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ARTICLE INFO ABSTRACT

Electrical-double-layer capacitors are one of the important devices and systems used in energy storage. In the
heart of the electrical-double-layer capacitors is the accumulation of ions/charges on the surfaces of “active”
materials. Porous materials, such as carbon nanotubes and activated carbon, have been widely used in the
electrical-double-layer capacitors due to large surface area. However, there are limited analytical solutions
available for the calculation of the capacitance of porous materials. In this work, we use spectral method to solve
linearized Poisson-Boltzmann equation under small electric potential for three different geometrical config-
urations and obtain analytical expressions of integral capacitances for slab-like structure, rectangular pore and
3D-rectangular box. The numerical results reveal that slit-like structures, such as multilayer graphene, are
preferable for the energy storage in the electrical-double-layer capacitors. We also obtain analytical expressions
of the integral capacitances for porous materials with parallel, cylindrical and rectangular-like pores of the same
cross-sectional area, respectively. The results obtained in this work can also be applied to the design of electrodes
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of mesosizes and microsizes used in supercapacitors.

1. Introduction

The interest in increasing the use of renewable and “green” energies
has stimulated the research to develop the technologies for energy
storage. Electrochemical capacitors, which is also referred to as su-
percapacitors (SCs), have the potential as the devices and systems for
energy storage due to the unique characteristics of high power density,
fast charge/discharge rate, and long cycling life [1,2]. Electrochemical
capacitors can be divided into groups: one is electric double-layer ca-
pacitors (EDLCs), which is based on accumulation of electrolyte ions on
the surface of “active” materials, such as carbon, without charge
transfer [3-5]; the other is pseudo-capacitors, which involves the
transfer of electron between electrode and electrolyte, redox reactions
and intercalation processes. EDLCs generally exhibit better long-term
cycling stability and rate performance than pseudo-capacitors [6,7].

The principle of the storage of ions/charge in EDLCs is similar to
parallel capacitors, and the capacitance of EDLCs can be calculated
from two capacitors of a compact layer (Helmholtz layer) and a diffuse
layer in a series connection. The capacitance of the diffuse layer for a
symmetric-binary electrolyte can be calculated from the Poisson-
Boltzmann equation [4,8] as
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and the corresponding boundary conditions. Here, ® is electric poten-
tial inside the diffuse layer, €  is the dielectric constant of vacuum,
€ ,is the relative dielectric constant of electrolyte, z is the valence of
ions, e is the electronic charge, Cy is the concentration of electrolyte
ions, k is the Boltzmann constant, T is absolute temperature, V is the
domain of the diffusion layer, and r represents spatial position.
Equation (1) takes account of random thermal motion of ions, elec-
trostatic interaction and spatial distribution of ions, while ions are
approximated as point charges and no short-range interactions, such as
ion-solvent and ion-ion, are considered [9,10]. The spatial distribution
of ions at equilibrium is calculated from the electric potential inside the
diffuse layer as

ct = cotsinh(—@)

kT (2)

with the superscripts of + /- representing positive/negative ions. Note
that various modifications of Eq. (1) have been proposed to include the
contributions of ionic sizes and the interaction between ions [11,12],
such as Bikerman's model [13], which generally introduce a modified
parameter, including the contribution of ionic size/steric factor, in
Eq. (1). Recently, one-dimensional Ising model has been used to analyze
electrical double layers of a flat electrode [14] and a nanopore [15].
However, the use of the Ising model in the analyses of two- and three-
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dimensional structures requires numerical calculation due to nonlinear
characteristic of the Ising model.

For small electric potential with |zed®/kT| < <1, the first order ap-
proximation of the term sinh(ze®/kT) is equal to ze®/kT, and linearized
Poisson-Boltzmann equation is obtained as

2zeCy ( zed )
€€, \ kT

V2 =
3

Currently, closed-form solutions of Eq. (1) are limited to slab-like
electrodes due to the nonlinear characteristic of hyperbolic sine. Two
approaches have been used to calculate the capacitance in the diffuse
layer for EDLCs; the first one uses either the linearized Poisson-Boltz-
mann equation of (3) for small electric potential or approximation
methods for specific geometrical shapes [16-20], including cylindrical
shape (cylinder and cylindrical pore) and spherical shape (sphere and
spherical cavity), and the other uses numerical methods to solve the
nonlinear equation of (1) and calculate the capacitance of a given
electrode [21-23]. However, there is no closed-form solution available
for rectangular electrodes in literature even for the linearized Poisson-
Boltzmann equation of (3). Note that numerical methods have been
extensively used to solve the modified Poisson-Boltzmann equations
due to the nonlinear characteristics.

