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ABSTRACT

Transformer has emerged as a popular deep neural network (DNN)
model for Neural Language Processing (NLP) applications and
demonstrated excellent performance in neural machine transla-
tion, entity recognition, etc. However, its scaled dot-product atten-
tion mechanism in auto-regressive decoder brings a performance
bottleneck during inference. Transformer is also computationally
and memory intensive and demands for a hardware acceleration
solution. Although researchers have successfully applied ReRAM-
based Processing-in-Memory (PIM) to accelerate convolutional neu-
ral networks (CNNs) and recurrent neural networks (RNNs), the
unique computation process of the scaled dot-product attention
in Transformer makes it difficult to directly apply these designs.
Besides, how to handle intermediate results in Matrix-matrix Mul-
tiplication (MatMul) and how to design a pipeline at a finer granu-
larity of Transformer remain unsolved. In this work, we propose
RETRANSFORMER — a ReRAM-based PIM architecture for Trans-
former acceleration. RETRANSFORMER can not only accelerate the
scaled dot-product attention of Transformer using ReRAM-based
PIM but also eliminate some data dependency by avoiding writing
the intermediate results using the proposed matrix decomposition
technique. Moreover, we propose a new sub-matrix pipeline design
for multi-head self-attention. Experimental results show that com-
pared to GPU and Pipelayer, RETRANSFORMER improves computing
efficiency by 23.21X and 3.25X, respectively. The corresponding
overall power is reduced by 1086 and 2.82X, respectively.
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1 INTRODUCTION

Natural Language Processing (NLP) is an important sector of Ar-
tificial Intelligence (AI) that enables computers to process human
languages. Today, the resounding success of deep learning has
advanced NLP research by introducing different architectures of
deep neural network (DNN) models, such as LSTM [13], RNN [21],
GRU [5]. Among the DNN models for sequence-based NLP tasks,
attention mechanism is a popular and powerful tool for its ability
to handle various lengths and focus on the most relevant parts in
the sequence. Very recently, an outstanding self-attention based
model — Transformer [28] significantly reduce the path length be-
tween long-range dependencies and thus achieve state-of-the-art
performance in many transduction tasks.

Nevertheless, Transformer models that have already optimized
for simplicity still require considerable computational resources
owing to the complicated nature of the NLP sequences. For in-
stance, the original Transformer model proposed in [28], which
is the backbone of many designs [1, 30, 34], has 65M parameters.
As another example, the popular pre-trained model BERT [6] has
108M parameters. ALBERT [16] proposes to prune the parameters
and reduce the total parameter number down to 12M with a 2.2%
accuracy degradation. Structure-level optimizations have also been
developed, such as replacing the sequential model with an average
attention model [34], exploring non-autoregressive decoders [9],
and sharing the weights between adjacent layers [30]. However,
the structural adjustments incur either the loss of intrinsic word
dependencies in the model or a more complicated training process.
Moreover, these acceleration methods do not consider hardware
characteristics.

In order to boost Transformer inference performance without
forfeiting accuracy, mobile and embedded systems start to adopt
energy-efficient domain-specific hardware accelerators. A major
performance bottleneck — the heavy use of dot-product attention
in auto-regressive decoders [30], requires special handling during
the acceleration. Frequent moving intermediate data back and forth
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between memories and processing units should also be reduced to
improve energy efficiency.

We identify processing-in-memory (PIM) as an effective architec-
ture to accelerate the execution of Transformer through performing
the computation within memory macros. PIM dot-product engines
can be efficiently implemented using resistive random-access mem-
ory (ReRAM), a type of emerging nonvolatile memory [4, 29]. Prior
ReRAM-based PIM works [20, 24, 27] have demonstrated their
potentials in performing vector-matrix multiplications (VMM) com-
pared with pure CMOS accelerator architectures. However, the
existing designs only support general CNNs and RNNs, and cannot
be directly applied to Transformer due to the following reasons:

o Transformer has to perform many matrix-matrix multiplica-
tion (MatMul) operations, in which both matrices are inter-
mediate results from the previous layers. Prior works require
writing these intermediate results onto the computing de-
vice. Such operations may pause the computation process
and degrade speed and energy efficiency.

o The existing CNN accelerator designs mainly focus on fully-
connect (FC) and convolutional (CONV) computations as
these two layers dominate the computational cost. How-
ever, Transformer involves different computations that are
introduced by scaled dot-product attention.

e Most of the previous accelerator pipeline designs are at the
layer granularity. The pipeline design of Transformer accel-
erator, however, needs to focus on a finer granularity.

