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Abstract
We show that if compact set E ⊂ R

d has Hausdorff dimension larger than d
2 + 1

4 ,
where d ≥ 4 is an even integer, then the distance set of E has positive Lebesgue
measure. This improves the previously best known result towards Falconer’s distance
set conjecture in even dimensions.

1 Introduction

Let E ⊂ R
d be a compact set, its distance set �(E) is defined by

�(E) := {|x − y| : x, y ∈ E} .

A classical question in geometric measure theory, introduced by Falconer in the early
80s ([7]) is, how large does the Hausdorff dimension of a compact subset of R

d ,
d ≥ 2 need to be to ensure that the Lebesgue measure of the set of pairwise Euclidean
distances is positive.

Conjecture [Falconer] Let d ≥ 2 and E ⊂ R
d be a compact set. Then

dim(E) >
d

2
⇒ |�(E)| > 0.
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Here | · | denotes the Lebesgue measure and dim(·) is the Hausdorff dimension.

This conjecture, still open in all dimensions, has a famous predecessor in discrete
geometry known as the Erdős distinct distance conjecture. It says that N points in

R
d , d ≥ 2, determine at least CεN

2
d −ε , ε > 0, distinct Euclidean distances. The two

dimensional case was solved by Guth and Katz [11] after more than half of century of
partial results. The higher dimensional case is still open,with the best known exponents
obtained by Solymosi and Vu [21]. There are some intriguing connections between
the Erdős and Falconer distance problem, the issue that we shall touch upon at the end
of this paper.

The main purpose of this paper is to improve the best known dimensional threshold
towards the Falconer conjecture in even dimensions.

Theorem 1.1 Let d ≥ 4 be an even integer and E ⊂ R
d be a compact set. Then

dim(E) >
d

2
+ 1

4
⇒ |�(E)| > 0.

Falconer’s conjecture has attracted a great amount of attention in the past decades,
and different methods have been invented to lower the dimensional threshold that
is sufficient for the distance set to have positive Lebesgue measure. To name a few
important landmarks in the study of the problem: in 1985, Falconer [7] showed that
|�(E)| > 0 if dim(E) > d

2 + 1
2 . Bourgain [1] was the first to lower the threshold

d
2 + 1

2 in dimensions d = 2, d = 3 and to use the theory of Fourier restriction in the
Falconer problem. The thresholds were further improved by Wolff [22] to 4

3 in the
case d = 2, and by Erdoğan [6] to d

2 + 1
3 when d ≥ 3. These records were only very

recently rewritten in 2018:

⎧
⎪⎨

⎪⎩

5
4 , d = 2, (Guth–Iosevich–Ou–Wang [10])
9
5 , d = 3, (Du–Guth–Ou–Wang–Wilson–Zhang [4])
d2

2d−1 , d ≥ 4, (Du–Zhang [5]).

Ourmain result in this paper further improves the thresholds in even dimensions d ≥ 4.
The proof of Theorem 1.1 is inspired by many key ingredients in [10], and the

numerology d
2 + 1

4 matches the two dimensional case. Similarly to [10], we in fact
prove a slightly stronger version of the main theorem regarding the pinned distance
set.

Theorem 1.2 Let d ≥ 4 be an even integer and E ⊂ R
d be a compact set. Suppose

that dim(E) > d
2 + 1

4 , then there is a point x ∈ E such that its pinned distance set
�x (E) has positive Lebesgue measure, where

�x (E) := {|x − y| : y ∈ E}.
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Let E ⊂ R
d be a compact set with positive α-dimensional Hausdorff measure. It

is a standard result that there exists a probability measure μ supported on E such that

μ(B(x, r)) � rα, ∀x ∈ R
d , ∀r > 0.

Suchmeasure is usually referred to as a Frostmanmeasure. In the study of the Falconer
problem, a classical analytic approach due toMattila [18] is to reduce the desired result
(|�(E)| > 0) to showing certain estimates of the decay rate of the Fourier transform
of μ. This is also precisely the route taken in many prior works including [4–6,22].

However, this approach also has its limit. For instance, it is known that when
d = 2, the best possible Falconer threshold it could imply is 4

3 , which matches the
result ofWolff [22]. And when d = 3, 53 would be the best possible (see [6]). In higher
dimensions, there is no currently known example showing such constraint.Whereas, in
[3] it shows that further constraints arise if the method employed does not distinguish
the spherical and parabolic decay rates.