It is known that active carbons are porous and have been ex-
tensively used in EDLCs. There is a wide range of topologies for the
porous structures of active carbons, including cylindrical pores and
layer structures, and most pore structures in active carbons are irre-
gular. It would be of practical importance to determine the effect of the
pore structure on the storage of ions/charge, i.e. the dependence of the
capacitance of the diffusion layer on the pore structure. In this work, we
consider three different structures of slab-like structure, rectangular
pore, and 3D rectangular box. Under the condition of small electric
potential, we use spectral method [24] to solve the linearized Poisson-
Boltzmann equation of (3) and calculate the capacitance of the diffuse
layer for all the three different geometrical structures. The dependence
of the integral capacitance on the aspect ratio of the rectangular pore
and 3D rectangular box is analyzed. Comparisons of the integral ca-
pacitances are made between the rectangular pore and a cylindrical
pore of the same cross-section area and between the 3D rectangular box
and a spherical cavity of the same volume. It needs to be pointed out
that the results presented in this work cannot be applied to the struc-
tures with characteristic dimension comparable to the size of electrolyte
ions, such as nanopores. For structures with characteristic dimension
comparable to the size of electrolyte ions, one needs to use the modified
Poisson-Boltzmann equations, which take into account the contribution
of ionic size, and numerical method in the analysis of the structural
dependence of capacitance.

2. Mathematical Formulation

The Debye-Hiickel constant, k, as a function of the concentration of
electrolyte ions is

(@
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Substituting Eq. (4) in Eq. (3) yields

Vi) = x2® ()
The boundary condition for the linearized Poisson-Boltzmann

equation is

® = @ forr € 9V (6)

where @ is the electric potential at the boundary of the diffuse layer,
oV. Introducing auxiliary variable, ¥, as ¥ = (® - @)/ @y, we have

V2P = 52 + x2 @)
and
¥ = 0oforr € 8V (8
The charge density at the boundary of the diffuse layer is calculated
as
Ploy = —€o & ae\ —€ & ‘Dod—ql
dn |y, dn s, ©)

from which the total charge stored in the diffusion layer, Q, is calcu-
lated as

Q= [ pds 10)

Using Eq. (10), the integral capacitance of the diffusion layer per
unit area is found as

Q (=" av
Cp=—— =— il
L= A0, A -/z;v dn

ds
v an

where A is the total surface area of the diffusion layer. According to
Eq. (11), the integral capacitance of the diffusion layer for small electric
potential is independent of the applied electric potential and depends
only on the geometrical structure of the diffusion layer. Note that the
proportionality between the total charge stored in the diffusion layer
and the electric potential indicates that the integral capacitance of the
diffusion layer is the same as the differential capacitance of the diffu-
sion layer for small electric potential.

3. Capacitance of diffusion layer of three different geometries

In the following analyses, we focus on three different geometries of
slab-like structure, rectangular pore and 3D rectangular box, as shown
in Fig. 1.

3.1. Slab-like structure
For a slab-like structure of 2a in the separation, the slab structure is

similar to a parallel capacitor. For the symmetric charging of the slab
structure, the electric potentials of both plates are same. The boundary
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Figure 1. Schematic of geometric configurations of electrochemical double layer: (a) slab-like structure, (b) rectangular pore, and (c) 3D rectangular box
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conditions are W|,—,=0 and (d¥/dx)|x—o = 0. Using the spectral
method, we note that the eigenfunctions and eigenvalues of the equa-
tion, d®W/dx?® = 0 are

1) mx 1)\ 2
=cos|n + — —and12=(n+—)—n=0,1,2,...
% ( Z)a " 2) a?

