

Counterexamples to L^p collapsing estimates

Xiumin Du and Matei Machedon

Abstract We show that certain L^2 space-time estimates for generalized density matrices which have been used by several authors in recent years to study equations of BBGKY or Hartree-Fock type, do not have non-trivial $L^p L^q$ generalizations.

1. Introduction and main results

In recent years, effective equations approximating the evolution of a large number of interacting bosons or fermions have been studied extensively. The best-known example is derivation of the cubic nonlinear Schrödinger equation in the celebrated work of Erdős, Schlein, and Yau [6, 7].

Since that work, a number of authors have studied the related Gross–Pitaevskii or Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchies, or the Hartree–Fock or Hartree–Fock–Bogoliubov equations, using harmonic analysis techniques and space-time L^2 estimates for a suitable trace density of solutions of the linear Schrödinger equation. We call such estimates “collapsing estimates” and list several instances, all in 3 space dimensions (thus, $x \in \mathbb{R}^3$, etc.).

If

$$(1) \quad G(t, x, y, z) = e^{\frac{it(\Delta_x + \Delta_y - \Delta_z)}{2}} G_0,$$

then

$$(2) \quad \|\nabla_x G(t, x, x, x)\|_{L^2(dt dx)} \lesssim \|\nabla_x \nabla_y \nabla_z G_0(x, y, z)\|_{L^2(dx dy dz)}.$$

For completeness, we mention how the above collapse (and estimate) occurs in applications. Consider solutions to the N -body linear Schrödinger equation

$$\begin{cases} \left(\frac{1}{i} \frac{\partial}{\partial t} - \sum_{i=1}^N \Delta_{x_i} + \frac{1}{N} \sum_{i < j} v_N(x_i - x_j) \right) \psi_N(t, x_1, \dots, x_N) = 0, \\ \psi_N(0, x_1, \dots, x_N) = (\text{or } \sim) \phi_0(x_1) \phi_0(x_2) \cdots \phi_0(x_N), \end{cases}$$

where N is large, $x_k \in \mathbb{R}^3$, $v \in \mathcal{S}$, $v \geq 0$, $0 < \beta \leq 1$, and $v_N(x) = N^{3\beta} v(N^\beta x)$. The function ψ_N has $L^2(\mathbb{R}^{3N})$ norm 1 and is symmetric in the space variables. It describes the evolution of a large number of interacting bosons. The initial conditions represent a Bose–Einstein condensate. The problem is to approximate ψ_N with tensor

Illinois Journal of Mathematics, Vol. 65, No. 1 (2021), 191–200

DOI [10.1215/00192082-8886967](https://doi.org/10.1215/00192082-8886967), © 2021 by the University of Illinois at Urbana–Champaign

Received April 25, 2020. Received in final form October 14, 2020.

First published online March 1, 2021.

2020 Mathematics Subject Classification: 35Q55.

products $\phi(t, x_1)\phi(t, x_2)\cdots\phi(t, x_N)$, where ϕ is normalized such that $\|\phi\|_{L^2(\mathbb{R}^3)} = 1$ and satisfies the cubic nonlinear Schrödinger (NLS) equation $\frac{1}{i}\frac{\partial}{\partial t}\phi - \Delta\phi + c|\phi|^2\phi = 0$. The approximation should hold as $N \rightarrow \infty$. The approach used in [6] and [7] is to average out most variables by taking a partial trace and look at the marginal density “matrices” in the remaining variables:

$$\gamma_N^{(k)}(t, \mathbf{x}_k, \mathbf{y}_k) = \int \psi_N(t, \mathbf{x}_k, \mathbf{x}_{N-k}) \bar{\psi}_N(t, \mathbf{y}_k, \mathbf{x}_{N-k}) d\mathbf{x}_{N-k}.$$

Here, $\mathbf{x}_k = (x_1, \dots, x_k)$ and $\mathbf{x}_{N-k} = (x_{k+1}, \dots, x_N)$. The $\gamma_N^{(k)}$ satisfy the BBGKY hierarchy:

$$\begin{aligned} & \left(\frac{1}{i} \frac{\partial}{\partial t} + \Delta_{x_1} - \Delta_{y_1} \right) \gamma_N^{(1)}(t, x_1; y_1) \\ &= -\frac{N-1}{N} \int v_N(x_1 - x_2) \gamma_N^{(2)}(t, x_1, x_2; y_1, x_2) dx_2 \\ &+ \frac{N-1}{N} \int v_N(y_1 - y_2) \gamma_N^{(2)}(t, x_1, y_2; y_1, y_2) dy_2. \end{aligned}$$