In [10], the authors studied the two dimensional Falconer problem, and developed
a new method that modifies the original Mattila approach. Their argument consists
primarily of two steps. First, one prunes the natural Frostman measure μ on E by
removing bad wave packets at different scales (see Sect. 3.1 below for the exact
process), and shows that the error introduced in the pruning process can be controlled.
Second, one applies a refined decoupling inequality to estimate some L2 quantity
involving the pruned goodmeasure. One of themain reasonswhy the argument doesn’t
readily extend to higher dimensions is because of the first step. More precisely, in [10],
tomake sure that the prunedmeasure is close enough to the original Frostmanmeasure,
one applies a radial projection theorem of Orponen [20] (see Theorem 3.2 below) that
assumes the measure has dimension α > d − 1. However, when d ≥ 3, this condition
fails to hold if α is close enough to d

2 . We overcome this difficulty by introducing
another ingredient into the process: orthogonal projections of the original measure,
which is the main contribution of the present article.
Notation. Throughout the article, we write A � B if A ≤ CB for some absolute
constant C ; A ∼ B if A � B and B � A; A �ε B if A ≤ CεB for all ε > 0; A � B
if A ≤ CεRεB for any ε > 0, R > 1.

For a large parameter R, RapDec(R) denotes those quantities that are bounded by
a huge (absolute) negative power of R, i.e. RapDec(R) ≤ CN R−N for arbitrarily
large N > 0. Such quantities are negligible in our argument. We say a function is
essentially supported in a region if (the appropriate norm of) the tail outside the region
is RapDec(R) for the underlying parameter R.

2 Setup andmain estimates

In this section, we set up the problem and outline two main estimates, from which
Theorem 1.2 follows.

Let E ⊂ R
d be a compact set with positive α-dimensional Hausdorff measure,

d
2 < α < d

2 + 1. Without loss of generality, assume that E is contained in the unit
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ball. Then there exists a probability measure μ supported on E such that

μ(B(x, r)) � rα, ∀x ∈ R
d , ∀r > 0. (2.1)

According to results on Hausdorff dimension of projections proved in [16] (also
presented in [19, Sect. 5.3]), there exists a ( d2 + 1)-dimensional subspace V ⊂ R

d

such that (πV )∗(μ), the pushforward measure of μ under the orthogonal projection
from R

d onto V , is still α-dimensional, in the sense that

Iβ((πV )∗(μ)) < ∞, ∀ 0 < β < α, (2.2)

where Iβ(ν) := ∫ ∫ |x − y|−βdν(x)dν(y) denotes the energy of ν. Since V will be
fixed throughout the proof, in the following we will drop it from the notation and write
π = πV for short.

Similarly as in [10], it will be helpful to consider two disjoint subsets E1, E2 of
E and focus on showing that the distance set between E1, E2 already has positive
Lebesgue measure.

The two subsetswill be chosen as follows. First, it is elementary that one canfind two
subsets Ẽ1, Ẽ2 ⊂ π(E) with positive projected measure satisfying d(Ẽ1, Ẽ2) � 1.
For i = 1, 2, let

μ̃i := π∗(μ)(Ẽi )
−1π∗(μ)χẼi

.

It is easy to see that μ̃i is a probabilitymeasure supported on Ẽi satisfying Iβ(μ̃i ) < ∞,
∀0 < β < α.

Next, define Ei := π−1(Ẽi ) ∩ E , i = 1, 2. Then one has E1, E2 ⊂ E and
d(E1, E2) � 1. Moreover, letting μi := μ(Ei )

−1μχEi , i = 1, 2, one obtains a pair
of probability measures μ1, μ2 that are supported on E1, E2 respectively, satisfying
μi (B(x, r)) � rα , ∀x ∈ R

d ,∀r > 0, i = 1, 2. It is straightforward to check that
π∗(μi ) = μ̃i . Our goal in the following is to show that when α > d

2 + 1
4 , there exits

x ∈ E2 such that |�x (E1)| > 0. Note that in the above, for the orthogonal projection
π to be well defined, we have already used the assumption that d is an even integer.

To relate the measures discussed above to the distance set, it is useful to consider
their pushforward measures under the distance map. More precisely, let x ∈ E2 be any
fixed point and let dx (y) := |x−y| be its induced distancemap. Then, the pushforward
measure dx∗ (μ1), defined as

∫

R

ψ(t) dx∗ (μ1)(t) =
∫

E1

ψ(|x − y|) dμ1(y),

is a natural measure that is supported on �x (E1).
In the following, we will construct another complex valued measure μ1,g that is

the good part of μ1 with respect to μ2, and study its pushforward under the map dx .
The main estimates are the following.
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Proposition 2.1 Let d ≥ 4 be an even integer and α > d
2 . If we choose R0 large

enough in the construction of μ1,g in Sect. 3.1 below, then there is a subset E ′
2 ⊂ E2

so that μ2(E ′
2) ≥ 1 − 1

1000 and for each x ∈ E ′
2,

‖dx∗ (μ1) − dx∗ (μ1,g)‖L1 <
1

1000
.