12)
Expanding ¥ and «? in the eigenfuctions as
Yx) = Y upth,()andx® = Y f 9, (x)
n=0 n=0 13)
we have
D) Ak + A, () = = Y f3, ()
n=0 n=0 (14)
The solutions of u, are
_ u
U, = ———"—
P+ 20 (15)
which gives the solution of the auxiliary function, W, as
= i ( 1 ) x
Yx)=— ————-cos|n + = |—
nz:;) (x + 12) 2) a (16)
Here, the coefficients, f,, are
= 4(—1)=?
"o@2n+ Dm a7)

Substituting Eq. (16) into Eq. (11) yields the integral capacitance
per unit area as

1

CyL =8¢ & ax? —_—
v o= ng() 40’ + (2n + 1)*7? (18)

3.2. Rectangular pore
For a rectangular pore of 2a in length and 2b in width, the boundary
conditions for Eq. (7) are
Ylieqg = Pl=p = 0 and (d¥/dx)|,_, = (d¥/dy)ly—g =0 (19)
The eigenfunctions for two-dimensional Laplace equation with the

boundary conditions of (19) are

Py X, ¥) = cos(n + %)% cos(m + %)%(n, m=0,1,2,..) 20)

with eigenvalues as
N 1\ 72 1\ 72
Ain=|n+=|S+|m+=| =
e (" 2) a? (m 2) b2 (21)

Following the approach used in the analysis of the electric potential
of the slab-like structure, we express the auxiliary function, W, and « as

Y(x, y) = U Yy (X, y) and1® = Jom m %> ¥)
n,gio n,mZ:O (22)

Substituting Eq. (22) in Eq. (7) yields
D A+ Oty () = = D fr B (6, )
n,m=0 n,m=0 (23)
The solutions of u,,, are

_ Jom
(2 + A 24)

unm -

which gives the solution of the auxiliary function, W, as

s 1, 1\ mx 1\ 7y
W(x,y)=— ”7’”cos(n + —)—cos(m + —)—
n,mz=0 (K2 + /13,") 2)a 2/ b (25)
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Here, the coefficients, f,,, are
f _ 16(_1)n+mK2
"meo2n + 1)2m + 1) (26)

Substituting Eq. (25) into Eq. (11) yields the integral capacitance
per unit area as

_l6ab g € x? Z 1 1 + 1
L= @+ by @+ 22\ @m + 12 T (2n + 122

n,m=0
(27)

For the limiting case, b—<, we have A\,,—\,. Equation (27) is
simplified to as

166 € ¥ w 1
o=t 2 Qm + 120 + 12)
n,m=0 n
26 &1 v 1
a n,m=0 (Kz + Ar%) (28)

which is the same as Eq. (18). Note that the following equality is used in
obtaining Eq. (28).

2

- 1
HZ:;) en+1? 8 (29)

3.3. 3D Rectangular box

For a 3D rectangular box of 2a in length, 2b in width and 2¢ in
depth, the boundary conditions for Eq. (7) are

Wlieq = Pli=p = ¥ly=c = 0and (d¥/dx)|,_,
= (d¥/dy) | =0 = (d¥/d2)|_, = 0 30)

The eigenfunctions for three-dimensional Laplace equation with the
boundary conditions of (30) are

1)\ mx 1\mny 1\7z
x,y,z)=cos|n+ = |—cos|m+ = |—=cos[p + = | =
Yan 5.3, 2) ( Z)a ( 2)b (p 2)0
(n,m,p=0,1,2,..) (31)
with eigenvalues as
2 1\2 72 1)\ 2 1\ 2
Mw=ln+=] S+ [m+=] = +[p+=]| =
nmp (" 2) @ (m 2) b (p 2) 2 (32)

Following the approach used in the analysis of the electric potential
of the rectangular pore, we express the auxiliary function, W, and « as

Y(x,y,2) = Z Unip Y (X, ¥, 2) and x? = Z Samp $ump 5 Y5 2)

n,m,p=0 n,m,p=0
(33)
Substituting Eq. (33) in Eq. (7) yields
0 0
D Ay + ) Py @ 12 == D S By X ¥ 2)
n,m,p=0 n,m,p=0 (34)
The solutions of um, are
u _ f;'tmp
M0+ D) (35)
which gives the solution of the auxiliary function, W, as
¥(x, y, 2)
< J;
=- Z Znimzcos(n + l)Ecos(m + l)ﬂ cos(p + l)E
1 p=0 (* + Amp) 2/ a 2) b 2/ ¢
(36)

