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ABSTRACT

The progress in the fabrication of carbon-nanotube-based structures has made it possible to use Ra-
man spectroscopy to measure the deformation states of carbon nanotubes and abutting materials. In this
work, we investigate the effects of laser power and surrounding materials on the Raman shift of carbon-
nanotube (CNT) papers for the laser intensity in a range of 0.071 to 1.415 kW/mm? without action of
mechanical loading. Two different configurations of the CNT papers are used in the Raman measurement;
one uses a suspended CNT paper, and the other places a CNT paper on a glass or aluminum substrate.
The experimental results reveal that there exist combinational effects of the laser power and abutting
materials on the changes of the wavenumbers of the D, G and G’ bands of the CNT papers. We derive
an analytical relation between the strain components, temperature and the change of the wavenumber
of the Raman peak, which yields a proportional relationship between the change of the wavenumber of

the Raman peak and the laser power. Such a relationship is supported by the experimental results.

© 2020 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Raman spectroscopy, a non-destructive technique for chemical
analysis, has been extensively used to study structural changes un-
der a variety of external stimuli [1]. In the heart of Raman spec-
troscopy is the Raman scattering due to the interaction between
electromagnetic wave and chemical bonds of materials. The change
in the relative distance and orientation between atoms due to lo-
cal deformation, such as stretch, twist, etc., can cause the change
in chemical bond strength of materials, leading to the change in
the interaction between electromagnetic wave and the chemical
bonds of materials and the shift in the Raman peak positions from
the change in the frequencies of Raman-induced phonons and/or
molecular vibrations [2].

In general, the deformation state of a material is dependent
on temperature and stresses. Using the principle for deformation-
induced Raman shift, Raman spectroscopy has been used in the
stress analysis of semiconductors [3, 4], carbon nanotubes [5, 6]
and graphene [7-9] and the temperature measurement [10, 11].
Huang et al. [12] studied the temperature dependence of the Ra-
man spectra of carbon nanotubes (CNTs), active carbon and highly
ordered pyrolytic graphite with different excitation powers and ob-
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served red shift of the Raman peaks with the increase of temper-
ature. They did not analyze the effects of laser power on the shift
of the Raman peaks and provide the substrate information. Using
laser intensity in a range of 1 to 100% of 10° W/cm?, Zhang et al.
[13] studied the effect of laser intensity on the Raman spectra of
single-wall carbon nanotubes (SWCNTs) under the laser irradiation
of 514.5 nm in wavelength. They found that increasing the laser in-
tensity caused red shift of the Raman peak of G band, while they
did not provide the information of substrate. Steiner et al. [14] ob-
served red shifts of both G* and G~ bands of CNTs in CNT-based
field-effect transistors with electrical power (the phonon tempera-
ture is a linearly increasing function of electrical power), suggest-
ing the temperature effect on the shift of the Raman peak. Sharma
et al. [15] studied temperature-dependent Raman spectra for tem-
perature in a range of 173 to 723 K. Their results suggest that
the width for the G band of MWCNTs is relatively independent
of temperature. Using Raman excitation spectroscopy, Steiner et al.
[16] compared the Raman spectrum of suspended SWCNTs with
the Raman spectrum of the SWCNTs on SiO,-substrate for laser
intensity in a range of 1.5 to 180 kW/cm?. They found that the
wavelength of the Raman peak corresponding to G band was rela-
tively independent of the laser intensity for the SWCNTs on SiO,-
substrate and decreased with the increase in the laser intensity for
the suspended SWCNTs. They commented the laser-induced heat-
ing without providing the reason for the shift of the Raman peak.
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Fig. 1. Schematic of two configurations used in the Raman measurement: (a) a suspended CNT paper, and (b) a CNT paper supported on a solid substrate.

Li et al. [17] found that the tension of CNT-papers led to slight red
shift of G’ band. All these results suggest that there exist the ef-
fects of temperature and deformation on the characteristics of the
Raman spectrum of CNTs and CNT-based structures. It is of great
importance to study if there exist the dual effects of laser irradia-
tion on the characteristics of the Raman spectrum of CNTs.

Considering the potential of CNTs as electronic, photonic and
structural materials, we study the effect of laser power on the Ra-
man shift of CNT-papers. Two different configurations, as shown
in Fig. 1, are used in this work; the first one uses a suspended
CNT paper, and the second one places a CNT paper on a solid sub-
strate. To examine the possible effect of heat conduction, we use
aluminum and glass substrates to support the CNT paper. Note that
the thermal conductivity of aluminum is much larger than soda-
lime glass. The variations of the three bands of D, G and G’ with
laser power (intensity) are presented.