To combat these challenges, in this paper, we propose RETRANS-
FORMER, a ReRAM-based PIM architecture to accelerate Transformer
for NLP sequence tasks. RETRANSFORMER uses matrix decomposi-
tion to avoid writing the intermediate results and remove the data
dependency. Besides, RETRANSFORMER is particularly designed to
support the scaled dot-product attention in Transformer. RETRANS-
FORMER also designs a sub-matrix pipeline to further improve the
throughput.

The main contributions of our works can be summarized as
follows:

(1) We propose RETRANSFORMER, a ReRAM-based PIM architec-
ture for Transformer inference acceleration. We also evaluate
the power and energy efficiency of RETRANSFORMER W.r.t.
GPU platform and existing ReRAM-based designs.

(2) We propose optimized MatMulthat uses matrix decompo-
sition in scaled dot-product attention to eliminate the data
dependency and reduce the computation latency.

(3) We exploit in-memory logic techniques to implement ReRAM-
based hybrid softmax in order to save the system power
consumption.

(4) We propose a sub-matrix pipeline design at a fine granularity
for Transformer inference.

The remainder of this paper is organized as follows: Section 2
introduces the backgrounds about Transformer model and ReRAM-
based PIM designs; Section 3 explains the motivations of RETRANs-
FORMER design; Section 4 presents the overall architecture and
implementation of RETRANSFORMER; Section 5 presents our ex-
perimental setup, results, and discussion; Section 6 concludes our
work.
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2 BACKGROUND
2.1 Transformer Model

Self-attention based neural models [28] are under intense investi-
gation in the field of NLP thanks to its excellent performance in
capturing semantic dependencies between words. With the help of
transfer learning, pre-trained language models, such as BERT [6]
and XLNet [31], have largely improved state-of-the-art performance
in various NLP tasks: the multi-head self-attention of Transformer
can connect the input and output sequences of length n with O(1)
operations. As a comparison, traditional sequential models (e.g.,
RNN, LSTM, etc.) require O(n) operations to complete the same
function. In this part, we introduce the structure and methodology
of Transformer model.

2.1.1  Transformer Model Structure. Transformer is composed of an
encoder stack and a decoder stack, which share a similar module
structure. Take the structure in [28] as an example, the encoder
has a stack of 6 identical blocks, as shown in Fig. 1(a). Each block
consists of two major functional modules: multi-head self-attention
and feed forward, as respectively shown by the light-red block and
blue blocks in Fig. 1(b). After each of these two major functional
modules, there is a residual block to add the input and the output
and perform layer norm calculation, as depicted by the green blocks
in Fig. 1(b). The multi-head attention layer takes input from the
input embedding or previous encoder block. The decoder stack also
consists of 6 identical blocks but each decoder block consists of three
major functional layers, including two multi-head self-attention
layers and a feed forward layer, as shown in Fig. 1(c). Compared
with the encoder block, the decoder block has an extra encoder-
decoder self-attention module which has one input connected with
the output from the encoder stack.
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Figure 1: Transformer model structure: (a) encoder and de-

coder stacks, (b) encoder structure, (c) decoder structure, (d)
calculations in multi-head self-attention module.
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2.1.2  Transformer Model Methodology. As shown in Fig. 1(d), each
head in the multi-head self-attention layer contains three trainable
matrices, namely, Query matrix WQ, Key matrix Wk ,and Value
matrix Wy in linear layers. Queries Q, Keys K and Values V are
generated by multiplying input sequence X = [Xp, Xi, ...X,]| with
the Query, Key and Value matrices correspondingly as:

QK V=X WgX WgX- Wy, (1)

Here X € R™dmodel, W, Wy € Rmoderdk Wy e RmoderXds,
QK € R™dk v ¢ R™do ¢ . dy. dy are the dimensions of
model, key, and value, respectively. These layers are linear layers
as shown in Fig. 1(d). Here multi-head self-attention mechanism is
applied to improve performance by enabling the model to focus on
different positions. The attention score is calculated using scaled
dot-product attention layer, i.e.,

T

v
k

where the result € R%*4>_This scaled dot-product attention layer

contains MatMul, scale, and softmax functions. The first MatMul

multiplies matrix Q with matrix K. Scale multiplies the MatMul

result with a scaling factor —=. Softmax for a di-dimensional

Attention(K, Q, V) = softmax( Q

) Vi
vector is calculated as:
e*i
softmax(x;) = N a— 3)
Zjil e’

