HeH'
in A(k[G]), for the same rational numbers ay as in (3.1). In other words, if M’ is another finitely generated
k[G]-module such that [My] = [My] in a(k[H]) for all H € H’', then [M] = [M'] in A(k[G]), and hence in
a(k[G)]). In particular, this proves the following result.

Lemma 3.2. Suppose M is a finitely generated k|G]-module. Then the decomposition of M into its inde-
composable direct k[G)-module summands is uniquely determined by the decompositions of the restrictions

My of M into a direct sum of indecomposable k[H]-modules as H ranges over all elements in H'.

Remark 3.3. Suppose M is as in Lemma 3.2, and suppose we know the explicit decomposition of My into a
direct sum of indecomposable k[H]-modules for all H € H'. If G does not have cyclic Sylow p-subgroups,
there might be infinitely many non-isomorphic indecomposable k[G]-modules of k-dimension less than or equal
to dimg M. To determine explicitly the decomposition of Ind% (Mp) into a direct sum of indecomposable
k[G]-modules in (3.2), we have to test in principle all of these to see if they could be direct summands.

However, if G has cyclic Sylow p-subgroups, then there are only finitely many isomorphism classes of
indecomposable k[G]-modules, and also only finitely many isomorphism classes of indecomposable k[H]-
modules, for all H € H'. Moreover, one can use the Green correspondence [11, Thm. (20.6)] to obtain a
different, more explicit, proof that the k[G]-module structure of M is uniquely determined by the k[H]-module
structure of My, as H ranges over all elements in H'.

Namely, if P is a cyclic Sylow p-subgroup of G' (not necessarily unique), let P; be the unique subgroup
of P of order p, and let N7 be the normalizer of P; in G. The Green correspondence shows that induction
and restriction sets up a one-to-one correspondence between the isomorphism classes of indecomposable
non-projective k[G]-modules and the isomorphism classes of indecomposable non-projective k[N;]-modules.
By work of Dade [13] (and in particular, [13, Thm. 5]), it follows (in the case when k contains all (#G)*™
roots of unity) that the indecomposable k[N;]-modules are all uniserial, and hence uniquely determined by
their top radical layer and their composition series length (see, e.g., [2, §IV.2] for a discussion of uniserial

modules). Using a filtration of the k[/N;]-modules by powers of the augmentation ideal of k[P;], one then
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proves that the k[Nj]-module structure of M is uniquely determined by the restrictions My to elements
HeH.

For the remainder of the paper, we assume, as in Theorem 1.1, that G has non-trivial cyclic Sylow p-
subgroups. Then every p-hypo-elementary subgroup H of G has a unique non-trivial cyclic Sylow p-subgroup.

Suppose H = P % C, where P = (o) = Z/p" and C = (p) is a cyclic p’-group of order c¢. Then
Aut(P) = Fy; x @Q for an abelian p-group @, and ¢ : C' — Aut(P) factors through a character x : C' — Fy.
To emphasize this character, we write H = P x,, C. Note that the order of x divides (p — 1), which means in
particular that xy?~! = x~(®~1 is the trivial one-dimensional character. For all i € Z, x* defines a simple
k[C]-module of k-dimension one, which we denote by T,:. We also view T,: as a k[H]-module by inflation.

Let k be a fixed algebraic closure of k, and let ¢ be a primitive ¢*® root of unity in k. For 0 < a < ¢ — 1,
let S, be the simple k[C]-module on which p acts as (¢. We also view S, as a k[H]-module by inflation.
Moreover, for i € Z, define S, = k @ T,: and, for 0 < a < ¢ — 1, define x'(a) € {0,1,...,c— 1} to be such
that Sxi(a) =S, @5 Sy

The following remark describes the indecomposable k[H]-modules (see, e.g., [1, pp. 35-37 & 42-43)).

Remark 3.4. Let H = P x, C be a p-hypo-elementary group, where P = (0), C = (p) and x : C — F} is a
character, and use the notation introduced in the previous two paragraphs. The projective cover of the trivial
simple k[H]-module Sy is uniserial, in the sense that it has a unique composition series, with p" ascending
composition factors of the form

(3.3) S0y Sy 13y 25+ Sy —tr2), S0y Syt -+ Sy —tr-22, So.

More generally, the projective cover of the simple k[H]-module S,, for 0 < a < ¢ — 1, is uniserial with p"
ascending composition factors of the form

(3.4) Sa, Sx—l(a), SX_z(a)7 R Sxf(p72)(a), Sa, Sx_l(a), ceey Sxf(p—Z)(a)7 Sa.

There are precisely #H isomorphism classes of indecomposable k[H]-modules, and they are all uniserial. If
U is an indecomposable k[H]-module, then it is uniquely determined by its socle, which is the kernel of the
action of (0 —1) on U, and its k-dimension. For 0 <a <c—1and 1 < b < p", let U, be an indecomposable
E[H J-module with socle S, and k-dimension b. Then U, is uniserial and its b ascending composition factors
are equal to the first b ascending composition factors in (3.4).

We next show how we can reduce to the case when k is algebraically closed when considering indecomposable
k[H]-modules.

Let Z1,..., Z4 be the distinct orbits of {¢?; 0 < a < ¢ — 1} under the action of Gal(k/k). For 1 < j < d,
let Sz, be the direct sum of the S, for a € Z;.

Proposition 3.5. Let H = P x, C be a p-hypo-elementary group as in Remark 3.4.

(i) The number of isomorphism classes of simple k[C]-modules is equal to d. Moreover, for each 1 < j < d,
there exists a simple k[C]-module T; with k @, T; = Sy, .

(ii) The number of isomorphism classes of indecomposable k[H|-modules is equal to d - p™. Moreover,
for each 1 < j < d and each 1 < t < p", there exists a uniserial k[H|-module V;; such that
k@ soc(Vjy) = Sz, and such that k @y, Vj is a direct sum of indecomposable k[H]-modules of
k-dimension t that all lie in a single orbit under the action of Gal(k/k).

(iil) If M is a finitely generated k[H|-module, then its decomposition into a direct sum of indecompos-
able k[H]-modules is uniquely determined by the decomposition of k @i, M into a direct sum of
indecomposable k[H|-modules



Proof. Let T be a simple k[C]-module. Since c is relatively prime to p, k ®;, T is a direct sum of simple
k[C]-modules that lie in precisely one Galois orbit under the action of Gal(k/k). In other words, there exists
a unique j € {1,...,d} with k ®; T = Sz,. This proves part (i).

For part (ii), we use the description of the projective cover Qg of the trivial simple k[H]-module Sy
in Remark 3.4, and in particular the description of its ascending composition factors in (3.3). Since x is
a character with values in F;, C k*, this means that ) is realizable over k, i.e., Qo = k @ Py, where
P, is the projective cover of the trivial simple k[H]-module. In particular, if Sz, = {So}, then, for all
1 <t < p", there exists an indecomposable k[H]-module V; ; of k-dimension ¢ with k soc(Vi) = Sz,. Let
j €{1,...,d} be arbitrary. Then, for all 1 <t < p", T; ®; V1 is a uniserial k[H]-module of k-dimension
equal to (dim,Tj)t = (#Z;)t, with ¢ ascending composition factors T}, T\ -1 ®y T, Ty -2 @ T}, .... Now
suppose V is an arbitrary indecomposable k[H]-module. Write k ®;, V as a direct sum of indecomposable
E[H ]-modules. The socle layers W; and W3 of two of these summands are in the same Galois orbit if and
only if for all integers ¢ > 0, S, - @z W1 and S, - @ Wa are in the same Galois orbit. Since the socle layers
of V are k[H]-modules, it follows that k ®; V is a sum of Galois orbits of indecomposable k[H]-modules.
Since the sum of modules in a Galois orbit is an indecomposable k[H]-module, we conclude that there can be
only one such orbit since V' is indecomposable. Hence V' is isomorphic to 75 ®;, V1 + for some 1 < j < d and
1 <t < p™. This proves part (ii). Part (iii) is an immediate consequence of part (ii). O

4. FILTRATIONS ON DIFFERENTIALS AND RAMIFICATION DATA

We assume throughout this section that k is an algebraically closed field of characteristic p > 0, and that
H = P x, C is a p-hypo-elementary group, where P = (o) is a cyclic p-group of order p", C' = (p) is a
cyclic p’-group of order ¢, and x : C — Fy is a character, as in the previous section. We again view x as a
character of H by inflation, and denote, for all ¢ € Z, the one-dimensional k[H]-module corresponding to x*
by SX1

Let X be a smooth projective curve over k, and fix a faithful right action of H on X over k. Then X is a
regular scheme of dimension one, and the sheaf 2x of holomorphic differentials of X over k is a coherent
Ox-H-module, as defined in §2, which is a locally free rank one Ox-module. Throughout this section, we
adopt the conventions and notation from §2.

Recall that if x is a closed point of X and i > 0, the i*" lower ramification subgroup H, ; of H is the
group of all elements in H that fix  and act trivially on Ox , /mz;glu Moreover, the fundamental character
of the inertia group H, = H, o of x is the character 6, : H, — k* = Aut(mxﬂw/m?x’x) giving the action of
H, on the cotangent space of x. Since 6, factors through the maximal p’-quotient of H,, 6, is trivial if H, is
a p-group. We will call the collection of the groups H, ; together with the characters 0, as x varies over the
closed points of X and i ranges over all non-negative integers, the ramification data associated to the action
of H on X.

Let I = (7) be the (cyclic) subgroup of P generated by the Sylow p-subgroups of the inertia groups of
all closed points of X. In particular, I is a normal subgroup of H. Let Y be the quotient curve X/I, and
let # : X — Y denote the quotient morphism. In particular, Y is a regular scheme of dimension one,
and hence a smooth projective curve over k, since k is perfect. Then 7,Ox is an Oy-H-module, and we
identify Oy with the subsheaf of I-invariants of m,Ox. The Jacobson radical of the group ring k[I] is then
J = k[I](r — 1). For all integers j > 0, let 2 denote the kernel of the action of J7 = k[I](r — 1)J on
m.Qx. Because J7 is taken to itself by the conjugation action of H on I, it follows as in §2 that Qg?) is
()
X

a quasi-coherent Oy -H-module. Since Y is a regular scheme of dimension one and 2}’ is a subsheaf of a

gg) is also a locally free coherent Oy-module. Thus in the
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terminology of §2, Qg? is a locally free coherent Oy-H-module. If D is a divisor on Y, then we will denote

by Qy (D) the tensor product Qy ®p, Oy (D).

Proposition 4.1. For 0 < j < #I — 1, the action of Oy and of H on m.Qlx makes the quotient sheaf
L= Qggﬂ)/ﬂg?) into a locally free coherent Oy -H-module. There exists an H-invariant divisor D; on'Y
with the following properties:

(i) The divisor D; may be determined from the ramification data associated to the action of I on X.
ii e have -1 =0, an i s effective of positive degree for 0 < j < -1

ii) We have Dy 0 dDj i ti itive d 0<j<#I-1

iii ere is an isomorphism of locally free coherent Oy -H -modules between L; an -i ®r Qy (D).
iii) Th ' ' hi locall h t Oy -H-modules bet L; and S, Qy (D;

Proof. Let K be the function field of X, and let L = K’ be the function field of Y = X/I. Let DX/Y be
the inverse different of X over Y. In other words, DX v is the largest Ox fractional ideal in K such that
Trg, L(D;(}Y) C Oy . Note that D;(}Y is a coherent O x-H-module that is a locally free rank one O x-module.
By the projection formula [19, Ex. I1.5.1], it follows that there are isomorphisms of Oy -H-modules

(4.1) Ty = W*(D;(}Y Ro, T Qy) = W*D;(}Y ®Roy Qy.

Fix 0 < j < #I — 1, and consider the short exact sequences of coherent Oy -H-modules

(4.2) 0 o) (9] A — P
and
(4.3) 0——= Dy —= D —=H;——0

where we again use the notation DX/’}(,]) for the kernel of the action of J7 = k[I](t — 1) on W*D;(}Y.
In particular, since I acts trivially on Oy and Qy and since — ®p, y is right exact, we can identify
L; =H; ®o, Qy as coherent Oy-H-modules.

We now show that £; is a line bundle for Oy. Let nx (resp. ny) be the generic point on X (resp. Y').
Then for all y € Y and all j > 0, there is a canonical homomorphism (Qg)) (Q(J)) between stalks.
Since (Qgg))ny is a vector space over L = k(Y) and Qg) is a locally free coherent Oy -module, it follows that
this homomorphism is injective. On the other hand, we can identify the stalk (m.Qx),, = (2x ), with the
relative differentials Q}(/k of K/k. We can write Q}(/k = K dt for some t € K. For all integers j > 0, we
again write (Q}(/k)(j) for the kernel of the action of 77 . In particular, we can identify (Qgg))ny = (Q}(/k)(j).

We have a canonical injective homomorphism
j+1 1 j+1
@), i)
WDy @

whose image generates the right hand side as an L-vector space. Note that the module on the right is a

(Lj)y =

one-dimensional vector space over L = K, since K = L[I] as L[I]-modules, by the normal basis theorem,
which means that Q}, sx = K dt is also a free rank one L[I]-module. Hence (L;)y is a non-zero Oy,,-submodule
of a one-dimensional vector space over L = k(Y') for all y € Y and it is one-dimensional when y = ny. This
implies that £; is a line bundle for Oy since Y is a regular scheme of dimension one.

Since L; = H; ®o, Qy, we have that H; is also a line bundle for Oy. Because H; = DX/YJJr1 /D;(}éj), it
follows that the map given by (7 — 1)? sends #; onto an Oy-line bundle that is a subbundle of the constant
sheaf on Y associated to L = K'. We claim that there is an H-invariant divisor D; on Y for which there is

an isomorphism

(4.4) (t1—1Y: H; — Oy(D;)
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of Oy-modules. To show this, first observe that since H/I stabilizes D;(}’)(,j 1 and D;(}’}(,j ). the class of H;

in Pic(Y) is fixed by the action of H/I. To show that there is an H-invariant divisor D; on Y as in (4.4), it
will be enough to show that Div(Y)"/T — Pic(Y)H/! is surjective. We have a natural exact sequence

(4.5) 0 — k" — k(Y)" — Div(Y) — Pic(Y) — 0.

On taking the H/I cohomology of the two short exact sequences produced by (4.5) and using Hilbert’s
theorem 90, we conclude that it is enough to show H?(H/I,k*) = 0. Here k is algebraically closed of
characteristic p and H/I is an extension of the cyclic p’-group H/P by the normal cyclic p-subgroup P/I.
Since H4(P/I,k*) =0 for ¢ > 0, we find, using the corresponding Lyndon-Hochschild-Serre spectral sequence,
that

H2(H/I,k*) = H?(H/P,H°(P/I,k*)) = H*(H/P,k*) = H*(H/P,k*) = 0
where I:IO(H /P, k*) denotes the 0" Tate cohomology group. This establishes that there exists an H-invariant
divisor D; on Y as in (4.4).
Let now V be an affine open set of Y that is taken to itself by the action of H and let f € D)_(}’;,]'H)(V) C L.
Since 7 commutes with o, we obtain

o(r=1/f=(r-1) (o f)

showing that (4.4) is an isomorphism of Oy-P-modules. On the other hand, considering the generator p of C'
and using that po p~! = 0X(?) | we see that

p(r=17f = plr=17p " (nf)
= (P -1 (pf)
= (-1 (x(p) 0 f)
since (1 — 1)711 D)_(}’yﬂ)(V) = 0. Therefore, we obtain that
(4.6) (r—1): H; — S @ Oy(D;)
is an isomorphism of Oy-H-modules. In particular, (4.6) gives an isomorphism of Oy-H-modules between
ﬁj and Sx—j Rk Qy(Dj).
It remains to show that, for j € {0,1,...,#I — 1}, D; may be determined from the ramification data

associated to the action of I on X, and to establish the statements of part (ii). Using (4.3) and (4.4), we

identify Oy (D;) with the quotient sheaf D;(}’}(,jﬂ)/l);{}’}(/j). Recall that L = K7 is the fixed field of I = (7).

Write #1 = p™', where n; < n, and write
Dj=Y dy;y.
yey

Fix a point y € Y and a point x € X above y. Let I,, C I be the inertia group of x, which is cyclic of
" so that I, = (r,). Define L, = K= D K = L,
define Y, = X/I,, and let y, € Y, be a point above y and below z. Note that x is totally ramified over y,

order p™*) < pm1. Let i(z) = n; — n(z) and 7, = 7P

for the action of I, and y splits into p**) points in Y,, where ¥, is one of them. By the tower formula for
inverse differents, we have

-1 -1 * y—1
DX/Y = DX/Yx ®ox fz DYI/Y

where f, : X — Y, is the quotient map. Since the quotient map g, : Y, — Y is étale over y, it follows
that the stalk of D;j % is equal to the stalk of the structure sheaf Oy, at all points of Y, over y. Hence at
12



all points of X over y, the stalks of DX v and D;(}Y are the same. It follows that if we take the inverse
image U, = (g o f) " *(V, w) C X of a sufficiently small open neighborhood Vj, of y, then we have an equality

(4.7) (D)_f/Y) ‘Uy - (D)—(}Ym) ‘Uy

of the restrictions of the inverse differents D_ Xy and DX e to Uy.