There are similar equations relating $\gamma_N^{(k)}$ to $\gamma_N^{(k+1)}$. Formally, as $N \rightarrow \infty$, $\gamma_N^{(k)} \rightarrow \gamma^{(k)}$, which satisfies the Gross–Pitaevskii infinite hierarchy

$$\begin{aligned} & \left(\frac{1}{i} \frac{\partial}{\partial t} + \Delta_{x_1} - \Delta_{y_1} \right) \gamma^{(1)}(t, x_1; y_1) \\ &= -c\gamma^{(2)}(t, x_1, x_1; y_1, x_1) + c\gamma^{(2)}(t, x_1, y_1; y_1, y_1), \\ & \left(\frac{1}{i} \frac{\partial}{\partial t} + \Delta_{x_1, x_2} - \Delta_{y_1, y_2} \right) \gamma^{(2)} \\ &= \text{terms involving } \gamma^{(3)} \text{ with 3 collapsed variables,} \end{aligned}$$

...

Naïvely, one expects $c = \int v$ and this is the case if $0 \leq \beta < 1$, but c is the scattering length of v if $\beta = 1$. One solution to the above hierarchy is given by tensor products $\gamma^{(1)}(t, x_1; y_1) = \phi(t, x_1)\bar{\phi}(t, y_1)$, and similarly for higher $\gamma^{(k)}$. Estimates of the type (2) applied to $\gamma^{(k)}$ were introduced in [14] to simplify the original proof of [6] for the uniqueness of solutions to the hierarchy (see also [1, 3, 4]). The periodic case is treated in [10] and [13], as well as [5] (for the quintic NLS).

Another related example is as follows: If

$$(3) \quad \Lambda(t, x, y) = e^{\frac{it(\Delta_x + \Delta_y)}{2}} \Lambda_0,$$

then

$$(4) \quad \|\nabla|_x^{1/2} \Lambda(t, x, x)\|_{L^2(dt dx)} \lesssim \|\nabla|_x^{1/2} |\nabla|_y^{1/2} \Lambda_0(x, y)\|_{L^2(dx dy)}.$$

This estimate is useful for the Hartree–Fock–Bogoliubov equations (see [11, 12]). These equations are a coupled system of nonlinear Schrödinger–type equations for functions on $3 + 1$ variables and $6 + 1$ variables. Compared to the cubic NLS equation,

they provide a “better” approximation for solutions to the system (1). The derivation requires Fock space techniques. The nonlinear terms in these equation contain factors such as $v_N(x - y)\Lambda(t, x, y)$ and, as $N \rightarrow \infty$, $v_N \rightarrow c\delta$.

Finally, if

$$(5) \quad \Gamma(t, x, y) = e^{\frac{it(\Delta_x - \Delta_y)}{2}} \Gamma_0,$$

then

$$(6) \quad \|\nabla_x|^{\frac{1}{2}} \langle \nabla_x \rangle^{2\epsilon} \Gamma(t, x, x)\|_{L^2(dt dx)} \lesssim_{\epsilon} \|\langle \nabla_x \rangle^{\frac{1}{2}+\epsilon} \langle \nabla_y \rangle^{\frac{1}{2}+\epsilon} \Gamma_0(x, y)\|_{L^2(dx dy)}.$$

Such estimates are relevant to both the Hartree–Fock–Bogoliubov equations mentioned above, and Hartree–Fock (see [2, Theorem 3.3]). The Hartree–Fock equations are effective equations approximating the evolution of a large number of fermions. The nonlinear terms in these equations include factors such as $\Gamma(t, x, x)$.

We also mention the approach of [8] and [9] which applies to equation (5) and allows a wide range of $L^p(dt)L^q(dx)$ estimates on the left-hand side, but the right-hand side of the inequality is estimated in a Schatten norm.

It is natural to ask whether one can replace the $L^2(dt)L^2(dx)$ norm on the left-hand side of estimates (2), (4), or (6) by an $L^p(dt)L^q(dx)$ norm while keeping the right-hand side in a Sobolev norm, which is useful for applications to PDEs. One can trivially make p or q bigger than 2 by putting more derivatives on the right-hand side, so the interesting question is if one can make p or q less than 2.

The main result of this note is that this is impossible.

We prove the following closely related results.

THEOREM 1.1

Let $n \geq 1$. Let Λ be given by (3), with $x, y \in \mathbb{R}^n$. Assume

$$(7) \quad \|\nabla_x^\alpha \Lambda(t, x, x)\|_{L^p(dt)L^q(dx)} \lesssim \|\Lambda_0(x, y)\|_{H^s(dx dy)}$$

for some $\alpha \geq 0$, $s \geq 0$. Then $p \geq 2$ and $q \geq 2$.