Here, the coefficients, fump, are
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_ 64(_1)n+m+p7<2
T Cn+1D2m + 1)(2p + D7’ 37)

f;tmp

Substituting Eq. (36) into Eq. (11) yields the integral capacitance
per unit area as

2 (o)
Cp = 128abc €, €, z 1 )
m*(ab + be + ac) | 0 x* + A,fmp)(Zn + 1)?(2m + 1)?(2p + 1)?
(38)

@n+12 (@m+1?  (@2p+ 1)
( 2 + b2 + o2 )

For c— <o, there is Aypp—Anm. Equation (38) reduces to

CIL
166 & K2\ 1
(a+bm? o2, @n+1DEm + D2+ A,
(Zm +la  2n+1 2)
2n+1b 2m+1la (39)

which is the same as Eq. (27). Note that Eq. (29) is used to simplify
Eq. (38) to Eq. (39) for c—co.

4. Numerical calculation

As pointed out in the introduction, the only closed-form solution of
the nonlinear Poisson-Boltzmann equation of (1) available in literature
is for the slab-like structure, and the closed-form solutions of the line-
arized Poisson-Boltzmann equation of (3) available in literature are for
the slab-like structure, cylindrical shape (cylinder and cylindrical pore)
and spherical shape (sphere and spherical cavity). Here, we limit the
following discussion to the linearized Poisson-Boltzmann equation of
(3).

For the slab-like structure with small electric potential and sym-
metric charging, i.e. ®|x—,=®o and (d®/dx)|x—o = 0, the solution of
Eq. (3) can be easily found as

coshxx
% coshxa (40)

which gives the integral capacitance per unit area as

o
CyL = — = & &) xtanhxa
IL q)() r <0 (41)
Figure 2 shows the variation of the integral capacitance per unit
area of the slab-like structure with the parameter of ka. For the purpose
of comparison, both the results of Eq. (18) and are depicted in Fig. 2. It

1 : ]

0.8 |- i
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w
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C 04| J

02 L ——Eq. (41) 4

O Eq. (18)
0k 1 I 1 I
0 1 2 3 4 5
Ka

Figure 2. Variation of integral capacitance per unit area with ka for slab-like
structure (The solid line represents the analytical solution, and the square
symbols represent the spectral solution.)

Journal of Energy Storage 30 (2020) 101477

is evident that the spectral solution of (18) is in good accord with the
analytical solution of (41). For large value of ka, the interaction be-
tween two plates is negligible, and the integral capacitance per unit
area approaches € o € ,« for a single plate. The spectral method pro-
vides an approach to obtain the solutions of the linearized Poisson-
Boltzmann equation and the analytical expressions of the integral ca-
pacitance of some geometrical structures.

Consider a straight pore of A in cross-sectional area. For a cylind-
rical pore, the radius of the cylindrical pore with A in cross-sectional
area is (A/m)"/?, and the integral capacitance per unit area for small
electric potential is

hGVAT)
In(kJA/T) (42)
where Iy(*) and I,(+) are the modified Bessel functions of the first kind of

the zeroth and first order, respectively. Using Eq. (42), we obtain the
integral capacitance per unit length of the cylindrical pore as

L(xJA/T)
In(kJA/7) (43)

For a rectangular pore of A in cross-sectional area, a = A/4b,
Eq. (27) becomes

CIL =€ €y K

C] = 27TVCIL =2 €, € KA -

C

326 & JAR? i
a/b + \bla)m* iz

2 2\"1
(A;c2 + (2n + 1)2”—b + (2m + 1)2%) .
a

(44)

b + a
@2m + 1% (2n+ 1)%
and the integral capacitance per unit length of the rectangular pore is