We now determine d, ; using the filtration of Dy /Y coming from the powers of the Jacobson radical of
the group ring k[I.], which is given as J, = k[I](t, — 1) = k[Ix](_T - 1)pi(m>. For all integers ¢ > 0, let D)_(})(/:)
be the kernel of the action of J! = k[I,](r, — 1)t = k[I,]( — 1)*"”t on (fm)*D;(}YI In particular, DX/)(;) is
a coherent Oy, -H-module. Using the same arguments as in the first part of the proof, it follows that for
0 <t < +#I,—1, there exists an H-invariant divisor D,’f,m on Y, such that

71,(t+1 t) ~
DX/YE /DX/Y = Oy, (D; )

as Oy,-modules. Writing
B Z dy zty
y' ey,

we claim that

(4.8) dyj=dy . for all t, j satisfying p*(*)t < j < p®)(t 4 1).
To see this, note that for all ' € Y, lylng over y and for all ¢ > 0, we have du ot = =d,_ . This means

that locally, above y, the line bundle Oy, (D; ) for Oy, is the pullback of a line bundle for Oy. On the other
hand, if we consider two consecutive povvers Jtand J!t1 of the radical J, of k[I,], then they generate in
k(1] the two powers J7' 't and J7"” (+1) of the radical J of k[I]. Using (4.7), it follows that the restriction
of the Oy-H-module

(4.9) DL D) p

to a sufficiently small neighborhood Vj, of y, is as a module for OY‘VU given by (gz)«Oy, (Dy ) restricted to
Vy.

Considering the quotient (4.9), there are p*(*) intermediate quotients ’D;(}’l(,jﬂ)/D L@ , for p®)t < j <
p(®) (¢t +1). Hence, to prove the claim in (4.8), it suffices to prove that in each of these 1ntermediate quotients
the multiplicity of y in the corresponding divisor D, given by d ;, is the same as the multiplicity of y, in the

divisor Dj ,, given by d| To see this, we take a line bundle for Oy, of the form g; Oy (d,,_ , ,v), where

Yo, Tt
gs Yy — Y =(Y,)/(I/1,) is the quotient map, as above. Recall that g, is étale over a sufficiently small
neighborhood Vj, of y in Y.

We now consider the action of I/, on gy Oy (d,,_ ., ,y). By the projection formula [19, Ex. I1.5.1], we have

(410) (gw) (gw OY (dyr,a: t y)) ( w)* ny ®OY OY (d;h,z,t y)

where the action of /I, on Oy (d,,, ,y) is trivial. We have a local normal basis theorem for the action of
I/1; on (gz)« Oy, restricted to Vy, since g, : Y, — Y is étale over V. This means that the stalk ((g2)« Oy, ),
is a free rank one module for Oy, [I/I,]. Using this fact together with the isomorphism (4.10), it follows

that for all p(®t < j < p*®) (¢ + 1), the quotient of (g, )«(g* Oy (d,, ,.v)) with respect to the kernels of two

successive powers 7j and 7j+1 of the radical J of k[I/I,] is an Oy-line bundle that looks like Oy( ezt Y)
in the neighborhood Vj, of y. Identifying the quotient with respect to the kernels of 7’ and j ' with the

quotient with respect to the kernels of 77 and J7*!, for p"®)t < j < p'®) (¢t + 1), the claim in (4.8) follows.
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We next show how the integers d;,_, , in (4.8), for 0 <t < p™®) — 1, are determined by the ramification
data associated to the action of I, on X. If I, is the trivial subgroup of I, then Y, = X and hence d’ 0

Ya Tt =

for all ¢ > 0. In particular, this means by (4.8) that if y € ¥ does not ramify in X then d, ; = 0 for all j > 0.
Assume now that I, = (7,,) is not the trivial subgroup of I. Recall that #(I,) = p*@) and L, = K= D
KT = L. Consider the unique tower of intermediate fields

(4.11) Ly=LoCLi C-CLpa =K

with [L; : Lj_1] = p for 1 <1 < n(z). In particular, each extension L;/L;_1 is an Artin-Schreier extension,
meaning there exist z; € L; and A; € Ly_q such that L; = L;_1(2;) and 2] — z = A;. By Artin-Schreier theory,
we may, and will, assume that the z; and A\; have been chosen to satisfy:

(a) ordy(N;)/p™®) =1 is a negative integer that is relatively prime to p, and

(b) Tfl_l(zl) = 2, + 1, meaning (7, — 1)pl_l(zl) =1.
This provides the following basis for K over L,. For 0 < ¢t < p™®) — 1, write

t = al,t + a2,tp + e+ a’n(m),t pn(l')—l
with 0 < a¢,...,an@),e < p— 1, and define

wy = 2y gt zz’(f)””
As in [37, Lemma 1], we obtain that for all 0 < ¢ < p™®) — 1,

(T2 — 1)fwy = (a1,0)! (az,e)! - (@n(a).e)!-

In particular, this implies

(7o — Dlw; =0 fort+1<q<p® —1,
For 0 < t < p™® — 1, define K® to be the kernel of the action of J! = k[I,](r, — 1)*. We obtain that
{w07w17 LR wt—l}

is an L,-basis for K(!). Hence, we obtain an isomorphism

K@+
— t . S — H
which sends the residue class of w; to the non-zero scalar (a1,¢)! (az,t)!- - (@n(z),¢)! in Ly. Since the stalk of

( j};)*’D)_(}Ym at y, is naturally identified with the stalk of D;(}Yz at x, we obtain
(4.12) _d;m,z,t = min {ordyz (ct) 5 cowo+ -+ + crwy € (D;(}Y ). for some cg,...,c; € LI}

for 0 <t < p™(®) — 1. Note that cowg + - - - + crwy € (D;(}Ym)z if and only if

(4.13) ord, (cowo + - -+ + cpwy) > OI‘dx(D)_(}Ym)
where
(4.14) ord, (Dy)y,) = =Y (#1,— 1)

i>0

and, as before, I, ; denotes the i*" lower ramification subgroup of I,.. Since I, is cyclic of order p™(®) | there
are exactly n(z) jumps b, b1, ..., bn(z)—1 in the numbering of the lower ramification groups I, ;. The jumps
b; are all congruent modulo p and relatively prime to p. Moreover, if 0 < ¢ < by, then I, ; = I, and if
1<l<n(z)—1and b1 <i<by, then #I,,; = p(#) =L Hence

(4.15) Y #HLi—1)=> (p—1)p" D (b +1).
i>0 =1
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Because ord,(z;) = —p@) =ty for 1 <1< n(z), we obtain for all 0 < s < ¢,
(4.16) ord;(csws) = ordg(cs) + ord, (ws)

_ pn(a,) ordyz (CS) i OI‘dI (Zlal,szgzs . ZZEL;;)MS)

n(x)

= p@ ordy, (cs) + Z a5 ordy; (%)
1=1

(2)
= p"®@ord,, (cs) — Z ars p" .
1=1
Since for all 1 <1 < n(x), we have a; s € {0,1,...,p — 1} and b,_1 is not divisible by p, it follows that the
residue classes ord,(csws) mod p™(®) are all different for s € {0,1,...,t}. But this implies
ord, (cowg + - -+ 4 cpwy) = ming< < ord, (csws).
Using (4.13) and (4.14), we obtain that cowg + - - - + crwy € (D;(}Y)I if and only if
ord, (cswg) > — Z (#1z:—1)
i>0
for all 0 < s < t. In particular, this is true for s = t. Therefore, letting s = ¢ in (4.16), we obtain

— Zizo (#Iz,z - 1) + Zln:(? al’tp”(w)*l by
D

(4.17) ordy, (¢;) >

whenever cowg + - -+ + cywy € (D)_(}Y ). But this means that the ramification data associated to the action
of I, on X uniquely determines d; for 0 <t < p™® — 1. More precisely, it follows from (4.8), (4.12) and

Yu, T,
(4.17) that

(4.18) dyi=d . = Sizo #lei = 1) = S0 aep" @ by
. Y, —

Yo, Tt pn(;v)

for all t,5 > 0 satisfying p"®t < j < p"@)(t + 1) when i(z) = n; — n(x) and |r| denotes the largest integer
that is less than or equal to a given rational number r. Moreover, the formula in (4.18), together with (4.14)
and (4.15), shows that d;, ,, > 1for 0 <t < p™® — 1, and dy . =0fort= p™®) — 1. Hence

dyj>1 for 0<j<p@E® —1), and
dyj =0 for p@Er® —1)<j<p@pr@ =4y

Since [ is cyclic, there is at least one point o in X with I, = I. In particular, n(z¢) = ns and i(xg) = 0.

Therefore, it follows that if zg lies above the point yg € Y then d, ; > 1 for all 0 < j < #I — 1, which means

that D; is effective of positive degree for 0 < j < #I — 1. On the other hand, the above calculations show
that dy 471 =0 for ally € Y, implying Dy;_; = 0. |

Lemma 4.2. For 0 < j < #I — 1, there is an isomorphism
HO(X, Qx) 0D /HO(X, 0x) W) > HO(Y, QUM /0@) = 5,5 @, HO(Y, Qy (Dy))
of k[H/I]-modules, where D; is the divisor from Proposition 4.1.

Proof. By Proposition 4.1, we know that there is a k[H]-module isomorphism

H(Y, Q¢ /QF)) = HO(Y, Sy @1 Qv (D;) = Sy @ H(Y, Qv (D;))-
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Since I acts trivially on all modules involved, these are also k[H/I]-module isomorphisms. The sequence

0— QY — 7,0y N . Qx

of Oy-H-modules is exact. Since HO(Y, m,.Qx) = HY(X,Qx) as k[H]-modules and H°(Y, —) is left exact, the
sequence

(r—1)

0 — HO(Y, Q) — HO(X, Qx) —1 HO(X, Qx)

is an exact sequence of k[H]-modules. In particular, this shows that we have a commutative diagram

0 — HO(X, QX)(J‘) — HO(X, QX)(J‘+1> —— HO(X, QX)(J'+1)/H0(X7 QX)(J') )

0 —— H(Y,0Y) —— H(Y.0¢"") ——————H(V.£;)) ————— H'(¥,Q})) -

where 8; and (41 are isomorphisms and +; is injective. To show that +; is also an isomorphism of k[H]-
modules, it suffices to show that the k-dimensions of HO(X, Qx )W+ /HO(X, Qx )W) and H(Y, £;) coincide.
To do so, we first use the Riemann-Roch theorem to describe dim;, H(Y, L;). By Proposition 4.1, Dyr_1 =0,
and hence L£47_1 = Qy as Oy-modules, meaning that

(4.19) dimy, HO(Y, L471) = dimy, HY(Y, Qy) = g(Y).

On the other hand, for 0 < j < #1I — 1, by Proposition 4.1, D; is an effective divisor of positive degree, which
implies that

deg(L;) = deg(y (D;)) = deg(D;) + deg(2y) > deg(Qly) = 29(Y) — 2.
Hence H!(Y, £;) = 0, and we obtain by the Riemann-Roch theorem:

(4.20) dim, HO(Y, £;) = deg(L;)+1—g(Y)
= deg(D;)+g(Y)—1 for 0 <j < #I-—1.

Using the Riemann-Roch theorem for 7,.Qx = mDX/Y ®oy, Qy (see (4.1)), we obtain

g(X)—1 = dimH°(X,Qx) — dimy H' (X, Qx)
= degp, (mQx) + ranko, (m.Qx)(1 — g(Y))
#I—1

Y (deg(D;) + (29(Y) —2) + (#)(1 — g(Y)

Jj=0

#I1-1

(#I)(g Z deg(D

In other words, we get

#I1-1
(4.21) 9(X) = 1+ (#1)(g Z deg(D

16



On the other hand, using (4.19) and (4.20), we have

g(X) = dim H'(X,Qx)
#I—1
= ) dimy (HO(X, Q)0+ /HO(X, QX)U))
=0

#I-1

> dimp (Y, L))

j=0

#I-2

= > (deg(Dy) +g(Y) = 1) +g(Y)
j=0

H#I1-2

— deg(Dj) + (#1)g(Y) — (#1 — 1).

J

IN

~

Since Dyr—1 = 0, we obtain by (4.20) that the inequality in the third row must be an equality. But this
means that for all 0 < j < #I — 1, we have

dimy, (HO(X, Q)0+ /HO(X, QX)(j)) = dimy, H(Y, £;)
finishing the proof of Lemma 4.2. O

Proposition 4.3. For 0 < j < #I — 1, let D; be the divisor from Proposition 4.1, which is determined by
the ramification data associated to the action of I on X. The k[H/I|-module structure of HO(Y, Qy (D;)) is
uniquely determined by the inertia groups of the cover X — X/H and their fundamental characters.

Proof. As before, let K be the function field of X, and let L = K’ be the function field of Y = X/I. Moreover,
let Z=X/H. Then Y — Z is tamely ramified with Galois group H/I.
Let 0 < j < #I — 1. By (1.1), there exist finitely generated projective k[H/I]-modules P; ; and Py ;

together with an exact sequence of k[H/I]-modules
(4.22) 0 — H(Y,Qy(D;)) — P1; — Po; — H'(Y,Qy(D;)) — 0.
By Serre duality, we obtain

(4.23) H(Y,Qy(D;)) = Homy(H'(Y,Oy(~Dy)), k),
H'(Y.Qy(D;)) = Homy(H(Y, Oy (~D;)), k).

In other words, the k[H/I]-module structure of H°(Y,Qy (D;)) is uniquely determined by the k[H/I]-module
structure of H' (Y, Oy (—D;)). So it is enough to show that the latter is uniquely determined by the inertia
groups of the cover X — X/H = Z and their fundamental characters.

For 0 < j < #I — 1, D; is an effective divisor of positive degree by Proposition 4.1. This implies that
deg(Qy (Dy)) > deg(Qy) =2g(Y) — 2, and hence H' (Y, Qy (D;)) =0, for 0 < j < #I — 1. Since Dy =0,
we obtain, using (4.23),

0 @ 0<j<#I—1,

(4.24) H'(Y, Oy (-D;)) —{ N

where k has trivial action by H/I, meaning k = Sy in the notation of Remark 3.4.
Applying Homy(—, k) to (4.22) and using (4.23), we obtain an exact sequence of k[H/I]-modules

(4.25) 0 — H(Y,Oy(-D;)) — Qo; — Q1,; — H'(Y,Oy(-D;)) — 0
17



for 0 < j < #I —1, where Q; ; = Homy(P; ;, k) is a finitely generated projective and injective k[H/I]-module
for i = 0,1. By (4.24) and using Remark 3.4, this implies the following:

(a) For 0 <j < #I — 1, HY(Y, Oy (—Djy)) is a projective k[H/I]-module.

(b) If j = #I — 1 and I = P, then H'(Y, Oy (—Djy)) is a projective k[H/I]-module. If j = #I — 1 and p

divides #(H/I), then H' (Y, Oy (—=D;)) = S, -1 & Q;, where Q; is a projective k[H/I]-module.

This implies that in all cases, the k[H/I]-module structure of H!(Y, Oy (—Dj)) is uniquely determined by its
Brauer character. In other words, the character values of H'(Y, Oy (—D;)) on all elements of H/I of p’-order
uniquely determine H'(Y, Oy (—D;)) as a k[H/I]-module. We now show that these character values are
uniquely determined by the (p’-parts of the) inertia groups of the cover X — X/H and their fundamental
characters.

Let H= H/I, so that Y = X/I — Z = X/H is tamely ramified with Galois group H. Let Zy,;, be the
set of points in Z that ramify in Y. For each z € Z,anm, let y(z) € Y and z(z) € X be points above z so that
x(2) lies above y(z). Let Fy(z) < H be the inertia group of y(z) inside H, and let H, () < H be the inertia
group of z(z) inside H. Since Y — Z is tamely ramified, it follows that H .y is a cyclic p’-group. Moreover,
if 1.y < I is the inertia group of x(z) inside I, then Hy(.)/Ip(z) = Fy(z). The fundamental character of the
inertia group H, .y is the character 0, : Hy,) — k* = Aut(mX,z(z)/mg(’w(z)) giving the action of H,.)
on the cotangent space of x(z). More precisely, if h € H,(,) then

uier(h) = ) o (m)
T
where m = m,,) denotes the local uniformizer at 2(z). Note that 6.y factors through the maximal p’-quotient
of H,.), which is isomorphic to Fy(z). Similarly, we can define the fundamental character 6,,.) : Fy(z) — k*.
Since X/I — X/P is étale, we can identify

(4.26) Oy = (Oa() ™

on the maximal p’-quotient of H,.) which we identify with Fy(z). Abusing notation, we will use 0,) to

also refer to the corresponding one-dimensional k[H .)]-module and to its Brauer character.
For z € Z,.m, we have that

rd, .y (Dy)
OY(_Dj)y(z) B0y y (=) k= (ey(z))o @F
Following [32, §3], we define £,,) ; € {0,1,...,#H ) — 1} by
(427) Ey(z),j = 7Ordy(z)(Dj) mod (#Fy(z))

For a k[H]-module M, let S(M) denote the Brauer character of M, and let 8y be the Brauer character of the

trivial simple k[H]-module. By (4.24) and (4.25), we have

(4.28) B (H'(Y, Oy (=Djy))) = 6j41-1 Bo + B(Q1;) — B(Qo,;)

where 6; »7_1 is the usual Kronecker delta. By [32, Thm. 2 and Eq. (*) on p. 120], we have

#Hy)—1
" _
(4.29) B(Q1y) = B(Qoy) = ; ; . mdyy ((0y)")
lyxs B
_ZE; t:zl Ind%y(z) ((ay(z)) t)

+ n; B(k[H])
18



for some integer n;. Since the value of 3(k[H]) at any non-trivial element of H of p/-order is zero, n; is
determined by the values of all the involved Brauer characters at the identity element ez of H. These values
are as follows:

e the value of B(k[H]) at ez is (#H);
e the value of Indgy(z) ((Qy(z))it> at ey is (#ﬁ)/(#ﬁy(z)), for any integer ¢t > 0;
e by (4.19), (4.20) and (4.22) — (4.25), the value of 8(Q1,;) — B (Qo,;) at ez is dimy HO(Y, Qy (D;)) —
dimy, HY (Y, Qy (D;)) = deg(D;) + g(Y) — 1.
In particular, this implies
(4.30) n; = #iy(deg([&)—%g(Y}——1)4—Z£§£m:#I;y@) (emzxj__#*fﬂ%;>1).

