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MINIMIZATION OF THE FIRST NONZERO EIGENVALUE
PROBLEM FOR TWO-PHASE CONDUCTORS WITH NEUMANN
BOUNDARY CONDITIONS*

DI KANGT, PATRICK CHOIf, AND CHIU-YEN KAO$

Abstract. We consider the problem of minimizing the first nonzero eigenvalue of an elliptic
operator with Neumann boundary conditions with respect to the distribution of two conducting
materials with a prescribed area ratio in a given domain. In one dimension, we show monotone
properties of the first nonzero eigenvalue with respect to various parameters and find the optimal
distribution of two conducting materials on an interval under the assumption that the region that
has lower conductivity is simply connected. On a rectangular domain in two dimensions, we show
that the strip configuration of two conducting materials can be a local minimizer. For general
domains, we propose a rearrangement algorithm to find the optimal distribution numerically. Many
results on various domains are shown to demonstrate the efficiency and robustness of the algorithms.
Topological changes of the optimal configurations are discussed on circles, ellipses, annuli, and L-
shaped domains.
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1. Introduction. Optimization of eigenvalues in problems involving elliptic op-
erators has been of interest to many researchers due to its usefulness in many appli-
cations including drum vibration [31, 16, 7, 42, 23, 22, 29], rod and plate vibration
[4, 44, 3, 2, 20, 19, 8, 25], determination of favorable and unfavorable regions in pop-
ulation dynamics [35, 26, 24, 5, 10, 32], design of optical resonators [28, 36, 30, 34],
bandgap optimization in photonic crystals [18, 17, 27, 45, 39, 43, 9, 38, 40], and two-
phase conductors [15, 14, 13, 21, 12, 33]. In some applications, it is desirable to obtain
optimal arrangement of different materials within a fixed domain so that a certain
material property can be maximized or minimized. The property that needs to be
optimized may be absorptivity, density, and electrical or thermal conductivity, just to
name a few. These problems typically involve the careful choice of a cost function or
an objective function subject to a certain set of constraints.

In this paper, we are interested in the problem of minimizing the first nonzero
eigenvalue of an elliptic operator with respect to the distribution of two conducting
materials with a prescribed area ratio in a domain. For the Dirichlet problem, the
two-phase conductor problem is modeled as

-V - (o(z)Vu(z)) = pu(z) in Q,

1.1
(L.1) u=0 on 01,
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where u(z) is the temperature function defined on a smooth domain Q C R, ¢ is
the conductivity function which satisfies

(1-2) 0 =0MXD + OmXQ\D>

oy and o, are both constants, op; > 0, = 1, and D C Q. The minimization of the
ground state energy with respect to a two-phase conductor with a fixed area ratio is
to find the first eigenvalue p; that

D]

(1.3) mDiH w1 (D) such that W =",

where v is a given constant.

In [1], the existence of the solution to problem (1.1)—(1.3) is established when
Q is a ball and the minimizer is shown to be a radially symmetric function. Later,
a simpler proof based only on a rearrangement method was published in [13]. Tt is
shown in [6] that if € RY is simply connected, and has a connected boundary, then
problem (1.1)—(1.3) has a solution if and only if {2 is a ball. For other general domains,
this problem remains open. In the class of relaxed designs, Cox and Lipton were able
to show the existence of a solution [15]. In one dimension, if a two-phase conductor is
considered on the interval [0, 1], the minimizer has D = [157, 147

1, =52] while the maximizer
has Q\D = D¢ = [152, 2], When Q is a ball, the existence of a radially symmetric
optimal set has been proved in [1] by using rearrangement techniques. Even in this
case an explicit solution to the problem is not known. It was conjectured in [13, 14]
that the optimal high conductivity region D is a smaller ball centered in the domain,
which is a ball. However, this conjecture is not true in general. It was proved in
[12] that the optimal domain D cannot be a ball when o, and o), are close to each
other and 7 is sufficiently large. In this case, the optimal D consists of a ball centered
in the domain and an outer ring attached to the boundary. In [41], the conjecture
was proved to be false for the N-ball when N > 2. For domains such as a square,
a cube, a crescent, and an ellipse with two holes, a rearrangement algorithm was
proposed to find the optimal two-phase conductor with Dirichlet boundary conditions
numerically [12, 11]. Alternatively, one can use the level set method to represent the
interface between lower and higher conductivity regions and find the optimal interface
by a gradient flow. This approach was used in [37] to find the optimal two-phase
conductors for various boundary conditions.

In this paper, we study the optimal conductivity problem with Neumann bound-
ary conditions. In one dimension, we explore the monotone properties of first nonzero
eigenvalues with respect to the area ratio v and the high conductivity value op;. We
show that the optimal distribution of the material which has the minimal first non-
zero eigenvalue is to have the high conductivity material placed evenly at two ends
of the interval under the assumption that the region that has lower conductivity is
simply connected. On a rectangular domain in two dimensions, we show that the set
D¢ = Q\D which has a strip configuration parallel to short edges is a local minimizer
by an asymptotic approach. The Fourier series expressions of the eigenfunctions are
obtained and the equations that determine eigenvalues are derived. A thorough com-
parison of eigenvalues to determine a local minimizer of a nonzero eigenvalue allows
us to show that the one corresponding to the strip configuration is indeed a local
minimizer under the assumption. For problems on general domains, we propose a
rearrangement algorithm to find the optimal two-phase conductor. It generates a
sequence of two-phase conductors whose corresponding eigenvalues form a monotone
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decreasing sequence which converges to the minimal value numerically. Many results
on various domains are shown to demonstrate the efficiency and robustness of the al-
gorithms. Topological changes of the optimal configurations are discussed on circles,
ellipses, annuli, and L-shaped domains.