Proposition 2.2 Let d ≥ 4 be an even integer and α > d
2 + 1

4 , then for sufficiently
small δ in terms of α in the construction of μ1,g in Sect. 3.1 below,

∫

E2

‖dx∗ (μ1,g)‖2L2dμ2(x) < +∞.

In the above propositions, we have slightly abused notation by using dx∗ (μ) and
dx∗ (μ1,g) to denote both the pushforward measures and their densities. To be com-
pletely rigorous, one would need to define the density as limit of approximate identity,
then derive the propositions above uniformly with respect to the limiting process. We
omit the details as the process is fairly standard (for example see [17]).

It is a routine exercise to check that Theorem 1.2 is immediately implied by the two
propositions above.

Proof of Theorem 1.2 using Propositions 2.1 and 2.2 The two propositions tell us that
there is a point x ∈ E2 so that

‖dx∗ (μ1) − dx∗ (μ1,g)‖L1 < 1/1000, (2.3)

and
‖dx∗ (μ1,g)‖L2 < +∞. (2.4)

Since dx∗ (μ1) is a probability measure, (2.3) guarantees that ‖dx∗ (μ1,g)‖L1 ≥ 1 −
1/1000. Note that the support of dx∗ (μ1) is contained in �x (E). Therefore

∫

�x (E)

|dx∗ μ1,g| =
∫

|dx∗ (μ1,g)| −
∫

�x (E)c
|dx∗ (μ1,g)|

≥ 1 − 1

1000
−

∫

|dx∗ (μ1) − dx∗ (μ1,g)| ≥ 1 − 2

1000
.

But on the other hand,

∫

�x (E)

|dx∗ μ1,g| ≤ |�x (E)|1/2
(∫

|dx∗ μ1,g|2
)1/2

. (2.5)

Since (2.4) tells us that
∫ |dx∗ μ1,g|2 is finite, it follows that |�x (E)| is positive.

Note that the two propositions in the above are parallel to [10, Proposition 2.1, 2.2].
The main novelty of our proof is the construction of the good measure μ1,g and the
justification of Proposition 2.1. Once that step is completed, the proof of Proposition
2.2 proceeds very similarly to its corresponding version in [10].

123



X. Du et al.

3 Construction of goodmeasure and Proposition 2.1

3.1 Construction of goodmeasure

Our plan is to define μ1,g by eliminating certain bad wave packets from μ1. We will
show that this can be done at a single scale at each time and the error betweenμ1,g and
μ1 has sufficient decay. This procedure proceeds very similarly to [10]. Heuristically,
we would like to define a wave packet to be bad if its projection onto the ( d2 + 1)-
dimensional subspace V has μ̃2-mass that is significantly higher than average.

Here are the details. Let R0 be a large number that will be determined later, and let
R j = 2 j R0. In R

d , cover the annulus R j−1 ≤ |ω| ≤ R j by rectangular blocks τ with

dimensions approximately R1/2
j × · · · × R1/2

j × R j , with the long direction of each
block τ being the radial direction. Choose a smooth partition of unity subordinate to
this cover such that

1 = ψ0 +
∑

j≥1,τ

ψ j,τ ,

where ψ0 is supported in the ball B(0, 2R0).
Let δ > 0 be a small constant that we will choose later. For each ( j, τ ), cover the

unit ball inR
d with tubes T of dimensions approximately R−1/2+δ

j ×· · ·×R−1/2+δ
j ×2

with the long axis parallel to the long axis of τ . The covering has uniformly bounded
overlap, each T intersects at most C(d) other tubes. We denote the collection of all
these tubes as T j,τ . Let ηT be a smooth partition of unity subordinate to this covering,
so that for each choice of j and τ ,

∑
T∈T j,τ

ηT is equal to 1 on the ball of radius 2 and
each ηT is smooth.

For each T ∈ T j,τ , define an operator

MT f := ηT (ψ j,τ f̂ )∨,

which, morally speaking, maps f to the part of it that has Fourier support in τ and
physical support in T . Define also M0 f := (ψ0 f̂ )∨. We denote T j = ∪τ T j,τ and
T = ∪ j≥1T j . Hence, for any L1 function f supported on the unit ball, one has the
decomposition

f = M0 f +
∑

T∈T

MT f + RapDec(R0)‖ f ‖L1 .

See [10, Lemma 3.4] for a justification of the above decomposition. (Even though [10,
Lemma 3.4] is stated in two dimensions, the argument obviously extends to higher
dimensions.)