Therefore, it follows by (4.26) — (4.29) that the Brauer character of the module H*(Y, Oy (—D;)) is uniquely
determined by the (p’-parts of the) inertia groups of the cover X — X/H and their fundamental characters.
|

Proof of Theorem 1.1. By Lemma 3.2, we can assume G = H is p-hypo-elementary. We write H = P x, C
and use the notation introduced at the beginning of §4. By Proposition 3.5, we can assume k is algebraically
closed. In particular, the above results in §4 apply. Let M = H°(X,Qx). As before, let I = (7), and, for all
integers 0 < j < #I — 1, let M) be the kernel of the action of J7 = k[I](7 — 1)7. Tt follows from Proposition
4.1, Lemma 4.2 and Proposition 4.3 that the k[H/I]-module structure of the subquotient modules

MG+

MG
is uniquely determined by the lower ramification groups and the fundamental characters of closed points x
of X that are ramified in the cover X — X/H. It remains to show that the k[H/I]-module structures of
the quotients in (4.31) uniquely determine the k[H]-module structure of M. This follows basically from the

(4.31) 0<j<#I-1,

description of the indecomposable k[H]-modules in Remark 3.4 (recall that we assume k = k).

To be a bit more precise, fix integeres a,b with 0 < a < ¢—1and 1 < b < p", and let n(a,b) be the number
of indecomposable direct k[H]-module summands of M that are isomorphic to U, p, using the notation from
Remark 3.4. Let #I = p™, and write b =0 + b” p" "1 where 0 <V < p"~ "1, 0 < b’ < p™. As before, for
i € Z, define x'(a) € {0,1,...,¢— 1} to be such that Sy:(,) = S ®p Syi. We obtain:

e If ¥’ > 1, then n(a,b) equals the number of indecomposable direct k[H/I]-module summands of
MO /MO with socle S,y (,) and k-dimension b,

o If & =0, then " > 1. In this case, define n1(a,b) to be the number of indecomposable direct k[H/I]-
module summands of M(b//)/M(b”_l) with socle Sxf@”fl)(a) and k-dimension p"~". Also, define
ns(a,b) to be the number of indecomposable direct k[H /I]-module summands of M+ /A7®") with
socle S, _v(,), Where we set n2(a,b) = 0 if b” = p"’. Then n(a,b) = ni(a,b) —n2(a,b).

This completes the proof of Theorem 1.1. |

The following remark provides a summary of the key steps in the proof of Theorem 1.1 and can be
used as an algorithm to determine the decomposition of H’(X,Qx) into a direct sum of indecomposable
k[H]-modules.

Remark 4.4. We keep the notation introduced at the beginning of §4. Let M = H%(X,Qx), and let #1I = p"I.
(1) For 0<j<#I-1let Dj=3% .y

be a point above it, and let I, < I be its inertia group inside I of order p™(®). Let by, by, ..., br(z)—1
19
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be the jumps in the numbering of the lower ramification subgroups of I,. For 0 < t < p™(®) — 1, write
t=ai¢+agip+--+ an)e p @)1 with 0 < a;+ < p— 1. By the proof of Proposition 4.3, we have

b | S O -1 -1 a) b
Y,J p"(““”)

for all j > 0 satisfying p*®)t < j < p*®) (¢t + 1) when i(z) = n; — n(x) and || denotes the largest
integer that is less than or equal to a given rational number r. By Lemma 4.2, there is a k[H/I]-module
isomorphism MU+ /M) 2§ _; @, H(Y, Qy (D;)) for all 0 < j < #I — 1.

Let Z = X/H and let Z,,, be the set of points in Z that ramify in the cover Y = X/I — Z = X/H.
Let H = H/I. For each 2z € Zyam, choose a point y(z) € Y above z and a point z(z) € X above y(2).
Let ﬁy(z) be the inertia group of y(z) inside H, and identify Fy(z) with the maximal p’-quotient of
the inertia group H,(.). Define 0,(,) : H,;) — k™ by

h(ﬂ'm(z))

Tz (z)

tgm(z)(h) = mod (Fm(z))

for h € Hy(.). Then 0, factors through H Define

y(z)-
H#1o
y(z) = (Oui)” 7

By abuse of notation, we let 6,) refer to the character ﬁy(z) — k* and also to the corresponding
Brauer character. Moreover, define £, ; € {0,1,..., #Fy(z) — 1} by

Ey(z),j = _Ordy(z)(Dj) mod (#Fy(Z))

Let 0 < j < #I — 1. By Lemma 4.2 and the proof of Proposition 4.3, the Brauer character of the
k-dual of S,; ®) (MU+Y) /M) is equal to

0

#Hy(o)—1

i 3 i ()

2€Zram t=0

Ky(zm .
=Y Y mal () ")+ BR{E))
2€Zram t=1

where

1 1 #Hy(z) -1
iy (deg(D;) +9(Y) —1) + zezzmm . (gy(z),j - 2) :

Hence this can be used to determine the Brauer character of MU+ /MU), Recall that MG+ /A1)
is a projective k[H]-module for 0 < j < #I — 1. If I = P then M#) /M#I=1) is also a projective
k[H]-module. If p divides #H then M(#I)/M(#I*I) is isomorphic to a direct sum of the simple
k[H]-module S, and a projective k[H]-module. Thus, this provides the decomposition of M +1) /A1)
into a direct sum of indecomposable k[H]-modules.

Use the notation from Remark 3.4. Fix integeres a,b with 0 < a <c—1and 1 < b < p™. Write
b=10b +b"p" ™ where 0 <V < p" ", 0 < b’ < p™. Then, by the proof of Theorem 1.1, the
number n(a, b) of indecomposable direct k[H]-module summands of M that are isomorphic to U, is
given as follows:

(a) If b’ > 1, then n(a,b) equals the number of indecomposable direct k[H]-module summands of

MO+ /M) with socle S\ -+ (qy and k-dimension b'.
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(b) If¥' =0, then b > 1. In this case, define n;(a, b) to be the number of indecomposable direct k[H]-
module summands of M(b//)/M(b”_l) with socle Sxfw,l)(a) and k-dimension p”~"!. Also, define
n(a,b) to be the number of indecomposable direct k[H]-module summands of M®"+1) /Ar(®")

with socle S, _v(,), where we set na(a,b) = 0 if b = p"™. Then n(a,b) = ni(a,b) — na(a,b).

5. HOLOMORPHIC DIFFERENTIALS OF THE MODULAR CURVES X ({) MODULO p

The geometric theory of modular forms and the associated arithmetic theory of moduli spaces of elliptic
curves were studied by Deligne-Rapoport [14], Katz [27] and Katz-Mazur [28] (see also [24]).

Let N > 3 be an integer, and let I'(N) be the principal congruence subgroup of SL(2,Z) of level N.
The moduli problem associated to I'(N) described in [28, §3.1] coincides with the “naive” level N moduli
problem discussed in [27, Chap. 1] when working over the ground ring Z[] (see [28, §3.7 and §4.6]). By
[27, §1.4] (see also [28, Cor. 4.7.2]), the naive level N moduli problem is representable by a smooth affine
curve M(N) over Z[+]. Moreover, M(N) is finite and flat over the affine j-line Spec(Z[+, j]), and étale
over the open set of the affine j-line where j and j — 1728 are invertible (see also [28, Thm. 8.6.8]). The
normalization of the projective j-line Pé[%] in M(N) is a proper and smooth curve M(N) over Z[%] and
the ring of global sections of the structure sheaf of M(N) is isomorphic to Z[37, (n], where (y is a primitive
N'™ root of unity. Since the inclusion map Z[%] < Z[+,(n] is étale, this makes M(N) into a proper
smooth curve over Z[+,(n]. Moreover, we obtain as in [28, (9.1.4.5)] that M(N) is a scheme over the j-line
Spec(Z[+, (N, j])- By [28, Prop. 9.1.7], the canonical level N moduli problem over Z[+-,(x] defined in [28,
§9.1 and §9.4] is representable by a scheme M(N)®" that is isomorphic to M(N) as Z[+, (n, j]-schemes.
Moreover, by [28, Prop. 9.3.1], we obtain that the normalization M (N )" of the projective j-line P%[# enl
FE By [27, §1.4], the curve

M(N) ®z[1 Z|%,(n] (resp. M(N) ®z[ 1] Z[%,(n]) is a disjoint union of ¢(N) affine (resp. proper) smooth

geometrically connected curves over Z[+-,(n] (see also [28, (9.4.3.1)]). In particular, this identifies M ()

in

M(N)an is isomorphic to M(NN) as proper smooth Z[+, (y]-schemes over IP’%[

can

(resp. M(N)®") with any one of these geometrically connected components of M(N) ®zL] Z]%,(n] (resp.
M(N) ®z1) Z|%,(n]). Note that by [28, (9.4.1) and (9.4.3.1)], we have a natural right action of SL(2,Z/N)
on the canonical level N moduli problem over Z[+-,{n], and hence on M(N)e®,

It follows from the extension of the Kodaira-Spencer isomorphism to M(N) in [27, §1.5] (see also [28,
Thm. 10.13.11]) that HO(M(N), Q7)) equals the space of holomorphic weight 2 cusp forms of level N
defined over Z[+]. By [27, §1.2], each holomorphic weight 2 cusp form of level N defined over Z[+] has
g-expansion coefficients in Z[%, ¢n] at all cusps. Since Z[%] — Z[%, ¢n] is étale, the g-expansion principle
[28, Cor. 1.6.2] shows that the global sections HO(M(N)c®, Q77(nyean) are naturally identified with the
Z[%, (w]Hattice S(Z[+, (n]) of holomorphic weight 2 cusp forms for I'(N) that have g-expansion coefficients
in Z[+,(n] at all the cusps. By [28, Cor. 10.13.12] (take I' to be trivial), it follows that M(N)®" has
geometrically connected fibers that all have the same genus.

If A is a Dedekind domain that contains Z[+, (n], then M(N)cn @711 cy] A defines a smooth projective
canonical model X'(N) over A of the modular curve associated to I'(IV). By flat base change and using [27,
§1.6], we see that the global sections HY(X(N),Qx(n)) are naturally identified with the A-lattice S(A) of
holomorphic weight 2 cusp forms for T'(IV) that have g-expansion coefficients in A at all the cusps. Using flat
base change on the residue fields, we moreover obtain that X' (/N) has geometrically connected fibers that all
have the same genus.

Let now ¢ # p be prime numbers and assume ¢ > 3. Let F' be a number field that is unramified over p
and that contains a primitive ¢! root of unity ;. Suppose A is a Dedekind subring of F' that has fraction

field F' and that contains Z[%, Ce)- Let V(F,p) be the set of places v of F over p, and let Op,, be the ring of
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integers of the completion F, of F' at v. We assume A is contained in Op,, for all v € V(F,p). Let X(¢) be
the smooth projective canonical model over A of the modular curve associated to I'(¢) constructed above.

For v € V(F,p), let mp, be the maximal ideal of Op,. Define P, = AN mg, which is a maximal ideal
over p in A, and define k(v) = A/P, to be the corresponding residue field. Then

(5.1) Xu(0) = k(v) ©4 X(0)
is a smooth projective curve over k(v), and

(ApAyeax()= [ (0.
veV(F,p)

Since k(v) is a finite field for all v € V(F,p), we can identify its algebraic closure k(v) with F,. Let k be an
algebraically closed field containing Fp, and hence containing k(v) for all v € V(F, p). Then the reduction of
X (¢) modulo p over k, which is denoted by X, (¢) in [3], is defined as

(5.2) X;D(g) =k Dk(v) Xv(g)

for all v € V(F,p). Since X ({) has geometrically connected fibers that all have the same genus, it follows that
the injective maps

HO(X(0), Qx(p))
’ : HO(X,(0),Q
Pv . HO(X(E),QX(Q) — ( ( ) X“(Z))
and
HY(X(£), Qx(0))

p-HO(X(0), Qx(r))

are isomorphisms. When k£ =, in (5.2) then this last isomorphism gives an isomorphism

F, @z H (X (0), Qx(r)) = HO(X,(0), pr(e))[F:Q]

P HUX(0), 2, 0)

vEV(F,p)

which is equivariant with respect to the action of SL(2,Z/¢) on X ({).

Let G = PSL(2,Z/¢) = PSL(2,F,), let k be an algebraically closed field containing F,, and let X,(£) be
the reduction of X'(¢) modulo p over k. By [3, Thm. 1.1}, if £ > 7 then Aut(X,(¢)) = G unless p = 3 and
¢ e {7,11}. Moreover, Aut(X3(7)) = PGU(3,F3) and Aut(X3(11)) = M. If £ < 7 then X, (¢) has genus 0.

The genus g(X,(¢)) is given as (see, for example, [3, Cor. 3.2])

(5.3) g(X,(0) =1 = (€= 1) (£ +1)(£ - 6)/24.

Remark 5.1. Suppose ¢ > 7, and define X = X, (¢). By [30, Prop. 5.5], the genus of X/G is zero, and the
lower ramification groups associated to the cover X — X/G are as follows:

(i) If p > 3, then X — X/G is branched at 3 points with inertia groups of order 2,3 and /.

(ii) If p = 3, then X — X/G is branched at 2 points with inertia groups X3 and Z/¢, where X3 denotes
the symmetric group on three letters. Moreover, in the first case the second ramification group is
trivial.

(iii) If p = 2, then X — X/G is branched at 2 points with inertia groups A4 and Z/¢, where A4 denotes
the alternating group on four letters. Moreover, in the first case the second ramification group is

trivial.

If p > 3, the ramification of X — X/G is tame and the k[G]-module structure of the holomorphic
differentials H(X, Qx) can be determined using [32, Thm. 2] or [25, Thm. 3]. If p = 3, we will determine in
§6.4 the k[G]-module structure of H°(X, Qx) using Theorem 1.1. Since the Sylow 2-subgroups of G are not
cyclic, the methods of this article are not sufficient to treat the case when p = 2.

When the ramification of X — X/G is tame, we obtain the following result.
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Lemma 5.2. Suppose p > 3 and p # £ > 7. Let X = X, (¢), and let k be an algebraically closed field
containing F,.

(i) The k[G]-module H°(X, Qx) is a direct sum of the form P®U in which P is a projective k[G]-module
and U is either the zero module or a single uniserial non-projective k|G]-module that belongs to the
principal block of k[G].

(ii) Let v € V(F,p), let k1 be a perfect field containing k(v), and let k be an algebraic closure of k.
Define X1 = ky Q) X,(0) where X,(€) is as in (5.1). The k1[G)-module H*(X1,Qx,) is a direct
sum of the form Py ® U; in which Pq is a projective k; [G]-module and U, is either the zero module
or a single indecomposable non-projective k1[G]-module that belongs to the principal block of k1[G].
Moreover, the k[G]-module U from part (i) is isomorphic to k @y, U;.

The decompositions of H(X, Qx) as in (i) and of H*(X1, Qx,) as in (i) are both determined by the ramification
data associated to the cover X — X/@.

Proof. By (1.1), there exist finitely generated projective k[G]-modules P; and Py together with an exact
sequence of k[G]-modules

(5.4) 0 — HY(X,Qx) — P, — Py — HY(X,Qx) — 0.