2. Experimental detail

The CNT papers used in this work were from Suzhou Insti-
tute of Nano-tech and Nano-bionics, (Suzhou, China). The CNT
papers consisted of disordered carbon nanotubes in non-woven
form [18], and the thickness of the CNT papers was ~8 pum. Glass
slides of 75 mm in length and 25 mm in width were from VWR
International (Radnor, PA), and a large plate of aluminum alloy
(AA6061) were from Alfa Aesar (Ward hill, MA). Aluminum plates
of 75 x 35 x 6.35 mm? in dimensions were cut from the large alu-
minum plate. Both the glass and aluminum plates were cleaned in
acetone (ACS reagent, >99.5%) ultrasonically and rinsed in deion-
ized (DI) water for 10 min, sequentially. The plates were then
placed in an oven to evaporate the residual of water. prior to the
placement of a CNT paper on the surface of the plates.

Two different configurations, as shown in Fig. 1, were used for
the Raman measurement. The first one (Fig. 1a) used a suspended
CNT paper, which was supported simply on edges; the second
one (Fig. 1b) placed a CNT paper on the surface of either glass
or aluminum plate. The Raman spectrum of the CNT papers was
collected on a DXR Raman Microscope (Thermo Scientific, DXR3)
with a laser wavelength of 532 nm, spectral resolution of 2 cm™!
FWHW (full width at half maximum), in-plane spatial resolution of
1 pum and depth resolution of 2 um. Thermo Scientific OMNIC™
software was used for instrument control and data acquisition. The
Raman measurement for the same laser power (intensity) was re-
peated five times at five different positions, which were selected
randomly. Five different laser powers of 0.5, 1, 2, 5 and 10 mW
were used to analyze the effect of laser power (intensity) on the
Raman shift. The size of laser spot was ~3 um, and the peak laser
intensities corresponding to the laser powers of 0.5, 1, 2, 5 and
10 mW were 0.071, 0.142, 0.283, 0.708, and 1.415 kW/mm?, respec-
tively. Note that there were no structural damages to the CNT pa-
pers under the laser irradiation with the laser intensity equal to or
less than 1.415 kW/mm?2.

The structure of the CNT papers was analyzed on a scanning
electron microscope (SEM) (Hitachi S4300, Japan) and a transmis-

sion electron microscope (TEM) (Talos F200X, ThermoFisher Scien-
tific, Waltham, MA).

3. Results

Fig. 2 shows SEM images of the CNT papers under different
magnifications. It is evident that long and smooth CNTs of different
sizes/radii are randomly entangled together and in contact with
adjacent CNTs to form a mat-like structure. There are empty spaces
(pores) around the CNTs, and some CNTs are “welded” together to
form “knots”. The intimate contact between the CNTs warrants that
the CNT papers are a good thermal conductor.

Fig. 3 depicts TEM and HRTEM images of the CNTs in a CNT
paper. It is evident that the CNTs are presented in a tubular-like
structure with a hollow core (Fig. 3a). There are Fe nanoparticles,
which are randomly distributed over the CNTs (Fig. 3a and b). The
Fe nanoparticles were the catalyst used in the production of the
CNTs. The HRTEM image (Fig. 3c) reveals that there are very few
defects in the CNTs and the CNTs exhibit a high degree of crys-
tallinity. The d-spacing is 0.33 nm, representing the (002) plane of
graphitic structure.

Fig. 4 presents the Raman spectra of the CNT papers with and
without solid substrate for different laser powers. There are three
peaks presented in the wavenumber range of 1000 to 3000 cm™!,
which correspond to D (~1350 cm~!), G (~1583 c¢cm~!) and G
(~2692 cm~1) bands, respectively. To illustrate possible shift of the
Raman peaks with the laser power/intensity used in the Raman
measurement, we replot the Raman spectra of individual G and G’
bands of the CNT papers (Fig. 4-a2-3, 4-b2-3 and c2-3). It is ev-
ident that there indeed exists the red shift of the Raman peaks
with the laser power/intensity. That is to say, the wavenumbers of
the corresponding Raman peaks are likely dependent on the laser
power/intensity used in the Raman measurement.

