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1. Introduction

Rearrangement design problems arise naturally in many applications such as fluid mechanics and mechanical vibrations,
just to name a few [1-18]. In many of these problems we consider an energy functional depending on solutions of a partial
differential equation where its design coefficients are in a rearrangement class of functions. For example, in the design of
mechanical vibration that explores the possibility to control the total displacement we have an energy functional which de-
pends on the solution of a Poisson’s equation where the right-hand side function is in a rearrangement class. Moreover, to
find a stationary and stable flow in the planar motion under an irrotational body force of an incompressible, inviscid fluid
contained in an infinite cylinder of uniform cross-section we should find the extremizer of an energy functional correspond-
ing to the solutions of a Poisson’s equation [1-3,16].

In this article, we study an intermediate problem arising in the design of mechanical vibration that explores the possi-
bility to control the total displacement. The governing elliptic partial differential equation (PDE) is

—Au(x) = f(x) in

du(x) B (1.1)
an +pBux)=0 on 0%,
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where A is the Laplace operator acting on the function u(x) defined on a bounded smooth domain Q c RN, f € [2(Q), B is
a given positive constant, and % is the outward normal derivative along the boundary 0<2. As the solution u depends on f,
we use the notation u; to emphasize this dependence. For a given f € [2(Q), u= use H'(R) is a (weak) solution of (1.1) if
and only if we have

/ Vuf~V¢dx+,3/ uf¢dsz/ fodx, Vo e H'(Q). (1.2)
Q a0 Q
It is noteworthy that the solution uy of (1.1) corresponding to f is the unique maximizer of the following problem
sup G(f.u, B), (1.3)
ueH' ()
where

Q(f,u,,B):Z/qudx—/Q|Vu|2dx—,3/mu2d5,

and the maximum value is J(f) = [ fuydx.

In mechanical vibration, (1.1) models the steady state of a vibrating membrane with a constant force, e.g. the gravity
force of earth, applied to it. Moreover, let the magnitude of the tension be a constant. Accordingly, the function f(x) in
(1.1) can be considered as an external force such that the quantity

/Q f&)dx,

measures the mass of the membrane. The Robin condition would be considered to imagine that the membrane at its bound-
ary points are free to move along a track but are attached to a coiled spring or rubber band obeying Hooke’s law which
tends to pull it back to the equilibrium position. In that case the membrane would exchange some of its energy with the
coiled spring [19].

The objective function

J(f) = /Q fugdx, (14)

which is called the total displacement, measures the robustness of the membrane from the physical point of view. The
following shape optimization problem has been considered by several authors [1-3,16,20,21]: Assume that we want to build
a membrane with a prescribed total mass y > 0 and consists of two given materials with densities M and m (M > m > 0).
The aim is to distribute these materials in such a way that the total displacement of the resulting membrane is optimal or
desired. This means that the function f(x) should be considered in the following admissible set

Ay = {f | FO = Myxp +myp where D c 2, D] =A < |2},

where A is a prescribed constant. The set Ay, p,, Which is called a rearrangement class of function is a subset of [2() and
its weak closure is

By = (f | m < F(X) < M, /Q fX)dx =y},

where y := MA+m(|Q| —A), see [1,2,22]. The difference between functions in two sets Ap p, and By u, is whether f
takes values between m and M.
The following shape optimization problems have been studied

Jor=min{J(f) : f e Anmy}- (1.5)

Loi=max{J(f) : feAmmy} (1.6)

previously in [20,21] and the optimal forces are found from all possible external forces in Ay, y,, which minimize or maxi-
mize the total displacement, correspondingly. The distribution of materials in the membrane which leads to external forces
with minimum and maximum vulnerability are obtained. For the minimization problem Liu and Emamizadeh have estab-
lished the existence and uniqueness of the solution and showed that the solution is a non-decreasing function when the
domain is an N-ball [20]. Kao and Mohammadi studied both minimization and maximization problems and obtained analyti-
cal solutions for N-balls. In addition, the properties of the extremizers on general domains including topology and geometry
of the optimizers have been derived. Moreover, efficient algorithms based on finite element methods and rearrangement
techniques are proposed to determine the extremizers in just a few iterations on general domains [21].
In this paper we consider the following design problem