The second MatMul multiplies softmax result with matrix V. Multi-
head attention result is achieved by multiplying the concatenation
over the attention results of every head and weight matrix W as:

MultiHead(Q, K, V) = Concat(headl, .,headh) -Wo,

where head’ = Attention (X . WQi,X . WKi,X . in) .
@
Here h is the number of heads in multi-head attention. WQ’, Wk'! €
RmoderXdi Wyi € RimoderXdo W € RhdoXdmodel The outputs
of self-attention are then passed through the position-wise feed
forward layer according to

FEN(X) = max(0,X - W1 +b1) - Wy + by, (5)

where Wy € RémodetXdrf W, € RAff*dmodel and the result FFN(x) €

Rémode! Here d ¢ is the dimension of the hidden layer.

2.2 ReRAM-based PIM Designs

ReRAM is one of the most promising emerging nonvolatile mem-
ories featuring high density, low access energy, and feasibility of
realizing multi-level cell and 3D integration [17]. A single ReRAM
device stores binary or multi-bit information in the form of pro-
grammable conductance. A crossbar array of ReRAM has multiple
word lines (WLs) and bit lines (BLs) that are orthogonal to each
other. With the help of peripheral circuits, ReRAM crossbar ar-
rays support PIM operations including ReRAM-based VMM and
in-memory logic. In this section, we provide the basics of these
operations as well as the existing architectures of ReRAM-based
PIM designs.
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Figure 2: ReRAM-based vector-matrix multiplication.

2.2.1 ReRAM-based Vector-Matrix & Matrix-Matrix Multiplication.
Fig. 2 depicts a VMM operation conducted in a heuristic example
of a 4 X 4 ReRAM crossbar array. The conductance of each ReRAM
cell represents an element in a matrix [14]. An input voltage vector
Vi = [vo, v1, v2, v3] is fed to the WLs. According to Kirchhoff’s law,
the output current generated through the jth BL i j is

3 3

b= D g — 200 ©

i=0

where R(i, j) and G(i, j) are respectively the cell resistance and
conductance at the intersection of i WL and j* BL. By organizing
all of G(i, j) and I; in a matrix (or vector) as G and I, VMM can
be expressed as I = Vj - G. The above VMM operation can be
completed in one read cycle. To execute MatMul, the input matrix
can be separated into input vectors, and then multiple VMMs are
performed to obtain the MatMul results.

2.2.2 ReRAM-based In-memory Logic. Binary ReRAM can be used
to implement in-memory logic [10, 15]. Fig. 3(a) depicts the op-
eration principle of ReRAM-based in-memory NOR logics. The
conductance values of cell “A” and “B” represent the inputs. In the
tables of Fig. 3, “1” refers to high conductance, “0” refers to low
conductance, and “X” refers to unknown status. The output cell
is initialized to “1” first. In cycle 1, the p terminals of the input
cells are set to an execution voltage Vy yor, while the p terminal
of the output cell is grounded. As a result, the output cell will be
programmed to “0” if there exists at least one “1” among cell “A” and
“B”. Similarly, the XOR implementation is shown in Fig. 3(b). The
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Figure 3: ReRAM-based in-memory logic: (a) NOR, (b) XOR.
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execution voltages used in cycle 1 and 2 are V) og and Vo NaND, Te-
spectively. Additionally, ReRAM in-memory logic implementation
for INV, OR takes one and two cycles, respectively [10].

2.2.3  Prior ReRAM-based PIM designs. ReRAM-based PIM designs
accelerate the execution of neural network models with high power
efficiency. PRIME [4] and ISAAC [24] designs utilize ReRAM to
accelerate the inference of CNNs. Pipelayer [27] enables neural
network training with ReRAM, and further optimizes the computa-
tion latency by using pipelined stages and balancing computation
resources. A ReRAM-based PIM design for RNN [20] extends to
RNN acceleration with multiplier arrays and special function units
to handle element-wise multiplication and nonlinear functions.
Even though the above ReRAM-based PIM designs have explored
CNN/RNN accelerations, none of these works can directly acceler-
ate Transformer.

3 MOTIVATIONS

In this part, we discuss the intrinsic challenges in designing a
ReRAM-based PIM architecture for Transformer acceleration with
enhanced efficiency.