If p does not divide #G then (5.4) splits and H(X, Qx) is a projective k[G]-module, which means U = {0}.
Suppose now that p divides #G. Since H' (X, Qy) is the trivial simple k[G]-module k, it follows that, as a
k[G]-module, H°(X, Qx) is isomorphic to the direct sum of a projective k[G]-module and the second syzygy
U of the trivial simple k[G]-module k. Recall that U is defined as follows (see, e.g., [2, §IV.3]). Let P(k)
be the projective k[G]-module cover of k, let R(k) be the Jacobson radical of P(k), and let P(R(k)) be the
projective k[G]-module cover of R(k). Then the kernel of the natural projection from P(R(k)) — R(k) is the
second syzygy U of the trivial simple k[G]-module k. Since syzygy modules of indecomposable non-projective
k[G]-modules are always indecomposable non-projective (see, e.g., [2, Prop. 1V.3.6]), U is indecomposable
non-projective. The explicit description of the blocks of k[G] in [8] shows moreover that U is uniserial.
Therefore, U is a uniserial non-projective k[G]-module belonging to the principal block of k[G]. The definition
of U determines its Brauer character. Since projective k[G]-modules are uniquely determined by their Brauer
characters, it now follows from [32, Thm. 2 and Eq. (*) on p. 120] that, for all p, the decomposition
of HY(X,Qx) into a direct sum of indecomposable k[G]-modules is determined by the ramification data
associated to the cover X — X/G. This proves part (i) in addition to the last sentence of the statement of
Lemma 5.2 about the decomposition in part (i).

For part (ii), we note that tensoring with k over k; sends a projective k;[G]-module cover of a k1 [G]-module
V1 to a projective k[G]-module cover of k ®j, Vi. If p does not divide #G, let U; = {0}. Suppose now
that p divides #G. If P(k;) is the projective k;[G]-module cover of the trivial simple k;[G]-module k; then
P(k) = k ®, P(k1), where P(k) is as above. Therefore, if R(k;) is the Jacobson radical of P(k;) then
R(k) = k ®, R(k1). Additionally, if P(R(k1)) is the projective ki [G]-module cover of R(k;) then this implies
that the kernel of the natural projection P(R(k1)) — R(k1) is a k1[G]-module U; that satisfies

(5.5) U=k®, Uy

as k[G]-modules. In other words, U is realizable over kj. Since U is an indecomposable k[G]-module, it
follows that U; is an indecomposable k1 [G]-module. Note that U; belongs to the principal block of k1 [G].
For all p, let now ks be a finite field extension of k; such that k; C k and such that all the indecomposable
k[G]-modules occurring in the decomposition of HO(X7 Qx) are realizable over ko. Letting Xo = ka®y, X1, and
using (5.5) if p divides #G, we obtain that the ko[G]-module H? (X5, Qx,) is a direct sum of a projective ko[G]-

module and the indecomposable k3 [G]-module kg ®y, Uy (which is zero if p does not divide #G). Moreover,
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the decomposition of H( X5, )x,) into a direct sum of indecomposable ko [G]-modules is determined by the
ramification data associated to the cover X — X/G. We have

ko Rk, HO(Xl,QXI) = HO(X27QX2)

as kz[G]-modules, and
HO()(27 Ox,) = HO(Xl, Qxl)[k2:k1]

as k1|GJ-modules. Note that the restriction of each projective indecomposable ks [G]-module to a ki [G]-module
is a projective ki [G]-module. We can therefore use the Krull-Schmidt-Azumaya theorem to obtain part (ii).

To prove the last sentence of the statement of Lemma 5.2 about the decomposition in part (ii), we note
that tensoring with ko over k; sends a projective indecomposable ki [G]-module cover of a simple k1 [G]-
module S; to a projective ko[G]-module cover of ks ®j, S1. Therefore, it follows that the decomposition of
HY(X1,Qx,) into indecomposable k1 [G]-modules is uniquely determined by the decomposition of H? (X5, Qx.,)
into indecomposable ko[G]-modules. As noted above, the latter is determined by the ramification data
associated to the cover X — X/G. This completes the proof of Lemma 5.2. ]

Proof of Theorems 1.2 and 1.3 when p > 3. Suppose p > 3, and fix v € V(F,p). Define Mo, , to be the
Op ,|G]-module

Mo, = Opy @4 H(X(0), Q)
which is flat over Op,. Note that the residue fields k(v) = A/P, and Op,/mg, coincide. Define

X, = X,(0) = k(v) @4 X(0).

Then Mo, is a lift of the k(v)[G]-module H°(X,,Qx,) over Op,. Let k = k(v) =F,, and let X = X,(¢)
be the reduction of X'(£) modulo p over k, as in (5.2). In other words, X = k ®j(,) X, and HY(X,Qx) =
k @k, H'(X,,Qx,) as k[G]-modules. Since H*(X,Qx) = {0} for £ < 7, we can assume that £ > 7.

By Lemma 5.2(ii), H°(X,, Qx,) is a direct sum of a projective k(v)[G]-module and a k(v)[G]-module U,
where U, is either the zero module or a single indecomposable non-projective k(v)[G]-module that belongs
to the principal block of k(v)[G]. By the Theorem on Lifting Idempotents (see [11, Thm. (6.7)] and [12,
Prop. (56.7)]) and by [5, Prop. 2.6], it follows that Mo, , is isomorphic to a direct sum of a projective
Or[G)-module and an OF,[G]-module U that is a lift of U, over Op,,. Moreover, if U, is not zero then
U is a single indecomposable non-projective Op ,[G]-module that belongs to the principal block of OF,[G].
Since, by Lemma 5.2, the decomposition of H(X,,Qx,) is determined by the ramification data associated to
the cover X — X/G, this implies Theorem 1.2 for p > 3.

We now turn to the proof of Theorem 1.3 when p > 3. In particular, we assume now that F' contains
a root, of unity of order equal to the prime to p part of the order of G. By the discussion in the previous
paragraph, Mo, is a direct sum over blocks B of Op ,[G] of modules of the form P @ Up in which Pp is
projective and Up is either the zero module or a single indecomposable non-projective B-module. Moreover,
we know that Up is non-zero if and only if B is the principal block. Define Mg = Pg @ Up.

Let a be the maximal ideal over p in A associated to v. In other words, a corresponds to the maximal
ideal mp, of Op,. Consider a T-stable decomposition (1.2) that is G-isotypic, in the sense that it arises
from idempotents as in (1.3). Since Mo, is the direct sum over blocks B of OF,,[G] of the modules Mp
and since for different blocks B and B’ there are no non-trivial congruences modulo mg, between Mp and
Mg/, it follows that a G-isotypic T-stable decomposition (1.2) results in non-trivial congruences modulo a if
and only if there is a block B of Op,[G] such that

(56) MB;é(MBﬂelMB)EB(MBﬁeQMB).
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Now fix a block B of Op ,[G]. Since there are no non-trivial congruences modulo mg, between Pg and Ug,
there will be orthogonal idempotents e; and es for which (5.6) holds if and only if this holds when Mp is
replaced by either Pg or Up. If B has trivial defect groups, then U = {0} and F, ®¢,., Pp involves only one
G-isotypic component, which means that there are no orthogonal idempotents e; and ez for which (5.6) holds
for B. Assume now that B has non-trivial defect groups. If Pg # {0} then Pg is a direct sum of non-zero
projective indecomposable B-modules. When we tensor any non-zero projective indecomposable B-module
Qp with F, over Op,, then the resulting F,[G]-module F, ®p, , @p has at least two non-isomorphic
irreducible constituents. This means that (Qp cannot be equal to the direct sum of the intersections of Q) p
with the G-isotypic components of Fy, ®o,., @p. Therefore, there exist orthogonal idempotents e; and e;
for which (5.6) holds when Mp is replaced by Pg. Now suppose Ug # {0}. Then there exist orthogonal
idempotents e; and ez for which (5.6) holds when Mp is replaced by Ug if and only if Ug is not equal to
the direct sum of the intersections of Up with the G-isotypic components of I, ®¢,., Up. But the latter
occurs if and only if F, ®o,., Up has two non-isomorphic irreducible constituents. This completes the proof
of Theorem 1.3 for p > 3. ]

6. HOLOMORPHIC DIFFERENTIALS OF THE MODULAR CURVES X (¢) MODULO 3

Assume the notation of §5 for p = 3. In particular, £ # 3 is an odd prime number, & is an algebraically
closed field containing F3, and X = X3(¢) is the reduction of X (¢) modulo 3 over k, as in (5.2). Since X5(5)
has genus zero, we assume £ > 7. Let G = PSL(2,Fy).

Our goal is to determine explicitly the k[G]-module structure of H*(X,Qx). In particular, this will prove
part (i) of Theorem 1.4. At the end of this section, we will prove part (ii) of Theorem 1.4 in §6.5, and we will
then use this in §6.6 to prove Theorems 1.2 and 1.3 when p = 3.

We use that there is precise knowledge about the subgroup structure of G = PSL(2,F,) (see, for example,
[22, 8I1.8]). Define € € {1} such that

(6.1) {=¢ mod 3.
Write
(6.2) {—e=3"-2-m such that 3 does not divide m.

Let P be a Sylow 3-subgroup of G, so P is cyclic of order 3", and let P, be the unique subgroup of P of order
3. Let N7 be the normalizer of P; in G. Then N; is a dihedral group of order £ — €. It follows from the Green
correspondence (see Remark 3.3) that the k[G]-module structure of H?(X, Qx) is uniquely determined by its
k[N1]-module structure together with its Brauer character. The k[N;]-module structure of H?(X,Qx) can be
determined from its k[H]-module structure for the 3-hypo-elementary subgroups H of N; that are isomorphic
to dihedral groups of order 2 - 3", respectively to cyclic groups of order (¢ — €)/2. Note that in all cases N;
has a unique cyclic subgroup of order (¢ —€)/2. If £ = —e mod 4 then N; has a unique conjugacy class of
dihedral subgroups of order 2 - 3", whereas if / = ¢ mod 4 then N7 has precisely two conjugacy classes of
dihedral subgroups of order 2 - 3™.
We determine the k[G]-module structure of H(X, Q) following four key steps:

(1) Determine the lower ramification groups associated to X — X/T" for I' < G such that either I" is a
cyclic group of order (£ — €)/2 or a dihedral group of order 2 - 3", or I is a maximal cyclic group of
order prime to 3.

(2) Determine the k[H]-module structure of H%(X,Qx) when H is a subgroup of N; that is either
dihedral of order 2 - 3™ or cyclic of order (¢ — €)/2. Use this to determine the k[N;]-module structure
of HY(X, Qx).
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(3) Determine the Brauer character of HY(X, Qx) as a k[G]-module.
(4) Use (2) and (3), together with the Green correspondence to determine the k[G]-module structure of
HO(X,Qx).

Step (1) is accomplished in §6.1 and is a computation based on Remark 5.1(ii) and the subgroup structure of
G = PSL(2,Fy) as given in [22, §IL.8]. Steps 2 and 3 are accomplished in §6.2 and §6.3 using the key steps
in the proof of Theorem 1.1, which are summarized in Remark 4.4. For Step (4), which is accomplished in
§6.4, we use [8]. Note that we have to distinguish four different cases according to the congruence classes
of ¢ modulo 3 and 4. The precise k[G]-module structure of H°(X, Q) in all four cases can be found in
Propositions 6.4.1 - 6.4.4.

6.1. The lower ramification groups associated to X — X/TI" for certain I' < G. We first determine
the ramification of X — X/T for certain 3-hypo-elementary subgroups I" of G. We need to consider two

cases.

6.1.1. The ramification groups when ¢ = —e mod 4. In this case there is a unique conjugacy class in G of
dihedral groups of order 2 - 3. We fix subgroups of G as follows:

(a) a cyclic subgroup V = (v) of order (¢ —€)/2 = 3™ - m, where m is odd;

(b) a dihedral group A = (v, s) of order 2 - 3™, where v/ = v™ € V is an element of order 3" and
s € Ng(V) —V is an element of order 2;

(¢) a cyclic subgroup W = (w) of order (£ +€)/2;

(d) a cyclic subgroup R of order /.

Note that Ng(V) is a dihedral group of order ¢ — e, Ng(W) is a dihedral group of order ¢ + ¢, and Ng(R)
is a semidirect product with normal subgroup R and cyclic quotient group of order (¢ — 1)/2. We now use
Remark 5.1(ii) to determine the lower ramification groups associated to X — X/T" for I € {V, A, W, R}.

(1) Let z € X be a closed point such that G, = ¥3. Let I be the unique subgroup of order 3 in V. Since
all subgroups of G isomorphic to X3 are conjugate in G, we can choose a closed point x € X such
that G, = (I,s) ® X3. If g € G then I'y, = gG,g ' NT can only be non-trivial if I' € {V, A, W}.

Suppose first that T' contains a subgroup of order 3. Then I' € {V,;A} and I < T is the
unique subgroup of order 3 in I'. Let ¢ € G. Then I'y, = gG,g~! NT contains I if and only if
G, > g~ 'Ig, which happens if and only if I = g~'Ig. In other words, this happens if and only if
g € Ng(I) = Ng(V). Therefore,

#{9Ga 5 g€ G 1 < Ty} = #(Na(V)/Ga) = (€ —€)/6.

IfI' = A, we also need to analyze the case when Iy, = 5. This happens if and only if g € Ng(V)
and gG,g~! N A contains an element of order 2. Since each element of order 2 in G, is conjugate to
s by a unique element of I, this happens if and only if there exists a unique element 7 € I such that
gt lstg™! € A. Since each element of order 2 in A is conjugate to s by a unique element in (v), this
happens if and only if there exists a unique § € (v') with g=lg7=! € Cg(s). Since g~ lgr=! € Ng(V)
and Ng(V)NCq(s) = {e, s} <A, it follows that g € Ng (V) satisfies g~ 1gr~! € Cg(s) if and only if
g € A. Thus

#{9G.; g€ G, Ay 2 X3} = #{gG, ; g€ A} = #(A/G,) = 3"
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We obtain

#{2' € X closed ; V,y 27Z/3} = (L—¢€)/6 = 3" .m,
#{2' € X closed ; Ay 27Z/3} = ({—¢)/6—3""1 = 3" (m—1),
#{z' € X closed ; A, =¥3} = 3%

If I' = A, it can also happen that I'y, = Z/2 for some g € G. This happens if and only if
g € G — Ng(V) and gG,g~' N A has order 2. Since each element of order 2 in G, is conjugate to
s by a unique element of I, this happens if and only if there exists a unique element 7 € I such
that gr—'stg~! € A. Since each element of order 2 in A is conjugate to s by a unique element
in (v'), this happens if and only if there exists a unique § € (v') with g7 lg7= € Cg(s). We have
Ca(s) = Ng(s) is a dihedral group of order ¢ + €. Moreover, C(s) N Ng(V) = {e, s}, which means
that the number of g € G — Ng(V) such that g 1gr=! € Cg(s) for unique g € (v') and 7 € I is equal
to (#(W))(#Cq(s) — 2)(#I). Hence

#{9G2; g€ G, Mgy = 7)2} = (#(V)(#Cal(s) — 2)(#1)/6

meaning

#{z' € X closed ; A, = 7/2} = 3" (E;E _ 1> )

Suppose finally that I' = W. Then it can only happen that I'y, = Z/2 for some g € G. This
happens if and only if g € G and gG,g~' N W has order 2. Since W has a unique element of order 2
given by w’ = w*9/* and each element of order 2 in G, is conjugate to s by a unique element of

lstg™! = w'. Let

1, this happens if and only if there exists a unique element 7 € I such that g7~
go € G be a fixed element with gow’ga1 = s, then this happens if and only if gogr~! € Cg(s). Since
Ca(s) = Ng(s) is a dihedral group of order £ + € and 3 does not divide ¢ + ¢, it follows that the

number of g € G such that gogr ™' € Cg(s) is equal to (£ + €)(#I). Hence
#{9Gs; g€ G, Wy 2Z/2} = (L +€)(#1)/6

meaning
l
#{2' € X closed ; W, 27/2} = ere'

(2) Let x € X be a closed point such that G, = Z/{. Since all subgroups of G of order ¢ are conjugate,

we can choose a closed point z € X such that G, = R. If g € G then I'y, = gG,g ' NT can only be
non-trivial if I' = R. Moreover, Ry, is non-trivial if and only if it is equal to R, which happens if and
only if g € Ng(R). Thus

#{QGI 19 € GaRgz = Z/f} = #(NG(R)/GI)
meaning

#{z' € X closed ; Ry X Z/l} = (£ —1)/2.

6.1.2. The ramification groups when £ = ¢ mod 4. In this case £ — € is divisible by 12, and m is even. There
are precisely two conjugacy classes in G of dihedral groups of order 2 - 3". We fix subgroups of G as follows:

(a) a cyclic subgroup V' = (v) of order (¢ — €)/2 = 3™ - m, where m is even;

(b) two non-conjugate dihedral groups A; = (v/, s) and As = (v/, vs) of order 2 - 3™, where v = v™ and

s € Ng(V) —V is an element of order 2;
(c) a cyclic subgroup W = (w) of order (£ + €)/2;
(d) a cyclic subgroup R of order /.
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Similarly to §6.1.1, Ng(V) is a dihedral group of order £ — e, Ng(W) is a dihedral group of order £ + e,
and Ng(R) is a semidirect product with normal subgroup R and cyclic quotient group of order (¢ —1)/2.
We now use Remark 5.1(ii) to determine the lower ramification groups associated to X — X/T for
T e{V,A1, Ay, W, R}.