This paper is structured as follows: In section 2, we discuss the minimization
of first nonzero Neumann-Laplacian eigenvalues in both one and two dimensions. In
one dimension, several monotone properties of the eigenvalue are found for various
parameters. We also show the approach to finding the minimizer analytically under
certain assumption. On a rectangular domain in two dimensions, we perform an
asymptotic analysis of the eigenvalue to show that a strip configuration of conductivity
may be a local optimizer. In section 3, a rearrangement algorithm is proposed to
find the optimal two-phase conductor, and numerical results on various domains are
shown to demonstrate the efficiency and robustness of the algorithms. The paper is
summarized with a brief conclusion in section 4.

2. Minimization of first nonzero Neumann-Laplacian eigenvalues. We
will focus on the problem of finding the optimal conductivity distribution of materials
consisting of two different conductivities with fixed proportions which has the smallest
first nonzero Neumann-Laplacian eigenvalue. The governing equation is

-V (c(x)Vu(x)) = vu(x), xe€q,

2.1
@1) Uau(x) =0 forxedf,
on

where o is in the class of functions defined by

(2.2) Agppong,r o= {U(X) =oMXD + omxo\p, D C Q;/
Q

o (x)dx = T} :

where o and oy, are constants and oy > 04, = 1. It is well known that (2.1) has
infinite number of eigenvalues 0 = 1y < 113 < vy < v3 < --- and the variational
formula for the first nonzero eigenvalue A is given by

fQ x)|Vu(x)|?dx
UES fQ 2d.’17 ’

(2.3) A=1(0) =

where the space S = {v|v € H'(Q),v # 0, [, vdx = 0}. Our objective is to find

, D] _
(2.4) min A(D) such that ) v,

where v is a given constant.

2.1. One-dimensional analytical result. In this section, we show the mono-
tone increasing properties of A in v and 0. In one dimension, the optimal distribution
of the material which has the minimal first nonzero eigenvalue is to have high con-
ductivity material placed evenly at two ends of the boundary under the assumption
that the region that has lower conductivity is simply connected.

LEMMA 1. Consider the one-dimensional problem on £ = [0,1] and D = [0,¢] U
[c+ e, 1] where ¢ > 0 and e =1 —~ > 0 are given positive constants. The governing
equation satisfies

(o(x)u') + M =0,
(25) { (0)/(0) = o1} (1) = 0,
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with
oy =b? if 0<z<eg,
ol@)={ om=a>=1 if c<z<c+e,
oum = b2 if c+e<z<l1.

Denote the first nonzero eigenvalue A = k?. Then X is a monotone increasing function
iny=1—e and opr. Furthermore, ke < 7.

Proof. From the variational formula,

A= k2 — inf M’
ves g |v[?dx

it is clear that A is a monotone increasing function in v =1 — e and in oj;. Further-
more, we know that

A =k? = inf Joolv'Pde < inf Jo v'Pdz (77)2

ves [, [v2dz T wesna [ Jv2dz  \e

where A is the class of functions v such that v(z) is constant when 0 < z < ¢ or
c+e <z <1. Thus we have ke < . 0

LEMMA 2. Consider the one-dimensional problem (2.5). Use k to denote the
square Toot of the eigenvalue and define new parameters «, 3, and d as follows:

o = ke, 5:%(176), d:%(l—Zcfe).

Then these parameters satisfy the equation

b2 +1 b2 -1
sin a cos 8 —

(2.6) sinwcosd + beosasin f = 0.

Proof. The solution of (2.5) can be written as
Cicos (& (z —c)) + Cosin (£ (2 — ¢)) it 0<z<e,
u(zr) = Cs3cos (k(x — ¢)) + Cysin (k (x — ¢)) if c<z<c+He,
Cscos (X (z—(c+e)) +Cesin (£ (z—(c+e) if cte<z<l,

with the boundary conditions and the following conditions:

+
/ c
lim u(z) = lim w(z), o(z)u(x)] =0,
T—c z—ct c
NSO
lim w(z)= lim wu(z), o(@)u () =0.
z—(ct+e)™ z—(cte)t (c+e)—
We then have

sin (%c) cos (%c) 0 0 0 0 1 0
1 0 -1 0 0 0 Cy 0
0 b 0 -1 0 0 Cs | |0
0 0 cos (ke) sin (ke) -1 0 Ci || O
0 0 —sin (ke) cos (ke) 0 -b Cs 0
0 0 0 0 —sin(£(1—c—e)) cos(&(1—c—e¢)) Cs 0
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Denote the determinant of the matrix by f. In order to have nontrivial solutions, f
needs to be zero. This leads to

k k k k

f(b,c,e, k) = —sin(ke) [bQ sin (b (I1—-e— c)) sin <bc) —cos (b (1—6—0)) cos (bcﬂ

. (kK

+ bcos(ke) [sm (b (1- e))} = 0.

After applying change of variables a = ke, § = %(1 —e), d= %(1 —2c¢—e) and using
trigonometric identities to simplify the expression, we have

b2 +1 b2
@7 fba,Bd) = L sinacos B —

sinacosd + bcosasinf = 0. ]

THEOREM 3. Consider the one-dimensional problem (2.5) for any given fized b

and e. The o(z) which minimizes A must have ¢ = 15¢.

