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Abstract We show that certain L2 space-time estimates for generalized density matrices
which have been used by several authors in recent years to study equations of BBGKY or
Hartree-Fock type, do not have non-trivial LpLq generalizations.

1. Introduction and main results

In recent years, effective equations approximating the evolution of a large number of
interacting bosons or fermions have been studied extensively. The best-known example
is derivation of the cubic nonlinear Schrödinger equation in the celebrated work of
Erdös, Schlein, and Yau [6, 7].

Since that work, a number of authors have studied the related Gross–Pitaevskii
or Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchies, or the Hartree–
Fock or Hartree–Fock–Bogoliubov equations, using harmonic analysis techniques
and space-time L2 estimates for a suitable trace density of solutions of the linear
Schrödinger equation. We call such estimates “collapsing estimates” and list several
instances, all in 3 space dimensions (thus, x 2 R

3, etc.).
If

G.t; x; y; z/D e
it.�xC�y ��z /

2 G0;(1)

then ��rxG.t; x; x; x/
��

L2.dt dx/
.

��rxryrzG0.x; y; z/
��

L2.dx dy dz/
:(2)

For completeness, we mention how the above collapse (and estimate) occurs in appli-
cations. Consider solutions to the N -body linear Schrödinger equation´
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i<j vN .xi � xj // N .t; x1; : : : ; xN /D 0;

 N .0; x1; : : : xN /D .or �/�0.x1/�0.x2/ � � ��0.xN /;

where N is large, xk 2 R
3, v 2 S , v � 0, 0 < ˇ � 1, and vN .x/ D N 3ˇv.N ˇx/.

The function  N has L2.R3N / norm 1 and is symmetric in the space variables. It
describes the evolution of a large number of interacting bosons. The initial conditions
represent a Bose–Einstein condensate. The problem is to approximate  N with tensor
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products �.t; x1/�.t; x2/ � � ��.t; xN /, where � is normalized such that k�kL2.R3/ D 1

and satisfies the cubic nonlinear Schrödinger (NLS) equation 1
i

@
@t
����Ccj�j2� D 0.

The approximation should hold as N ! 1. The approach used in [6] and [7] is to
average out most variables by taking a partial trace and look at the marginal density
“matrices” in the remaining variables:

�
.k/
N .t;xk;yk/D

Z
 N .t;xk;xN�k/ N N .t;yk;xN�k/dxN�k:

Here, xk D .x1; : : : ; xk/ and xN�k D .xkC1; : : : ; xN /. The � .k/
N satisfy the BBGKY

hierarchy: �1
i
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C�x1

��y1
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.1/
N .t; x1Iy1/

D �
N � 1

N

Z
vN .x1 � x2/�

.2/
N .t; x1; x2Iy1; x2/dx2

C
N � 1

N

Z
vN .y1 � y2/�

.2/
N .t; x1; y2Iy1; y2/dy2:

There are similar equations relating � .k/
N to � .kC1/

N . Formally, as N ! 1, � .k/
N ! � .k/,

which satisfies the Gross–Pitaevskii infinite hierarchy�1
i

@

@t
C�x1

��y1
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� .1/.t; x1Iy1/

D �c� .2/.t; x1; x1Iy1; x1/C c� .2/.t; x1; y1Iy1; y1/;�1
i
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C�x1;x2

��y1;y2

�
� .2/

D terms involving � .3/ with 3 collapsed variables;

� � �

Naïvely, one expects c D
R
v and this is the case if 0� ˇ < 1, but c is the scattering

length of v if ˇ D 1. One solution to the above hierarchy is given by tensor products
� .1/.t; x1Iy1/D �.t; x1/ N�.t; y1/, and similarly for higher � .k/. Estimates of the type
(2) applied to � .k/ were introduced in [14] to simplify the original proof of [6] for the
uniqueness of solutions to the hierarchy (see also [1, 3, 4]). The periodic case is treated
in [10] and [13], as well as [5] (for the quintic NLS).

Another related example is as follows: If

ƒ.t; x; y/D e
it.�xC�y /

2 ƒ0;(3)

then ��jrj1=2
x ƒ.t; x; x/

��
L2.dt dx/

.
��jrj1=2

x jrj1=2
y ƒ0.x; y/

��
L2.dx dy/

:(4)

This estimate is useful for the Hartree–Fock–Bogoliubov equations (see [11, 12]).
These equations are a coupled system of nonlinear Schrödinger–type equations for
functions on 3C 1 variables and 6C 1 variables. Compared to the cubic NLS equation,
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they provide a “better” approximation for solutions to the system (1). The derivation
requires Fock space techniques. The nonlinear terms in these equation contain factors
such as vN .x � y/ƒ.t; x; y/ and, as N ! 1, vN ! cı.