Intermediate Result Challenge: Transformer needs to keep
many intermediate results during the execution. As shown in Fig. 4(a),
the two operands Q and KT of MatMul in Fig. 1(d) are both obtained
as intermediate results generated from previous layers. To calcu-
late the subsequent Q - KT, one of these two matrices has to be
loaded to the ReRAM array as a conductance matrix to perform
PIM MatMul. However, constrained by the programming driver
circuits, programming a matrix into a ReRAM array is often done
column by column with a typical latency of 7.2ns/column [25]. Q
and KT matrices with multiple columns would cause considerable
long latency to load intermediate results into ReRAM arrays and
stall the computation. Moreover, the iterative calculation in a multi-
head self-attention module inevitably causes frequent rewriting of
ReRAM cells, leading to a high write energy consumption.

We further analyze the calculation steps of the FC/CONV lay-
ers and MatMul layer in ReRAM-based PIM implementations. As
shown in Fig. 4(b), the computations of the FC/CONV layers are
mainly VMMs, the operands of which are input and weight matrix.
The trained weight matrices, such as W1, Wy, and W3, are retained
in the ReRAM crossbars during the inference. Therefore, the total
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number of the write accesses to the ReRAM crossbars is determined
by the number of the initialization and normally much less than
the total number of the read accesses to (or the computations per-
formed on) the ReRAM crossbars. On the contrary, the intermediate
result KT in MatMul operations are frequently being written into
the ReRAM crossbars during the computation. Storing the interme-
diate results in other medium such as on-chip SRAM or off-chip
DRAM may mitigate the large overheads of the write accesses to
the ReRAM crossbars, but introduces either extra hardware cost or
performance overhead.

The writing process of the intermediate result (KT) cannot start
until the computation of the previous linear layer (K = X - W)
completes. Note that there must exist a mapping scheme to map
the output of the previous linear layer K onto the ReRAM crossbar
in the transposed format, i.e., KT. Obviously, the computation of
MatMul (Out = Q - KT) cannot be performed until the writing of
KT completes. This compute-write-compute (CWC) dependency is
inherent between the linear layer and the MatMul layer and will be
resolved in RETRANSFORMER by decomposing the MatMul between
Q and K7 to two multiplication steps (see Section 4.2).

Arithmetic Operation Challenge: The other operations in
scaled dot-product attention, such as scale and softmax which re-
quire division and exponential calculation that are not supported
by the existing ReRAM-based PIM designs. Efficient arithmetic
processing units are necessary to complete them.

Low Crossbar Utilization Challenge: The traditional pipelin-
ing of DNN models at layer granularity [27] will cause a low utiliza-
tion rate of the ReRAM crossbars when Transformer is running on
ReRAM-based PIM designs (details will be provided in Section 4.4).
A delicate pipeline design should be put forward to avoid such low
utilization of ReRAM crossbars.

4 METHODS

To address these challenges, we propose RETRANSFORMER, an im-
proved architecture with novel methodologies for ReRAM-based
PIM design that are particularly suited for Transformer alike appli-
cations involving the self-attention mechanism.

4.1 Overall Architecture

Fig. 5 presents the overall architecture. A ReRAM-based PIM module
is divided into three types of functional components:

e Processing subarrays are the data processing engines to
execute the computations of scaled dot-product attention
and feed forward. More specifically, they are composed of
ReRAM crossbar arrays, computing controller circuits as
well as analog/digital interface circuits [4].

o Buffer subarrays serve as the cache for computing units.
They receive data from memory subarrays and pass the data
to WLs of processing subarrays. Besides, they collect results
from BLs and store the data. The size of buffer subarrays is
determined by the application requirements.

e Memory subarrays are dedicated memories to store the
original input data and final calculation results.

As described in Section 2.1.2, Transformer encoder and decoder have
feed forward and multi-head self-attention modules; and the key
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Figure 5: Overview of the proposed ReRAM-based PIM de-
sign for Transformer.

computation part of scaled dot-product attention includes MatMul,
scale and softmax.

Feed forward computation can be efficiently completed by PIM
VMM, which has been well explored in prior literature [4, 24]. For
this type of operations, RETRANSFORMER follows the same route.

MatMul operations involve multiple VMMs in a sequential man-
ner. Due to the recurrent nature of the self-attention layer, MatMul
operations are often accompanied with recursive data dependency.

Scale operations refer to the scale factor 1/ \/a in scaled dot-
product attention in Eq. (2). d. is the width of the trained matrices
Wg and Wx. A common setting of dj, is 64 in [28]. The correspond-
ing scaling operation, hence, is achieved by using a 3-bit left-shift,
and thereby the results are stored to the ReRAM crossbar for further
processing. When the square root of dy. is not a power of 2, we can
combine the bit shifting with a constant multiplication (storing
the constant value in the ReRAM crossbar array and multiplying
the constant with the concerned matrices) to construct the scaling
operation.