THEOREM 1.2

Let $n \geq 1$. Let Γ be given by (5), with $x, y \in \mathbb{R}^n$. Assume

$$(8) \quad \|\nabla_x^\alpha \Gamma(t, x, x)\|_{L^p(dt)L^q(dx)} \lesssim \|\Gamma_0(x, y)\|_{H^s(dx dy)}$$

for some $\alpha \geq 0$, $s \geq 0$. Then $p \geq 2$ and $q \geq 2$.

THEOREM 1.3

Let $n \geq 1$. Let G be given by (1), with $x, y, z \in \mathbb{R}^n$. Assume

$$(9) \quad \|\nabla_x^\alpha G(t, x, x, x)\|_{L^p(dt)L^q(dx)} \lesssim \|G_0(x, y, z)\|_{H^s(dx dy dz)}$$

for some $\alpha \geq 0$, $s \geq 0$. Then $p \geq 2$ and $q \geq 2$.

Notation. We write $A \lesssim B$ if $A \leq CB$ for some absolute constant C , $A \sim B$ if $A \lesssim B$ and $B \lesssim A$, $A \lesssim_{\epsilon} B$ if $A \leq C_{\epsilon}B$ for some constant C_{ϵ} depending on ϵ , where ϵ is an arbitrary positive number.

2. Proofs

2.1. Proof of Theorem 1.1

2.1.1. *Necessity of $p \geq 2$.* Let R be a large number (which will approach ∞ at the end of the proof). Let C be a fixed large number (depending on n). Let

$$F_0(x, y) = e^{-\frac{|x|^2 + |y|^2}{2CR}}$$

so that

$$(10) \quad e^{\frac{it(\Delta_x + \Delta_y)}{2}} F_0 := F(t, x, y) = \frac{1}{(1 + it/(CR))^n} e^{-\frac{|x|^2 + |y|^2}{2(CR + it)}}.$$

We think of $F(t, x, y)$ as the basic “vertical tube” solution to the linear Schrödinger equation in $2n + 1$ dimensions which is essentially 1 if $|x|, |y| \leq R^{1/2}$, $0 \leq t \leq R$. The rigorous statement is that C is chosen so that $\Re F(t, x, y) \geq \frac{1}{2}$ in the above range, where $\Re F(t, x, y)$ denotes the real part of F . Also, the Fourier transform (in space) of F is essentially supported at frequencies $|\xi|, |\eta| \leq R^{-1/2}$.

We choose the function $\Lambda(t, x, y)$ to be a sum of translates and modulations of $F(t, x, y)$ which are inclined at 45 degrees and are trained to reach the region $|x| \leq \frac{1}{100}$, $|y| \leq \frac{1}{100}$, $R - R^{\frac{1}{2}} < t < R$ with almost the same oscillation (and almost no cancellations). The summands will have Fourier transforms essentially supported in balls of radius $R^{-1/2}$ centered at unit vectors.

Explicitly, choose roughly $R^{n-\frac{1}{2}}$ points (x_k, y_k) which are spaced at distance $R^{1/2}$ from each other on the sphere $|(x, y)| = R$. For technical reasons, we choose only points for which all coordinates are $\geq \frac{R}{10n}$. Define $(\xi_k, \eta_k) = \frac{(x_k, y_k)}{R}$.

Choose the following initial conditions:

$$\Lambda_0(x, y) = \sum e^{i(x \cdot \xi_k + y \cdot \eta_k)} F_0(x + x_k, y + y_k).$$

The functions being summed are approximately orthogonal and each has L^2 norm $\sim R^{n/2}$:

$$(11) \quad \begin{aligned} & \int |F_0(x + x_k, y + y_k) F_0(x + x_l, y + y_l)| dx dy \\ &= \pi^n (CR)^n e^{-\frac{|(x_k, y_k) - (x_l, y_l)|^2}{4CR}}. \end{aligned}$$