Jo=UH=c: feAnmy} (1.7)

where ¢ € (J4,[4). Instead of searching for external forces with minimum and maximum vulnerability, we address the ques-
tion whether it is possible to tune the robustness of the membrane by changing its vulnerability in ¢ € (J4,J4). It is note-
worthy that an intermediate value problem has been considered in [20] for a linear energy functional.
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In this paper, we first prove an existence result for (1.7). After that we provide a formula to derive a solution of (1.7) by
dividing it into two separate rearrangement optimization problems. This formula allows us to determine an analytical solu-
tion to (1.7) when the domain is an N-ball. Moreover, we prove that the solution inherits some kind of Steiner symmetry
while our domain is Steiner symmetric with respect to hyperplanes. For general domains, a numerical algorithm based on
rearrangement techniques and the formula is developed to determine the solution of (1.7). The algorithm is capable to obtain
the solution efficiently for domains with different geometries. The numerical results coincide with our analytical findings.

The paper is organized in the following way. In Section 2, we report the analytical results including existence of a solu-
tion (1.7) and some geometrical and topological properties of our solutions. Moreover, the explicit solutions of N-balls are
provided. Section 3 is devoted to our numerical method and we illustrate several numerical examples.

2. Analytical results

Considering f € By, we have ug(x) > 0 and uy € leoc(Q) N C9(Q) where 6 € (0, 1). Moreover, function uy attains its
minimum only on 92 and its maximum at an interior point of Q [21].

As we will see later, Problem (1.7) does not have a unique solution in general. Here, we address the question of existence
for Problem (1.7). Without loss of generality in this section we can assume that m = 1 and set € = (M — 1). Then, a function
fin Ap v, is of the form f =1+ €xp such that [D| = A.

Theorem 1. Problem (1.7) has a solution fc € Am -

Proof. In view of Theorem 5.1 in [20] and Theorem 3 in [21], we know that Problems (1.5) and (1.6) have solutions f and
fin Ap v, respectively. It is known that the set App, is path connected using Lemma 2.11 in [2]. Hence, there is a
continuous function n € C([0, 1], Ay p, ) such that

> ~

nO=f n)=Ff

Define function & : [0, 1] — [J4, 4] where
£ =J(0) = /Q 0Oty 0 dX.

Recall that functional J(-) is continuous, see [20, Lemma 5.2], and so & is a continuous function. Employing the intermediate
value theorem one can find f € [0, 1] such that & (f) = ¢ and then f, = n(f) is a solution for (1.7). O

In what follows, we determine a solution of (1.7) by using solutions of two rearrangement optimization problems. To do
so, we need the following lemma.

Lemma 2.1. Let D; be a measurable subset of 2. Then maximization problem

max 1+e€ +€ ,
bl ‘D|=t]( XD, +€Xp)

has a solution D,. Moreover, this solution is uniquely defined by
D, ={xeDf: Uttexp, +exp, (X) = 0}, with 6 =sup{s: |[{xeDf: Ui ey, +exp, (X) = s} >t} (2.1)

Proof. Let us recall here that
/ Fugdx = / gujdx, 22)
Q Q

for all f,ge L2(R), [20]. Setting f =1 + € Xp,» this symmetry property and the fact that D is a subset of DS yields
J(f +€xp) :/ fufdx-l—e/ quDdx+e/ XpUsdX + 62f XUy, dX
Q Q DS DS