Proof. The statement of this theorem requires us to prove that k(c) gets its min-
imum at ¢ = % To show this, we use the chain rule to express the derivative of k

with respect to c.
ok __(01Y (01
dc dc ok )’

From Lemma 2, we can calculate directly that

of  2k0f kY . .
50" b ad- <kb— b> sin asind.

From Lemma 1, we know that o = ke < 7. This implies

>0 if d<0
a I
(2.8) 8—f: =0 if d=0,
¢ <0 if d>0.
Next we use Lemma 2 to calculate the expression for % as
of a, 5 o, .
O _ (252 4 1)+ b9) cosarcosd — 20 D cosarcas
k@k (2(1) + 1)+ b8 ) cosacosf 2(b ) cos awcosd
d 2 . . ﬁ 2 . .
(2.9) + §(b —1)sinasind — §(b + 1) + ba ) sin asin 3.
Since f =0, from (2.6) we have
cos b +1 sin accos 8 + b - sin a cos d
=— in 5 in .
@ 2bsin acos 2bsin g @

Substitute this expression into (2.9) and simplify to get

(B cosBcosd+ dsin Ssind)

g_sina -1
ok sing | 2

(2.10)

2 2 2 2
—absinQﬁ—b ;_15—?;(1) ;—lcosﬁ—b 3 1cosd> ]
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Denote
(2.11) 9(8,d) = Bcos B cosd+ dsin Ssind.

Notice that g(3,d) is an even function in d. We just need to discuss the case when
0 <d < B < «. In this case, we have

g(B,d) < BcosBcosd+ BsinBsind = Seos(B —d) < 5.

Equation (2.10) then gives us

af sina [b? -1 o b2 +1
2.12 k= < — —ab —
(2.12) 9k “smp| 3 P s 0
sin o . 9
(2.13) =~ ong [+ absin® 8] < 0.
Together with inequality (2.8), we know that
9 >0 if ¢>313¢,
Ok _ 5 ) Zg g ol ik 0
PR I S
ok <0 if e<ize

5

2.2. Two-dimensional results on a rectangular domain. In this section,
we will prove that the strip configuration of conductivity parallel to short edges is a
local minimizer on the rectangular domain under a certain assumption. The Fourier
series expressions of the eigenfunctions are obtained and the equations that deter-
mine eigenvalues are derived. A thorough comparison of eigenvalues to determine the
minimal nonzero eigenvalue allows us to show that the one corresponding to the strip
configuration is indeed the minimizer.

LEMMA 4. When o > o, the first eigenfunction of (2.1) on a rectangular
domain [, 5]x[0, L] with & (x,y) = oarX (-1~ quid, 1)) x 0,.0] TOmX (—d.d)x[0,.], L < 1,
depends only on x.

Proof. (i) The equation with the given & can be written in piecewise form as
follows:

1
=V (omVuy) = Auq, —§<9c§—cl,0<y<L7
=V (omVuz) = Aug, —d<z<d0<y<lL,

1
=V (omVuy) = duq, d§x<§,0<y<L.

The general solutions can be written in the following form by using separation of
variables:

1
U = ZEn cos <A <x + 2>) cos (%y) , nis an integer,

Uy = Z (F), cos (Bzx) + G, sin (Bx)) cos (%y) ,

ug = zn:Hn cos (A <; — x>> cos (%y) ,
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where A = ﬁ = (%)2 and B = ai‘n — (’};—”)2 The boundary conditions and

smoothness conditions of the eigenfunction lead to a system of equations

cos (A (3 —d)) — cos (Bd) sin (Bd) 0 E,, 0
—opAsin (A (% - d)) —omBsin (Bd) —o,,B cos (Bd) 0 F, | [0
0 — cos (Bd) — sin (Bd) cos (A (3 —d)) Gn | | O

0 omBsin (Bd) —o,Bcos(Bd) oy Asin (A (% - d)) H,, 0

In order to have nontrivial solutions, the determinant of the matrix should be zero,

- <(2>2 tan® (p) - <Z:f)2> e = Q% e =0

where p = 1_2—2‘114 and ¢ = Bd. Solving this quadratic equation with respect to tan(p),
we have either

(2.14) ?}ZM tan(p) tan(g) = 1
(2.15) Aou tan(p) cot(q) = —1.

Bo,,

(ii) We show that the smallest positive eigenvalues for A of (2.14) and (2.15) are
achieved when n = 0 and n = 1, respectively. Instead of comparing eigenvalues for
integers n only, we establish the monotone increasing of A with respect to n. Note that
if A or B is not real, which means that % < (”%)2 or ﬁ < (”—[)27 then A or B is pure
imaginary. Since Atan(p) = (¢A)tanh(ip) (or similarly, Bcot(q) = —(iB) coth(iq)),
the expressions are real no matter whether A and B are real or not. Thus we can do
the following calculation formally to derive the results.

Equation (2.14) is equivalent to

Fi(A\t) = 200df (p) + (1 — 2d)omg(q) = 0,

where f(z) = ztan(z) and g(z) = —z cot(z). Denote ¢ = (%%)2. By using the implicit
differentiation formula, we have

9 df & dg d df 1=2d) | dg_d
Q — _ % _ 20_Mdd7p871; + (1 B Qd)amdigaig _ % domp Tg 20m4q > 0
= T oF T df @ dgdq —  df (1-2d) |, dg d
ot I3 2omdE o8 + (1 —2d)o, 5t L0244 dod
because f'(x) = tanz + zsec’z > 0 for x > 0 and ¢/(z) = —cotz + zcsc?z > 0 for

x > 0 whenever the derivatives exist. Thus A is increasingly dependent on n and the
first nonzero eigenvalue is given by n = 0.
Equation (2.15) is equivalent to

Fy(At) = 200mdf (p) + (1 = 2d)om f(q) = 0.