Let c(α) = c(α, d) > 0 be a large constant to be determined later, and let 4T
denote the concentric tube of four times the radius. We say a tube T ∈ T j,τ is bad if

μ2(4T ) ≥ R−d/4+c(α)δ
j .
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Note that the above definition is completely parallel to the one used in [10], with
the only difference being the choice of the mass threshold R−d/4+c(α)δ

j for a tube T
to be bad. This threshold is carefully chosen so that the error estimate, i.e. proof of
Proposition 2.1, below can work through.

A tube T is good if it is not bad, and we define

μ1,g := M0μ1 +
∑

T∈T,T good

MTμ1.

We point out that μ1,g is only a complex valued measure, and is essentially supported

in the R−1/2+δ
0 -neighborhood of E1 with a rapidly decaying tail away from it (see

Lemma [10, Lemma 5.2] for a proof, which is presented in the two dimensional case
but works in all dimensions).

3.2 Proof of Proposition 2.1

We would like to relate ‖dx∗ (μ1)− dx∗ (μ1,g)‖L1 to the geometry of bad tubes. To start
with, recall the following lemma:

Lemma 3.1 [10, Lemma 3.5] For any point x ∈ E2, define

Bad j (x) :=
⋃

T∈T j :x∈2T andT is bad

2T , ∀ j ≥ 1.

Then there holds

‖dx∗ (μ1,g) − dx∗ (μ1)‖L1 �
∑

j≥1

Rδ
jμ1(Bad j (x)) + RapDec(R0).

Note that the proof of this lemma has nothing to do with the actual definition of
bad tubes and the ambient dimension of the space, so it applies directly to our setting.
To estimate the measure of Bad j (x), define

Bad j := {(x1, x2) ∈ E1 × E2 : there is a bad T ∈ T j so that 2T contains x1 and x2}.

We claim that Proposition 2.1 would follow if one can show for a sufficiently large
constant c(α) > 0 that

μ1 × μ2(Bad j ) � R−2δ
j , ∀ j ≥ 1. (3.1)

Indeed, since

μ1 × μ2(Bad j ) =
∫

μ1(Bad j (x))dμ2(x),
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the estimate (3.1) ensures that there exists Bj ⊂ E2 so that μ2(Bj ) ≤ R−(1/2)δ
j and

for all x ∈ E2 \ Bj ,

μ1(Bad j (x)) � R−(3/2)δ
j .

Let E ′
2 = E2 \⋃

j≥1 Bj and choose R0 sufficiently large (depending on δ and α). One

obviously has μ2(E ′
2) ≥ 1 − 1

1000 , and for each x ∈ E ′
2 the bound

‖dx∗ (μ1,g) − dx∗ (μ1)‖L1 � R−(1/2)δ
0 ≤ 1

1000
,

according to Lemma 3.1.
In order to prove estimate (3.1), we apply the following radial projection theorem

of Orponen [20]. The choice of the threshold in the definition of bad tubes in the above
will play an important role in this step. In order to state the theorem, we first define a
radial projection map Py : R

n \ {y} → Sn−1 by

Py(x) = x − y

|x − y| .

Theorem 3.2 [20, Orponen] For every β > n − 1 there exists p(β) > 1 so that the
following holds. Suppose that ν1 and ν2 are measures on the unit ball in R

n with
disjoint supports and that Iβ(νi ) < ∞. Then

∫

‖Pyν2‖p
L pdν1(y) < ∞.

Note that we cannot apply the above theorem directly to our problem inR
d , because

the measures μ1, μ2 we are dealing with have dimension α that is barely larger than d
2

(hence fails to satisfy α > d−1). This motivates us to consider the projected measures
μ̃i = π∗(μi ) instead.

Recall from the definition that for i = 1, 2, μ̃i is a measure on the ( d2 + 1)-
dimensional subspace V ⊂ R

d and satisfies Iβ(μ̃i ) < ∞ for any 0 < β < α.
Whenever α > d

2 , one has α > ( d2 + 1) − 1. Therefore, Theorem 3.2 does apply to
μ̃1, μ̃2, and one has ∫

‖Pyμ̃2‖p
L pdμ̃1(y) < ∞. (3.2)

To prove estimate (3.1), we first define a set B̃ad j in V 2.
We have chosen the sets E1, E2 at the beginning such that d(E1, E2) � 1 and

d(π(E1), π(E2)) � 1. By definition of Bad j , it suffices to consider tubes T ∈ T j that
intersect both E1 and E2. Hence, the projected tube π(T ) ⊂ V also looks like a tube,

with side length ∼ 1 in the long direction, and ∼ R
− 1

2+δ

j in the rest of the directions.