Recalling that the sum has $\sim R^{n-\frac{1}{2}}$ terms, we derive

$$\|\Lambda_0\|_{L^2(dx dy)} \lesssim R^{n-\frac{1}{4}}.$$

The same type of upper bound holds for higher order derivatives (since $|(\xi_k, \eta_k)| = 1$); thus, for each fixed s ,

$$(12) \quad \|\Lambda_0\|_{H^s(dx dy)} \lesssim R^{n-\frac{1}{4}}.$$

The solution looks like

$$\begin{aligned} \Lambda(t, x, y) &= \sum e^{-it\frac{(|\xi_k|^2 + |\eta_k|^2)}{2}} e^{i(x \cdot \xi_k + y \cdot \eta_k)} F(t, x + x_k - t\xi_k, y + y_k - t\eta_k) \\ &= e^{-it\frac{t}{2}} \sum e^{i(x \cdot \xi_k + y \cdot \eta_k)} F(t, x + x_k - t\xi_k, y + y_k - t\eta_k), \end{aligned}$$

and

$$|\Lambda(t, x, y)| \geq \Re \sum e^{i(x \cdot \xi_k + y \cdot \eta_k)} F(t, x + x_k - t\xi_k, y + y_k - t\eta_k) \sim R^{n-\frac{1}{2}},$$

if $|(x, y)| \leq \frac{1}{100}$, $R - R^{\frac{1}{2}} < t < R$. Thus,

$$(13) \quad R^{\frac{1}{2p}} R^{n-\frac{1}{2}} \lesssim \|\Lambda(t, x, x)\|_{L^p(dt)L^q(dx)},$$

so, recalling (12), if

$$\|\Lambda(t, x, x)\|_{L^p(dt)L^q(dx)} \lesssim \|\Lambda_0(x, y)\|_{H^s(dx dy)},$$

then $p \geq 2$.

Using the product rule and the lower bounds on the components of ξ_k, η_k , the same argument works for ordinary derivatives of order $\alpha = m \in \mathbb{N}$.

To justify the statement for fractional derivatives of noninteger order α , do a Littlewood–Paley decomposition in space $\Lambda(t, \cdot, \cdot) = P_{\leq 10}\Lambda(t, \cdot, \cdot) + P_{\geq 10}\Lambda(t, \cdot, \cdot)$, where $P_{\leq 10}$ localizes functions of $2n$ variables, smoothly at frequencies ≤ 10 . Then $P_{\geq 10}\Lambda(t, \cdot, \cdot)$ is exponentially small as $R \rightarrow \infty$. This is true for the function F_0 , and its translates by a unit vector in Fourier space.

A crude estimate is

$$\|P_{\geq 10}\Lambda(t, \cdot, \cdot)\|_{H^s} \lesssim_s e^{-\sqrt{R}}.$$

For our counterexample, we use $P_{\leq 10}\Lambda(t, \cdot, \cdot)$ instead of $\Lambda(t, \cdot, \cdot)$.

Thus, for R sufficiently large, $|\nabla^m P_{\leq 10}\Lambda(t, x, y)| \sim |\nabla^m \Lambda(t, x, y)| \sim R^{n-\frac{1}{2}}$ if $|(x, y)| \leq \frac{1}{100}$, $R - R^{\frac{1}{2}} < t < R$. The function $(P_{\leq 10}\Lambda)(t, x, x)$ is supported, in Fourier space, at frequencies $|\xi| \leq 20$. Denote, by abuse of notation, $P_{\leq 20}$ the operator localizing functions of n variables at frequencies $|\xi| \leq 20$. Let $m \in \mathbb{N}$, $m > \alpha$. Then the operator $\frac{\nabla^m}{|\nabla|^\alpha} P_{\leq 20}$ (defined in the obvious way on the Fourier transform side) is bounded on all L^p spaces, and

$$\begin{aligned} R^{\frac{1}{2p}} R^{n-\frac{1}{2}} &\lesssim \|\nabla^m (P_{\leq 10}\Lambda)(t, x, x)\|_{L^p(dt)L^q(dx)} \\ &= \left\| \frac{\nabla^m}{|\nabla|^\alpha} P_{\leq 20} |\nabla|^\alpha (P_{\leq 10}\Lambda)(t, x, x) \right\|_{L^p(dt)L^q(dx)} \\ &\lesssim \||\nabla|^\alpha (P_{\leq 10}\Lambda)(t, x, x)\|_{L^p(dt)L^q(dx)}, \end{aligned}$$

while

$$\|P_{\leq 10}\Lambda_0\|_{H^s(dx dy)} \lesssim C^n R^{n-\frac{1}{4}}.$$

Letting $R \rightarrow \infty$, we conclude $p \geq 2$ as before.

2.1.2. Necessity of $q \geq 2$. Let $F(t, x, y)$ be the basic vertical tube solution of height R (as in (10)). Let $m \gg 1$. Choose roughly $R^{mn-\frac{n}{2}}$ points x_k which are spaced at distance $\sim R^{\frac{1}{2}}$ in a large ball $B(0, R^m)$ of radius R^m in \mathbb{R}^n . Fix a unit vector $\xi \in S^{n-1}$.