By using the implicit differentiation formula, we have

o df o df o df (1—2d) df d

@ — % _ 2O-Mdd7p871t] + (1 B Qd)o-’rndiqailtl _ % doymp + dfq 20mq > 0
- OFy df o df 8¢ —  df (1-2d df d
o G owdfE+(-2enfist FETE - dg
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due to f'(x) > 0 for x > 0 whenever the derivative exists. Since (2.15) has no roots
when n = 0, the first nonzero eigenvalue is given by n = 1.

(iii) Denote the smallest root of (2. 14) with n = 0 by X and the smallest root of
(2.15) with n = 1 by . We now show \ < \. Noticing that A= )\(Um,oM, d,L) is a

decreasing function in L as 3% = %t\ gz < 0 and A = X0, o, d) is independent of

L, the statement is true if we can demonstrate that ;\(am, or,d, 1) > XNop, o, d).
Without loss of generality, we choose ¢,, = 1 and op; > 0, = 1. We compare
the first root for equation

Fi(\,op) = y/oas tan % A cot(d\[v\) = 20 pdf (po) + (1 —2d)g(qo) =0

oM

and

. 1—-2d | ) /< /<
Fy(A\,opr) = /oar tan 5 0M—7T2 + A—ﬂgtan(d )\—772>

= 20pdf (p1) + (1 — 2d) f(q1) = 0,

where py = 1772‘1’/%, Qo :d\fj\, p1 = %M\/%M—TFZ, and ¢; = dV/ A — 72 are the

numbers when p and ¢ take value at n = 0 and n = 1, respectively.

Note that A\, \ € (7%, opm?), and when oy = 1, F; = 0, and Fy = 0 have common
solutions A = \ = 72, we compare the growth rate of A and A with respect to oy.
From the implicit formula, we have

(2.16)
AN _ e?fj\ld . 2gMdf'(pO)880pAo/I B 2oardf (p )1770
dor —  FL T 20df (po) B +(1-2d)g (a0) 5 20mdf (po) B (1 20)5 (70) %
(2.17)
O\ _ BB"L]\%[ _ 20’Mdf/(p1)aafj\14 o 2O'Mdfl(p1)%
0o = T T T T o o) B (2) () T 2o d ) B2l
Next we compare 122 "(@0) g 9L (@),
po f'(po) pif (p1)°

q09'(90) _ qo(—cotqo +qo +qocot’ qo) _ 4§ +9(q0) +9(q0)”
pof'(po)  po(tanpo + po +potan®po)  pg + f(po) + f(po)?
(ﬁiUzvzfctli)po 21(%5]((100) + (21071\5((11)2]6(]90)2
pg+ f(po) + f(po)?
401\4d2 2 20p7d 20p7dy\2 2 2 2
af' (1) @G+ flq)+f(q1)? _ G—2aq)ZP1T T-2a Flp1)+(T247) " f(p1)*+d (o —1)7
pif'(py)  Pitflp)+f(p1)* pi+f(p1)+£(p1)? '

b

40 p,d? 22 20Mdf(m) (2"Md)2f(a:)2

Let hy(z) = 2=202° ;;ffd(fo(x)l;M ; this function is increasing on [0, Z].

Also define hy(x) = hy(iz), and hy(z) is decreasing on [0, §]. Using the fact that pg

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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is real and p; is pure imaginary, we have

d*(opr — 1)m2

w9 (20) afla) _ P2+ f(p1) + f(p1)?

pof'(po) pof'(p1) 1(po) = ha(ipy) =

> hl(O) — hQ(O) +0
=0.

909’ (q0) > a1 f'(q1)
po f’(po) p1f'(p1)

20 pdf' (po)po < 20 pdf' (p1)p1
20 ndf'(po)po + (1 —2d)g'(q0)q0 ~ 20mdf'(pr)p1 + (1 —2d) f'(q1)qr

Since and p1 f/(p1) < 0, we have

(2.18)

Comparing (2.18) with (2.16) and (2.17) derives ol _9lnX which means that

B . Oln O M dln OM - .
the growth rate for A is smaller than that of A with respect to op;. Thus A < A for
om > 1. 0

THEOREM 5. Denote o(x) = onX((-1,—djud,1])x[0,L] TOmX(~d,d)x[0,L] and (A(0), u)
as the first nonzero eigenpair of (2.1) with the slightly perturbed conductivity o(x,y) =
a(x) + eor(x,y) on Q= [—%, %] x [0, L], L <1, which satisfies

(2.19) / o1(z,y)dxdy =0
Q
and
(2.20) o1(z,y) >0 if —d <z <d,
' oi(z,y) <0 if —t<a<-dord<z<i,

where € > 0 is much smaller than 1. Then

(2.21) Mo(z,y)) > Aa(x)).