Finally, if

�.t; x; y/D e
it.�x��y /

2 �0;(5)

then ��jrx j
1
2 hrxi2��.t; x; x/

��
L2.dt dx/

.�

��hrxi
1
2

C�hryi
1
2

C��0.x; y/
��

L2.dx dy/
:(6)

Such estimates are relevant to both the Hartree–Fock–Bogoliubov equations men-
tioned above, and Hartree–Fock (see [2, Theorem 3.3]). The Hartree–Fock equations
are effective equations approximating the evolution of a large number of fermions. The
nonlinear terms in these equations include factors such as �.t; x; x/.

We also mention the approach of [8] and [9] which applies to equation (5) and
allows a wide range of Lp.dt/Lq.dx/ estimates on the left-hand side, but the right-
hand side of the inequality is estimated in a Schatten norm.

It is natural to ask whether one can replace the L2.dt/L2.dx/ norm on the left-
hand side of estimates (2), (4), or (6) by an Lp.dt/Lq.dx/ norm while keeping the
right-hand side in a Sobolev norm, which is useful for applications to PDEs. One can
trivially make p or q bigger than 2 by putting more derivatives on the right-hand side,
so the interesting question is if one can make p or q less than 2.

The main result of this note is that this is impossible.
We prove the following closely related results.

THEOREM 1.1
Let n� 1. Let ƒ be given by (3), with x;y 2 R

n. Assume��jrj˛xƒ.t; x; x/
��

Lp.dt/Lq.dx/
.

��ƒ0.x; y/
��

H s.dx dy/
(7)

for some ˛ � 0, s � 0. Then p � 2 and q � 2.

THEOREM 1.2
Let n� 1. Let � be given by (5), with x;y 2 R

n. Assume��jrj˛x�.t; x; x/
��

Lp.dt/Lq.dx/
.

���0.x; y/
��

H s.dx dy/
(8)

for some ˛ � 0, s � 0. Then p � 2 and q � 2.

THEOREM 1.3
Let n� 1. Let G be given by (1), with x;y; z 2 R

n. Assume��jrj˛xG.t; x; x; x/
��

Lp.dt/Lq.dx/
.

��G0.x; y; z/
��

H s.dx dy dz/
(9)

for some ˛ � 0, s � 0. Then p � 2 and q � 2.

Notation. We write A. B if A� CB for some absolute constant C , A� B if A. B

and B . A, A .� B if A � C�B for some constant C� depending on �, where � is an
arbitrary positive number.
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2. Proofs

2.1. Proof of Theorem 1.1
2.1.1. Necessity of p � 2. Let R be a large number (which will approach 1 at the end
of the proof). Let C be a fixed large number (depending on n). Let

F0.x; y/D e� jxj2Cjyj2

2CR

so that

e
it.�xC�y /

2 F0 WD F.t; x; y/D
1

.1C i t=.CR//n
e

� jxj2Cjyj2

2.CRCit/ :(10)

We think of F.t; x; y/ as the basic “vertical tube” solution to the linear Schrödinger
equation in 2n C 1 dimensions which is essentially 1 if jxj; jyj � R1=2, 0 � t � R.
The rigorous statement is that C is chosen so that <F.t; x; y/� 1

2
in the above range,

where <F.t; x; y/ denotes the real part of F . Also, the Fourier transform (in space) of
F is essentially supported at frequencies j�j; j�j �R�1=2.

We choose the function ƒ.t; x; y/ to be a sum of translates and modulations of
F.t; x; y/ which are inclined at 45 degrees and are trained to reach the region jxj �

1
100

, jyj � 1
100

, R � R
1
2 < t < R with almost the same oscillation (and almost no

cancellations). The summands will have Fourier transforms essentially supported in
balls of radius R�1=2 centered at unit vectors.

Explicitly, choose roughlyRn� 1
2 points .xk ; yk/which are spaced at distanceR1=2

from each other on the sphere j.x; y/j D R. For technical reasons, we choose only
points for which all coordinates are � R

10n
. Define .�k ; �k/D .xk ;yk/

R
.