(1) Let € X be a closed point such that G, = X3. Let I be the unique subgroup of order 3 in V.
There are two conjugacy classes of subgroups of G isomorphic to 33, which are represented by (I, s)
and (I,vs). Since there is exactly one branch point in X/G such that the ramification points in
X above it have inertia groups isomorphic to X3, only one of these two conjugacy classes occurs
as inertia groups. Without loss of generality, assume there exists a closed point x € X such that
G, =(I,s) 2 33. If g € G then I'y; = gG,g~ ' NT can only be non-trivial if I' € {V, A1, Ay, W}.

Suppose first that I' contains a subgroup of order 3. Then I' € {V; A1, Az} and I < T is the unique
subgroup of order 3 in I'. We argue as in §6.1.1 to see that

#{9Gs; g€ G, I < Ty} = #(Ng(V)/Gs) = (£ —€) /6.

If I' = Ay, we also need to analyze the case when I'y, = ¥3. Arguing as in §6.1.1, we see this
happens if and only if there exist unique elements 7 € I and § € (v') with g~lg7—! € Cg(s). If
z = v(!=9/% is the unique non-trivial central element of Ng(V), then Cq(s) N Ng(V) = {e, s, 2, zs}.
Since g~1gr=! € Ng(V), it follows that g € Ng(V) satisfies g~lg7—! € Cg(s) if and only if g € A4
or g € zAy. Thus

#{gGm ) S Ga (Al)gaz = E3} = #{ng y g € A1 or g € ZAl}
= 2-#(A/G,) = 2-3"7L.

We obtain
#{z' € X closed ; V,y 27Z/3} = ({—¢€)/6 "lom,
#{2' € X closed ; (A1)w 27Z/3} = ({—€)/6—2-3""1 = 3" (m—2),
#{z' € X closed ; (Ag)p ®Z/3} = ({—¢€)/6 = -m,
#{2' € X closed ; (A1)y =¥3} = 2.3"7%L

In all three cases I' € {V, A1, Az}, it can also happen that I'y, = Z/2 for some g € G. Arguing
similarly as in §6.1.1, we obtain

#{z' € X closed ; Vy 2 7Z/2}

> =3"-m,

3n<£_6_2>7

#{2' € X closed ; (Ag) =7Z/2} = 3" <€ ; 6) '

Since #W is not divisible by any divisor of 6/, it follows that W, = {e} for all closed points =’ € X.
(2) Let z € X be a closed point such that G, = Z/¢. As in §6.1.1, we have that 'y, = gG,g ' NT can
only be non-trivial if I' = R. Moreover,

#{z' € X closed ; (A1), X 7Z/2}

[\]

#{z' € X closed ; Ry X Z/l} = (£ —1)/2.

6.2. The k[N;]-module structure of H°(X,Qx). Recall that P is a Sylow 3-subgroup of G, P; is the
unique subgroup of P of order 3, and Ny = Ng(Py), so N; is a dihedral group of order £ — €. In this section,

we first determine the k[H]-module structure of H°(X, Q) for the 3-hypo-elementary subgroups H of N;
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that are isomorphic to dihedral groups of order 2 - 3™, respectively to cyclic groups of order (£ —€)/2. We
then use this to determine the k[Ni]-module structure of H°(X, Q). Again, we need to consider two cases.

6.2.1. The k[N1]-module structure when ¢ = —e mod 4. We use the notation from §6.1.1. In particular,
V = (v) is a cyclic group of order (£ —€)/2 = 3™ - m, where m is odd, and A = (v/,s) is a dihedral group
of order 2 - 3", where v = v™ and s € Ng(V) — V is an element of order 2. Moreover, let I be the unique
subgroup of V of order 3. We use the key steps in the proof of Theorem 1.1, as summarized in Remark 4.4,
to determine the k[H]-module structure of H(X, Qx) for H € {V,A}.

In both cases, it follows from §6.1.1 that the subgroup of the Sylow 3-subgroup Py = (v') of H generated
by the Sylow 3-subgroups of the inertia groups of all closed points in X is equal to I = (1), where 7 = (v’ )3”71.
Moreover, there are precisely 3" ! - m closed points z in X with H, > I. In particular, the non-trivial lower
ramification groups for any closed point © € X with I < H, are Hy; = I and H, 5 = {e}. Let Y = X/I.
For 1 <t <m,let y;1,...,¥,3n—1 €Y be points that ramify in X. For 0 < j < 2, we obtain that £; from
Proposition 4.1 is given as £; = Qy (D,), where, by the proof of Proposition 4.1 or by step (1) of Remark 4.4,

m 3n71
(63) D] — Z Z yt,i 9 .7 = 07 17
t=1 i=1
0 . j=2

Since 3"~ ! - m points in Y = X/I ramify in X, the Riemann-Hurwitz theorem shows that
(L+¢€)(¢—6)—38
12 '

(a) We first consider the case H =V, so H = (Z/3™) x (Z/m), where 3 does not divide m. By §6.1.1, we
have either V,, = I or V,, = {e} for all closed points x € X. If Z = X/V,thenY = X/I — X/V =2Z
is unramified with Galois group V = V/I.

(6.4) gY)—1=3""1m

Hence Proposition 4.3, or step (2) of Remark 4.4, gives the following in this situation for M =
Res$ HO(X,Qx). Let 4(j) be the Brauer character of the k-dual of (MUY /M @) for j € {0,1,2}.

Then
Y(5) = 8,2 Bo + ny (V) B(K[V])
where
no(V) = mi (V) = #11/ (3" tm4g(Y)—1) =1+ (“6)(%_ 6)-8
and
1 (L (t—6)—8
(6.5) na (V) = i (9(Y)—1)= B -

In particular, ny(V) = na(V) 4+ 1. Since By and G(k[V]) are self-dual, we obtain that the Brauer
character of MU+1) /MU) for j € {0,1,2}, is equal to

BMD /MOy = M /MDY = (ny(V) +1) B(k[V]),

BM®P /MY = By +ny(V) B(K[V]).
Using the notation of Remark 3.4, there are m isomorphism classes of simple k[V]-modules, represented
by SéV)’ Siv), s anvi)l, where we use the superscript (V) to indicate these are simple k[V]-modules.

Using the proof of Theorem 1.1, or step (3) of Remark 4.4, it follows that Res{f HO(X,Qx) =
Res$ M is a direct sum of ny copies of k[V] together with an indecomposable k[V]-module of k-
dimension 23"~ + 1 with socle S(()V) and m — 1 indecomposable k[V]-modules of k-dimension 2-3"~1
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(6.6)

with respective socles given by S§V), cee Sg_)l. Writing Ué? for an indecomposable k[V]-module of
k-dimension b with socle isomorphic to Sév), we have
m—1
Res§ HO(X, Qx) = na (V) E[V] © U puos s @ @D ULy b
t=1

where n2(V) is as in (6.5).
We next consider the case H = A, so H = (Z/3") % (Z/2). In particular, there are precisely two
isomorphism classes of simple k[A]-modules, represented by S((JA) and SﬁA), and S, = ng. By §6.1.1,
the possible isomorphism types for non-trivial inertia groups A, for closed points x € X are either X3
or Z/3 or Z/2. Moreover, there are precisely 3"~ 1 (resp. 3"~ 1(m — 1), resp. 3"(({ +¢€)/2 — 1)) closed
points x in X with A, 2 X3 (resp. A, 2 7Z/3, resp. A, = Z/2). Using the notation introduced above,
suppose that the inertia groups of the points in X above the points 1 1,...,%1 3n—1 € Y are isomorphic
to X3, whereas the inertia groups of the points in X above the remaining y; 1,...,y;3n1 €Y, for
2 <t < m, are isomorphic to Z/3. If Z = X/A, then Y = X/I — X/A = Z is tamely ramified
with Galois group A = A/I.

The ramification data of the tame cover Y = X/I — Z = X /A is as follows. There are precisely
(¢ + €)/2 points in Z that ramify in Y. Moreover, the inertia group of each of the 3"~ 1({ + ¢€)/2
points in Y lying above these points in Z is isomorphic to Z/2. Let z; € Z be the unique point that
ramifies in X with inertia group isomorphic to ¥3, and let 22,. .., 2(s1c)/2 be the points in Z that
ramify in X with inertia group isomorphic to Z/2. Define y1 = y11 € Y and let ya,..., Y12 €Y
be points lying above 2, ..., 2(¢4¢)/2, respectively. For all i € {1,2,...,(£+¢€)/2}, it follows that Ay,
is a subgroup of order 2 in A and the fundamental character 8, is the unique non-trivial character
of Ay,. In particular, the Brauer characters Ind%yi (0y,), for i € {1,2,..., (¢ + €)/2}, are all equal

to the Brauer character of the projective indecomposable k[A]-module whose socle is non-trivial.
Moreover, for j € {0,1,2}, we have that ¢, ; € {0,1} such that £,, ; = —ord,,(D;) mod (#A,,) is
only non-zero for (i,7) € {(1,0),(1,1)}. Let M = Res§ H°(X,Qx), and fix j € {0,1,2}. Following
Proposition 4.3, or step (2) of Remark 4.4, we obtain that the Brauer character of the k-dual of
Syi ®k (MUFD /M) is equal to

1) =+ () a0, — (1= 52) e (6, +y(A) BOHE)
where
. 1\ 1 [/l+e 1
no(A) = n1(A) = #% (3" m+g(Y)—1)+% (1—2> —1—2( _g —1) (—2>
- om+1 m((l+e)(l—-6)—8) [L+e
= T 7 24 -8

and

24 8
In particular,
ny1(A) =na(A)+ (m+1)/2.

Let P(A,0) (resp. P(A,1)) be a projective indecomposable k[A]-module with trivial (resp. non-
trivial) socle. Then Ind%y (0,,) = B(P(A,1)) and B(k[A]) = B(P(A,0)) + B(P(A,1)). Since By,
1
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B(P(A,0)) and B(P(A, 1)) are self-dual, we obtain that the Brauer character of MU+ /M) is equal

to
BMID /MOy = (ng(A) + m;’l> B(P(A,0)) + (ng(A) + EZE -1+ m; 1) B(P(A, 1)),
BM® /MWy = <n2(A) + m;”) B(P(A,1)) + (nQ(A) + EIE -1+ m; 1) B(P(A,0)),

Z7
BM® /MD) = By +no(A) BP(A, 0)) + (nQ(A) - EZE) B(P(A,1))

= ()4 D BPE0) + (na(d) + - 1) BPED) + (5,

where we rewrote the Brauer character of M (%) /M) to reflect the fact that, by step (2) of Remark
4.4, the quotient M®)/M®@) is isomorphic to a direct sum of the simple k[A]-module S, and a
projective k[A]-module. As above, let SéA), S%A) be representatives of the 2 isomorphism classes of
simple k[A]-modules, such that S, = S{A).

Using the proof of Theorem 1.1, or step (3) of Remark 4.4, it follows that Resg H°(X,Qx) =
Res§ M is a direct sum of ny(A) 4 1 copies of the projective k[A]-module with socle Sy and
ng(A) + % — 1 copies of the projective k[A]-module with socle S; together with an indecomposable
k[A]-module of k-dimension 2 -3"~1 + 1 with socle S%A) and (m — 1)/2 indecomposable k[A]-modules
of k-dimension 2 - 3"~! with socle SéA) and (m — 1)/2 indecomposable k[A]-modules of k-dimension
23"~ with socle S%A). Writing Uéi) for an indecomposable k[A]-module of k-dimension b with

socle isomorphic to SLSA), we have

¢
Res§ HO(X, Qx) = (n2(A) + 1) USs) @ (nQ(A) + % = 1) Ui &

() m—1) @ m—1Y @)
U1,2-3n*1+1 ® ( 2 ) Uo,2~3n71 ® ( 9 ) U1,2-3n71

where ny(A) is as in (6.6).

We now want to use (a) and (b) above to determine the k[N]-module structure of H%(X,Qx). Using
the notation introduced in §6.1.1, P = (') is a Sylow 3-subgroup of G and P; = I is the unique subgroup
of P of order 3. Hence Ny = Ng(P) = (v, s) is a dihedral group of order £ — e = 2- 3" - m. There are
2 4+ (m — 1)/2 isomorphism classes of simple k[N1]-modules. These are represented by 2 one-dimensional
k[N1]-modules S(()Nl) and SgNl), which are the inflations of the two simple k[A]-modules S(()A) and S;A),
together with (m—1)/2 two-dimensional simple k[/N;]-modules §§N1), e N((nj\ji)l)/y where §§N1) = Ind}" St(v)
for 1 <t < (m —1)/2. The indecomposable k[N;]-modules are uniserial, where the projective modules all
have length 3™. For {i,j} = {0,1}, the projective cover of SZ-(NI) has ascending composition factors

(V1) (M) (M) (V1) (M)
SN N (g [ gt g

For ¢t € {1,...,(m — 1)/2}, the composition factors of the projective cover of §t(N1) are all isomorphic to
S,le). For ¢ € {0, 1}, we write Ui(gl) for an indecomposable k[N7]-module of k-dimension b whose socle is

isomorphic to Si(Nl). For t € {1,...,(m — 1)/2}, we write ﬁt(f;h) for an indecomposable k[N;]-module of
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k-dimension 2b whose socle is isomorphic to gt(Nl). By (a) and (b) above, we obtain

f+¢€)(£—9)+16 ! L+¢€)(l—3)—32 g
Res§, HO(X, Qx) = <( 6)(24 ) )Uéfgn)@(( 6)(24 ) >U{f§n>es
(m—1)/2
L+€e)({—6)—8\ ~ny
(6.7) @ <( )(12 ) )Ut(gn)@
t=1
(m—1)/2

(N1) r7(N1)
Ul ggn-141 @ @ Uy ggni-
t=1

6.2.2. The k[Ni]-module structure when ¢ = ¢ mod 4. We use the notation from §6.1.2. In particular,
V = (v) is a cyclic group of order (£ — €)/2 = 3™ - m, where m is even, and Ay = (v', s) and Ay = (v/,vs) are
two non-conjugate dihedral groups of order 2 - 3", where v/ = v™ and s € Ng(V) — V is an element of order
2. Moreover, let I be the unique subgroup of V' of order 3. Similarly to §6.2.1, we use the key steps in the
proof of Theorem 1.1, as summarized in Remark 4.4, to determine the k[H]-module structure of H?(X, Qx)
for H € {‘/7 Al,AQ}.

In all cases, it follows from §6.1.2 that the subgroup of the Sylow 3-subgroup Py = (v’) of H generated by
the Sylow 3-subgroups of the inertia groups of all closed points in X is equal to I = (r), where 7 = (v’ )3%].
Moreover, there are precisely 3"~ - m closed points z in X with H, > I. Let Y = X/I. For 1 <t < m, let
Ye,15--->Ye,3n—1 €Y be points that ramify in X. For 0 < j < 2, we obtain that £; from Proposition 4.1 is
given as £; = Qy (D;), where D; has the same form as in (6.3). Since 3"~! - m points in Y = X/I ramify in
X, the Riemann-Hurwitz theorem shows that g(Y") satisfies the same equation as in (6.4).

The ramification data is slightly more difficult than in §6.2.1, but the arguments are very similar. We
therefore just list the final answers for each H € {V, Ay, Aq}.

(a) We first consider the case H =V, so H = (Z/3™) x (Z/m), where 3 does not divide m. Using the
notation of Remark 3.4, there are m isomorphism classes of simple k[V]-modules, represented by
S(()V), ng), R S,(nv_)l, where we use the superscript (V) to indicate these are simple k[V]-modules.

