Counterexamples to L7 collapsing estimates
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Abstract We show that certain L2 space-time estimates for generalized density matrices
which have been used by several authors in recent years to study equations of BBGKY or
Hartree-Fock type, do not have non-trivial L” L9 generalizations.

1. Introduction and main results

In recent years, effective equations approximating the evolution of a large number of
interacting bosons or fermions have been studied extensively. The best-known example
is derivation of the cubic nonlinear Schrodinger equation in the celebrated work of
Erdos, Schlein, and Yau [6, 7].

Since that work, a number of authors have studied the related Gross—Pitaevskii
or Bogoliubov-Born—Green—Kirkwood-Yvon (BBGKY) hierarchies, or the Hartree—
Fock or Hartree—-Fock—Bogoliubov equations, using harmonic analysis techniques
and space-time L2 estimates for a suitable trace density of solutions of the linear
Schrédinger equation. We call such estimates “collapsing estimates” and list several
instances, all in 3 space dimensions (thus, x € R3, etc.).

If
it(Ax+Ay—Az)
€)) G(t,x,y,z)=e 2 Gy,
then
2 ”VXG(I’X’X’X)“LZ(dtdx) < ||VxVszG0(x»y~Z) ||L2(dxdydz)'

For completeness, we mention how the above collapse (and estimate) occurs in appli-
cations. Consider solutions to the N -body linear Schrodinger equation

%a% _ZIN=1 Ax; + %Ziq N (Xi —x;)YN(t,x1,...,xN8) =0,
YN (0,x1,...xN8) = (or ~)Po(x1)Po(x2) -+ Po(xn),

where N is large, xx € R}, ve 8, v>0,0< B <1, and vy(x) = NPu(NPx).
The function ¥y has L2(R3*") norm 1 and is symmetric in the space variables. It
describes the evolution of a large number of interacting bosons. The initial conditions
represent a Bose—Einstein condensate. The problem is to approximate ¥y with tensor
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products ¢ (¢, x1)¢ (1, x2) -+ ¢(¢, xn), where ¢ is normalized such that ||¢ || 2g3) = 1
and satisfies the cubic nonlinear Schrédinger (NLS) equation ll %d) —A¢+c|p|*p =0.
The approximation should hold as N — oo. The approach used in [6] and [7] is to
average out most variables by taking a partial trace and look at the marginal density
“matrices” in the remaining variables:

yj(\iC)(t’Xk,Yk):/WN(taXk7XN—k)1/_fN(tvYk’XN—k)dXN—k~

Here, xx = (x1,...,X%) and XN—k = (Xx+1,...,XN). The )/1(\?) satisfy the BBGKY

hierarchy:

10 o)
(ZTE‘FA;CI _Ay1>7/N (. x151)

N —1
=N v (X1 _XZ)VJ(Vz)(taxlsx2;ylvx2) dx;
N —1
+ N vy (1 —J’2)J/1(\/2)(l,x1,y2;y1,y2) dys.

There are similar equations relating yl(\f) to y](\iﬁ_l)

which satisfies the Gross—Pitaevskii infinite hierarchy

. Formally, as N — oo, 7/1(\;() — y(k),

10
(T_ + Axl - Ayl)y(l)(tsxl;)’l)
=—cy@ @, x1,x1:91.%1) + cyP(t,x1. 15 y1, 1),

10
(I_E + Axlax2 - Aylayz)V(Z)

= terms involving y(3) with 3 collapsed variables,

Naively, one expects ¢ = [ v and this is the case if 0 < 8 < 1, but ¢ is the scattering
length of v if 8 = 1. One solution to the above hierarchy is given by tensor products
yW(t,x1:y1) = ¢(t.x1)@(t, y1), and similarly for higher y*). Estimates of the type
(2) applied to y*) were introduced in [14] to simplify the original proof of [6] for the
uniqueness of solutions to the hierarchy (see also [1, 3, 4]). The periodic case is treated
in [10] and [13], as well as [5] (for the quintic NLS).