Therefore, T j gives rise to a collection T̃ j that contains tubes in V of dimensions

roughly 1 × R
− 1

2+δ

j × · · · × R
− 1

2+δ

j .
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One can similarly define a tube T̃ ∈ T̃ j to be bad if μ̃2(4T̃ ) ≥ R
− d

4 +c(α)δ

j . It is easy
to see that the badness of a tube is preserved under the projection. Indeed, if T ∈ T j

is bad, then

μ̃2(4π(T )) ≥ μ2(4T ) ≥ R
− d

4 +c(α)δ

j .

Define

B̃ad j := {(x1, x2) ∈ V 2 : there is a bad T̃ ∈ T̃ j so that 2T̃ contains x1 and x2}.

Then one has

μ1 × μ2(Bad j ) ≤ μ̃1 × μ̃2(̃Bad j ) =
∫

μ̃2(̃Bad j (y))dμ̃1(y),

where

B̃ad j (y) :=
⋃

T̃∈T̃ j :y∈2T̃ and T̃ is bad

2T̃ .

With bound (3.2), the desired estimate (3.1) follows by an argument identical to
[10, Proof of Lemma 3.6]. We sketch the argument here for the sake of completeness.

Let T̃ ∈ T̃ j be a bad tube and y ∈ 2T̃ ∩ π(E1). Let A(T̃ ) be the cap of the sphere

S
d
2 whose center corresponds to the direction of the long axis of T̃ and with radius

∼ R−1/2+δ
j . Since d(π(E1), π(E2)) � 1, one has Py(4T̃ ∩ π(E2)) ⊂ A(T̃ ), hence

Pyμ̃2(A(T̃ )) ≥ μ̃2(4T̃ ) ≥ R
− d

4 +c(α)δ

j . (3.3)

Therefore, Py (̃Bad j (y)) can be covered by caps A(T̃ ) of radius ∼ R−1/2+δ
j which

each satisfies (3.3). By the Vitali covering lemma, there exists a disjoint subset of
A(T̃ ) so that 5A(T̃ ) covers Py (̃Bad j (y)). Hence, the total number of disjoint A(T̃ ) in

the covering is bounded by R
d
4 −c(α)δ

j , which implies

|Py (̃Bad j (y))| � R
d
4 −c(α)δ

j · R
d
2 (−1/2+δ)

j = R
−(c(α)− d

2 )δ

j ,

where | · | denotes the surface measure on S
d
2 . Therefore, by Hölder’s inequality and

by choosing c(α) sufficiently large, one has

μ1 × μ2(Bad j ) ≤
∫

μ̃2(̃Bad j (y))dμ̃1(y) ≤
∫ (∫

Py (̃Bad j (y))
Pyμ̃2

)

dμ̃1(y)

≤ sup
y

|Py (̃Bad j (y))|1−
1
p

∫

‖Pyμ̃2‖L pdμ̃1 � R−2δ
j .
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This completes the justification of (3.1) thus the proof of Proposition 2.1.

4 Refined decoupling and Proposition 2.2

In this section, we prove Proposition 2.2, which will complete the proof of Theorem
1.2. This part of the argument proceeds very similarly as [10, Proof of Proposition
2.2], with the only difference being the change of the definition of good tubes.

Let σr be the normalized surface measure on the sphere of radius r . The main
estimate in the proof of Proposition 2.2 is the following:

Lemma 4.1 For any α > 0, r > 0, and δ sufficiently small depending on α, ε:

∫

E2

|μ1,g ∗ σ̂r (x)|2dμ2(x) ≤ C(R0)r
− d

2(d+1) − (d−1)α
d+1 +εr−(d−1)

∫

|μ̂1|2ψr dξ + RapDec(r),

where ψr is a weight function which is ∼ 1 on the annulus r − 1 ≤ |ξ | ≤ r + 1 and
decays off of it. To be precise, we could take

ψr (ξ) = (1 + |r − |ξ ||)−100 .

To see how this lemma implies the desired estimate in Proposition 2.2, one first
observes that

dx∗ (μ1,g)(t) = td−1μ1,g ∗ σt (x) .

Since μ1,g is essentially supported in the R−1/2+δ
0 -neighborhood of E1, for x ∈ E2,

we only need to consider t ∼ 1. Hence,

∫

E2

‖dx∗ (μ1,g)‖2L2 dμ2(x) �
∫ ∞

0

∫

E2

|μ1,g ∗ σt (x)|2 dμ2(x)t
d−1 dt

∼
∫ ∞

0

∫

E2

|μ1,g ∗ σ̂r (x)|2 dμ2(x)r
d−1 dr ,

where in the second step, we have used a limiting process and an L2-identity proved by
Liu [17, Theorem 1.9]: for any Schwartz function f on R

d , d ≥ 2, and any x ∈ R
d ,

∫ ∞

0
| f ∗ σt (x)|2 td−1 dt =

∫ ∞

0
| f ∗ σ̂r (x)|2 rd−1 dr .