From Fig. 4, we determine the wavenumbers of the correspond-
ing Raman peaks. Fig. 5 shows the variations of the wavenumbers
of D, G and G’ bands with the laser power. For the suspended CNT
papers, the laser irradiation with the laser power equal to or less
than 2 mW has statistically no effect on the wavenumbers of all
the three Raman peaks. However, the wavenumbers of all the three
Raman peaks decrease with the increase of the laser power for the
laser power in the range of 2 to 10 mW. For the CNT papers on
glass slide, the wavenumber for the D band is statistically inde-
pendent of the laser power for the laser power in the range of 0.5
to 10 mW. Both the wavenumbers of the G and G’ bands decrease
with the increase of the laser power for the laser power in the
range of 0.5 to 10 mW. For the CNT papers on aluminum plate, the
laser irradiation with the power equal to or less than 2 mW has
statistically no effect on the wavenumbers of the D and G bands.
However, the wavenumbers of both the D and G bands decrease
with the increase of the laser power for the laser power in the
range of 2 to 10 mW. The wavenumber of the G’ band exhibits a
slightly different trend from those of both the D and G bands and
decreases with the increase of the laser power for the laser power
in the range of 0.5 to 10 mW. Also, the wavenumber of the D band
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Fig. 3. TEM and HRTEM images of CNTs in a CNT paper: (a) TEM image, (b) HRTEM
image with presence of Fe nanoparticles, and (c) d-spacing of 0.33 nm

is dependent on the substrate (air, glass and aluminum) with the
largest wavenumber for the suspended CNT papers and the small-
est wavenumber for the CNT papers on glass slide (See Fig. Al-a.
in Appendix).

According to the above results, it is evident that the wavenum-
bers of the three D, G and G’ bands are dependent on the laser
power/intensity used in the Raman measurement, even though the
laser with a power of 10 mW is weak. Also, there exists the sub-
strate effect on the Raman spectrum of the CNT papers. To have
negligible effect of the laser power on the Raman spectrum of the
CNT papers, we need to limit laser power to be less than or equal
to 0.5 mW.

4. Discussion

It is known that both temperature and stress/strain can con-
tribute the changes of the wavenumbers of the D, G and G’ bands
of CNTs. Most works reported the decrease of the wavenumbers

of the Raman peaks of CNTs with increasing temperature [12, 19—
22], while some reported an opposite trend, i.e. increasing tem-
perature leads to the increase of the wavenumbers of the Raman
peaks of CNTs [23]. Such a different trend in the variations of the
wavenumbers of the Raman peaks of CNTs with temperature is
likely attributed to the contribution of the thermal expansion of
CNTs, since the temperature dependence of the phonon frequency
of crystal is represented by the anharmonic terms in the lattice
potential energy, including anharmonic potential constants, occu-
pation number of phonon, and thermal expansion of the crystal
[24].

Similar to the temperature effect on the changes of the
wavenumbers of the Raman peaks of CNTs, applying stress can lead
to either the decrease of the wavenumbers of the Raman peaks
of CNTs [25, 26] or the increase of the wavenumbers of the Ra-
man peaks of CNTs [17, 27, 28]. The mechanisms for the opposite
trends of the changes of the wavenumbers of the Raman peaks of
CNTs under mechanical stress remain elusive. It might be due to
the constraint of adjacent materials to the deformation of CNTs.

Assume that the CNT paper is initially at a stress-free state. Un-
der thermal and mechanical loading, the wavenumbers of the Ra-
man peaks of the CNT papers are dependent on temperature and
deformation. For the CNT papers with thickness much less than the
length and width, the stress state in the CNT papers can be treated
as plane stress. There are only three strain components, &xx, Exy
and &yy for the description of the strain state in the CNT papers,
where exx and gyy are the normal components and &y is the shear
component of the strain tensor. From the three strain components
with &,; ~ 0 due to limited change in the thickness, we obtain vol-
umetric strain, €y, and maximum shear strain, &max, as

1
&y =Ex+Eyy, and Emax = iMax|:|8xx+8yy £/ (6 — syy)z + 43|,
vV (&xx — Eyy)z + 48)%yi| (1)

Therefore, the changes of the wavenumbers of the Raman peaks
of the CNT papers under thermal and mechanical loading can be
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Fig. 4. Raman spectra of the CNT papers with and without solid substrate for different laser powers: (a) suspended CNT paper, (b) CNT paper on glass substrate, and (c)