Another related example is as follows: If

it(Ax+Ay)
3) A(t,x,y)=e 2 Ao,
then
1/2 1/2 1/2
(4) V12 A X2 | f2arany S NV IVE Ao ) | L2 ayy-

This estimate is useful for the Hartree—-Fock—Bogoliubov equations (see [11, 12]).
These equations are a coupled system of nonlinear Schrodinger—type equations for
functions on 3 + 1 variables and 6 + 1 variables. Compared to the cubic NLS equation,
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they provide a “better” approximation for solutions to the system (1). The derivation
requires Fock space techniques. The nonlinear terms in these equation contain factors
such as vy (x — y)A(t, x,y) and, as N — oo, vy — ¢4.
Finally, if
it(Ax—Ay)

®) L@, x,y)=e 2 To,
then

©) 1Vl (Ve T (x| o aramy e |1V 2TV 2 Do 1) | g any-

Such estimates are relevant to both the Hartree-Fock-Bogoliubov equations men-
tioned above, and Hartree—Fock (see [2, Theorem 3.3]). The Hartree—Fock equations
are effective equations approximating the evolution of a large number of fermions. The
nonlinear terms in these equations include factors such as I'(z, x, x).

We also mention the approach of [8] and [9] which applies to equation (5) and
allows a wide range of L?(dt)L9(dx) estimates on the left-hand side, but the right-
hand side of the inequality is estimated in a Schatten norm.

It is natural to ask whether one can replace the L?(dt)L?(dx) norm on the left-
hand side of estimates (2), (4), or (6) by an L?(dt)L9(dx) norm while keeping the
right-hand side in a Sobolev norm, which is useful for applications to PDEs. One can
trivially make p or ¢ bigger than 2 by putting more derivatives on the right-hand side,
so the interesting question is if one can make p or g less than 2.

The main result of this note is that this is impossible.

We prove the following closely related results.

THEOREM 1.1
Letn > 1. Let A be given by (3), with x,y € R". Assume
) I |V|‘J¥€A(t’x’x)”LP(dt)L‘I(dx) < [Ao(x.y) “Hs(dxdy)

for some o« >0, s >0. Then p > 2 and q > 2.

THEOREM 1.2
Letn > 1. Let T be given by (5), with x,y € R". Assume
®) [IVIET (@ x,x) “Ll’(dt)L‘?(dx) <| FO(x’y)“HS(dxdy)

for some o > 0,5 >0. Then p > 2 and g > 2.

THEOREM 1.3
Letn > 1. Let G be given by (1), with x,y,z € R". Assume
(€ ”|V|gG(”x’x’)‘) ”Lp(dt)L‘?(dx) < ” Gol(x,y,2) ” Hs(dxdydz)

for some o >0, 5 >0. Then p > 2 and g > 2.

Notation. We write A < B if A < CB for some absolute constant C, A~ Bif A< B
and B < A, A Z¢ B if A < C¢B for some constant C, depending on €, where € is an
arbitrary positive number.
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2. Proofs

2.1. Proof of Theorem 1.1
2.1.1. Necessity of p > 2. Let R be a large number (which will approach oo at the end
of the proof). Let C be a fixed large number (depending on n). Let

_Ix12+yl2
FO(X, y) =e 2CR
so that

it(Ax+Ay) 1 _IxPP+iy?

10 Fo:=F(t,x,y)=——— ¢ 2(CR+in) ,
1o ¢ 2 PeERe =GRy

We think of F (¢, x, y) as the basic “vertical tube” solution to the linear Schrodinger
equation in 2n 4+ 1 dimensions which is essentially 1 if |x|,|y| < RY2,0 <t <R.
The rigorous statement is that C is chosen so that RF (¢, x, y) > % in the above range,
where R F (¢, x, y) denotes the real part of F. Also, the Fourier transform (in space) of
F is essentially supported at frequencies |£|, |n] < R™1/2.

We choose the function A(z,x,y) to be a sum of translates and modulations of

F(t,x,y) which are inclined at 45 degrees and are trained to reach the region |x| <
ﬁ’ [yl < ﬁ, R — R% <t < R with almost the same oscillation (and almost no
cancellations). The summands will have Fourier transforms essentially supported in
balls of radius R~!/2 centered at unit vectors.