G=4(a+b)Cy
2 & 2 2\-1
_ & & A D (sz +(n + l)sz +(m + 1)2%) .
a
0

nm=

(45)

b + a
@2m+1)%a  (2n+ 1)%

Figure 3 shows the variation of the integral capacitance per unit
length of the rectangular pore with the parameter of «/A for different
aspect ratios of a/b. For comparison, the variation of the integral ca-
pacitance per unit length of a cylindrical pore with A in cross-sectional
area for small electric potential (Eq. (43)) is also included in Fig. 3. It is
evident that all the integral capacitances per unit length increase with

25

12
kA

Figure 3. Variation of integral capacitance per unit length of a rectangular pore
with cross-sectional area for different aspect ratios of a/b.
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Figure 4. (a) Variation of integral capacitance of a 3D-rectangular box with volume for different combinations of the ratios of a/b and a/c, and (b) variation of
integral capacitance of a 3D-rectangular box with volume for different ratios of a/b with b=c.

the increase of the cross-sectional area, as expected, which can be at-
tributed to the increase of surface area with the increase of the cross-
sectional area. From Fig. 3, we note that the integral capacitance per
unit length of the rectangular pore with the same cross-sectional area
increases with the increase of the aspect ratio of a/b and is always
larger than the cylindrical pore of the same cross-sectional area. Such
behavior is due to that the cylindrical pore has the smallest surface area
for the same cross-sectional area, and the surface area of a rectangular
pore of a given cross-sectional area increases with the increase of the
aspect ratio. Note a square pore, i.e. a=b, has the smallest integral
capacitance among all the rectangular pores of the same cross-sectional
area since 4(a+b)= 4A'/? with the equality being held at a=b. These
results suggest that rectangular pores of the same cross-section areas
with large aspect ratios are preferred for the storage of ions, since more
active sites are available for ions. That is to say, multi-layer structures,
such as multilayer graphene, are preferred for supercapacitors. This
trend can be illustrated as below from the calculation of the perimeters
of a cylindrical pore and a rectangular pore of the same cross-section
area, A.
The perimeter of a cylindrical pore, L., is

L. =2J7A (46)
and the perimeter of a rectangular pore of 2a X 2b, L,, is
L=2 yab>adA>1 =2/mA

"Tb - ¢ 47)

It is evident that increasing the aspect ratio of a/b increase the
perimeter of the rectangular pore, leading to the increase of the active
sites for the storage of ions.

Consider a cavity of V in volume. For a spherical cavity of V in
volume under small electric potential, the integral capacitance per unit
area is

1
Cp = € € x|coth[x BV /4m)/3] = ———
i 0 ( DGV 1)) = s s
and the integral capacitance of the spherical cavity is
2, 3V °3 h / 1/3 1

C=4nr<Cyp =4r €, €y x| — coth[x(3V /4 -
1 Trty 0 (4”) [x( )] KV /4m)3

(49

For a 3D rectangular box of V in volume, abc = V/8, Eq. (38) yields
the integral capacitance per unit area as

C

256 € € VY% | (be )3 ac 3 ab 3T
== la) &) &

- 1
n,r%:o @2n + 1)’Cm + 1)*(2p + 1)?

(50)
2/3 2/3
V2352 4+ (2n + l)znz(b—c) +(@m + 1)2ﬂ2(ﬂ) .
a2 bZ
2/3T1
+ (2p + l)znz(a—l;) }
c
2/3 2/3 2/3
[(Zn + 1)2(1’—2) +(Qm + 1)2(3) +p+ 1)2(“—b) ]
a b? c?
and the integral capacitance of the rectangular box is
C; = 8(ab + bc + ac)Cy (51)
_ 512 & Wi? i 1 .
B 4 iy (@n 4+ 1% @m + 1)*(2p + 1)

2/3 2/3
[V2/3K2 + (2n + 1)27r2(b—§) +(Cm + 1)2712(%) .
a

2/371
+Cp+ 1)2n2(‘2—f) }

2/3 / 2/3
[(Zn + 1)2(%) +(2m + 1)2(%)2 ’ + (2p + l)z(j—?) ]

Figure 4a shows the variation of the integral capacitance of a 3D
rectangular box with the volume of the cavity for different combina-
tions of the ratios of a/b and a/c. It is evident that the all the integral
capacitances increase with the increase of the cavity volume, as ex-
pected, which can be attributed to the increase of the surface area with
the increase of the cavity volume. For the same cavity volume, the in-
tegral capacitance is dependent on the ratios of a/b and a/c. According
to Fig. 4a, we note that decreasing the ratios of a/b and a/c leads to the
increase of integral capacitance, i.e. the 3D rectangular cavity with the
ratio of side length to width approaching zero is more efficient in the
storage of ions for electrical-double layer capacitors. Note a cubic box,
i.e. a=b=c, has the smallest integral capacitance since 8(ab +bc +ac) =
6V>/3 with the equality being held under a=b=c.