Proof. Note that the slightly perturbed conductivity o(z,y) = d(z) + eo1(z,y)
remains in the class of functions defined by

A* = {o’ € L>®(Q);0 < oy, < 0(x) < op ace. in Q;/

Om,0OM,T
Q

o (x)dx = T} :

where 7 = L ((1 — 2d) ops + 2doy,) is given. We can write the first eigenpair (A, u) in
asymptotic form as follows:

A:)\0+6A1—|—62)\2—|—"'7

U(.’L’,y) = Uo(.%',y) + €U1($, y) + €2U2($,y) +e

Without loss of generality, we assume v is normalized, i.e., fQ u?dxdy = 1. Substi-
tuting the asymptotic forms of u and A into this normalization equation, we have
orthogonality of ug and uq,

/ o, y)uus (, y)dady = 0,
Q

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Substituting the asymptotic forms of A and w into (2.1) and collecting the leading
order terms yields

~ 2 (0(2) Zuo(w,y) = & (7(@) Zuo(w,9)) = Aouo(z,y) in €,
(222 5(x)3uo(x) =0 forxzed.

on

Thus (Ao, ug) is the first eigenpair of the equation with o(z,y) = &(x), so ug(x,y) =
uo(z) due to Lemma 4. Next we consider the € order term,

V- (01Vu0) + V- (6(x)Vu1) = —)\oul - )\0’&0.

Multiply by wuo(x) and integrate over €2 to get
/ ug(x) (V- (61Vug) + V- (6(2)Vur) + Aour + Mug) dedy = 0.
Q

After doing integration by parts and using the orthogonality properties, the equation
becomes

A1 :/Ulug(x)zdxdy—&—/6(x)u'0(x)dedy.
Q Q ox

The second term on the right-hand side is 0 due to integration by parts and (2.22),
so we have the expression

A :/_é </OL al(x,y)dy) up(z)?d.

1
2

Since ug(z) is the first eigenfunction for (2.22) with Neumann boundary condition,
we know that

min uf(x)? > max ufh ()2
w€(~d.d) v€l—4,~duld, 3]

Along with (2.19) and (2.20), we can prove that

d L L
A1 :/ / al(x,y)u:)(x)zdydﬂc—l-/ / al(ﬂc,y)ué(ﬂ:)%ydm
—dJo [-3,—duld, 3] Jo

d L L
> / / oi1(x,y) min ué)(ac)Qdyd:r + / / o1(x,y) max ué(m)zdydx
—aJo z€[—d,d] [—1,—duld,1] Jo z€[—1,—du[d, ]

d L L
2/ / o1(z,y) min uE)(aJ)Qdyda:—ﬁ—/ / o1(z,y) min ug(x)2dydx =0,
—dJo z€[—d,d] [—%,—d]u[d,%] 0 z€[—d,d]

and the equal sign holds if and only if ué(x) = 0, which is impossible. Thus we proved
that

Ao (z,y)) > Aa(z))
for sufficiently small e. O

2.3. Rearrangement. There is a simple way to find a decreasing sequence of
X providing an initial conductivity 0 = ¢(®) whose corresponding first eigenpair is
()\(0), u(O)). At each step, the rearrangement method is used to find new conductivity
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which generates a smaller first nonzero eigenvalue as described in the following. At
the ith step, find the eigenpair (A, u()) of ¢(? and choose o(**1) satisfying

oY) —arg  min / o|Vu,[2dz,
0€AGm o0 JQ

where 7 = (o7 + om(1 — 7))|Q|. Denote DO = {z|c)(x) = o)} and (DW)¢ =

{z|c®(2) = 0,,}. To obtain such ¢+, we can choose DU+ and (DC+D)e such

that

min  [Vu?| > max |[Vul?|

ze(DG+D)e zeDG+D
and
DD} = 4]0
This means that D0+ = {z € Q : |[Vu®| < t}, where
(2.23) t=inf{s: |[{z € Q:|Vu?| <s}| >~|Q|}.

Note that (D®)e\(DE+1)e = DEH\ D) and (DEHD)\ DO = (D)e\ (Dit+1),
Thus we can prove that

/a(”l)(Vu(i))deS/o(i)(Vu(i))zdx.
Q o

After choosing (1) we calculate the first eigenpair (ACHD, 4(+D) using o =
ot Then we have the inequality

(i+1) 2 (i+1) (7, (i+1) 2
NS — Jo o (Vo(x))?de [ a"TD(VultD)2de

veS Jo v(x)2dx - Jo (uli+D))2d:
< Jo U(iﬂ)(_vu(i))zdx < Jo U(i)(vui)zdf — 0
S @R S (i
This process provides us a decreasing sequence of \(!). Repeat this process until
o) = o and A6+ = X&) pumerically. This provides us an estimated opti-

mal distribution of ¢ and an estimated minimal eigenvalue A. In Algorithm 2.1, we
summarize the steps of the rearrangement approach.

Algorithm 2.1 Minimization algorithm

Given o,,, 0, Q, D, and 7, choose an initial conductivity o =c(®) =

1. Set i = 0.
2. Compute u(? and X(*) of (2.1) by using a finite element method with o = o(*).
3. Compute DY to satisfy (2.23) and assign ot = OMXpG+) + TmXo\plit) -

OMXDO F+0mXQ\Do-

4. If o0+ = 5 stop the algorithm. Otherwise set i =i+ 1, go to step 2.

3. Numerical simulations. In this section, we show numerical results for the
optimization problem (2.1)—(1.2) on different domains. For the forward problem,
we perform a classical finite element method with linear elements and calculate the
eigenvalues and eigenfunctions via Arnoldi’s method. For the optimization problem,
we use the rearrangement approach discussed in section 2.3. In this section we choose
oy = 1.1 and o, = 1 for all numerical simulations.
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A second order accuracy is obtained.