Softmax operations appear at every multi-head self-attention
module to attain a high NLP accuracy. In contrast, softmax opera-
tions only exist in the last output layer of many other DNNs, such
as ResNet [12].

Among all the above computations, MatMul and softmax domi-
nate the latency and power consumption. Therefore, we propose
three major techniques around these two dominant operations in
order to optimize the overall performance and power consumption
of executing multi-head self-attention modules.

4.2 Optimized MatMul

In this section, we present the implementation details of MatMul
in RETRANSFORMER. Our primary goal is to reduce the number of
frequent reloadings of intermediate results.

In Section 3, we discussed the CWC dependency that exists
between the linear layer and MatMul in Transformer. Fig. 6(a) il-
lustrates the data generation and computation process of scaled
dot-product attention layer in the inference of Transformer between
Wg and Wk, and shows the CWC dependency caused by the in-
termediate result K. At beginning of the inference, Wy and Wk are
initialized and written into two ReRAM crossbars, respectively. To
perform the MalMul between Q and K (i.e., Out = Q - KT) in the
ReRAM-based PIM module, one of the intermediate results Q and
K, must be stored in a ReRAM crossbar. Without loss of generality,

ICCAD ’20, November 2-5, 2020, Virtual Event, USA

()Tnitialization Inference _time

iQ:x.WQ

Res=S-V
Matrix decomposition

- R=0-W! Ow=R-X"

a P=S-X Res=P-W,
)

.Writing

Figure 6: Remove data dependency in scaled dot-product
attention layer: (a) a CWC dependency caused by the in-
termediate result K. (b) The optimized MatMul eliminates
the CWC dependency by decomposing the computation into
two cascaded multiplications.

Computation S = Softmax(Out) C) CWC dependency

here we assume K (indeed K7) is stored in the ReRAM crossbar. As
demonstrated in the memory designs [4, 24], the ReRAM crossbar
needs to be programmed row-by-row; the total latency of program-
ming a N X N ReRAM crossbar is N write cycles by assuming
every cycle we can program a whole crossbar row. As we have
illustrated in Section 2.2, the computation latency of VMM on a
ReRAM crossbar is one read cycle.

We find that MalMul between Q and K can be decomposed into
two cascaded multiplication steps as:

Out=Q-K'=Q  (X-Wg)T = (Q - wgT) X" )

Hence, a possible way to avoid writing the intermediate results
into a ReRAM crossbar can be the follows: at the beginning of the
process, we initialize two ReRAM crossbars with Wg and W T
(instead of W), respectively. Then compute Q = X - W on the
ReRAM crossbar storing Wg and R = Q - Wi ! on the ReRAM
crossbar storing WKT. In the meanwhile, we initialize another
ReRAM crossbar with XT. After we obtain both Q and R, we perform
Out = R-XT on the ReRAM crossbar storing XT. The whole process
is illustrated in Fig. 6(b). The CWC dependency caused by the
intermediate result KT is resolved and the long latency of writing
KT into the ReRAM crossbar is eliminated.

The MatMul computation process between S and V can be opti-
mized in a similar way. However, the computation threads of Wx
and Wy must respectively retain a copy of XT and X if both threads
need to be performed simultaneously. To avoid the large overhead
of write accesses to ReRAM crossbars, we propose to use only one
copy of X to perform Out = Q-XT and P = $-X in a sequence. Here,
a dual-access design of ReRAM crossbars [18] must be implemented
to support the multiplications with X and XT on the same crossbar.
Besides, the computation of P = S - X cannot be performed until
the computation of Out = Q - XT completes.

4.3 ReRAM-Based Hybrid Softmax

This section describes another technique, ReRAM-based hybrid
softmax, to efficiently compute softmax in the scaled dot-produce
attention with specialized hardware. The fundamental idea is in-
corporating in-memory logic to maximally exploit on-chip ReRAM
crossbar arrays in the processing subarrays. We base our choice of
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in-memory logic technology on the consideration of moving post-
processing closer to the processing subarrays and lowering the
power consumption. Note that device endurance remains an open
issue in contemporary in-memory logic designs that using emerg-
ing ReRAM devices [11, 26]. Fortunately, the rapidly advancing
fabrication and compilation [26] technologies offer a good promise
to significantly enhance the reliability.