Choose the following initial conditions:

ƒ0.x; y/D
X

ei.x��kCy��k/F0.xC xk ; y C yk/:

The functions being summed are approximately orthogonal and each has L2 norm �

Rn=2:

(11)

Z ˇ̌
F0.xC xk ; y C yk/F0.xC xl ; y C yl /

ˇ̌
dx dy

D 	n.CR/ne�
j.xk ;yk /�.xl ;yl /j2

4CR :

Recalling that the sum has �Rn� 1
2 terms, we derive

kƒ0kL2.dx dy/ .Rn� 1
4 :

The same type of upper bound holds for higher order derivatives (since j.�k ; �k/j D 1);
thus, for each fixed s,

kƒ0kH s.dx dy/ .Rn� 1
4 :(12)

The solution looks like

ƒ.t; x; y/D
X

e�it
.j�k j2Cj�k j2/

2 ei.x��kCy��k/F.t; xC xk � t�k; y C yk � t�k/

D e�i t
2

X
ei.x��kCy��k/F.t; xC xk � t�k; y C yk � t�k/;



Counterexamples to Lp collapsing 195

and ˇ̌
ƒ.t; x; y/

ˇ̌
� <

X
ei.x��kCy��k/F.t; xC xk � t�k; y C yk � t�k/�Rn� 1

2 ;

if j.x; y/j � 1
100

, R�R
1
2 < t < R. Thus,

R
1

2pRn� 1
2 .

��ƒ.t; x; x/��
Lp.dt/Lq.dx/

;(13)

so, recalling (12), if��ƒ.t; x; x/��
Lp.dt/Lq.dx/

.
��ƒ0.x; y/

��
H s.dx dy/

;

then p � 2.
Using the product rule and the lower bounds on the components of �k , �k , the same

argument works for ordinary derivatives of order ˛ Dm 2 N.
To justify the statement for fractional derivatives of noninteger order ˛, do a

Littlewood–Paley decomposition in space ƒ.t; �; �/ D P�10ƒ.t; �; �/ C P�10ƒ.t; �; �/,
where P�10 localizes functions of 2n variables, smoothly at frequencies � 10. Then
P�10ƒ.t; �; �/ is exponentially small as R ! 1. This is true for the function F0, and
its translates by a unit vector in Fourier space.

A crude estimate is ��P�10ƒ.t; �; �/
��

H s .s e
�

p
R:

For our counterexample, we use P�10ƒ.t; �; �/ instead of ƒ.t; �; �/.

Thus, for R sufficiently large, jrmP�10ƒ.t; x; y/j � jrmƒ.t; x; y/j � Rn� 1
2 if

j.x; y/j � 1
100

,R�R
1
2 < t < R. The function .P�10ƒ/.t; x; x/ is supported, in Fourier

space, at frequencies j�j � 20. Denote, by abuse of notation, P�20 the operator localiz-
ing functions of n variables at frequencies j�j � 20. Let m 2 N, m> ˛. Then the oper-
ator rm

jrj˛
P�20 (defined in the obvious way on the Fourier transform side) is bounded

on all Lp spaces, and

R
1

2pRn� 1
2 .

��rm.P�10ƒ/.t; x; x/
��

Lp.dt/Lq.dx/

D
��� rm

jrj˛
P�20jrj˛.P�10ƒ/.t; x; x/

���
Lp.dt/Lq.dx/

.
��jrj˛.P�10ƒ/.t; x; x/

��
Lp.dt/Lq.dx/

;

while

kP�10ƒ0kH s.dx dy/ . C nRn� 1
4 :

Letting R! 1, we conclude p � 2 as before.

2.1.2. Necessity of q � 2. Let F.t; x; y/ be the basic vertical tube solution of height R
(as in (10)). Letm� 1. Choose roughlyRmn� n

2 points xk which are spaced at distance

�R
1
2 in a large ball B.0;Rm/ of radius Rm in R

n. Fix a unit vector � 2 Sn�1.
We take initial conditions

ƒ0.x; y/D ei.xCy/��
X

F0.xC xk ; y C xk/:
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Then

ƒ.t; x; y/D ei.xCy/��e�it
X

F.t; xC xk � t�; y C xk � t�/:

There are roughly Rmn� n
2 terms in the sum. The summands are essentially orthog-

onal (as in (11)), and each term has L2 norm �Rn=2; thus,

kƒ0kL2.dx dy/ �R
n
4

C mn
2 :