Moreover, the projective indecomposable k[V]-modules all have length 3". Writing U, é‘z) for an
indecomposable k[V]-module of k-dimension b with socle isomorphic to SL(lV), we have

m/2 m—1
Res HO(X, Qx) 2 ny(V) k[V] & @D UL, 50 & Ui @ @ UL
t=1 t=1

where
(£+e)(¢—6)—14
12 '
(b) We next consider the case H = Ay, so H = (Z/3™) x, (Z/2). In particular, there are precisely

two isomorphism classes of simple k[A;]-modules, represented by S(()Al) and S%Al), and S5, = S§A1).

na(V) =

Moreover, the projective indecomposable k[A;]-modules all have length 3™. Writing U;Ab‘l) for an

indecomposable k[A;]-module of k-dimension b with socle isomorphic to S5 we have
{—¢
Res§ HO(X,Qx) = (na(A) +1)USSY @ <n2(A1) - 1) Ust @

(A1) M (A1) m (A1)
U1,2-13"—1+1 ® (5) U0,2»13"—1 D (5 - 1) U1,2-13n—1

where
na(Ay) = m((ﬁ—l—e)éi—ﬁ)—S) _E;e.
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(c) Finally, we consider the case H = Ay, so H = (Z/3") X, (Z/2). Again, there are precisely two
isomorphism classes of simple k[As]-modules, represented by S(()AQ) and S;Aﬂ, and S, = S%Az).
Moreover, the projective indecomposable k[As]-modules all have length 3™. Writing Ué’A;) for an

indecomposable k[As]-module of k-dimension b with socle isomorphic to S,(IAQ), we have

g _
Res§, HO(X,Qx) = (n2(A0) + 1) UG @ <n2(A2) N 1) vsY @

4
(A2) m (Az) m (Az)
U1,2-23"*1+1 ® (5 - 1) Uo,2-23"71 ® (5) U1,2-23"71
where , . .
m(({ +¢€)({ —6) —8 —€
ra(Ag) = TFIC-6)=8) (-

24 8

We now want to use (a), (b) and (c) above to determine the k[N7]-module structure of H°(X, Qx). Using
the notation introduced in §6.1.2, P = (v') is a Sylow 3-subgroup of G and P; = I is the unique subgroup
of P of order 3. Hence N; = Ng(P) = (v, s) is a dihedral group of order £ — ¢ = 2 - 3™ - m, where m is
even. There are 4 4+ (m/2 — 1) isomorphism classes of simple k[N1]-modules. These are represented by 4
; : (V1) g(N1)  o(N1) (N1) (N1) : (A1) (Az)

one-dimensional k[N1]-modules Sy ", Sy, S1 o' and S ;" such that S; ;" restricts to S; ™"’ and to S,
for i1,4s € {0, 1}, together with (m/2 — 1) two-dimensional simple k[N;]-modules §§Nl), e §((7]Z>)2_1),
§t(N1) = Ind{* St(v) for 1 <t < (m/2—1). The indecomposable k[N;i]-modules are uniserial, where the

projective modules all have length 3". If {i,j} = {0,1} then the projective cover of Si(ivl) has ascending

where

composition factors
S s g0 st g

and the projective cover of SZ-(’];-II) has ascending composition factors
SN g(N) " g(Nh)

(N1) g(N1)
LA e B,y o ot SJ’J’ ' ’Sivj e
For ¢t € {1,...,(m/2 — 1)}, the composition factors of the projective cover of §§N1) are all isomorphic to

gt(Nl). For 41,12 € {0,1}, we write Ui(xib for an indecomposable k[N;]-module of k-dimension b whose socle
is isomorphic to Si(xlz). For t € {1,...,(m/2 — 1)}, we write T}t(jyl) for an indecomposable k[N7]-module of

k-dimension 2b whose socle is isomorphic to gt(Nl). By (a), (b) and (c) above, we obtain

l {—6)—14 (- l {—6)—2
Res, 100 0x) = (LFRAZOM (2 )y o | CRICT0 22y

24 24
l+€e)(£—6)—2 A l+e)(—6)—14 (—¢ N
(6.8) {( (24 J U, @ (4 ) 5 ) g ! v, @
[(m—2)/4] lm/4]
(€+€)(£—6)—14 ~(N1 (€+€)(€—6)—2 ~(N;
D ( = o) & = U] 3 @
t=1 t=1
m/2—1

(N1) (N1) 77(N1)
U1,1,12‘3n—1+1 @ Uo,1,12‘3n—1 ® @ Ut,z‘l?,n—l
t=1
where, as before, || denotes the largest integer that is less than or equal to a given rational number r.

6.3. The Brauer character of H’(X,{x) as a k[G]-module. In this section, we compute the values of

the Brauer character of H(X,Qx) as a k[G]-module. We use the notation from the previous two sections,

§6.1 and §6.2. We determine the values of the Brauer character 3(H°(X,€x)) for all elements g € G that are

3-regular, i.e. whose order is not divisible by 3. By [22, §IL.8], the elements of order ¢ fall into 2 conjugacy

classes. Let r; and ro be representatives of these conjugacy classes. Since all subgroups of G of order ¢ are

conjugate, we can assume, without loss of generality, that R = (r1) = (re). In fact, if 1 < y < ¢—1 is such
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that F; = () then we can choose ro = r{. Moreover, for i € {1,2} and 1 < a < (¢ — 1)/2, we have that
(ri)“2 is conjugate to r;. All elements g € G of a given order # ¢ lie in a single conjugacy class. We first
determine the value of the Brauer character 3(H(X,Qx)) at r1 and 5.

6.3.1. The Brauer character of H°(X,Qx) at elements of order £. By §6.1.1 and §6.1.2, we have either
R, = R or R, = {e} for all closed points = € X, and there are precisely (¢ — 1)/2 closed points z in X with
R, = R. In particular, this means that X — X/R is tamely ramified. Letting Y = X and Z = X/R, we
have g(Y) —1=g(X) — 1 as in (5.3).

There are precisely (¢ — 1)/2 points in Z that ramify in Y = X. Moreover, the inertia group of each of
the (£ —1)/2 points in Y = X lying above these points in Z is equal to R. Let 21,...,24_1)/2 € Z be the
points in Z that ramify in ¥ = X with inertia group equal to R. Let yi,...,y—1)/2 be points lying above
21,...,2(¢—1)/2, respectively. Following Proposition 4.3, or step (2) of Remark 4.4, we obtain that the Brauer
character of the k-dual of Res§ HO(X, Q) is equal to

(-1)/2 ¢—1

Bo + Z Z )" + no(R) B(K[R])

where

m(R) = 2z (000 -1+ 5+ (57 =

Suppose 0y, (r1) = & is a primitive /™ root of unity. Then it follows that

{6,,(r); 1<i<(0-1)/2) = {(&)¥ ; 1<a < (0—1)/2}.

(t—1)/2

<\

-1 (e=1)/2 -1

(\\ﬂ
|

IERCRE )
a“t __
t(ff) - ; (é—e)GQ _ 1

I
o

=1 t a=1 t=0

(a) If =1 mod 4 then —1 is a square mod £. Since

L S (3 it () it SO
) =1 (€)™ =1 ((€)*" = D((&)* 1)
(6.9) becomes
(€=1)/2 ¢—1
t,o, (-1
Z Z 7 (0y,)"(r1) = — I
=1 t=0
Therefore, since 0,, (r2) = 0,, (r)"), we get
(-1
(6.10) BHY(X, Qx))(r1) =1 — = BH(X, Qx))(r2).
(b) Next suppose £ = —1 mod 4. Using Gauss sums, we see that there exists a choice of square root of
—/¢, say v/ —/£, such that
(e—1)/2 (e—1)/2
o2 —1+v—/ a2 —1—-v—/
(6.11) Z ()" = s and Z (&) = —

a=1
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Letting Oy C {1,...,¢ — 1} be the set of squares in F}, it follows that {¢ —t ; ¢t € O,} is the set of
non-squares in I}, since —1 is not a square mod ¢. Then (6.9) can be rewritten as

% e (Z_l)/Qt(é‘e)“zt % Zt(W) + % S (-1 (_1—2\/—7>

I
-

t=0 a=1 ted, ted,
V—r (-1
= Xt (V).

tely

Let h¢ = hg(,/=p) be the class number of Q(v/—¢), and let x be the quadratic character mod ¢. By
[38, Ex. 4.5], we have

(e-1)/2 (e=1)/2 -1
Che==2 Y x(@)a+¢ Y x(a)==Y x(a)a
a=1 a=1 a=1
which implies
1 _fol
4 2
tely
Therefore, (6.9) becomes
/—1 (£—1)/2
1 o2t {—1 he —
t=0 a=1
Using 0., (r2) = 0, (r}) and (6.11), we get
(=1 h
(6.12) BEHAX.Qx))(rn) = 1- —= = ZVh
0 -1 Ry

6.3.2. The Brauer character of H°(X,Qx) when ¢ = —e mod 4. We use the notation from §6.1.1. In
particular, v is an element of order (¢ —€)/2 = 3™ - m, where m is odd, s is an element of order 2, and w is an
element of order (¢ + €)/2. Let v = v3" be of order m. Then a full set of representatives for the conjugacy
classes of 3-regular elements of G is given by

{6, T1,72,S, (U//)iv wj}

where 1 <i<(m—1)/2and 1 <j < ({+¢€)/4.
From §6.3.1, we know the values of 3(H%(X,{x)) at r; and ro. The other values of 3(H°(X,Qx)) are as
follows:

(6.14 sa0x 00 = 1+ EZIED
(6.15) B, Q:))() = 1- 5,

(6.16) SO, 20N (@) = 1,

(6.17) BH(X,Qx))(w’) = L

when (v”)? # e and w? & {e, s}. Note that we obtain the values in (6.14) - (6.16) from §6.2.1.
We next consider the case W = (w). By §6.1.1, we have either W, = Z/2 or W, = {e} for all closed points
x € X, and there are precisely (¢ + €)/2 closed points = in X with W, = Z/2. In particular, this means that
X — X/W is tamely ramified. Letting Y = X and Z = X/W, we have g(Y) — 1 = g(X) — 1 as in (5.3).
There are precisely 2 points in Z that ramify in ¥ = X. Moreover, the inertia group of each of the
(¢ +€)/2 points in Y = X lying above these points in Z is isomorphic to Z/2. Let z1, 22 € Z be the points
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in Z that ramify in Y = X with inertia group isomorphic to Z/2. Let y1,y2 be points lying above z1, 22,
respectively. Since W has a unique subgroup of order 2, it follows that W, = W,, and the fundamental
character 6,, = 6,, is the unique non-trivial character of W,, = W,,. Following Proposition 4.3, or step (2)
of Remark 4.4, we obtain that the Brauer character of the k-dual of Res‘c,;v HY(X, Qx) is equal to

Bo + Ind%yl (0y,) +no(W) B(k[W])

where

1 1 (L—e)(t—6)—6

no(W) = #7W (gY)-1)— 5=

2 12

Note that Sy, Ind%y1 (0y,) and B(k[W]) are self-dual. Since (£+ €)/2 is not divisible by 3, k[W] is semisimple.

w w w
0,88

There are (¢ + €)/2 isomorphism classes of simple k[W]-modules, represented by S, St j2-10

where we use the superscript (W) to indicate these are simple k[W]-modules. We obtain
(L+e)/4
B(Resfy HO(X, Qx)) = B(SG™ )+ D_ BIS5L1) + no(W) B(k[IW)).
=1

This gives the values of 3(H%(X,x)) in (6.17).

6.3.3. The Brauer character of HY(X,Qx) when £ = ¢ mod 4. We use the notation from §6.1.2. In particular,
v is an element of order (¢ —€)/2 = 3™ - m, where m is even, s is an element of order 2, and w is an element
of order (¢4 ¢€)/2. Let v” = v3" be of order m. Then a full set of representatives for the conjugacy classes of

3-regular elements of G is given by
{6, r1,72,8, (v//)ia wj}
where 1 <i<m/2and 1 <j<|[({+¢€)/4].
From §6.3.1, we know the values of 3(H°(X,Qx)) at r; and r2. The other values of S(H?(X,{x)) are as

follows:

(6.18) BP0 = 1+ N0
(619) BV, 00)6) = 1- 75,

(6:20) SO, 20N ) = 1,

(6:21) B, RO) ) = 1,

when (v")? & {e, s} and w’ # e. Note that we obtain the values in (6.18) - (6.20) from §6.2.2. Since the order
of W is not divisible by any divisor of 6¢, we also obtain the values of B(H°(X,{x)) in (6.21).

6.4. The k[G]-module structure of H°(X, Q). In this section, we determine the k[G]-module structure
of HO(X,Qx), using §6.1 - §6.3 together with [8]. We have to consider 4 cases.

6.4.1. The k[G]-module structure of HY(X,Qx) when £ =1 mod 4 and / = —1 mod 3. This is the case when

e=—1land { = —e mod 4. By (6.7), the non-projective indecomposable direct summands of Res%1 HO(X, Qx)
are given by
(m—1)/2
(6.22) U o @ U8
t=1

We first determine the Green correspondents of these summands, using the information in [8, §IV]. There
are 1+ (m — 1)/2 blocks of k[G] of maximal defect n, consisting of the principal block By and (m — 1)/2
blocks Bi, ..., B(m—1)/2, and there are 1 + (£ —1)/4 blocks of k[G] of defect 0. There are precisely two
isomorphism classes of simple k[G]-modules that belong to By, represented by the trivial simple k[G]-module
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Ty and a simple k[G]-module Tj of k-dimension ¢ — 1. For each t € {1,...,(m — 1)/2}, there is precisely
one isomorphism class of simple k[G]-modules belonging to B, represented by a simple k[G]-module T, of
k-dimension ¢ — 1. Note that the Brauer character of ft, 0 <t < (m—1)/2, is the restriction to the 3-regular
classes of the ordinary irreducible character 67, 0 < ¢ < (m — 1)/2, with the following values:

(6.23)  0j(e)=L—1; &(r)=—1=0[(ra); &;(s)=0=5(w') & ((v")) =—((&m)" + (Em)™")

th root of unity.

where &, is a fixed primitive m

To determine the Green correspondents of the non-projective indecomposable direct summands of
Res%1 HY(X,Qx), we use that there is a stable equivalence between the module categories of k[G] and
k[N7]. This allows us to use the results from [2, §X.1] on almost split sequences to be able to detect the Green

(N1) (

correspondents. If n = 1 then U =U, 31) is a projective k[Ni]-module. If n > 1 then the Green

1,2.3n—141 —
correspondent of Ul(g?gn_l 41 belongs to By. Since the Green correspondent of S(()Nl) is Tp, it follows that the

Green correspondent of S§Nl)

is a uniserial k[G]-module of length (3™ — 1)/2 whose composition factors are
all isomorphic to Tg. We now follow the irreducible homomorphisms in the stable Auslander-Reiten quiver of
By starting with the Green correspondent of S%Nl) to arrive, after 2 - 3”1 such morphisms, at a uniserial
k[G]-module of length (3"~ — 1)/2 whose composition factors are all isomorphic to Ty. This must be the

Green correspondent of U1(1\2/13n 141 Forn>1and 1 <t < (m—1)/2, the Green correspondent of Ut(gh:,)n N

belongs to the block B;. Since £ — 1 = —2 mod 3", it follows that the Green correspondent of U(2 3)71 L isa
uniserial £[G]-module of length 3"~! whose composition factors are all isomorphic to T;.

Next, we determine the Brauer character E of the largest projective direct summand of HY(X,{x). Since
(3"~1 —1)/2 =0 when n = 1, we do not need to distinguish between the cases n = 1 and n > 1. Using (6.10),
(6.14) - (6.17) and (6.23), we obtain

. (C—1)(2—T0+4)

Bl = 14 EEEZTED,
By = 1= =12
Ble) = 1

Bw') = 1 (v ¢{es};
B(v")) = 0 ((v") #e).

Let g be the Brauer character of the projective k[G]-module cover P(G,Tp) of Tp, and let U, be the Brauer
character of the projective k[G]-module cover P(G,T}) of Ty, 0 < t < (m —1)/2. We have 1 + (£ —1)/4
additional Brauer characters of projective indecomposable k[G]-modules that are also irreducible: 71,72 and
(¢ — 5)/4 characters n¢ that are constructed from characters i of W with values

e 1 T9 S w’ (Uﬁ)i

(w? & {e;s}) | (W) #e)
" /%1 1+2\/Z 1—2ﬂ (—1)E=1)/4 (—1)7 0
o 551 172\/2 1+2\/Z (— 1)(1{ 1)/4 (_1)j 0
e e+1] 1 L] n(s) +7(s) | n(w’) +7(w’) 0

where 7 ranges over the characters of W that are not equal to their conjugate 77. Denote the corresponding
projective indecomposable k[G]-modules by P(G,v1), P(G,~2) and P(G,n%), respectively.
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If & is the Brauer character of the projective k[G]-module cover of the simple k[G]-module E and ¢p is
the Brauer character of the simple k[G]-module E’, then

(Pp, dp) = G Z Op(z ) pr (v)
z€GY

is the Kronecker symbol dg g/, where G% denotes the 3-regular elements of G. Since

Op = Z Cg .k ¢r
P

where O/ g denotes the (E’, E)* entry of the Cartan matrix and E’ ranges over the simple k[G]-modules, we
can find the multiplicities of @ in 8 by computing (P g, 8) for all simple k[G]-modules E. For ® g belonging
to blocks of maximal defect, we obtain:

~ {—5
(Wo,B8) = BTR
= (6—5)(3”+1).
<\IJ0aﬂ> - Ta
@ = 2 ncicmon.

For &5 belonging to blocks of defect 0, we get:

L % : /=1 mod38 .
(624) <’yla 6> - 1= 17 2)7
52_—45 : /=5 mod38
=5
~ :on(s)=-1
(6.25) n®.B) = { L
BT n(s) =

The Cartan matrix has the following form (see [8, §IV]):

2 1
3" +1
1 2

3 n

3n

1

where the 2 x 2 block in the top left corner corresponds to the principal block By, the diagonal entries 3"

correspond to the blocks B, ..., B(;;,—1)/2, and the remaining diagonal entries 1 correspond to the 1+ (£—1)/4
additional blocks of defect 0. This implies that

(m—1)/2
~ 5 ~
B= Y ﬁ‘lfﬁ‘ﬁh»@)’hﬁ- Y2, B 72+Z

t=0

Therefore, we have proved the following result:

s _ _ (®) (@)
Proposition 6.4.1. When { =1 mod 4 and £ = —1 mod 3, let UT (8n-1-1)/2 (resp. Uﬁ,?,n—l) denote the

uniserial k[G]-module of length (371 —1)/2 (resp. 3"~1) with composition factors all isomorphic to Ty (resp.
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T,). In particular, if n =1 then U(G)(Sn e = =0. As a k[G]-module,

(m—1)/2

(X 0x) = B ET5P(G T) & (1, B) P(G,m) @ (12, B) P(G,72) @
t=0
_ (m—1)/2
@<77G75>P( )EBU;G)(gn 1 1)/269 @ T, 3” 1
n

where (v;, ) and (nC, B) are as in (6.24) and (6.25).