Figure 4b depicts the variation of the integral capacitance of a 3D
rectangular box with the volume of the cavity for different ratios of a/b
with b=c. For comparison, the variation of the integral capacitance of a
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spherical cavity with V in volume for small electric potential (Eq. (49))
is also included in Fig. 4b. It is evident that the integral capacitance of
the 3D rectangular box is always larger than the spherical cavity of the
same volume. Such behavior is due to that the spherical cavity has the
smallest surface area for the same cavity volume. Under the condition
of b=c, the integral capacitance of the 3D rectangular box increases
with the increase of the ratio of a/b i.e. the 3D rectangular box with a
sheet-like cavity possesses the largest capacitance. Such a result sug-
gests that sheet-like structures, such as multilayer graphene, are pre-
ferable for EDLCs in comparison to spherical cavity and cylindrical
channels/pores. Note that the numerical result also reveals that the
integral capacitance of the 3D rectangular box with b=c< <a is the
same as that with b=c> >a, suggesting again that the sheet-like
structure is the preferable structure for the energy storage in EDLCs.
This result is in accord with that the surface area of a 3D rectangular
box increases with the increase of the aspect ratio of a/b (b=c) for the
same volume and is larger than the surface of a spherical cavity of the
same volume. Sheet-like structures possess more active sites available
for the storage of ions.

Consider a cavity of V in volume. The surface area of a spherical
cavity, S;, is

3 2/3
Ss = 47'[(—V)
ar

and the surface area of a 3D rectangular box of 2a x 2b X 2c, S,, is

(52)

1,11 23 3\
S,=8@b+bc+ac)=V|—+—+—|>26V¥3> S =4g|—V
a b ¢ 4

(53)

It is evident that decreasing one of the dimensions of the 3D rec-
tangular box can increase the active sites for the storage of ions.

Figure 5 shows the contour of the integral capacitance of a 3D-
rectangular box with xV'/3=5, It is evident that there is symmetric
feature of the contour plot about the axis of b= c. Decreasing the ratio of
a/b (a/c) under the same a/c (a/b) leads to the increase of the integral
capacitance, and decreasing the ratios of a/b and a/c simultaneously
can increase the integral capacitance relatively significantly.

5. Discussion

Practically, the materials used in EDLCs are porous materials, which
are characterized normally by porosity and tortuosity. The other

KCL/G,EO:(Xnuour(KL”B=5)

1.0
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alc
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0.2 0.4 0.6 0.8 1.0

Figure 5. Contour plot of integral capacitance of a 3D-rectangular box for kV*/
3
=5
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important parameters widely used to determine the electrochemical
performance of the “active” materials used in EDLCs are the surface
area and the fractions of micropores (<2 nm), mesopores (2-50 nm)
and macropores (>50 nm). In general, both the porosity and the sur-
face area likely co-determine the energy storage in EDLCs, and there
exists correlation between the porosity and the surface area.

For simplicity, we consider a porous material consisting of parallel,
straight pores of through thickness. The porosity of the porous material,
&, is

W _ S
TV T (54)

where V; and Sy are the resultant volume and cross-sectional area of
pore space, respectively, and Vr and S¢ are the total volume and cross-
sectional area of the porous material, including the solid and pore
spaces. Assume that all the parallel, straight pores have the same cross
section and the number of the parallel, straight pores is . Using
Eq. (54), we obtain the cross-sectional area, S, of a straight pore as

X (55)

In the following, we consider two simple geometric configurations
of the parallel, straight pores; the first one is cylindrical pores of r in
radius, and the second one is square-like pores with 2a in the side
length.