On the other hand, each F.t; x C xk � t�; y C xk � t�/ is essentially 1 on a tube Tk

of radius R1=2 and length R in 2n C 1 dimensions and rapidly decaying out of Tk .
Note that at t D 0, Tk is centered at .0;�xk ;�xk/. Moreover, these tubes Tk are in the
same direction .1; �; �/ and hence disjoint. Therefore, jƒ.t; x; y/j & 1 on the union of
the tubes Tk . In particular, jƒ.t; x; x/j & 1 for 0� t �R and x 2B.t�;Rm/. We need
only the previous estimate for 0 � t � 1, where the claim is obvious. In addition, the

Fourier transform ofƒ.t; x; x/ is supported (essentially) in a R� 1
2 neighborhood of the

point 2� , with j�j D 1, so jjrj˛ƒ.t; x; x/j & 1 for 0� t � 1 and x 2B.t�;Rm/. Thus,��jrj˛ƒ.t; x; x/
��

Lp.Œ0;1�/Lq.dx/
&R

mn
q ;

while kƒ0kH s.dx dy/ � kƒ0kL2.dx dy/ �R
n
4

C mn
2 and m� 1, so q � 2 is necessary.

2.2. Proof of Theorem 1.2
The examples for � are similar to those for ƒ and are included for completeness.

2.2.1. Necessity of p � 2. First we take the basic “vertical tube” solution. Let

F0.x; y/D e� jxj2Cjyj2

2CR

so that

e
it.�x��y /

2 F0 WD F.t; x; y/D
1

.1C . t
CR
/2/

n
2

e
� jxj2

2.CRCit/ e
� jyj2

2.CR�it/ :(14)

The solution F.t; x; y/ is essentially 1 if jxj; jyj � R1=2, 0 � t � R. More precisely,
we choose a large constant C D C.n/ so that <F.t; x; y/� 1

2
in the above range. Also,

as before, the Fourier transform (in space) of F is essentially supported at frequencies
j�j; j�j �R�1=2.

Pick roughlyRn� 1
2 points .xk ; yk/ which are spaced at distance �R1=2 from each

other on the surface ¹.x; y/ W jxj D jyj; R
2

� jxj �Rº. Define .�k ; �k/D 1
R
.xk ; yk/ so

that j�kj2 � j�kj2 D 0 and j.�k ; �k/j � 1.
Take the following initial conditions,

�0.x; y/D
X

ei.x��k�y��k/F0.xC xk ; y C yk/;

so that the solution is

�.t; x; y/D
X

e�it
.j�k j2�j�k j2/

2 ei.x��k�y��k/F.t; xC xk � t�k; y C yk � t�k/

D
X

ei.x��k�y��k/F.t; xC xk � t�k; y C yk � t�k/:
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Since the � Rn� 1
2 terms in �0 are essentially orthogonal and each has L2 norm

�Rn=2, we get

k�0kL2.dx dy/ .Rn� 1
4 :

Moreover, since j.�k ; �k/j � 1, there also holds

(15) k�0kH s.dx dy/ .Rn� 1
4 :

From the expression of � , we see thatˇ̌
�.t; x; y/

ˇ̌
&Rn� 1

2 for
ˇ̌
.x; y/

ˇ̌
�

1

100
;R�R

1
2 < t < R:

Therefore, ���.t; x; x/��
Lp.dt/Lq.dx/

&R
1

2pRn� 1
2 I

so, recalling (15), if���.t; x; x/��
Lp.dt/Lq.dx/

.
���0.x; y/

��
H s.dx dy/

;

then p � 2. From a similar argument to the one in Section 2.1.1 (i.e., using only xk ,
yk for which all coordinates of �k and ��k are � 1

10n
), p � 2 is also necessary for

estimates of the form��jrj˛x�.t; x; x/
��

Lp.dt/Lq.dx/
.

���0.x; y/
��

H s.dx dy/
:

2.2.2. Necessity of q � 2. Let F.t; x; y/ be the basic vertical tube solution of height R
(as in (14)). Letm� 1. Choose roughlyRmn� n

2 points xk which are spaced at distance

�R
1
2 in a large ball B.0;Rm/ of radius Rm in R

n. Fix a unit vector � 2 Sn�1.
We take initial conditions

�0.x; y/D eix��
X

F0.xC xk ; y C xk/;

so that the solution is

�.t; x; y/D eix��
X

F.t; xC xk � t�; y C xk/:

Note that �.t; x; x/& 1 for 0� t � 1 and jxj �Rm. Moreover, the Fourier transform of
�.t; x; x/ is essentially supported in a R�1=2 neighborhood of the point � with j�j D 1.

Then, the necessity of q � 2 follows from the same calculation as in Section 2.1.2.