We take initial conditions

$$\Lambda_0(x, y) = e^{i(x+y) \cdot \xi} \sum F_0(x + x_k, y + x_k).$$

Then

$$\Lambda(t, x, y) = e^{i(x+y)\cdot\xi} e^{-it} \sum F(t, x + x_k - t\xi, y + x_k - t\xi).$$

There are roughly $R^{mn-\frac{n}{2}}$ terms in the sum. The summands are essentially orthogonal (as in (11)), and each term has L^2 norm $\sim R^{n/2}$; thus,

$$\|\Lambda_0\|_{L^2(dx dy)} \sim R^{\frac{n}{4} + \frac{mn}{2}}.$$

On the other hand, each $F(t, x + x_k - t\xi, y + x_k - t\xi)$ is essentially 1 on a tube T_k of radius $R^{1/2}$ and length R in $2n + 1$ dimensions and rapidly decaying out of T_k . Note that at $t = 0$, T_k is centered at $(0, -x_k, -x_k)$. Moreover, these tubes T_k are in the same direction $(1, \xi, \xi)$ and hence disjoint. Therefore, $|\Lambda(t, x, y)| \gtrsim 1$ on the union of the tubes T_k . In particular, $|\Lambda(t, x, x)| \gtrsim 1$ for $0 \leq t \leq R$ and $x \in B(t\xi, R^m)$. We need only the previous estimate for $0 \leq t \leq 1$, where the claim is obvious. In addition, the Fourier transform of $\Lambda(t, x, x)$ is supported (essentially) in a $R^{-\frac{1}{2}}$ neighborhood of the point 2ξ , with $|\xi| = 1$, so $\|\nabla^\alpha \Lambda(t, x, x)\| \gtrsim 1$ for $0 \leq t \leq 1$ and $x \in B(t\xi, R^m)$. Thus,

$$\|\nabla^\alpha \Lambda(t, x, x)\|_{L^p([0,1])L^q(dx)} \gtrsim R^{\frac{mn}{q}},$$

while $\|\Lambda_0\|_{H^s(dx dy)} \sim \|\Lambda_0\|_{L^2(dx dy)} \sim R^{\frac{n}{4} + \frac{mn}{2}}$ and $m \gg 1$, so $q \geq 2$ is necessary.

2.2. Proof of Theorem 1.2

The examples for Γ are similar to those for Λ and are included for completeness.

2.2.1. Necessity of $p \geq 2$.

First we take the basic ‘‘vertical tube’’ solution. Let

$$F_0(x, y) = e^{-\frac{|x|^2 + |y|^2}{2CR}}$$

so that

$$(14) \quad e^{\frac{it(\Delta_x - \Delta_y)}{2}} F_0 := F(t, x, y) = \frac{1}{(1 + (\frac{t}{CR})^2)^{\frac{n}{2}}} e^{-\frac{|x|^2}{2(CR+it)}} e^{-\frac{|y|^2}{2(CR-it)}}.$$

The solution $F(t, x, y)$ is essentially 1 if $|x|, |y| \leq R^{1/2}$, $0 \leq t \leq R$. More precisely, we choose a large constant $C = C(n)$ so that $\Re F(t, x, y) \geq \frac{1}{2}$ in the above range. Also, as before, the Fourier transform (in space) of F is essentially supported at frequencies $|\xi|, |\eta| \leq R^{-1/2}$.

Pick roughly $R^{n-\frac{1}{2}}$ points (x_k, y_k) which are spaced at distance $\sim R^{1/2}$ from each other on the surface $\{(x, y) : |x| = |y|, \frac{R}{2} \leq |x| \leq R\}$. Define $(\xi_k, \eta_k) = \frac{1}{R}(x_k, y_k)$ so that $|\xi_k|^2 - |\eta_k|^2 = 0$ and $|(\xi_k, \eta_k)| \sim 1$.