TABLE 1

[ Mesh size [ h =1/200 [ h =1/400 [ h =1/800 [ h =1/1600 [ h =1/3200 ]
b 9.881361 9.881213 9.881176 9.881167 9.881165
A — \h/2
log, | NTZ _ NR/L 2.000 2.000 2.001
TABLE 2

The numerical solutions of A on a square domain [0, 1] x[0, 1] for o = 1+0.1x([0,0.3]U[0.7,1]) x [0,1]
with Neumann boundary conditions and the convergence rate. A second order accuracy is obtained.

| Mesh size [ h=27T ] h=28 [ h=2"9 [ h=2"10] p=2"1
AP 10.144242 | 10.142524 | 10.142094 | 10.141986 | 10.141944
A \h/2
logs | 3 7a— a7t 1.999 2.000 2.000

3.1. Accuracy test. In this subsection we test the accuracy of the forward
solver on a one-dimensional interval and two-dimensional domains. First we consider
the eigenvalue problem (2.1) on [0, 1]. We compute A with o = 1 4 0.1x(0,0.1u[0.9,1]
and the results for various mesh sizes h are shown in Table 1. The order of convergence
is estimated via the base-2 logarithm of ratio of consecutive differences between three
solutions obtained by mesh sizes h, %, and %. A second order accuracy is observed.

To test the order of accuracy on two-dimensional domain, we choose the domain
as = [0,1] x [0,1] and o = 1 + 0.1x([0,0.3u[0.7,1])x[0,1]- The eigenvalue for various
mesh sizes h are shown in Table 2, and the order of convergence is estimated via the
base-2 logarithm of ratio of consecutive differences between three solutions obtained
by mesh sizes h, %, and %. A second order accuracy is also observed.

3.2. Minimization of A on [0, 1]. Now we apply the rearrangement algorithm
to minimize the eigenvalue on the one-dimensional interval [0,1]. The initial guess
of the conductivity function is o =1+ 0.1x([0,0.125/U[0.375,0.625]U[0.875,1)) We show its
corresponding eigenfunction and the absolute value of its derivative in Figure 1. The
eigenvalue is A\; ~ 10.3376. After one iteration of the rearrangement algorithm, the
optimal conductivity with A ~ 9.9570 is achieved in a op; — 0., — 0 configuration.

3.3. A square domain. Starting from here we study the optimization prob-
lem on various two-dimensional domains. We first consider solving the optimization
problem on a square domain Q = [0,1] x [0,1] in R2. In Figure 2, eigenfunctions,
absolute values of gradients of eigenfunctions, and optimal conductivity distributions
are shown with different parameters v = 0.2, 0.6, and 0.9. We found that for all
values of ~, the optimal D = {z|o(z) = o} consists of two strips attached to the
side of the square. The o, material lies in the middle of the domain, in between the
oy material. Due to the symmetry in both x and y directions on a square domain,
we expect that the minimizer is not unique. As expected, we observe that A increases
as -y increases. We have used different initial choices of o, and part of the choices for
the case v = 0.4 are shown in Figure 3. For all these initial choices, the optimal o
will converge to the strip scenario.

3.4. Rectangular domains. Consider the eigenvalue problem (2.1) with v =
0.6 on elongated rectangles [0, 1] x [0,b] with b = 0.5,2/3,3/2, and 1.5. We vary the
values of b in order to see how A and the optimal ¢ vary with respect to b. The
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A =10.3376
1.15 ‘ :
14 ] ]
6 1.05 F .
W I I ]
0.95 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0.1 0.2 03 0.4 05 0.6 07 0.8 0.9 1

0 0.1 02 03 04 05 06 07 08 09 1
af ] .
sl ,
EFL ,
1 ,
0 0.1 02 03 04 05 06 07 08 09 1
A =9.957
1.15 T
1.1

t 1.05 - b
b | ,

0.95 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fic. 1. Minimizing A\ by using the rearrangement algorithm on the interval [0.1]. Top: the
initial guess of o, the corresponding eigenfunction, and the absolute value of its derivative. Bottom:
the optimal o, the corresponding eigenfunction, and the absolute value of its derivative.

optimal results are shown in Figure 4 with b = 0.5,2/3,3/2, and 1.5. From the first
to third columns, eigenfunctions, absolute values of gradients of eigenfunctions, and
the corresponding optimal conductivity distributions are shown. We observe that the
optimal D = {xz|o(z) = op} consists of two strips attached to the shorter edges,
while D¢ = {x|o(x) = 0,,} consists of a strip in the middle of the rectangle. The
results are consistent with those on an interval which have the o), material placed on
both ends symmetrically and the ¢, material placed in the middle. Figure 5 shows
the dependence between the optimal eigenvalue A and the length of shorter edges b
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= 10 10°
A =9.8812 14 4 u X 1 V u| X
s 14
1.08 08 ) 08 12
10
1.06 06 1 0.6
o 8
1.04 0.4 4 0.4 6
; 4
102 0.2 2 02
3 2
1 0 0
0 0.5 1 0 0.5 1 0 0.5 1
= %1073 10°
X =10.1417 " ; u ; |V u] x
3 14
1.08 0.8 B 0.8 1
1.06 06 1 06 10
0 8
1.04 0.4 1 04 6
- 4
102 0.2 2 02
3 2
1 0 0
0 0.5 1 0 0.5 1 0 0.5 1
A = 10.6449 x10° |V ul %107

0.8

0.6

o = N

0.4

0.2

[N S

11 1 - 1
16
1.08 0.8 0.8 14
12
1.06 06 06 10
8
1.04 0.4 B 0.4
6
1.02 0.2 - 0.2 4
E 2
1 0 0
0 05 1 0 05 1

F1c. 2. The optimal results on a square domain. From the left to right columns are shown the
optimal conductivities o, corresponding eigenfunctions, and absolute values of gradients of eigen-
functions with v = 0.2,0.6, and 0.9 from the first row to the last row.

o
e
3

A=10.1417 A=10.2723
1 1.1 1 1.1
) . I : 0.5 . I :
0 1 0 1
0 0.5 1 0 05 1

A=10.2618 A =10.2604

1 1.1 1
05. I105 05. I
0 1 0
0 0.5 1 0 0.5 1

F1c. 3. Different initial choices of o with their corresponding eigenvalues for v = 0.6.