Applying Lemma 4.1 for each r > 0 and dropping the rapidly decaying tail as we
may, one can bound the above further by

�R0

∫ ∞

0

∫

Rd
r− d

2(d+1) − (d−1)α
d+1 +ε

ψr (ξ)|μ̂1(ξ)|2 dξdr

�
∫

Rd
|ξ |− d

2(d+1) − (d−1)α
d+1 +ε |μ̂1(ξ)|2 dξ ∼ Iβ(μ1),
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where β = d− d
2(d+1) − (d−1)α

d+1 +ε, by a Fourier representation for Iβ (cf. Proposition
8.5 of [23]):

Iβ(μ) =
∫

|x − y|−βdμ(x)dμ(y) = cd,β

∫

Rd
|ξ |−(d−β)|μ̂(ξ)|2 dξ.

One thus has Iβ(μ1) < ∞ if β < α, which is equivalent to α > d
2 + 1

4 . The proof of
Proposition 2.2 is thus complete upon verification of Lemma 4.1.

4.1 Refined decoupling estimates

The key ingredient in the proof of Lemma 4.1 is the following refined decoupling
theorem, which is derived by applying the l2 decoupling theorem of Bourgain and
Demeter [2] at many different scales.

Here is the setup. Suppose that S ⊂ R
d is a compact and strictly convex C2

hypersurface with Gaussian curvature ∼ 1. For any ε > 0, suppose there exists
0 < δ � ε satisfying the following. Suppose that the 1-neighborhood of RS is
partitioned into R1/2 × · · ·× R1/2 × 1 blocks θ . For each θ , let Tθ be a set of tubes of
dimensions R−1/2+δ × 1 with long axis perpendicular to θ , and let T = ∪θTθ . Each
T ∈ T belongs to Tθ for a single θ , and we let θ(T ) denote this θ . We say that f is
microlocalized to (T , θ(T )) if f is essentially supported in 2T and f̂ is essentially
supported in 2θ(T ).

Theorem 4.2 [10, Corollary 4.3] Let p be in the range 2 ≤ p ≤ 2(d+1)
d−1 . For any ε > 0,

suppose there exists 0 < δ � ε satisfying the following. Let W ⊂ T and suppose
that each T ∈ W lies in the unit ball. Let W = |W|. Suppose that f = ∑

T∈W
fT ,

where fT is microlocalized to (T , θ(T )). Suppose that ‖ fT ‖L p is ∼ constant for each
T ∈ W. Let Y be a union of R−1/2-cubes in the unit ball each of which intersects at
most M tubes T ∈ W. Then

‖ f ‖L p(Y ) �ε Rε

(
M

W

) 1
2− 1

p
(

∑

T∈W

‖ fT ‖2L p

)1/2

.

4.2 Proof of Lemma 4.1

Assume r > 10R0 (we omit the r < 10R0 case, which is much easier and can be dealt
with by the same argument at the end of Sect. 5 in [10]). By definition,

μ1,g ∗ σ̂r =
∑

R j∼r

∑

τ

∑

T∈T j,τ :T good

MTμ1 ∗ σ̂r + RapDec(r).

The contribution of RapDec(r) is already taken into account in the statement of
Lemma 4.1. Hence without loss of generality we may ignore the tail RapDec(r) in the
argument below.
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Let η1 be a bump function adapted to the unit ball and define

fT = η1
(
MTμ1 ∗ σ̂r

)
.

One can easily verify that fT is microlocalized to (T , θ(T )).
Let p = 2(d+1)

d−1 . After dyadic pigeonholing, there exists λ > 0 such that

∫

|μ1,g ∗ σ̂r (x)|2 dμ2(x) � log r
∫

| fλ(x)|2dμ2(x),

where

fλ =
∑

T∈Wλ

fT , Wλ :=
⋃

R j∼r

⋃

τ

{
T ∈ T j,τ : T good , ‖ fT ‖L p ∼ λ

}
.

To simplify the argument, we do another pigeonholing: divide the unit ball into r−1/2-
cubes q and sort them. This then reduces the integration domain of | fλ|2 in the above
to YM = ⋃

q∈QM
q for some M , where

QM := {r−1/2-cubes q : q intersects ∼ M tubes T ∈ Wλ}.