First, we adapt the softmax expression in order to avoid the over-
flow problem of softmax calculation and circumvent the usage of
division operation, which would result in costly digital circuit im-
plementation with very high design complexity [32]. In particular,
we use negative numbers in exponential step and substitute division
with logarithm. Every element x; (i = 0,...,dg — 1) in the input
vector X of length dy. is subtracted by the largest element in this
vector, i.e., Xmax = max(xo, ...,xdk_l). Therefore, in our design,
softmax is calculated as:

eXi eXi~™Xmax
softmax(x;) = = =—
i (®)
= exp[Xi — Xmax — log( ) | €7 max)].
j=

Next, in-memory logic is introduced to search xpqx With min-
imum power consumption. In particular, we build ReRAM-based
compare and select logics to find the xp,4x and use look-up tables to
perform the exponential and logarithm functions in Eq. (8). Take two
4-bit number a = A3A2A1Ap and b = B3B2B; By as an example, the
CMOS implementations of compare and select logics are depicted
in Fig. 7(a) and (c), respectively. Iterative compare and select logic
are fed with the multi-bit elements sequentially in sequences X to
reach the final maximum element. Chances are that the dynamic
power consumption is high considering the large dimension of
the possible softmax input dimension (e.g., typical value is 64 for
Transformer [28]).
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Figure 8: Pipeline designs: (a) at layer granularity, (b) at finer

granularity.

Fig. 7(b) and (d) illustrate the corresponding ReRAM-based in-
memory logic implementations of compare and select. As shown in
Fig. 7(b), the computation steps of the compare block are as follows:

Step 1: Initialization. Cells Ay ~ A3 and By ~ B3 are written
into the ReRAM crossbars;

Step 2: Logical Inference. The information propagates in the
ReRAM crossbar array in the sequence of INV — XOR — Copy —
Copy — Copy — NOR — NOR — INV at the pace of successive
clock cycles!, where Copy is the operation that takes two cycles to
duplicate the single-bit information stored in one cell to another.

Therefore, the ReRAM implementation of compare logic con-
sumes 13 cycles. Similarly, ReRAM-based select logic takes 8 cycles
to perform Write (i.e., programming a ReRAM cell), INV, and NOR.
The operational cycle numbers of each basic logic operation can
be found in Section 2.2.2. After x;;4x is found, we adopt developed
look-up table circuits to calculate exponential and logarithm as [2]
due to the maturity of the related circuits.

4.4 Sub-Matrix Pipeline

In this section, we will design pipeline stages of RETRANSFORMER
for a higher throughput at a finer granularity than the layer granu-
larity adopted in existing PIM-based DNN accelerators [27].

First of all, we need to understand why the conventional layer
granularity causes low utilization rate of processing subarrays.
Based on the discussion in Section 4.2, we have adjusted the com-
putation sequence in MatMul such that two multiplications should
proceed sequentially, as shown in Fig. 8(a). If the pipeline stage
is arranged at the layer granularity, the intra-layer computation
details cannot be handled efficiently. For this MatMul layer, two
computation resources (denoted by WgT and XT) are prepared.
The input matrix Q is first fed into resource Wi ! to compute R
(Step 1), and then R is fed into resource X! to compute Out (Step
2). Both Wi and X7 are released only after both steps 1 and 2
complete. However, X" is idle during step 1 and Wi ! is idle during
step 2, leading to an inefficient utilization of these two resources
(., the processing subarrays storing Wi and X7T).

! According to the measurement in [25], we assume the read and write cycle are
the same and defined as unit clock cycle. Clock cycle is identified in “Ck” (where
k=1,23,..)inFig. 7.
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Table 1: Experimental setup details.
(a) GPU Configurations.

GPU NVIDIA TITAN RTX
Memory 24 GB

Memory Bandwidth || 672 GB/s

CUDA Cores 4,608

CUDA Version 10.1

Power Consumption || 280W

(b) RETRANSFORMER Configurations.

Subarray size | 128 X 128
ReRAM crossbar || Cell percision | 2 bit
Roff/Ron 1MQ /100kQ
ADC Percision 5 bit
Shift and add Percision 14 bit

In order to suppress idle periods of the processing subarrays and
keep them busy for better system throughput and higher power
efficiency, we propose to slice input matrices of MatMul operation
inside a scaled dot-product attention into small segment vectors
for a finer pipeline granularity. When multiplying two matrices
inside a multi-head self-attention layer (e.g., R = Q - Wx ! in the
first step of Eq. (2)), Q is reshaped into a long vector by horizon-
tally concatenating its rows as an input of PIM VMM: Vec_Q =
[0[0,:],Q[1,:],Q[n,:]]. Here Vec_Q € R is the input fed
to the ReRAM crossbar storing Wi !. In the first cycle, we grab
the first segment of Vec_Q and conduct PIM VMM, ie, Ry =
Vec_Q[0,0:dy — 1] - Wk . Note that the length of this segment
is determined by the following MatMul to align the dimensions.
This Ry € R1*dmodel js the first row in R, or, R[0,0 : dpyoge — 1] =
Ry [: :]. Then, in the following cycle i, we can get

R[i, 0: dmodel - l] = Ri[:, :]
=Vec Q[0,(i—1) #dy : i *dp — 1] - Wg !