CNT paper on aluminum substrate.

expressed in the expansion of the Taylor series to the first order of
the temperature change and the strains as

Aw; = ai(T —To) + Bivev + BimEmax (2)
with
dw; dw;
o = 8Tl . Bw= Tl and
£,=0,6max=0.T=Tp &y £,=0,6max=0,T=Tp
ow;
IBim = 38 ' (3)
max £y=0,6max=0.T=Ty

Here, w is the wavenumber of the corresponding Raman peak
of the CNT papers, T is absolute temperature, Ty is the absolute
temperature of the reference state, and the subscript, i, repre-
sents D, G or G’ band. Eq. (2) provides the basis to analyze ther-
momechanical effects on the shifts of the Raman peaks of the
CNT papers. Note that one needs to include higher-order terms in
Eq. (2) for large change in temperature and large strains.

To assess the effects of laser power/intensity on the Raman
spectrum of the CNT papers during the Raman measurement, we
assume that the laser heating of the CNT papers is an adiabatic
process. For a laser beam of P in power being irradiated to a CNT
paper with a pulse time of t and a spot area of A, the temperature
increase, AT, is calculated as

_ P (4)

cpAL

where c is the specific heat capacity of the CNT paper, p is the
density of the CNT paper, and L is the thickness. Using the data
available in literature, we have the specific heat capacity of the
CNT papers as ~0.72 J/g-K at 300 K [29] and the density of the
CNT papers as ~1.38 g/cm3 [30]. For P = 10 mW, t = 100 ns, and
A = 9/4 um? (the size of the laser beam is 3 um), the local tem-
perature increase of the CNT paper is 178 K. This numerical value
is compatible to the result reported by Li et al. [20]. Note that one
can use Stokes and anti-Stokes Raman spectra to determine local
temperature of materials from the ratio of corresponding peak in-
tensities [31, 32]. Such an approach requires the acquirement of
both the Stokes and anti-Stokes Raman spectra. Also, the calcula-
tion is based on the Boltzmann factor, which is likely dependent
on the laser power used in the measurement.

Using the thermal expansion coefficient of CNTs, we approxi-
mate the thermal expansion coefficient of the CNT papers to be
2 x 1073 K~ [33]. For the laser spot of 3 um in diameter, the in-
crease in radius for the temperature increase of 178 K is 5.34 nm
(1.78 x 1073 in strain). Such a small change in the radius of the
laser-irradiated spot suggests that the thermal deformation of the
CNT papers due to the laser irradiation can be treated as elastic,
and the theory of linear thermoelasticity prevails.

According to the theory of linear thermoelasticity [34] and
Appendix B, the strain components in the CNT papers are propor-
tional to the temperature change with the proportionalities deter-
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Figure 5. Variations of the wavenumbers of D, G and G’ bands with the laser power: (a) suspended CNT paper, (b) CNT paper on glass substrate, and (c) CNT paper on

aluminum substrate.

mined by the thermomechanical constants of the CNT papers and
substrate and the geometrical constraints. Thus, we have gy o (T -
To) and emax o (T - Tp). Eq. (2) can be rewritten as

Aw; = (a; + xvBivev + XmBim) (T — To) (6)

with yy and xm as the corresponding proportionality constants,
respectively. As discussed in Appendix B, the temperature increase
of a thin film due to a laser irradiation is proportional to the laser
power, i.e. (T - Tg) « P. Therefore, we have

Aw; = k(o + xvBivey + XmBim)P 7)

in which « is a constant, depending on the thermal properties of
the system, consisting of the CNT paper and surrounding mate-
rial. It is evident that the thermomechanical properties of the sur-
rounding material play an important role in the change of the Ra-
man shift of the CNT papers. There exists thermomechanical cou-
pling in determining the vibration of molecules under laser irradi-
ation.

Table 1 lists the thermomechanical properties of the three ma-
terials of air, glass and aluminum at 25 °C. It is evident that
there is a significant difference of thermal conductivities among
the three materials, while there is a slight difference of ther-
mal capacities. The differences in the thermomechanical properties
lead to the difference in the thermomechanical responses of the

CNT papers to the laser heating during the Raman measurements,
which likely results in the difference in the Raman shift shown in
Figs. 5 and Al.