Since fλ only involves good wave packets, by considering the quantity

∑

q∈QM

∑

T∈Wλ:T∩q �=∅
μ2(q),

we get

Mμ2(Nr−1/2(YM )) � |Wλ|r− d
4 +c(α)δ, (4.1)

where Nr−1/2(YM ) is the r−1/2-neighborhood of YM .
The rest of the proof of Lemma 4.1 will follow from Theorem 4.2 and estimate

(4.1).
By Hölder’s inequality and the observation that fλ has Fourier support in the 1-

neighborhood of the sphere of radius r , one has

∫

YM
| fλ(x)|2 dμ2(x) �

(∫

YM
| fλ|p

)2/p (∫

YM
|μ2 ∗ η1/r |p/(p−2)

)1−2/p

,

where η1/r is a bump function with integral 1 that is essentially supported on the ball
of radius 1/r .

To bound the second factor, we note that η1/r ∼ rd on the ball of radius 1/r and
rapidly decaying off it. Using the fact that μ2(B(x, r)) � rα,∀x ∈ R

d ,∀r > 0, we
have

‖μ2 ∗ η1/r‖∞ � rd−α .
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Therefore,

∫

YM
|μ2 ∗ η1/r |p/(p−2) � ‖μ2 ∗ η1/r‖2/(p−2)∞

∫

YM
dμ2 ∗ η1/r

� r2(d−α)/(p−2)μ2(Nr−1/2(YM )).

By Theorem 4.2, the first factor can be bounded as follows:

(∫

YM
| fλ|p

)2/p

�
(

M

Wλ

)1−2/p ∑

T∈Wλ

‖ fT ‖2L p

�
(

r− d
4 +c(α)δ

μ2(Nr−1/2(YM ))

)1−2/p
∑

T∈Wλ

‖ fT ‖2L p ,

where the second step follows from (4.1).
Combining the two estimates together, one obtains

∫

YM
| fλ(x)|2 dμ2(x) � r Oα(δ)+( 5

2p − 1
4 )d− 2α

p
∑

T∈Wλ

‖ fT ‖2L p .

Observe that ‖ fT ‖L p has the following simple bound:

‖ fT ‖L p � ‖ fT ‖L∞|T |1/p � σr (θ(T ))1/2|T |1/p‖M̂Tμ1‖L2(dσr )

= r−( 1
2p + 1

4 )(d−1)+Oα(δ)‖M̂Tμ1‖L2(dσr )
.

Plugging this back into the above formula, one obtains

∫

YM
| fλ(x)|2 dμ2(x) � r Oα(δ)+( 3

2p − 3
4 )d− 2α

p + 1
p + 1

2
∑

T∈Wλ

‖M̂Tμ1‖2L2(dσr )

� r− d
2(d+1) − (d−1)α

d+1 +εr−(d−1)
∫

|μ̂1|2ψr dξ,

where p = 2(d + 1)/(d − 1) and we have used orthogonality and chosen δ suffi-
ciently small depending on α, ε. The proof of Lemma 4.1 and hence Proposition 2.2
is complete.
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5 Further comments

5.1 Generalization to other norms

Similarly as the two-dimensional case in [10], Theorems 1.1 and 1.2 still hold if�(E)

and �x (E) are replaced by

�K (E) = {||x − y||K : x, y ∈ E
}

and

�K
x (E) = {||x − y||K : y ∈ E

}

respectively, where K is a symmetric convex body whose boundary ∂K isC∞ smooth
and has everywhere positive Gaussian curvature, and || · ||K is the distance induced
by the norm determined by K .

The argument is identical to the one given in Sect. 7 of [10], where the main
additional ingredient is the celebrated stationary phase formula due to Herz [12],
which says

σ̂K (ξ) = C

(
ξ

|ξ |
)

|ξ |− d−1
2

(

cos

(

2π

(

‖ξ‖K ∗ − d − 1

8

)))

,

where σK is the normalized surface measure on

S = {x ∈ R
d : ‖x‖K = 1}

and ‖ · ‖K ∗ is the dual norm defined by

‖ξ‖K ∗ = sup
x∈K

x · ξ.

We omit the details.

5.2 Why our method fails in odd dimensions

In odd dimension d, in order to make use of the Orponen’s radial projection theorem
to control the bad part, we project α-dimensional measure μ onto a d+1

2 -dimensional
plane V , since the condition α > d

2 only guarantees that α > d+1
2 − 1. To make the

proof for bad part work through, we need to choose the mass threshold for bad tubes
as follows: T ∈ T j,τ is bad if

μ2(4T ) � R−(d−1)/4+c(α)δ
j .
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Then the numerology for good part gives us the following dimensional threshold for
Falconer’s distance set problem:

d

2
+ 1

4
+ 1

4d
,

which is not as good as the previously best known result d
2 + 1

4 + 1
8d−4 from [5].