Take the following initial conditions,

$$\Gamma_0(x, y) = \sum e^{i(x \cdot \xi_k - y \cdot \eta_k)} F_0(x + x_k, y + y_k),$$

so that the solution is

$$\begin{aligned} \Gamma(t, x, y) &= \sum e^{-it\frac{(|\xi_k|^2 - |\eta_k|^2)}{2}} e^{i(x \cdot \xi_k - y \cdot \eta_k)} F(t, x + x_k - t\xi_k, y + y_k - t\eta_k) \\ &= \sum e^{i(x \cdot \xi_k - y \cdot \eta_k)} F(t, x + x_k - t\xi_k, y + y_k - t\eta_k). \end{aligned}$$

Since the $\sim R^{n-\frac{1}{2}}$ terms in Γ_0 are essentially orthogonal and each has L^2 norm $\sim R^{n/2}$, we get

$$\|\Gamma_0\|_{L^2(dx dy)} \lesssim R^{n-\frac{1}{4}}.$$

Moreover, since $|\langle \xi_k, \eta_k \rangle| \sim 1$, there also holds

$$(15) \quad \|\Gamma_0\|_{H^s(dx dy)} \lesssim R^{n-\frac{1}{4}}.$$

From the expression of Γ , we see that

$$|\Gamma(t, x, y)| \gtrsim R^{n-\frac{1}{2}} \quad \text{for } |(x, y)| \leq \frac{1}{100}, R - R^{\frac{1}{2}} < t < R.$$

Therefore,

$$\|\Gamma(t, x, x)\|_{L^p(dt)L^q(dx)} \gtrsim R^{\frac{1}{2p}} R^{n-\frac{1}{2}};$$

so, recalling (15), if

$$\|\Gamma(t, x, x)\|_{L^p(dt)L^q(dx)} \lesssim \|\Gamma_0(x, y)\|_{H^s(dx dy)},$$

then $p \geq 2$. From a similar argument to the one in Section 2.1.1 (i.e., using only x_k, y_k for which all coordinates of ξ_k and $-\eta_k$ are $\geq \frac{1}{10n}$), $p \geq 2$ is also necessary for estimates of the form

$$\||\nabla|_x^\alpha \Gamma(t, x, x)\|_{L^p(dt)L^q(dx)} \lesssim \|\Gamma_0(x, y)\|_{H^s(dx dy)}.$$

2.2.2. *Necessity of $q \geq 2$.* Let $F(t, x, y)$ be the basic vertical tube solution of height R (as in (14)). Let $m \gg 1$. Choose roughly $R^{mn-\frac{n}{2}}$ points x_k which are spaced at distance $\sim R^{\frac{1}{2}}$ in a large ball $B(0, R^m)$ of radius R^m in \mathbb{R}^n . Fix a unit vector $\xi \in S^{n-1}$.

We take initial conditions

$$\Gamma_0(x, y) = e^{ix \cdot \xi} \sum F_0(x + x_k, y + x_k),$$

so that the solution is

$$\Gamma(t, x, y) = e^{ix \cdot \xi} \sum F(t, x + x_k - t\xi, y + x_k).$$

Note that $\Gamma(t, x, x) \gtrsim 1$ for $0 \leq t \leq 1$ and $|x| \leq R^m$. Moreover, the Fourier transform of $\Gamma(t, x, x)$ is essentially supported in a $R^{-1/2}$ neighborhood of the point ξ with $|\xi| = 1$.

Then, the necessity of $q \geq 2$ follows from the same calculation as in Section 2.1.2.

2.3. Proof of Theorem 1.3

The examples for G are similar to those in previous subsections.

2.3.1. *Necessity of $p \geq 2$.* First we take the basic “vertical tube” solution. Let

$$F_0(x, y, z) = e^{-\frac{|x|^2 + |y|^2 + |z|^2}{2CR}}$$

so that

$$(16) \quad \begin{aligned} e^{\frac{it(\Delta x + \Delta y - \Delta z)}{2}} F_0 &:= F(t, x, y, z) \\ &= \frac{1}{(1 + \frac{it}{CR})^n (1 - \frac{it}{CR})^{\frac{n}{2}}} e^{-\frac{|x|^2 + |y|^2}{2(CR + it)}} e^{-\frac{|z|^2}{2(CR - it)}}. \end{aligned}$$

The solution $F(t, x, y, z)$ is essentially 1 if $|(x, y, z)| \leq R^{1/2}$, $0 \leq t \leq R$. Also, the Fourier transform (in space) of F is essentially supported at frequencies $|(\xi, \eta, \zeta)| \leq R^{-1/2}$.