=Q[i,0:dg—1]- Wk
©)

Similarly, this “slice and calculate” scheme for R = Q - Wk can
be also applied to its successive operation, Out = R - XT. Here R is
first flattened into a vector as: Vec_R = [R[0,:],R[1,:],R[n,:]]. At
a finer granularity, the first computation cycle of Out only utilizes
Vec_R[0,0 : d;,,0401 — 11-

In summary, the two sequential computations R = Q - KT and
Out = R - X7 introduced in Section 4.2 can construct a pipeline:
every cycle the output vector from the previous computation can
be consecutively fed into the successive computation unit. Fig. 8(b)
shows this sub-matrix pipeline which minimizes the idle time of
the processing subarrays. Quantitative analysis of this sub-matrix
pipeline can be found in Section 5.4.

5 EVALUATION
5.1 Experiment Setup and Benchmark

In our experiment, we compare RETRANSFORMER with a GPU plat-
form and a ReRAM-based PIM design PipeLayer [27]. Benchmarks
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Table 2: Transformer network configurations.

Model N | diodel dff h | dy | dg
Transformer (A) || 6 | 512 2048 | 8 | 64 | 64
Transformer (B) || 6 | 1024 4096 | 16 | 64 | 64

running on the GPU platform are based on Pytorch. The GPU plat-
form configurations are summarized in Table 1(a).

We adopt the ReRAM technology from [8] to evaluate RETRANS-
FORMER. We simulate the ReRAM circuit parameters using Neu-
roSim [22] based on the ReRAM and peripheral configurations [23]
shown in Table 1(b). The precision of the ReRAM cells are set to 2-
bit, which is the same as [20]. The read and write pulse times of the
ReRAM cells are extracted from [25]. The high and low resistance
values of ReRAM crossbars (R, s¢ and Rop) are adopted from [3].
We utilize the design from [2] to implement the exponential and
logrithm look-up tables in the hybird so ftmax design. A modified
design of [7] is used as the CMOS baseline of softmax design.

The networks that we use to evaluate our proposed methods
are Transformer (A) and Transformer (B), the details of which
are included in Table 2. We denote these two models as Model A
and Model B, respectively. Model A is the base model and its size
is relatively small. Model B increases the model dimension and
the head number. The activations and weights are quantized to 8
bit like [33]. The training dataset is WMT 2016 Translation Task
(English to German) and the testing dataset is newstest2016.

5.2 Impacts of MatMul Optimization

Fig. 9 compares the computation latency breakdowns of MatMul in
Model A and Model B. When the CWC dependency exists, the KT
related writes contribute to majority of the overall latency, as shown
in the bars marked as “Model A/B with Dependency”. Through
the elimination of the KT related writes, the optimized MatMul
substantially reduces the overall latency by 1.32x and 1.16X for
Model A and B, respectively.

Moreover, MatMul optimization decreases the number of writ-
ings to crossbar array and improve the power efficiency. We will
include this result in Section 5.5.

A |

AD —— |
B0 |

B/D — |

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Latency (ns)

A/O: Model A w/ Optimized MatMul A/D: Model A w/ Dependency
B/O: Model B w/ Optimized MatMul B/D: Model D w/ Dependency

Q and K Compute mQ Compute B W, and V Write
Out=Q W Compute™ R Compute ¥ Out=R-X" Compute
B Res=S'V Compute B P=S-X Compute B Res=P*Wv Compute

Figure 9: MatMul computation latency comparisons.
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(a) Hybrid Softmax
Total Power: 0.691mW

Figure 10: Softmax design comparison.

(b) CMOS-based Softmax
Total Power: 1.023mW

Table 3: Performance comparison of two pipeline designs.