In fact, when d is odd, there exists counterexample that prevents one from removing
a larger bad part from the measure. More precisely, consider a set E ⊂ R

d that is
contained in some d+1

2 dimensional subspace of R
d with positive d+1

2 dimensional

Lebesgue measure. For instance, let E be the unit ball B
d+1
2 . Then for every T ∈ T j,τ ,

μ2(T ) ∼ R
−

d+1
2 −1
2 +δ

j = R
− d−1

4 +δ

j .

Hence it is impossible to further lower the bad threshold.

6 Connections with the Erdős distance problem

The following definition is due to the second listed author, Rudnev and Uriarte-Tuero
([15]).

Definition 6.1 Let P be a set of N points contained in [0, 1]d . Define the measure

dμs
P (x) = N−1 · N d

s ·
∑

p∈P

χB(N
1
s (x − p)) dx, (6.1)

where χB is the indicator function of the ball of radius 1 centered at the origin. We
say that P is s-adaptable if there exists C independent of N such that

Is(μP ) =
∫ ∫

|x − y|−s dμs
P (x) dμs

P (y) ≤ C . (6.2)

It is not difficult to check that if the points in set P are separated by distance cN−1/s ,
then (6.2) is equivalent to the condition

1

N 2

∑

p �=p′
|p − p′|−s ≤ C, (6.3)

where the exact value of C may be different from line to line. In dimension d, it is
also easy to check that if the distance between any two points of P is � N−1/d , then
(6.3) holds for any s ∈ [0, d), and hence P is s-adaptable.
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Let K be a symmetric convex body as in Sect. 5.1. We will prove that if d is even
and P is s-adaptable, for all s ∈ ( d2 + 1

4 , d), then for some x ∈ P ,

|�K
x (P)| � N

1
d
2 + 1

4 .

Moreover, the proof below shows that we get this many distinct N
− 1

s0 -separated
distances, where s0 = d

2 + 1
4 . The best currently known bounds for distance sets in

higher dimensions with respect to the Euclidean metric are due to Solymosi and Vu
[21]. While their result applies to general point sets, their exponent is smaller than
ours, and their method does not yield separated distances or apply to general metrics.
For the best previously known bounds in higher dimensions for general metrics, see,
for example, [13] and [14].

Fix s ∈ ( d2 + 1
4 , d) and define dμs

P as above. Note that the support of dμs
P is

N
N− 1

s
(P), the N− 1

s -neighborhood of P . Since Is(μs
P ) is uniformly bounded, the proof

of (the general norm case of) Theorem 1.2 implies that there exists x0 ∈ N
N− 1

s
(P) so

that

L(�K
x0(NN− 1

s
(P))) ≥ c > 0,

where the constant c only depends on the value of C in (6.3).
Let x be a point of P with |x − x0| ≤ N−1/s . It follows that for any y, ‖x0− y‖K =

‖x−y‖K+O(N−1/s). Let EN−1/s
(
�K

x (P)
)
be the smallest number of N−1/s-intervals

needed to cover �K
x (P). We know that �K

x0(NN− 1
s
(P)) is contained in the O(N−1/s)

neighborhood of �K
x (P), and so

L(�K
x0(NN− 1

s
(P))) � N− 1

s EN−1/s

(
�K

x (P)
)

.

Then our lower bound on L(�K
x0(NN− 1

s
(P))) gives

EN−1/s

(
�K

x (P)
)

� N 1/s .

In other words, �K
x (P) contains � N 1/s different distances that are pairwise sepa-

rated by� N−1/s . In particular, |�K
x (P)| � N 1/s . Since this holds for every s > d

2+ 1
4 ,

we get |�K
x (P)| � N

1
d
2 + 1

4 as desired.
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6. Erdoğan, M.B.: A bilinear Fourier extension theorem and applications to the distance set problem. Int.

Math. Res. Not. 23, 1411–1425 (2005)
7. Falconer, K.J.: On the Hausdorff dimensions of distance sets. Mathematika 32(2), 206–212 (1985)
8. Guth, L.: A restriction estimate using polynomial partitioning. J. Am. Math. Soc. 29(2), 371–413

(2016)
9. Guth, L.: Restriction estimates using polynomial partitioning II. Acta Math. 221(1), 81–142 (2018)

10. Guth, L., Iosevich, A., Ou, Y., Wang, H.: On Falconer’s distance set problem in the plane. Invent. math.
(2019). https://doi.org/10.1007/s00222-019-00917-x
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