Pick roughly $R^{\frac{3n-1}{2}}$ points (x_k, y_k, z_k) which are spaced at distance $\sim R^{1/2}$ from each other on the surface $\{(x, y, z) : |x|^2 + |y|^2 = |z|^2, \frac{R}{2} \leq |x|, |y| \leq R\}$. Define $(\xi_k, \eta_k, \zeta_k) = \frac{1}{R}(x_k, y_k, z_k)$ so that

$$|\xi_k|^2 + |\eta_k|^2 = |\zeta_k|^2 \quad \text{and} \quad |(\xi_k, \eta_k, \zeta_k)| \sim 1.$$

Take the following initial conditions,

$$G_0(x, y, z) = \sum e^{i(x \cdot \xi_k + y \cdot \eta_k - z \cdot \zeta_k)} F_0(x + x_k, y + y_k, z + z_k)$$

so that the solution is

$$\begin{aligned} G(t, x, y, z) &= \sum e^{i(x \cdot \xi_k + y \cdot \eta_k - z \cdot \zeta_k)} F(t, x + x_k - t\xi_k, y + y_k - t\eta_k, z + z_k - t\zeta_k) \end{aligned}$$

since $|\xi_k|^2 + |\eta_k|^2 = |\zeta_k|^2$.

Since the $\sim R^{\frac{3n-1}{2}}$ terms in G_0 are essentially orthogonal and each has L^2 norm $\sim R^{3n/4}$, we get

$$\|G_0\|_{L^2(dx dy dz)} \lesssim R^{\frac{3n}{2} - \frac{1}{4}}.$$

Moreover, since $|(\xi_k, \eta_k, \zeta_k)| \sim 1$, there also holds

$$(17) \quad \|G_0\|_{H^s(dx dy dz)} \lesssim R^{\frac{3n}{2} - \frac{1}{4}}.$$

From the expression of G , we see that

$$|G(t, x, y, z)| \gtrsim R^{\frac{3n-1}{2}} \quad \text{for } |(x, y, z)| \leq \frac{1}{100}, R - R^{\frac{1}{2}} < t < R.$$

Therefore,

$$\|G(t, x, x, x)\|_{L^p(dt)L^q(dx)} \gtrsim R^{\frac{1}{2p}} R^{\frac{3n-1}{2}}.$$

Recalling (17), if

$$\|G(t, x, x, x)\|_{L^p(dt)L^q(dx)} \lesssim \|G_0(x, y, z)\|_{H^s(dx dy dz)},$$

then $p \geq 2$. From a similar argument as in Section 2.1.1, $p \geq 2$ is also necessary for estimates of the form

$$\|\nabla_x^\alpha G(t, x, x, x)\|_{L^p(dt)L^q(dx)} \lesssim \|G_0(x, y, z)\|_{H^s(dx dy dz)}.$$

2.3.2. *Necessity of $q \geq 2$.* Let $F(t, x, y, z)$ be the basic vertical tube solution of height R (as in (16)). Let $m \gg 1$. Choose roughly $R^{mn-\frac{n}{2}}$ points x_k which are spaced at distance $\sim R^{\frac{1}{2}}$ in a large ball $B(0, R^m)$ of radius R^m in \mathbb{R}^n . Fix a unit vector $\xi \in S^{n-1}$.

We take initial conditions

$$G_0(x, y, z) = e^{i(x+y-z)\cdot\xi} \sum F_0(x + x_k, y + x_k, z + x_k)$$

so that the solution is

$$\begin{aligned} G(t, x, y) \\ = e^{\frac{-it}{2}} e^{i(x+y-z)\cdot\xi} \sum F(t, x + x_k - t\xi, y + x_k - t\xi, z + x_k - t\xi). \end{aligned}$$

There are roughly $R^{mn-\frac{n}{2}}$ terms in the sum. The summands are essentially orthogonal, and each term has L^2 norm $\sim R^{3n/4}$; thus,

$$\|G_0\|_{L^2(dx dy dz)} \sim R^{\frac{n}{2} + \frac{mn}{2}}.$$

On the other hand, each $F(t, x + x_k - t\xi, y + x_k - t\xi, z + x_k - t\xi)$ is essentially 1 on a tube T_k of radius $R^{1/2}$ and length R in $3n + 1$ dimensions and rapidly decaying out of T_k . Note that at $t = 0$, T_k is centered at $(0, -x_k, -x_k, -x_k)$. Moreover, these tubes T_k are in the same direction $(1, \xi, \xi, \xi)$ and hence disjoint. Therefore, $|G(t, x, y, z)| \gtrsim 1$ on the union of the tubes T_k . In particular, $|G(t, x, x, x)| \gtrsim 1$ for $0 \leq t \leq R$ and $x \in B(t\xi, R^m)$. Thus,

$$\|G(t, x, x, x)\|_{L^p([0,1])L^q(dx)} \gtrsim R^{\frac{mn}{q}}$$

(with a similar estimate for $|\nabla|^\alpha G(t, x, x, x)$), while $\|G_0\|_{H^s(dx dy)} \sim R^{\frac{n}{2} + \frac{mn}{2}}$ and $m \gg 1$, so $q \geq 2$ is necessary.