6.4.2. The k[G]-module structure of HY(X,Qx) when £ = —1 mod 4 and £ =1 mod 3. This is the case when
e=1and £ = —e mod 4. By (6.7), the non-projective indecomposable direct summands of Res%1 HO(X,Qx)
are again given as in (6.22).

We first determine the Green correspondents of these summands, using the information in [8, §V]. There
are 1+ (m—1)/2 blocks of k[G] of maximal defect n, consisting of the principal block By and (m —1)/2 blocks
Bi,...,Bn_1)/2, and there are 14 (¢4 1)/4 blocks of k[G] of defect 0. There are precisely two isomorphism
classes of simple k[G]-modules that belong to By, represented by the trivial simple k[G]-module T; and a
simple k[G]-module T of k-dimension £. For each t € {1,...,(m — 1)/2}, there is precisely one isomorphism
class of simple k[G]-modules belonging to By, represented by a simple k[G]-module T, of k-dimension ¢ + 1.
Let Ty = Ty & T. Note that the Brauer character of Ty, 0 < t < (m — 1)/2, is the restriction to the 3-regular
classes of the ordinary irreducible character gz‘, 0 <t < (m—1)/2, with the following values:

(6.26) 0i(e)=L+1; &(r)=1=0;(ra); &7(s)=0=5;(w); & (")) = (&m)" + (&)~

where &, is a fixed primitive m*™ root of unity.
Asin §6.4.1, we determine the Green correspondents of the non-projective indecomposable direct summands
of Res§, %, HY(X,Qx), by using that there is a stable equivalence between the module categories of k[G] and

E[Ny]. If n =1 then Ul(glgn 14 = Ul(gi) is a projective k[Ni]-module. If n > 1 then the Green correspondent

of UL belongs to By. Note that the Green correspondent of SONl) (resp. S§N1)) is Ty (resp T4). This

1,2:3n-141
means that the Green correspondent of Ul(];].l??n,l 41 is the uniserial k[G]-module of length 2 - 37=1 1+ 1 whose

socle is isomorphic to Ty. For 1 <t¢ < (m — 1)/2, the Green correspondent of Ut(213)n 1 belongs to the block
B;. Since £+ 1 =2 mod 3", it follows that the Green correspondent of U(2 4n—1 18 & uniserial k[G]-module
of length 2 - 3"~! whose composition factors are all isomorphic to T;.

Next, we determine the Brauer character ﬁ of the largest projective direct summand of H°(X,x). For
1 =0,1, let ¥; be the Brauer character of the projective k[G]-module cover P(G,T;) of T;. Define B’ to be

the function on the 3-regular conjugacy classes of G such that

5 = 67171 Uy + 5’.
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Using (6.12) and (6.13), (6.14) - (6.17) and (6.26), we obtain

o = w-n (S )

24
Br) = 1- 5(51; 1)—%x/—7;
Blrs) = 1- 5@1; D +%x/—7;
B(s) = —KTTl;

Bw) = 2 (v ¢{es});
B")) = 0 (") #e).
Let U, be the Brauer character of the projective k[G]-module cover P(G,Ty) of Ty, 1 < ¢ < (m —1)/2. We

have 1+ (¢ + 1)/4 additional Brauer characters of projective indecomposable k[G]-modules that are also
irreducible: 1,72 and (¢ — 3)/4 characters n© that are constructed from characters i of W with values

e r1 ro s 4 w? (U{/)i

(w? & {e;s}) | (V") #e)

e e e ] 0
g g = =1 i O I I
st S1 | Sr | —e ) | ) snw) | o

where 7 ranges over the characters of W that are not equal to their conjugate 77. Denote the corresponding
projective indecomposable k[G]-modules by P(G,71), P(G,~2) and P(G,n%), respectively.
Similarly to §6.4.1, using the Cartan matrix given in [8, §V], we get

o e—19 o " RPyg o . _ o
F= T\II1+ Z T‘I’t+<%75>’h+<72,[3)72+Z<77 B
=1 -
where
% -4 £=3 modS8
(6.27) (v, B) = 24 2
é;f_% =7 modS8;
=7 | h _
(6.28) (v E/> _ 7 T f=3 mod8
. 2 s L he _ |
21 T % (=7 mod 8&;
=7 . _
(6.29) G, By = z o ns) =-1
. ’ 045 _1
12 n(s) .

Therefore, we have proved the following result:

Proposition 6.4.2. When { =—1 mod 4 and £ =1 mod 3, let Uq(ﬂ?)zgn,l_s_l (resp. U%G)Q'Snfl) denote the

uniserial k[G]-module of length 2 -3"~1 + 1 (resp. 2-3"~1) whose socle is isomorphic to Ty (resp. whose

composition factors all isomorphic to IN’t) In particular, if n =1 then U’l(—'?)2~3"71+1 = P(G,T1) is a projective
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indecomposable k[G)-module. As a k[G]-module,

(m=1)/2
{—19 {—19 ~
HY(X,Qx) = <12 +5n71) rGme P — PGT)e
t=1

(v1,8) P(G,m) & (12, 8') P(G,12) @ D0, 8) P(G, 1) @

(m—1)/2
(@) (@)
(1= 6n1) UT1,2~3"*1+1 N @ Ui,2~3"—1
t=1

where (1, '), (y2,8') and (n©, ') are as in (6.27), (6.28) and (6.29).

6.4.3. The k[G]-module structure of H°(X,Qx) when £ =1 mod 4 and £ =1 mod 3. This is the case when
e=1and £ =¢ mod 4. By (6.8), the non-projective indecomposable direct summands of Res%1 HY (X, Qx)
are given by
m/2—1
(6.30) Ui T3 g0 101 ©Ugtagns & @ Ty
t=1

We first determine the Green correspondents of these summands, using the information in [8, §III]. There
are 1+ (m/2) blocks of k[G] of maximal defect n, consisting of the principal block By, another block By
and (m/2 — 1) blocks By, ..., B(;,/2-1). Moreover, there are (£ — 1)/4 blocks of k[G] of defect 0. There are
precisely two isomorphism classes of simple k[G]-modules that belong to Bgg (resp. Boi), represented by
the trivial simple k[G]-module Tj ¢ and a simple k[G]-module T7 ; of k-dimension £ (resp. by two simple
k[G]-modules Ty ; and Tj ¢ of k-dimension (¢ + 1)/2). For each t € {1,...,(m/2 — 1)}, there is precisely
one isomorphism class of simple k[G]-modules belonging to By, represented by a simple k[G]-module ﬁ of
k-dimension ¢ + 1. Note that the Brauer character of ﬁ, 1<t < (m/2—1), is the restriction to the 3-regular
classes of the ordinary irreducible character 67, 1 < ¢ < (m/2 — 1), with the following values:

(6.31) Si(e) =L+1; 0f(r) =1=07(ra); O ((W")) = (Em)" + (€n)™"; 6f(w!) =0

where &, is a fixed primitive m™ root of unity and we allow i = m/2, which gives us 67 (s) = 2 (—1)".
As in the previous subsections, we determine the Green correspondents of the non-projective indecomposable
direct summands of Res%1 HY(X, Qx), by using that there is a stable equivalence between the module categories

of k[G] and k[Ny]. I n = 1 then UYY) .., = U{}'3. is a projective k[Ny]-module. If n > 1 then the Green
correspondent of U1(1\1[12).3,,L,1_~_1 belongs to Byg. Note that the Green correspondent of Séfgl) (resp. Sg\lﬁ)) is
To,0 (resp T7,1). This means that the Green correspondent of U1(1¥12).3n,1 1 is the uniserial k[G]-module of

length 2 - 3"~ 4 1 whose socle is isomorphic to 77 1. On the other hand, the Green correspondent of Séf\lh) is

one of Ty 1 or T1 9. We relabel the simple k[G]-modules, if necessary, to be able to assume that the Green
(N1)
U0,1,12-3ﬂ—1
is the uniserial k[G]-module of length 2 - 3"~ whose socle is isomorphic to Tp ;. For 1 < ¢ < (m/2 — 1),
the Green correspondent of ﬁt(g_g)n,l belongs to the block B;. Since £+ 1 =2 mod 3", it follows that the

U ,5(1;7,13)"_1 is a uniserial k[G]-module of length 2 - 3"~! whose composition factors are

correspondent of S((Jf\lh) (resp. S%l)) is Tp,1 (resp T1,0). This means that the Green correspondent of

Green correspondent of
all isomorphic to ﬁ.

Next, we determine the Brauer character B of the largest projective direct summand of H°(X,2x). For
i,7 € {0,1}, let T, ; be the Brauer character of the projective k[G]-module cover P(G,T; ;) of T; ;. Define g
to be the function on the 3-regular conjugacy classes of G such that

8= O Vi1 + g
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Using (6.10), (6.18) - (6.21) and (6.31), we obtain

o = e-n (),

o _ 5(6_1)
Blr) = 1- =53

Fo) = -

B(@")) = 0 (") &{es});
Bw) = 2 (0 #e).

Let ¥, be the Brauer character of the projective k[G]-module cover P(G,T;) of Ty, 1 < t < (m/2 — 1).
We have (¢ — 1)/4 additional Brauer characters n¢ of projective indecomposable k[G]-modules that are

(i =1,2);

constructed from characters 1 of W with values
n(e) =01 7(r)=-1=0%(r2); 7%(s)=0=0°((")); n°(w’) = ~(nw’) +7(uw))
where 7 ranges over the characters of W that are not equal to their conjugate 77. Denote the corresponding

projective indecomposable k[G]-modules by P(G,n%).
Similarly to the previous subsections, using the Cartan matrix given in [8, §III], we get

m/2—1

~ £—25 0—19 —6(—1)"/2 0—19 — 6(— 6—1
g —— v v - \I/ G
B 12 1,1+ 21 (Po,1+T10) + ; 2 t + Z
Therefore, we have proved the following result:
Proposition 6.4.3. When £ =1 mod 4 and £ =1 mod 3, let Ui("?z 9.3n—141 (resp. Uq(,fz 9.3n—1) denote the

uniserial k|G]-module of length 2 - 3"~ + 1 (resp. 2-3""1) whose socle is isomorphic to Ty 1 (resp. Tp1).

In particular, if n = 1 then U(G)

,2:3n=141
U;G; — denote the uniserial k[G]—module of length 2 - 3"~ ! whose composition factors all isomorphic to ft.
t

As a k[G]-module,

= P(G,T11) is a projective indecomposable k|G]|-module. Let

¢—25 (—19 —6(—1)™/2
HO(X, QX) g <12 + 571 1> P(G7T1,1) @ 24( ) (P(GvTO,l) @ P(G7T1,())) @
m/2—1
0—19—6(—1)t - -1 .
—— - P T, —P

m/2—1
(@) (@)
(1- 5%1) UT1,1,2-3”*1+1 D U To,1,2-3"~1 © @ T 2 3n—1°

6.4.4. The k[G]-module structure of H*(X,Qx) when { = —1 mod 4 and ¢ = —1 mod 3. This is the
case when ¢ = —1 and ¢ = ¢ mod 4. By (6.8), the non-projective indecomposable direct summands of
Res%1 HO(X,Qx) are again given as in (6.30).

We first determine the Green correspondents of the non-projective indecomposable direct summands
of Resjc\’;1 H°(X,Qx), using the information in [8, §VI]. There are 1 + (m/2) blocks of k[G] of maximal
defect n, consisting of the principal block B, another block By and (m/2 — 1) blocks By, ..., By 2—1)-
Moreover, there are (¢ — 3)/4 blocks of k[G] of defect 0. There are precisely two isomorphism classes of
simple k[G]-modules that belong to Byg (resp. Boi), represented by the trivial simple k[G]-module T and a
simple k[G]-module T of k-dimension ¢ — 1 (resp. by two simple k[G]-modules Ty ; and T4 of k-dimension
(¢ —1)/2). For each t € {1,...,(m/2 — 1)}, there is precisely one isomorphism class of simple k[G]-modules
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belonging to By, represented by a simple k[G]-module Tt of k-dimension £ — 1. Note that the Brauer character
of Ty, 0 <t < (m/2 — 1), is the restriction to the 3-regular classes of the ordinary irreducible character 47,
0 <t<(m/2—1), with the following values:

(6.32) 0i(e) =L —1; &f(r) =—1=0{(ra); & ((v"))) = =((&m)" + (Em) ™) ;(w) =0

where &, is a fixed primitive m™ root of unity and we allow i = m/2, which gives us 6 (s) = —2 (—1)".
As in the previous subsections, we determine the Green correspondents of the non-projective indecomposable

direct summands of Resg1 HY(X, Qx), by using that there is a stable equivalence between the module categories

of k[G] and k[N1]. If n = 1 then Ul(];.[l2)~3”_1+1 = 1(]1[133 is a projective k[IN1]-module. If n > 1 then the Green
correspondent of Ul(]\{lz).sn—l 41 belongs to Boo. Since the Green correspondent of SéNl) is Ty, it follows that

the Green correspondent of S£N1) is a uniserial k[G]-module of length (3™ — 1)/2 whose composition factors
are all isomorphic to Ty. We now follow the irreducible homomorphisms in the stable Auslander-Reiten quiver
of By starting with the Green correspondent of S%Nl) to arrive, after 2 - 3”1 such morphisms, at a uniserial

k[G]-module of length (3"~! — 1)/2 whose composition factors are all isomorphic to To. This must be the
U(Nl) U(Nl)
1,1,2:3n—141° 0,1,2:37~1

to the block Bp;. Since (£ —1)/2 = —1 mod 3", it follows that the Green correspondent of Uéqﬁ;_sn_l is a

uniserial k[G]-module of length 37~! whose socle is isomorphic to either Tp,1 or Ti 0. By relabeling the simple
Ny)

71’12.3n71
isomorphic to Ty ;. Note that the Brauer characters of Ty ;1 and 77 only differ with respect to their values

Green correspondent of On the other hand, the Green correspondent of belongs

k[G]-modules, if necessary, we are able to assume that the socle of the Green correspondent of Ué is
at the elements of order ¢ in G. Since we have already chosen a square root of —¢ to obtain (6.12) and (6.13),
we let sp1 € {1} be such that the Brauer character 3(Tp 1) satsfies

(6.33) 8T ) = VL

For 1 <t < (m/2 — 1), the Green correspondent of ﬁfgg)n,l belongs to the block B;. Since { — 1 = —2

(7(1\/1)

+ 9.9n—1 is a uniserial k[G]-module of length 37=1 whose

mod 3", it follows that the Green correspondent of
composition factors are all isomorphic to Tt

Next, we determine the Brauer character B of the largest projective direct summand of HY(X,x). Since
(3"~1 —1)/2 =0 when n = 1, we do not need to distinguish between the cases n =1 and n > 1. Using (6.12)

and (6.13), (6.18) - (6.21), (6.32) and (6.33), we obtain
~ (0 —1)(>—70+4)

Blop = 14 ZHEZTED,
By = -t
Blrs) = -ty
Bls) = —ETTl;

B = 0 (") ¢{e s}
g(wj) =1 (w’ # e).

Let ¥y be the Brauer character of the projective k[G]-module cover P(G,Ty) of Ty. For {i,j} = {0,1}, let
VU, ; be the Brauer character of the projective k[G]-module cover P(G,T; ;) of T; ;. Let U, be the Brauer
character of the projective k[G]-module cover P(G,T}) of Ty, 0 < t < (m/2—1). We have (¢ — 3)/4 additional

Brauer characters n“ of projective indecomposable k[G]-modules that are also irreducible and that are
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constructed from characters n of W with values
n(e) =L+1; n%(r) =1=n%r2); n(s) =0=n(")); 7%w’)=nw’)+n(w)
where 7 ranges over the characters of W that are not equal to their conjugate 77. Denote the corresponding

projective indecomposable k[G]-modules by P(G,n%).