1.1

1.05

1
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» u %1078 x10°8
0.4 2 8
6
1.05 0
0.2 4
2 2
1 0
0 0.5 1
u x107° x10°
1.1 15
1.08 2
1.06 10
0
1.04 s
1.02 2
1
x10° x10°°
1.1 7
3 6
1.08 B .
1 1 ; 1
1.06 4
0
1.04 4 3
0.5 0.5 0.5
-2 2
1.02
-3 1
0 1 0 0
0 0.5 1 0 0.5 1 0 0.5 1
=2, %1073 %1078
, A\ =25355 iy ) u o IVl
1.08 2 2
1.5 1.5 1.5
1
1.06 15
1 1 0 1
1.04 1
-1
0.5 102 0.5 , 0.5 05
0 1 0 0
0 0.5 1 0 0.5 1 0 0.5 1

Fi1c. 4. The optimal results on rectangular domains. From the left to right columns are shown
the optimal conductivities o, corresponding eigenfunctions, and absolute values of gradients of eigen-
functions with v = 0.6 fized. The ratio of edges from first to last rows are %, %, %, and 2.

more directly with various choices of v. When b < 1, the optimal conductivities ¢ on
rectangular domains [0, 1] x [0,b] do not depend on y and are similar to the optimal
solution on the unit interval [0, 1]. The optimal eigenvalue remains a constant while
b is changing. When b > 1, the optimal conductivities ¢ do not depend on x and
are similar to the optimal solution on the interval [0,b]. The optimal eigenvalue is
decreasing in b.

3.5. A circular domain. Consider the eigenvalue problem (2.1) on unit circle

{(z,y) =2® +y* < 1}.

We choose v = 0.1, 0.4, and 0.9 to demonstrate how the optimal conductivities o
and their first nonzero eigenvalues A vary with respect to «v. The results are shown
in Figure 6. When v = 0.1, the optimal conductivity has D = {z|o(x) = onm}
consisting of two disjoint regions on two sides and D¢ = {z|o(z) = o,,} forms a
nonconvex region in the middle. When v = 0.4, the region with low conductivity
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~v=0.2

~v=0.4

~v=0.6

~v=0.8

Fic. 5. Dependence of optimal eigenvalue A and length of shorter edges b on rectangular
domains [0,1] x [0, b] with different ~.

A =3.3934 » %107 [V u| x10°®
’ 25
2
2
1.0 0 15
1
2 05
1
-1 0 1
) =3.4453 » %107 10
' ) 25
1.05 0 1.6
2 05
1
K 0 1
%10
A = 3.6595 %10
1.1 2
5 1.5
1.05 0 1
-5 J 0.5

Fic. 6. The optimal results on circular domains. From the left to right columns are shown the
optimal conductivities o, corresponding eigenfunctions, and absolute values of gradients of eigen-
functions with v = 0.1,0.4,0.9 from the first row to the last row.

D¢ = {z|o(xz) = oy} shrinks and becomes convex. When v increases further, the
region with low conductivity keeps shrinking and then no longer touches the boundary,
and D = {z|o(x) = op} becomes a connected domain. When v = 0.9, the optimal
conductivity distribution becomes a region made of oj; material near the boundary
and a region made of ¢, material in the middle of the disk.

3.6. An elliptical domain. Consider the eigenvalue problem (2.1) on an ellipse
{(:c, y) = %2 + % < 1}, where a = 1 and b = 0.5. We demonstrate how the optimal
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A =3.5128 u %1073 vV u %«107°
0.5 r ﬁ 11 0.5 5 0.5 [V ul v
05 k 1 0.5 -2 05 z
-1 0 1 -1 0 1 -1 0 1
05 A =3.5623 1 os u 107 05 [V ul x10°¢
. . . 2 . 12
0 1.05 0 0 0
05 k J 1 05 L 2 0.5 3
-1 0 1 -1 0 1 -1 0 1
A = 3.7964 %1073 [V ul %107

u
0.5 1.1 0.5 0.5
’ 1 2 2
0 1.05 0 0 0 %.5
k J -2 5 0.5
-0.5 1 -0.5 -0.5
-1 0 1 -1 0 1 1 0 1

F1c. 7. The optimal results on elliptical domains. From the left to right columns are shown the
optimal conductivities o, corresponding eigenfunctions, and absolute values of gradients of eigen-
functions. The ratio between two edges is 2 and v = 0.1,0.4,0.9 from the first row to the last
row.

conductivities o vary with respect to . Figure 7 shows results which are similar to
those on a circular domain. When + is small, the optimal ¢ is formed by two high
conductivity regions near the end of longer edges and a low conductivity area in the
middle. When 7 is large, the low conductivity region will become small and disconnect
with the boundary of the elliptical domain, and thus the optimal ¢ is formed by a high
conductivity region near the boundary and low conductivity region in the middle.