Model Layer Finer Improvement
Model A | 69.24GOPs/s | 81.85GOPs/s | 1.18%
Model B | 67.89GOPs/s | 80.07GOPs/s | 1.18%

5.3 Lower Power Hybrid Softmax Design

Fig. 10 depicts the power consumption breakdowns of the proposed
hybrid softmax design and the CMOS-based design. The total power
of the hybrid softmax design is 0.6913mW while the one of the
CMOS-based softmax design is 1.0233mW. In particular, the power
consumption of compare and select logics reduces from 0.533mW
in the CMOS-based design to 0.3889mW thanks to the efficiency of
ReRAM-based implementation.

In CNN and RNN based networks, softmax layer is only involved
in the last classification step. However, Transformer has to calculate
softmax in the scaled dot-product attention step and the classifica-
tion step in Transformer. For instance, Model A in our experiment
has 145 softmax layers. Therefore, this low power hybrid softmax
design brings improvement to the overall power efficiency of Trans-
former acceleration.

5.4 Comparisons of Two Pipeline Designs

Table 3 compares the computation throughput of two RETRANS-
FORMER pipeline designs when running Model A and B. Here the
hardware implementations of the two pipeline designs are exactly
the same except for the pipeline method. Table 3 indicates that the
finer granularity design outperforms the layer granularity design
by 1.18x.

5.5 Comparison with GPU and PipeLayer

Figure 11 compares the computing efficiency and power of GPU,
PipeLayer and RETRANSFORMER. Here the computing efficiency
measures the number of operations that can be performed by a
computing unit every unit time and every watt of power consumed,
and power measures the amount of energy transferred or converted
every unit time. Our RETRANSFORMER can achieve a computing
efficiency of 467.68 GOPs/s/W. Compared to GPU (CMOS accel-
eration) and PipeLayer (conventional ReRAM-based acceleration),
RETRANSFORMER improves the computing efficiency by 23.21x and
3.25X%, respectively. Besides, RETRANSFORMER reduces the overall
power by 1086 and 2.82X, respectively.

The advantage of RETRANSFORMER is mainly because the opti-
mized MatMul removes the data dependency and decrease frequent
rewrites of intermediate results. Furthermore, RETRANSFORMER
utilizes a low power hybrid softmax design to handle the softmax
calculation in scaled dot-product attention step.
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5.6 Discussion

RETRANSFORMER utilizes the ReRAM-based PIM architecture and
focuses on reorganizing the data-dependency computation steps.
Therefore, our hardware-based design is orthogonal to existing
software-based Transformer acceleration designs. For instance, dur-
ing training process, we use quantization-aware training method to
obtain our model parameters. Quantization shrinks the model size
by 4x as we quantize the 32 bit (GPU setting) to 8 bit (ReRAM-based
setting). The Bilingual Evaluation Understudy (BLEU) score of the
testing dataset only drops from 31.17 to 30.45 for Model A, implying
the quantization-aware method well retained the accuracy. More-
over, the pruning methods introduced in Section 1 do not affect the
implementation of RETRANSFORMER. Random pruning can be help-
ful to reduce the computation cost without modifying our ReRAM
programming and computation process. Structural pruning, e.g.,
pruning the hidden neurons in feed forward layer, may significantly
improve the utilization of ReRAM resources.

RETRANSFORMER is also compatible with the existing software
and hardware reliability improving methodologies. Process varia-
tion of ReRAM, for example, results in weight inaccuracy and con-
sequently degrades the overall computation accuracy. A variation
of 2.5%, 5.0%, 7.5%, 10.0% weights mismatching from the baseline
model causes 0.50%, 5.09%, 21.27%, 38.54% accuracy drop in a quan-
tized BERT model in QNLI dataset (the baseline accuracy is 90.79%)
under the same setting as [33]. Many methods specifically designed
for PIM architectures have been invented to effectively recover the
accuracy of a model that suffers from high weight variability to a
level comparable to the original one [19]. We refer to the interested
readers to [17] for more details.

6 CONCLUSION

In this work, we propose RETRANSFORMER — a ReRAM-based PIM
architecture to accelerate the computation of Transformer model.
Besides accelerating the scaled dot-product attention of Transformer
using ReRAM-based PIM, RETRANSFORMER also optimizes the Mat-
Mul operations to remove the data dependency in the computa-
tion that hinders the computing efficiency. We also propose a new
sub-Matrix pipeline design to shorten the computation latency of
multi-head self-attention. Our simulations show that compared
to GPU and Pipelayer, RETRANSFORMER improves computing effi-
ciency by 23.21x and 3.25X, respectively. The corresponding power
is reduced by 1086x and 2.82X, respectively.
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