Explicitly, choose roughly R"_% points (xx, yx) which are spaced at distance R'/2
from each other on the sphere |(x,y)| = R. For technical reasons, we choose only
points for which all coordinates are > %. Define (&, nx) = %.

Choose the following initial conditions:

No(x,y) =Y e/ C8FY M) Fo (x + xp, y + i)

The functions being summed are approximately orthogonal and each has L2 norm ~
R"/2.

[|Fo(x 360y + v Folx + 20,y + yp)| dx dy
(1

[ v ) —(x.y7 )12

=a"(CR)"e” 4CR
1 .
Recalling that the sum has ~ R" ™2 terms, we derive

_1
Aol L2axayy S R 4.

The same type of upper bound holds for higher order derivatives (since | (&, nx)| = 1);
thus, for each fixed s,

_1
(12) [ Aollas@xdyy S R 4.

The solution looks like

g P HIng®) .
Axy)=Y e 02 ORI M F (e x 1.y + i — )

_ e—i% Zei(x-ék+y~nk)F(t’x +xp — &,y + v — i),
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and

A x, )| =0 S TP (1 x4 g — 18,y + vk — 1) ~ R 73,
if |(x,y)] < th=, R— R2 <t < R. Thus,
€1 _1
(13) R R"™2 S| A.X.0) | 1o gy agay:
so, recalling (12), if

| AGx.x) ”Ll’(dt)L‘?(dx) S ”A()(x’y)HHS(dxdy)’
then p > 2.

Using the product rule and the lower bounds on the components of &, 1, the same
argument works for ordinary derivatives of order « = m € N.

To justify the statement for fractional derivatives of noninteger order «, do a
Littlewood—Paley decomposition in space A(Z,-,-) = P<10A(Z,-,-) + P>10A(t,-, "),
where P<jo localizes functions of 2n variables, smoothly at frequencies < 10. Then
P>10A(t,-,-) is exponentially small as R — oo. This is true for the function Fy, and
its translates by a unit vector in Fourier space.

A crude estimate is

| Po10A (.- | s Ss e VR,
For our counterexample, we use P<joA(t,-,) instead of A(z,,).

Thus, for R sufficiently large, |V™ P<1oA(t, x,y)| ~ |[V™A(t,x,y)| ~ R"3 if
[(x,y)] < 100, R—R3> <t < R. The function (P<10M)(¢, x, x) is supported, in Fourier
space, at frequencies || < 20. Denote, by abuse of notation, P<»¢ the operator localiz-
ing functions of n variables at frequencies || < 20. Let m € N, m > «. Then the oper-

ator %szo (defined in the obvious way on the Fourier transform side) is bounded
on all L? spaces, and

R R"™3 < ”V”’(Pswl\)(l’xvx) e @rao

Pl VI (PaioA) 0. x. )|

- H V]

< [IVI*(P<10A) (. x. %) “Ll’(dt)Lq(dx)’

LP(dt)L49(dx)

while
_1
| P<toAoll as(@xday)y SC"R" ™4

Letting R — oo, we conclude p > 2 as before.

2.1.2. Necessity of ¢ > 2. Let F(¢t,x,y) be the basic vertical tube solution of height R
(asin (10)). Let m > 1. Choose roughly R™" -5 points x; which are spaced at distance
~ R% in a large ball B(0, R™) of radius R™ in R”. Fix a unit vector £ € S"~ 1.

We take initial conditions

Ao(x,y) = el +y)E Z Fo(x + x,y + xx).
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Then
At,x,y) = e HE it Z F(t,x +xp —t&,y + xx —t§).