Similarly to the previous subsections, using the Cartan matrix given in [8, §VI], we get

=~ L+l (—54+6(—=1)""2)  sorhe+1 (0 —54+6(—1)"/2)  sorhe+1
b= g bt < 24 2 Yo+ 24 Ty Pro+
m/i_l (L=5+6(-1)) g  §f-1 o
12 ' 12 T
t=1 7
Therefore, we have proved the following result:
Proposition 6.4.4. When £ = —1 mod 4 and ¢ = —1 mod 3, let U%;,)(?,n—l—l)m (resp. U%ng_l) denote
the uniserial k[G]-module of length (3"~1 —1)/2 (resp. 3"~1) whose composition factors are all isomorphic to
T, (resp. Tt) In particular, if n =1 then Uq(ﬁi)(gnfl_l)/z =0. Let U;OGjﬁn,l denote the uniserial k[G]-module
of length 3"~ whose socle is isomorphic to Ty 1. As a k[G]-module,
(+1 ~ {—5+6(—1)m/? he+1
H(x.0y = Slpedye (U2 sl ) pgp e
12 24 2 ’
(6 —54+6(-=1)"2)  sprhg+1
P(G, T
(=2 1) b o) e
m/2—1
(6 —5+6(—1)") ~ ¢—11 G
O L3 pg dye @ pea) s
t=1 n
m/2—1
(&) (&) (@)
Ufo,(3"*1—1)/2 b UTo,l,B"*1 ® 691 Ui,:sn*l'
t=

Remark 6.4.5. The sign sg; from (6.33) depends on the relationship between the socle of the Green corre-
spondent of Tp 1 and the values of the Brauer character of Tj ; on elements of order /. As in Theorem 1.4,
let H; and Hs be representatives of the two conjugacy classes of subgroups of G that are isomorphic to Xs.
By our definition of Ay and Ay in §6.1.2, we can choose H; < Aj and Hs < A,. Recalling our definition
of Séf\lh), we see that the restriction of Ty ; to Hy (resp. Ha) is the direct sum of a 2-dimensional uniserial
module whose socle is the trivial simple module (resp. the simple module corresponding to the sign character)
and a projective module.

Since the Brauer character of a 2-dimensional uniserial module for X3 in characteristic 3 does not determine
its isomorphism class, it is not so easy to connect the two possibilities of square roots of —¢ going into the
values of the Brauer characters of H°(X,Qx) and of Ty at elements of order .

We do not have a formula in general for sp; when £ = —1 mod 12. But, for example, if £ = 11 then hy =1
and m = 2, which means that the multiplicity of P(G,Tp 1) in HY(X,Qx) is equal to —(so1 + 1)/2. Since
this number must be non-negative, it follows that sp; = —1 when ¢ = 11.

6.5. Proof of Theorem 1.4. Part (i) of Theorem 1.4 follows directly from Propositions 6.4.1 - 6.4.4. For
part (ii), we notice that the maximal ideal P3 of A containing 3 corresponds uniquely to a place v of F' over
3. In other words, k(P3) = k(v). Let k1 be a perfect field containing k(v) and let k be an algebraic closure of
k1. Define X = k1 ®p(y) Xy (£) where &, (¢) is as in (5.1). In particular, X = X3(/) = k @, X1.

Note that there exists a finite Galois extension k] of k; such that k] C k and such that the primitive central

idempotents of k[G] lie in k{[G]. This can be seen as follows. By the Theorem on Lifting Idempotents (see
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[12, Thm. (6.7) and Prop. (56.7)]), each primitive central idempotent e of k[G] can be lifted to a primitive
central idempotent é of W (k)[G] when W (k) is the ring of infinite Witt vectors over k. If F(k) is the fraction

field of W (k) and F(k) is an algebraic closure of F(k), then we can use the formula for the primitive central

idempotents of F'(k)[G] (see [12, Prop. (9.21)]) to see that é has coefficients in a cyclotomic extension of Q3.
This implies that € has coeflicients in the intersection of the maximal cyclotomic extension of Q3 in m and
W (k). Therefore, é has coefficients in Zs[€] for some root of unity £ whose order is relatively prime to 3. But
this means that there exists a root £ of unity in & whose order is relatively prime to 3 such that e lies in
k1(&)[G]. Since kq(&) is finite Galois over ki, we can take &} = k1 (&).

Let now kg be a finite field extension of k} such that ks C k and such that all the indecomposable
k[G]-modules occurring in the decomposition of HO (X,Qx) are realizable over ky. Letting Xo = ko ®j, X1,
we obtain from Propositions 6.4.1 - 6.4.4 that the ko[G]-module H( X5, Qx,) is a direct sum over blocks Bs
of k2[G] of modules of the form Pp, ® Up, in which Pp, is a projective Ba-module and Up, is either the zero
module or a single indecomposable non-projective Ba-module. Moreover, one can determine Pp, and Up,
from the ramification data associated to the cover X — X/G. We have

ko @, HO(X1, Qx,) 2 H(X2, Qx,)

as kz[G]-modules, and
H(X2,Qx,) = HO(X1, Qx, )]

as k1[G]-modules. Therefore, it follows from the Krull-Schmidt-Azumaya theorem that the decomposition of
H%(X1, Qx,) into indecomposable k;[G]-modules is uniquely determined by the decomposition of H%( Xz, Qx,)
into indecomposable ka[G]-modules.

Consider next a block B; of k;[G] corresponding to a primitive central idempotent ;. Then € is a sum of
primitive central idempotents in k3[G|

€1 =¢€21+ -+ €2

corresponding to blocks B 1, ..., Ba; of k2[G]. Moreover, we have seen above that €3 1,. .., ez lie in £} [G]
where & is a finite Galois extension of k;. In particular, this means that Gal(k]/k1) acts transitively on
{€2.1,...,€2,}. Since every element in Gal(k]/k1) can be extended to an automorphism in Aut(ks/k1), this
means in particular that Aut(ks/k1) acts transitively on {e21,...,€2,;}.

Suppose the Bi-module € HO(X17 Qx,) is a direct sum of a projective By-module together with a direct
sum of non-zero indecomposable Bi-modules Ug, 1,...,Up, . We need to show that t < 1. Suppose t > 1.

For all 1 < j <t, we have
1

ke @k, Up,,j = @62,1 (k2 @k, Up, 5) -
i=1

Since this ko[G]-module is non-zero and since Aut(kz/k1) acts transitively on {e21,...,€2,}, it follows that
the k2[G]-module € ; (k2 ®%, Up, ;) is a non-zero By ;-module for all 1 < i <. Since we have already seen
above that €3 ; HO (X2,Qx,) is a direct sum of a projective Bs ;-module with at most one other non-projective
indecomposable Bj ;-module, it follows that ¢ < 1. Note moreover, that the restriction of each projective
indecomposable Bs ;-module to a k;[G]-module is a projective Bi-module. In other words, the k;[G]-module
HO(X1,Qx,) is a direct sum over blocks By of ki[G] of modules of the form Pp, & Up, in which Pp, is a
projective Bi-module and Up, is either the zero module or a single indecomposable non-projective Bj-module.
Moreover, Pp, and Up, are determined by the decomposition of

l

ky @k, e HO(X1,Qx,) = @ €2, H(X3, )
i=1
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and we know from our discussion above that for all 1 <i </,
€2, H' (X2, Qx,) = Pp,, ®Us,,-

It follows that one can determine Pp, and Up, from the modules Pg, ; and Ug, , for 1 < ¢ <. Therefore, one
can determine Pp, and Up, from the ramification data associated to the cover X — X/G. This completes
the proof of Theorem 1.4.

6.6. Proof of Theorems 1.2 and 1.3 when p = 3. Fix a place v of F over 3, and define Mo, to be the
Op |[G]-module
Mo,., = Op, @4 H(X(0), Qx(p))

which is flat over Op,. Note that the residue fields k(v) = A/P, and Op,/mg, coincide. Define
X, = X, (0) = k(v) @4 X(0).

Then Mo, , is a lift of the k(v)[G]-module H°(X,, Qx, ) over Op,. Asin (5.2), let X = X3(¢) be the reduction
of X(¢) modulo 3 over k = k(v) = F,. In other words, X = k k() Xo and H(X, Qx) = k @k, HO(X,, Qx,)
as k[G]-modules. Since H°(X,Qx) = {0} for £ < 7, we can assume that ¢ > 7.

To prove Theorem 1.2 when p = 3, we follow the same argumentation as in the case when p > 3, where we
use Propositions 6.4.1 - 6.4.4 and part (ii) of Theorem 1.4 instead of Lemma 5.2. In particular, we obtain that
Mo,., is a direct sum over blocks B of O Fv|G] of modules of the form Pp @ Up in which Pp is projective and
Up is either the zero module or a single indecomposable non-projective B-module. Define Mg = Pg @ Up.

To prove Theorem 1.3 when p = 3, we assume now that F' contains a root of unity of order equal to
the prime to 3 part of the order of G. Let a be the maximal ideal over 3 in A associated to v, so that a
corresponds to the maximal ideal mg,, of Op,. Since for different blocks B and B’ of Op ,[G], there are no
non-trivial congruences modulo mp, between Mp and Mp, and since for a fixed block B of Op ,[G], there
are no non-trivial congruences modulo mg, between Pp and Up, we prove Theorem 1.3 when p = 3 by
following the same argumentation as in the case when p > 3. O

7. APPENDIX: ISOTYPIC HECKE STABLE DECOMPOSITIONS OF THE SPACE OF WEIGHT TWO CUSP FORMS.

In this appendix we assume only that N > 3 is an integer and that F' is a number field. Following
Shimura’s notation in [35, Chap. 3|, we let I' = SL(2,Z), and we denote the principal congruence subgroup
of I' by I'y (rather than I'(N), as in the introduction). We let S(F') be the space of all weight two cusp
forms for T'y that have g-expansion coeflicients in F' at all cusps, in the sense of [27, §1.6]. By [35, §6.1-6.2],
together with flat base change, it follows that S(F') coincides with the space of all weight two cusp forms for
'y whose Fourier expansions with respect to e2™#/N have coefficients in F.

The group I' = SL(2,Z/N) = T'/Tx then acts F-linearly on S(F). This action factors through an F-linear
action by G = PSL(2,Z/N) =T/(I'ny,+1), where I denotes the 2 x 2 identity matrix. In this appendix, we
follow the convention of Shimura in [35] by letting T' act on S(F) on the right. As noted in the introduction,
right actions of groups can be converted into left actions by letting the left action of a group element coincide
with the right action of its inverse.

Let T denote the ring of Hecke operators of index prime to N (see (7.2) below for the precise definition).
As in the introduction, but using right actions, we call a T-stable decomposition into F-subspaces

S(F) = E, & B,

G-isotypic if there are two orthogonal central idempotents eq, e of F[G] such that 1 =e; 4+ e5 in F[G] and
E; = S8(F)e; for i = 1,2. The goal of this section is to prove the following result.
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Proposition 7.1. Suppose ey, eq are orthogonal central idempotents of F|G] such that 1 = ey + ey and each
e; is fized by the conjugation action of PGL(2,Z/N) on G. Then setting E; = S(F)e; fori=1,2 gives a
G-isotypic T-stable decomposition of S(F).

We discuss in Remark 7.3 the problem of constructing such decompositions for larger rings of Hecke
operators.
To define T, we follow Shimura [35, §3.3] and first define

Ay = {aeMat(2,Z); det(a) > 0 and ged(det(a), N) =1},
1
Ay = {aeAN; a= < 0 0 ) modeorsomexe(Z/N)*}.
x

In Shimura’s notation, we let R(I', Ay) (resp. R(I'y,Ay)) be the ring that is generated as a free Z-module
by the double cosets
Tall' for a € An (resp. I'yal'y  for a € Aly).

We refer the reader to [35, §3.1] for the definition of the (commutative) ring multiplication in R(T', Ay) (resp.
R(T'n, Ay)); we will not need this in what follows. By [35, Prop. 3.31], the correspondence

I'val'y — T'al’

for a € Ay, defines an isomorphism between R(I'y, Aly) and R(T, Ay).
For each positive integer n with ged(n, N) = 1, we define py(n) to be a set of representatives o € A’y of
all distinct double cosets in I'y\A’y/T'n such that det(a) = n. We define

(7.1) T'(n)= Y Tyaly.
)

agply(n

By [35, Thm. 3.34],
(7.2) T=R(I'y,Aly) ®2Q

is the Q-algebra generated by all 7”(n) when n ranges over all positive integers with ged(n, N) = 1. A right
action of R(T'y, A’y), and hence of T, on f € S(F) is defined in the following way. For o € Ay, write

FNOéFN = UFNai

?

as a finite disjoint union of right cosets. Define

fITnaly = flo

b
where for a matrix v = < @ J ) € GL(2,Q) and z in the complex upper half plane $ we let
c

(7.3) (F1)(z) = det(y) (cz +d) 2 f ( - 2) :

In particular, for all » € Q, we have

(7.4) (flrD)(z) =7 (r7?) f(2) = f(2).

Note that, for a € Aly, the right action on S(F') by the double coset I yaI' i defines an F-linear transformation
on S(F), which we denote by ['yaol'n]. By [35, Thm. 3.41], the F-linear transformations [I'yal'n] on
S(F), with o € Ay, are mutually commutative, and normal with respect to the Petersson inner product
on S(F). In particular, there exists an F-basis of S(F') consisting of common eigenfunctions of the linear

transformations [I'yal'n] for all & € Aly.
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A well-defined right action by T’ = SL(2,Z/N) =T'/Tx on S(F) is defined by
(7.5) fr7="rfh

if v € T has image 7 € I'. Since G = PSL(2,Z/N) =T/(I'y,£1), it follows by (7.4) that this right action
factors through a well-defined right action by G = PSL(2,Z/N) on S(F'), which is defined by

(7.6) f*y=flv

if v € T has image 7 € PSL(2,Z/N). These right actions can be made into left actions in the usual way via
Fxf=Fx@"" (resp. Fx f=fxF)7H).
We can combine the actions by R(I'y, A%y), T and T using the larger Hecke ring R = R(I'y, A), where
A ={a € Mat(2,Z) ; det(a) > 0}.
In other words, R is the ring that is generated as a free Z-module by the double cosets
T'yal'y for a € A.

As before, we refer the reader to [35, §3.1] for the definition of the (commutative) ring multiplication in
R = R(T'y,A). We have a natural injection of Q-algebras

(77) T:R(FN,AIN) ®zQ — RR®zQ.
Define left and right actions of I' = SL(2,Z/N) on R as follows. If 7 is the image of ¥ € I" and a € A, then

(78) FNO{FN~7=FN(O(’)/)FN and WFNO{FNZFN(’}/O&)FN

We extend these actions by linearity to define left and right actions of Z[I'] on R and of Q[I'] on R ®z Q. We

have natural right actions of R ®z Q and of Q[I'] on S(F') via (7.3) and (7.5). Moreover, the right action of
Q[T factors through a well-defined right action of Q[G] on S(F) via (7.6).
Since for any element v € T, the PGL(2,Z/N) conjugates of the image 7 in G are the images of the

GL(2,Z/N) conjugates of the image 7 in I’ and because of (7.7), the following result implies Proposition 7.1.

Lemma 7.2. For each double coset I yal'n with o € Al and each v € T with image 5 € T the following is

true. Let s be the element of Z[I'] C Q[I'] that is the sum of the GL(2,Z/N) conjugates of 5. Then in R®@z Q
one has

(79) (FNQFN) S =S5 (FNOZFN)

where the products on the left and right sides of (7.9) denote the right and left actions of Q[I'] on R ®z Q,
respectively.

Proof. Let C be the conjugacy class of ¥ in GL(2,Z/N), say
— 77_1 n»\’
C={8:78; }2a

for appropriate 8; € GL(2,Z/N). For 1 <i < Ny, let B; € Ay be a preimage of B,. Since each a € Ay lies
in Ay, it defines an element @ of GL(2,Z/N). Thus we obtain

C = {(@B,)7 (@B;) "'},
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for all @ € A’y. This implies that for all « € A’y and for s =) ¢ we have

(Tyaly)-s = ZFN(aﬁﬂﬂi_l)FN

= 3 T ((eB)(as) ) aly

= S- (FNOlFN).
([l

Remark 7.3. We now discuss an issue that arises if we replace R(I'y,A’y) by the bigger Hecke algebra
R(T'y,A’) when

1 0
A’:{aeA;aE<O )modeorsomexe(Z/N)}.
z

For each integer n > 1, we define p’(n) to be a set of representatives o € A’ of all distinct double cosets in
I'n\A’/Ty such that det(«) = n. We define

(7.10) T'(n)= Y Tyaly.

a€p’(n)
Note that for integers n > 1 with ged(n, N) = 1, the definition of T7"(n) in (7.10) coincides with the definition
of T'(n) in (7.1). By [35, Thm. 3.34], R(I'y,A’) ®z Q is generated by T”(n) when n ranges over all positive
integers. We can then define the bigger Hecke algebra T’ to be the Q-algebra generated by all 7"(n) when n
ranges over all positive integers. We again obtain an injection of Q-algebras

T = R(FN7AI) ®RzQ — R®zQ.

However, for o € A’ for which det(«) is not relatively prime to N, we do not obtain the identity (7.9) in
1

1 0 0
general. To be concrete, let any = 0 N and let v = L1 € I'. Then all elements in T'y(yan )Ty

1 _
are congruent to ) 8 mod N. On the other hand, for any element § € GL(2,Z/N) with preimage

B € Ay, we have that all elements in I'y(axn (8787 1))T'x are congruent modulo N to a matrix of the form
ap a2
0

identity (7.9) is not valid when «a = ay. Since we have T'(N) = I'yanT'y by [35, Prop. 3.33], it follows that

the right and left actions of s on T"(N) do also not coincide for the above 7, when s is as in Lemma 7.2.

for certain elements aj,as € Z/N. In other words, there are elements v € ' for which the
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