3.7. Annular domains. Consider the eigenvalue problem (2.1) on annular do-
mains {(z,y) : r? < 2% + y? < 1} with several different given r. We demonstrate
how the optimal conductivities ¢ vary with respect to r and . The first four rows
of Figure 8 present results for 7 = 0.5 with various choices of v. When ~ = 0.05, the
high conductivity region of optimal ¢ is formed with four small parts, two of them
adjacent to the outer boundary and two of them adjacent to the inner boundary.
They are symmetrically distributed at two ends of a diameter. In this case, the low
conductivity region is connected. When v = 0.1, the high conductivity areas of ¢ are
combined into two parts, and thus divide the low conductivity area into two parts as
well. In the cases when v = 0.1 and v = 0.4, both high conductivity region and low
conductivity region are disconnected. When v = 0.9, the optimal o is formed by two
low conductivity regions adjacent to the inner boundary and one high conductivity
region which is connected. The fifth row of Figure 8 shows the result when r = 0.1
and v = 0.6. The optimal ¢ shows a different scenario when r is small.

3.8. L-shaped domains. Consider the eigenvalue problem (2.1) on L-shaped
domains ([-1,1] x [-1, 1]\([k, 1] X [k, 1]). We examine the optimal conductivity distri-
butions for different k& and . We observe that the optimal conductivity configurations
have the low conductivity region D¢ always containing the corner point (k, k) even
though it is hard to observe this in the first figure on the last row. The high con-
ductivity region D always contains the corner point (—1,—1). When k = 0, the low
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Fi1c. 8. The optimal results on annular domains. From the left to right columns are shown the
optimal conductivities o, corresponding eigenfunctions, and absolute values of gradients of eigen-
functions. The first four rows are shown with the ratio between the outer radius and inner radius
given by 2 and v = 0.05,0.1,0.4,0.9. In the fifth row, r = 0.1 and v = 0.6.

conductivity region is connected as shown in the first two rows in Figure 9. When
~v = 0.4, the low conductivity region is connected with the bottom and left boundaries
and thus divides the high conductivity region into three parts, as shown in the first
row in Figure 9. When v = 0.8, the low conductivity region is located in the middle
and the high conductivity region is also connected. More scenarios and topological
changes can be observed for wider L-shaped domain. In the case of £k = 0.8, four
different scenarios with respect to v = 0.2, 0.3, 0.5, and 0.8 are shown in Figure 9
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Fi1G. 9. The optimal results
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on L-shaped domains. From the left to right columns are shown

the optimal conductivities o, the corresponding eigenfunctions, and absolute values of gradients of
etgenfunctions. Results for k = 0 and v = 0.4 and 0.8, respectively, are shown in the first and
second rows; the results for k = 0.8 and v = 0.2, 0.3, 0.5, and 0.8, respectively, are shown in the

third row to the sixth row.
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from the third row to the sixth row. The high conductivity regions are divided into
five, four, and two parts in the third, fourth, and fifth rows, respectively, and are
connected in the sixth row. The low conductivity region is connected in the third
row, while from the fourth to the sixth rows they are not connected due to the corner
point (0.8,0.8). It is also worth noticing that the optimal o for the third, fourth, and
sixth rows have the same axis of symmetry as the L-shaped domain, i.e., the diagonal
y = x, while in the fifth row there is no symmetric property for the optimal o. In
fact, in this case for the fifth row when v = 0.5, a scenario similar to the fourth row
provides another local minimizer, but the corresponding eigenvalue (A = 2.5336) is
higher than those shown in Figure 9 (A = 2.5293).

4. Conclusion. In one dimension, we prove several monotone properties of ei-
genvalues. In addition, we have shown that the optimal conductivity distribution will
have the high conductivity material placed evenly at two ends, and the low conduc-
tivity material placed in the middle of the interval, with the assumption that the low
conductivity region is simply connected. This oy — 0,,, — o spatial arrangement is
not affected by varying o,, or op;. The conductivity which achieves the minimal first
nonzero eigenvalue of the Neumann problem is the same as the result which achieves
the maximal first eigenvalue of the Dirichlet problem. It would be interesting to find
out whether this particular optimal configuration is a global minimizer of (2.1) among
materials which consist of two different conductivities with a prescribed area ratio.

In two-dimensional rectangular domains, we prove that the strip configuration
can be a local minimizer by computing eigenvalues and eigenfunctions via method
of separation of variables and studying their asymptotic behaviors. For general do-
mains, the proposed rearrangement algorithm is able to obtain the minimizers ¢ on
domains including squares, rectangular domains, circles, ellipses, annular domains,
and L-shaped domains. On rectangular domains, the optimal material has the high
conductivity material placed at two strips attached to the shorter edges and the low
conductivity material placed in the middle of the domain. On a square, the optimizer
is not unique due to its symmetry in both the x and y directions. We observe a
similar phenomenon in other symmetrical shapes such as a circle and an annulus. On
a circle or an ellipse, we observe that the low conductivity region could form a convex
or nonconvex shape, and the high conductivity region may have different topologies
depending on the area ratio. It would be interesting to find out when these kinds of
shape and topology changes occur. On an annulus and L-shaped domain, we see the
optimizers have many different configurations depending on the area ratio. Further
analytical study is required to understand the properties of the optimizers and their
relationship with their eigenfunctions. Last but not least, we observed numerically
that the interface between the low conductivity and high conductivity regions may
not be smooth. When do we expect the optimizer to have microstructural patterns?
This challenging question has yet to be answered.
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