There are roughly R™"~% terms in the sum. The summands are essentially orthog-

onal (as in (11)), and each term has L2 norm ~ R"/2; thus,
IAollz2(aray) ~ R4S

On the other hand, each F(t,x + x; —t&,y + x — t§) is essentially 1 on a tube Ty
of radius R'/2 and length R in 2n + 1 dimensions and rapidly decaying out of Tk.
Note that at t = 0, T} is centered at (0, —xz, —xz ). Moreover, these tubes T are in the
same direction (1, &, &) and hence disjoint. Therefore, |A(#, x, y)| Z 1 on the union of
the tubes Ty . In particular, |A(¢,x,x)| = 1 for 0 <t < R and x € B(t&, R™). We need
only the previous estimate for 0 <7 < 1, where the claim is obvious. In addition, the
Fourier transform of A (¢, x, x) is supported (essentially) in a R_% neighborhood of the
point 2&, with |&] = 1, s0 ||V|*A(t,x,x)| Z 1 for0 <t <1 and x € B(¢&, R™). Thus,

”|V|aA(l’x’x)HLP([O,l])Lq(dx) 2R,

while [| Aol s @xdy) ~ Aol L2(ax ay) ~ Rt andm > 1, s0 q > 2 is necessary.

2.2. Proof of Theorem 1.2
The examples for I" are similar to those for A and are included for completeness.

2.2.1. Necessity of p > 2. First we take the basic “vertical tube” solution. Let

_xP+iy?
Fo(x, y) —=e 2CR
so that
it(Ax—Ay) 1 __ Ix? P
(14) e 7 Fo:=F(t,x,y) = —————¢ 2CR¥N ¢ 2CRD,
(1+(gg)?)?

The solution F(z,x, y) is essentially 1 if |x|,|y| < RY2, 0 <t < R. More precisely,
we choose a large constant C = C(n) sothat RF (¢, x, y) > % in the above range. Also,
as before, the Fourier transform (in space) of F is essentially supported at frequencies
el <RV

Pick roughly R"~2 points (xg, yx) which are spaced at distance ~ R'/? from each
other on the surface {(x, y) : |x| =|y|, % < |x| < R}. Define (&x,nx) = %(xk,yk) SO
that [ |* — | [> = 0 and | (&, ne)| ~ 1.

Take the following initial conditions,

To(x,y) =Y & 87 Fo(x + xp,y + yi),

so that the solution is
', x,y)= Z e

_ Zei(xfk—yﬂk)F([’x + Xk — &k, y + Yk — k).

2_ 2
_jp Uggl z\nk\ )

e ETY M) (¢ x 4 xp — tEk, Y + Vi — k)
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_1 . .
Since the ~ R"™2 terms in Iy are essentially orthogonal and each has L? norm
~ R"2 we get

1
IToll L2axay) S R" 4.

Moreover, since |(§x, nx)| ~ 1, there also holds

1
(15) ”FO”HS(dxdy) s R"" 4.

From the expression of I', we see that
1
ID(t.x,y)| 2 R™3 for |(x. )] < m,R _RI<i<R.
Therefore,

a1
”F(Z’X’X)HLF(dt)L‘I(dx) 2 R R'3;

so, recalling (15), if

HF(I’X’X) ”L"(dt)Lq(dx) < ” FO(x’y)HHS(dxdy)’

then p > 2. From a similar argument to the one in Section 2.1.1 (i.e., using only xg,

v for which all coordinates of & and —n; are > ﬁ), p > 2 is also necessary for

estimates of the form

”|V|§F(I’x’x)”Lp(dt)Lq(dx) < ”Fo(x’y)”HS(dxdy)'

2.2.2. Necessity of ¢ > 2. Let F(t,x,y) be the basic vertical tube solution of height R
(asin (14)). Let m > 1. Choose roughly R™ 5 points xx which are spaced at distance
~RZina large ball B(0, R™) of radius R™ in R”. Fix a unit vector £ € S"~!.

We take initial conditions

To(x,y) =e™% > " Folx + Xk, y + Xi),

so that the solution is
I, x,y)= i€ ZF(t,x + xp — €,y + xp).

Note that I'(¢, x,x) 2 1 for0 <t < 1 and |x| < R™. Moreover, the Fourier transform of
I'(t, x, x) is essentially supported in a R~1/2 neighborhood of the point £ with || = 1.
Then, the necessity of ¢ > 2 follows from the same calculation as in Section 2.1.2.