From Fig. 5, we note that there exists a range of the laser
powers/intensities, in which the wavenumber of the correspond-
ing Raman peak is proportional to the laser power. Using Eq. (7) to
curve-fit the data in the corresponding range, we obtain the slope
of Aw;/P for each case. For comparison, the fitting curves are in-
cluded in Fig. 5. Fig. 6 shows the slopes of Aw;/P of the D, G and
G’ bands for the suspended CNT papers, the CNT papers on glass
and the CNT papers on aluminum. It is evident that the slope of
Aw;[P of the D band is significantly dependent on the abutting
materials. The largest value of the slope of Aw;/P of the D band
for the suspended CNT papers is likely attributed to the difference
in the deformation state. The deformation of the suspended CNT
papers due to the laser irradiation consists of global bending and
local deformation associated with thermal expansion in contrast to
the CNT papers on a “rigid” substrate which only experienced local
deformation mainly associated with thermal expansion. Also, the
slopes of Aw;/P of the D, G and G’ bands for the CNT papers on
the aluminum substrate are always larger than the corresponding
ones for the CNT papers on the glass substrate. This trend reveals
the possible effect of the thermal properties (thermal conductiv-
ity, thermal capacity and thermal expansion) of substrate on the
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Material ~ Thermal conductivity W/m-K  Thermal capacity J/kg-K  Thermal expansion coefficient, K~! Elastic modulus GPa  Poisson’ ratio

Air 0.02551 1007 N/A N/A N/A

Glass 0.8 800 30-60 x 107 70 0.23

Al 237 900 21-24 x 106 68 0.38
1 and laser power on the changes of the wavenumbers of the D, G

=z and G’ bands of the CNT papers.

For the suspended CNT papers, the laser irradiation with the
0.8 2 power equal to or less than 2 mW has statistically no effect on the
= = wavenumbers of all the three Raman peaks. The wavenumbers of
% 0.6 Wé .= all the three Raman peaks decrease with the increase of the laser
S 7 = power for the laser power in the range of 2 to 10 mW. For the
g é’. CNT papers on the glass slide, the wavenumber for the D band is
?.f 0.4 & statistically independent of the laser power for the laser power in
2" the range of 0.5 to 10 mW. Both the wavenumbers of the G and G’
< 02 bands decrease with the increase of the laser power for the laser

G' band

D band G band
Fig. 6. Numerical values of Aw;/P of the CNT papers with and without solid sub-
strates.

Table 2.

Numerical values of the wavenumbers of the D, G and
G’ bands for the suspended CNT papers, the CNT papers
on glass and the CNT papers on aluminum with the laser
power of 0.5 mW.

Material D band G band G’ band

Air 1354.1£0.8  1583.3+1.0  2692.94+2.2
Glass 1348.1£0.8  1584.4+0.4  2692.04+0.8
Al 1350.6+1.1 1583.1+1.3  2693.1+1.5

Raman shift of the CNT papers, since the numerical values of ther-
mal conductivity, thermal capacity and thermal expansion of the
aluminum substrate are larger than the corresponding ones of the
glass substrate.

Table 2 lists the wavenumbers of the Raman peaks of the D,
G and G’ bands for the CNT papers with and without substrate
for the Raman measurements with a laser power of 0.5 mW. It is
evident that there are no statistical differences of the wavenum-
bers of the Raman peaks of the G and G’ bands for the CNT pa-
pers with and without substrate. There are slight differences of the
wavenumbers of the Raman peaks of the D band with and with-
out substrate. These results together with the slopes of Aw;/P of
the CNT papers with and without solid substrates, as shown in
Fig. 6, suggest that a laser with a laser power equal to or less than
0.5 mW is needed if one wants to limit the combinational effects
of abutting material and laser power on the Raman shift of the
CNT papers,

5. Summary

The potential use of the Raman spectroscopy in the measure-
ment of the deformation states in CNT-based and graphene-based
materials has imposed a challenge on the understanding of the ef-
fects of abutting materials on the Raman spectrum of CNTs and
graphene. We have investigated the Raman shifts of the CNT pa-
pers with and without the support of a solid substrate (glass and
aluminum plates) for the Raman measurements with the laser
power in a range of 0.5 to 10 mW. The experimental results re-
veal that there exist combinational effects of the abutting material

power in the range of 0.5 to 10 mW. For the CNT papers on the
aluminum plate, the laser irradiation with the power equal to or
less than 2 mW has statistically no effect on the wavenumbers of
the D and G bands. The wavenumbers of both the D and G bands
decrease with the increase of the laser power for the laser power
in the range of 2 to 10 mW, and the wavenumber of the G’ band
decreases with the increase of the laser power for the laser power
in the range of 0.5 to 10 mW.