For the cylindrical pores of r in radius, the radius, r, is found from
Eq. (55) as

L (M)I/Z
4 (56)

which gives the total surface area for the parallel, cylindrical pores, St,
as

Sy = 2mryL = 2L(mySr$)'/? (57)

Here, L is the length of the parallel, cylindrical pores (the depth of
the porous material). Using Eq. (43), we obtain the integral capacitance
of the porous material, Cr¢, which consists of parallel, cylindrical pores
of r in radius, as

12 127\7!
Crc = 2 € € xL(mxSr$)"/*L [K(M) ][10 [K(M) ]]
4 4 (58)

For the square-like pores of 2a in side length, the side length, 2a, is
found from Eq. (55) as

e = [M)UZ
X (59)

which gives the total surface area for the parallel, square-like pores, S,
as

Sr = 4L(xSr¢)'? (60)

Using Eq. (27), we obtain the integral capacitance of the porous
material, Crs, which consists of parallel, square-like pores of 2a in side
length, as

Crs

646 & L 1 1 + 1
2 o x4+ 2o\ Cm + 1) (2n + 1)? 61)

with the eigenvalues, A, as

1y = 42 [(n SRR %)2](%)71 (62)

According to Egs. (58) and (61), we can conclude that the integral
capacitance of a porous material is dependent on the porosity, the cross-
sectional area and the number of pores, which determine the total
surface area (active sites) available for the energy storage. It needs to be
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pointed out that the results presented in Egs. (58) and (61) represent
the maximum capacitance achievable by a porous material for the cy-
lindrical and square-like pores, respectively, in which all the pores
possess the same cross-sectional area. There are other factors, such as
the migration rate of ions, likely determining the capacitance, which
can be achieved during electrochemical cycling.

For porous materials with different pore structures, it is very diffi-
cult, if not impossible, to obtain analytical relations between the in-
tegral capacitance and the surface area (porosity and pore distribution)
under small electric potential due to the dependence of the integral
capacitance per unit area on the pore geometry, as revealed in Figs. 3
and 4. If the pore shape for a porous material possesses geometrical
similarity, such as all pores being straight and cylindrical or square-like,
the integral capacitance can be numerically calculated under the con-
dition that the local distributions of the porosity and the pore density
are known.

As an example, we consider a porous material with parallel, cy-
lindrical pores. There are spatial distributions of both x (the number of
pores per unit area) and r (the pore radius). The integral capacitance
can be calculated as

I (xr
Cre=2r€ €l [ % d= ©3)
E 1o

with the integration over the cross section of the porous material.

6. Summary

In summary, we have brought out the importance of the geometric
configurations of pore structures of porous materials in determining the
capacity for the energy storage in electrical-double-layer capacitors
under small electrical potential. Using the spectral method, we have
solved the linearized Poisson-Boltzmann equation for three different
geometrical shapes of the pores presented in porous materials, in-
cluding slab-like structure, rectangular pore and 3d-rectangular box,
and obtained analytical expressions of the integral capacitances of the
three different geometrical shapes under small electric potential.

We have performed numerical calculation of the integral capaci-
tances for the three different geometrical shapes. The numerical results
for the slab-like are the same as those from the closed-form solution,
validating the spectral method used in calculating the integral capaci-
tances of porous materials under small electric potential. For the rec-
tangular pore, the integral capacitance of the pore is always larger than
the cylindrical pore with the same cross-sectional area. Increasing the
aspect ratio of the rectangle-like pore increases the integral capacitance
of the pore. For the 3D-rectangular box, the integral capacitance of the
3D-rectangular box is always larger than the spherical cavity with the
same cavity volume. Increasing the aspect ratios of the 3D rectangular
box increases the integral capacitance of the 3D rectangular box. It
needs to be pointed out that the results obtained in this work also can
be applied to the design of electrodes of mesosizes and microsizes, and
are limited to the structures in which the effect of ionic size is negli-
gible.

For porous materials with parallel, straight pores, we have devel-
oped analytical expressions for the integral capacitance as the functions
of the porosity, the number of pores and the cross-sectional area for
cylindrical and rectangular pores. A general method has been proposed
to calculate the integral capacitance of a porous material if the pores
are straight and the pore morphologies are similar.
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