Acknowledgments. The first author is supported by the National Science Foundation under Grant No. DMS-1856475.

References

- [1] T. Chen and N. Pavlović, *Derivation of the cubic NLS and Gross–Pitaevskii hierarchy from many body dynamics in $d = 3$ based on spacetime norms*, Ann. Henri Poincaré, **15** (2014), no. 3, 543–588. [MR 3165917](#). DOI [10.1007/s00023-013-0248-6](#).
- [2] T. Chen, Y. Hong, and N. Pavlović, *Global well-posedness of the NLS system for infinitely many fermions*, Arch. Ration. Mech. Anal. **224** (2017), no. 1, 91–123. [MR 3609246](#). DOI [10.1007/s00205-016-1068-x](#).
- [3] X. Chen and J. Holmer, *On the Klainerman–Machedon conjecture of the quantum BBGKY hierarchy with self-interaction*, J. Eur. Math. Soc. **18** (2016), no. 6, 1161–1120. [MR 3500833](#). DOI [10.4171/JEMS/610](#).
- [4] X. Chen and J. Holmer, *Correlation structures, many-body scattering processes and the derivation of the Gross–Pitaevskii hierarchy*, Int. Math. Res. Not. IMRN (2016), no. 10, 3051–3110. [MR 3551830](#). DOI [10.1093/imrn/rnv228](#).

- [5] X. Chen and J. Holmer, *The derivation of the T^3 energy-critical NLS from quantum many-body dynamics*, Invent. Math. **217** (2019), no. 2, 433–547. [MR 3987176](#). [DOI 10.1007/s00222-019-00868-3](#).
- [6] L. Erdős, B. Schlein, and H. T. Yau, *Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems*, Invent. Math. **167**, no. 3, 515–614 (2007). [MR 2276262](#). [DOI 10.1007/s00222-006-0022-1](#).
- [7] L. Erdős, B. Schlein and H. T. Yau, *Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate*, Annals Math. **172** (2010), no. 1, 291–370. [MR 2680421](#). [DOI 10.4007/annals.2010.172.291](#).
- [8] R. L. Frank, M. Lewin, E. H. Lieb, and R. Seiringer, *Strichartz inequality for orthonormal functions*, J. Eur. Math. Soc. **16** (2014), no. 7, 1507–1526. [MR 3254332](#). [DOI 10.4171/JEMS/467](#).
- [9] R. L. Frank and J. Sabin, *Restriction theorems for orthonormal functions, Strichartz inequalities and uniform Sobolev estimates*, Amer. J. Math. **139** (2017), no. 6, 1649–1691. [MR 3730931](#). [DOI 10.1353/ajm.2017.0041](#).
- [10] P. Gressman, V. Sohinger, and G. Staffilani, *On the uniqueness of solutions to the periodic 3D Gross–Pitaevskii hierarchy*, J. Funct. Anal. **266** (2014), no. 7, 4705–4764. [MR 3170216](#). [DOI 10.1016/j.jfa.2014.02.006](#).
- [11] M. Grillakis and M. Machedon, *Pair excitations and the mean field approximation of interacting Bosons, II*, Comm. Partial Differential Equations **42** (2017), no. 1, 24–67. [MR 3605290](#). [DOI 10.1080/03605302.2016.1255228](#).
- [12] M. Grillakis and M. Machedon, *Uniform in N estimates for a bosonic system of Hartree–Fock–Bogoliubov type*, Comm. Partial Differential Equations **44** (2019), no. 12, 1431–1465. [MR 4000844](#). [DOI 10.1080/03605302.2019.1645696](#).
- [13] K. Kirkpatrick, B. Schlein, and G. Staffilani, *Derivation of the two dimensional nonlinear Schrödinger equation from many body quantum dynamics*, Amer. J. Math. **133** (2011), no. 1, 91–130. [MR 2752936](#). [DOI 10.1353/ajm.2011.0004](#).
- [14] S. Klainerman and M. Machedon, *On the uniqueness of solutions to the Gross–Pitaevskii hierarchy*, Comm. Math. Phys. **279** (2008), no. 1, 169–185. [MR 2377632](#). [DOI 10.1007/s00220-008-0426-4](#).

Du: Northwestern University, Evanston, Illinois, USA; xdu@northwestern.edu

Machedon: University of Maryland, College Park, Maryland, USA; mxm@math.umd.edu