Using the strain components, we have derived an analytical re-
lation between the change of the wavenumber of a Raman peak,
temperature and strains (volumetric strain and max shear strain)
to the first order of the temperature change and the strains. In the
framework of linear thermoelasticity, the change of the wavenum-
ber of a Raman peak is proportional to the laser power, which is
supported by the experimental results. We have performed linear-
regression fitting of the experimental data. The fitting results re-
veal that there exists the possible effect of the thermal properties
(thermal conductivity, thermal capacity and thermal expansion) of
substrate on the Raman shift of the CNT papers.
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Appendix A

Fig. A1 shows the comparison of the wavenumbers of the D, G
and G’ bands of the CNT papers with and without the solid sub-
strate under different laser powers. It is evident that the wavenum-
bers of the D, G and G’ bands of the CNT papers are dependent on
the substrate used to support the CNT papers.

Appendix B. Mathematical formulation of thermoelastic
deformation of a CNT paper

Consider a thin circular plate of a in radius and h in thickness,
which can be either suspended in air (Fig. 1a) or supported on a
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Fig. A1. Wavenumbers corresponding to Raman peaks in the Raman spectra of the CNT papers under different laser powers: (a) D band, (b) G band, and (c) G’ band.

solid substrate (Fig. 1b). The thin circular plate experiences laser
irradiation around the plate center for a period of ty. The laser
power is P, and the area of the laser spot is A. The temperature
of the thin circular plate prior to the laser irradiation is the same
as the temperature of the surrounding materials.

The temperature evolution in the circular plate can be de-
scribed by the following equation

o, 10 ( 0T 0°Ty
’Olc]at_kl(rar<r8r>+8zz (B1
with initial condition and the boundary condition of top surface as
h(r.z,t)]_o=To (B2)

82 —h kl

For the suspended circular plate (Fig. 1a), the boundary condi-
tion of bottom surface is

dTy(r,z,t)
M Rl

k 97

=T -To (B4)

z=0

For the circular plate on a solid substrate (Fig. 1b), the heat con-
duction equation for the substrate is

0, , (108 (0%, 9°T
Py = k2<r8r<r8r> + 822)

The boundary conditions at the interface between the circular
plate and the substrate are

Ti(r,z,t)]|,.g = (.2, t)|,_o and

(B5)

(r,z,t)
0z

K, T _k % (B6)

z=0 z=0

Here, p, c, k are the density, specific heat and thermal conduc-
tivity of the materials, respectively, x is the fraction of the radia-
tion energy absorbed into the circular plate per unit time and unit
volume of the material, I(r) is the energy distribution of the laser
beam, and U() is the step function. The subscripts 1 and 2 repre-
sent the circular plate and the substrate, respectively.

The relation between the laser intensity and the laser power is

Iy = P/A =P/mR? (B7)

with A and Rs as the area and radius of the laser spot on the top
surface of the circular plate, respectively.

For small deformation and isotropic materials, the theory of lin-
ear thermoelasticity is applicable. The constitutive relations are
& =

tr(a)l) +ATI(i=1,2) (B8)

1 i
2 ( b2+ 3N

The quasi-equilibrium equations are

V~O’,‘=0 (Bg)

Here, it and A are the Lamé constants, and « is the coefficient
of thermal expansion.

Assuming that the radiation pressure from the laser beam is
negligible, we can approximate the top surface as a traction-free
surface. For the suspended circular plate, the bottom surface is
traction-free. For the circular plate on a solid substrate, the con-
tinuity of normal displacement component and normal stress pre-
vail if there is no separation of the circular plate from the solid
substrate.

According to Eqgs. (B1)-(B9) and the linearity of the equa-
tions, we can conclude that the temperature changes and the
stresses/strains are proportional to laser power of the laser beam
irradiating to the top surface of the circular plate.

Egs. (B1)-(B9) lay the foundation to solve the temporal evolu-
tion of temperature and stresses/strains in the circular plate for
both the configurations in Fig. 1. However, it is generally very
difficult to obtain analytical solutions of the thermomechanical
problems. Numerical methods are generally needed for solving the
thermomechanical problems.
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