2.3. Proof of Theorem 1.3
The examples for G are similar to those in previous subsections.

2.3.1. Necessity of p � 2. First we take the basic “vertical tube” solution. Let

F0.x; y; z/D e� jxj2Cjyj2Cjzj2

2CR
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so that

e
it.�xC�y ��z /

2 F0 WD F.t; x; y; z/

D
1

.1C it
CR
/n.1� it

CR
/

n
2

e
� jxj2Cjyj2

2.CRCit/ e
� jzj2

2.CR�it/ :
(16)

The solution F.t; x; y; z/ is essentially 1 if j.x; y; z/j � R1=2, 0 � t � R. Also, the
Fourier transform (in space) of F is essentially supported at frequencies j.�; �; 
/j �

R�1=2.
Pick roughly R

3n�1
2 points .xk ; yk ; zk/ which are spaced at distance �R1=2 from

each other on the surface ¹.x; y; z/ W jxj2 C jyj2 D jzj2; R
2

� jxj; jyj � Rº. Define
.�k ; �k ; 
k/D 1

R
.xk ; yk ; zk/ so that

j�kj2 C j�kj2 D j
kj2 and
ˇ̌
.�k ; �k ; 
k/

ˇ̌
� 1:

Take the following initial conditions,

G0.x; y; z/D
X

ei.x��kCy��k�z��k/F0.xC xk ; y C yk ; zC zk/

so that the solution is

G.t; x; y; z/

D
X

ei.x��kCy��k�z��k/F.t; xC xk � t�k; y C yk � t�k; zC zk � t
k/

since j�kj2 C j�kj2 D j
kj2.

Since the � R
3n�1

2 terms in G0 are essentially orthogonal and each has L2 norm
�R3n=4, we get

kG0kL2.dx dy dz/ .R
3n
2

� 1
4 :

Moreover, since j.�k ; �k ; 
k/j � 1, there also holds

(17) kG0kH s.dx dy dz/ .R
3n
2

� 1
4 :

From the expression of G, we see thatˇ̌
G.t; x; y; z/

ˇ̌
&R

3n�1
2 for

ˇ̌
.x; y; z/

ˇ̌
�

1

100
;R�R

1
2 < t < R:

Therefore, ��G.t; x; x; x/��
Lp.dt/Lq.dx/

&R
1

2pR
3n�1

2 :

Recalling (17), if��G.t; x; x; x/��
Lp.dt/Lq.dx/

.
��G0.x; y; z/

��
H s.dx dy dz/

;

then p � 2. From a similar argument as in Section 2.1.1, p � 2 is also necessary for
estimates of the form��jrj˛xG.t; x; x; x/

��
Lp.dt/Lq.dx/

.
��G0.x; y; z/

��
H s.dx dy dz/

:
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2.3.2. Necessity of q � 2. Let F.t; x; y; z/ be the basic vertical tube solution of height
R (as in (16)). Let m � 1. Choose roughly Rmn� n

2 points xk which are spaced at

distance �R
1
2 in a large ball B.0;Rm/ of radius Rm in R

n. Fix a unit vector � 2 Sn�1.
We take initial conditions

G0.x; y; z/D ei.xCy�z/��
X

F0.xC xk ; y C xk ; zC xk/

so that the solution is

G.t; x; y/

D e
�it

2 ei.xCy�z/��
X

F.t; xC xk � t�; y C xk � t�; zC xk � t�/:

There are roughly Rmn� n
2 terms in the sum. The summands are essentially orthog-

onal,and each term has L2 norm �R3n=4; thus,

kG0kL2.dx dy dz/ �R
n
2

C mn
2 :

On the other hand, each F.t; xC xk � t�; yC xk � t�; zC xk � t�/ is essentially 1 on
a tube Tk of radius R1=2 and length R in 3nC 1 dimensions and rapidly decaying out
of Tk . Note that at t D 0, Tk is centered at .0;�xk ;�xk ;�xk/. Moreover, these tubes
Tk are in the same direction .1; �; �; �/ and hence disjoint. Therefore, jG.t; x; y; z/j & 1

on the union of the tubes Tk . In particular, jG.t; x; x; x/j & 1 for 0 � t � R and x 2

B.t�;Rm/. Thus. ��G.t; x; x; x/��
Lp.Œ0;1�/Lq.dx/

&R
mn
q

(with a similar estimate for jrj˛G.t; x; x; x/), while kG0kH s.dx dy/ � R
n
2

C mn
2 and

m� 1, so q � 2 is necessary.
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