2.3. Proof of Theorem 1.3
The examples for G are similar to those in previous subsections.

2.3.1. Necessity of p > 2. First we take the basic “vertical tube” solution. Let

_Ix24y2 )22
2CR

Fo(x,y,z)=e
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so that
it(Ax+Ay—Az)

e 2 Fo:=F(t,x,y,2)
(16) 1 _Lx4iy2 1212
= : ¢ 2(CR+in ¢ 2(CR=iD) |
1+ 2= &)

The solution F(¢,x,y,z) is essentially 1 if |[(x,y,z)| < Rl/z, 0 <t < R. Also, the

Fourier transform (in space) of F is essentially supported at frequencies |(€,7, )| <
R! / 2

Pick roughly R pomts (X, Yk, Zx) which are spaced at distance ~ R'/2 from
each other on the surface {(x,y,z) : [x|> + |y|> = |z|*, & < |x|,|y| < R}. Define

(&k. e, Ck) = % Xk, Vi, Zkc) so that
& )? + Imel® = 16> and |Gk k. S| ~ 1

Take the following initial conditions,
Go(x,y,z) — Zei(x~§k+y~nk—z~fk)FO(x + Xk, Y + Vi, Z + Zk)

so that the solution is

G(t,x,y,z2)
= ORI (¢ x + xp — 6,y + Yr — ko 7+ 2k —15k)

since [ + |mi|* = |8 |*.
Since the ~ R T terms in Gy are essentially orthogonal and each has L? norm
~ R34 we get

_1
1Goll2(@xayazy S R 2 4.
Moreover, since |(&x, Nk, {x )| ~ 1, there also holds

1

17) |Goll s @xdyaz) S R2 Ed

From the expression of G, we see that
|G(t,x,y,z)| z R3”27_1 for }(x,y,z) < 1—00 R— R2 <t<R.
Therefore,

1 n—
|G x. %) | Lo arypaan) = R? RYE

Recalling (17), if

“ G(t,x,x,x) “Ll’(dt)Lq(dx) < “ Go(x,y,2) ”H‘Y(dxdydz)’

then p > 2. From a similar argument as in Section 2.1.1, p > 2 is also necessary for
estimates of the form

[IVISG (. x.x.x) “Lﬂ(dt)L‘I(dx) < “G(’(x’y’z)”Hs(dxdydz)‘
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2.3.2. Necessity of ¢ > 2. Let F(t,x,y,z) be the basic vertical tube solution of height

R (as in (16)). Let m > 1. Choose roughly R™5 points xj which are spaced at

distance ~ RZ ina large ball B(0, R™) of radius R™ in R”. Fix a unit vector § € S"1.
We take initial conditions

Go(x.y.z) =’ CPDEN" Ly (x + xp. y + Xpe. 2 + x%)
so that the solution is
G(t,x,y)

—e 5 Pl Hy—2)E ZF(t,x +xp —tE,y +xp —tE,z + x5 —t§).

_n . .
There are roughly R™"~ 2 terms in the sum. The summands are essentially orthog-
onal,and each term has L2 norm ~ R3n/ 4. thus,

mn
+73 )

(SN

1GollL2(dxdydz) ~ R

On the other hand, each F(¢,x + xx —t&,y + xp —t€,z + xi — t£) is essentially 1 on
a tube Ty of radius R'/2 and length R in 31 + 1 dimensions and rapidly decaying out
of Ty. Note that at t = 0, Ty, is centered at (0, —xx, —Xg, —Xx ). Moreover, these tubes
Ty are in the same direction (1, £, £, §) and hence disjoint. Therefore, |G(¢,x,y,z)| = 1
on the union of the tubes Tj. In particular, |G(¢,x,x,x)|Z 1 for0 <t < R and x €
B(t&, R™). Thus.

|G@.x.x.x) ”Ll’([o,l])L‘?(dx) TR

(with a similar estimate for |V|*G(t, x, x, x)), while ||Go|l frsaxdy) ~ R2+%" and

m > 1, so g > 2 is necessary.
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