=/ fufdx+26/ XDufdx—i—ez/ XDUy,dX. (2.3)
Q DS D¢

Hence, J(f + € xp) can be considered as a functional where xp belongs to the rearrangement set Ag 1, C L? (DY) and our
maximization problem is an optimization of this functional over Ag 1. In order to prove the existence of a maximizer let us
consider the maximization problem over the weak closure set By 1. It is well-known that By ; ; ¢ [? (D) is a convex weakly
sequentially compact set with Ag 1, as its extreme points [1,2]. Due to the weak continuity of the functional J(f + € xp), see
[20, Lemma 5.2], we deduce that there is a maximum for the functional over the weakly compact set 5y 1 ;. Moreover, the
maximum have to be in Ay, in view of the convexity of the functional, see [20, Lemma 5.2]. So far, we have shown that
the maximization problem has a solution D,.
In order to establish the next assertion in the theorem, we claim that

/ XDy Ugiexy,) dx > / XD Ufieyy, dx, forevery DcDj, with |D|=t. (2.4)
D 2
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To prove the claim, we argue by contradiction. Assume there is a set D c D{ with |D| =t such that

/ XD, uf+5XD2 dx < / XD uf+€XDZ dx. (25)
Dby D
This inequality reveals that

/Q(f+ € XD Ufrey,, AX < fQ(f+ EXDIUf ey, dX, (2.6)

in view of (2.3). Then, using (2.6) we have

/Q(f"‘EXDz)uere)(D dx = g(f+€XD2 uf+eXD 7/3) < g(f+€XD,uf+eXD vﬂ) = SHUI()Q g(f""eXDau .B)
ueH!

= fQ(erEXD)UHexde

which contradicts the maximality of f + € xp, and the claim is proven.

From (2.4) we deduce that fDﬁ XD, Ufsexp, dx is a maximizer for the functional L(xp) := fDi XD Ufsexp, dx over the re-

arrangement class Ag ;. C L? (Df). On the other hand, due to Lemma 2.1 in [21], we infer that u;, ., = satisfies —Au=

2

f+€xp, almost everywhere in 2 and so employing Lemma 7.7 in [23] we observe that its level sets have measure zero.
Now, Lemma 2.9 in [2] yields that there is a non-decreasing function 7 : R — R such that ”(”f+exoz) is in the re-

arrangement class Ap 1. Moreover, Lemma 2.4 in [2] reveals that n(uy +€XDZ) is the unique maximizer of the functional

L(xp) = ng XD Ufieyp, dx over Ag ¢ C [2 (DY) and so xp, = ”(”f+exnz ). This yields the second assertion of the theorem and

(21). O
Theorem 2. There is a solution f =1+ €xp, + € xp, for (1.7) such that

1+exp, = argmin J(1+€xp), 1+€xp, +€xp, = argmaxJ(1+€xp, +€xp), (2.7)
DcS, |D|=A—t DcDS, |D|=t

where t is a number in (0, A).

Proof. Recall that the minimization problem in (2.7) is a rearrangement optimization problem on rearrangement classes
A 1te,y, With yr =|Q2| +€(A—t). Then applying Theorem 5.1 in [20], we observe that minimization problem in (2.7) is
uniquely solvable. Moreover, using Lemma 2.1, we know that the maximization problem in (2.7) has a solution. Let us define
§(t) =J(1 +exp, +€xp,) for t € (0,A) then it is inferred that & (t) is well-defined. Moreover, it is easy to check that

EO) =1 EA) =]u

In order to employ the intermediate value theorem, we show that £ is continuous.

Consider {t;}$° in (0,A) such that t, — f as n — oo. We establish that & (t;) — & (f) when n — oc. At first, we show that
the solution of the minimization problem in (2.7) corresponding to t, converge to the solution corresponding to t. It is
noteworthy to mention here that a similar question has been investigated in [24].

For each t,, problems in (2.7) have solutions 1 + € Xy and 1+ €Xp1 + € Xpy respectively. Furthermore, 1 + €Xp, and 1+
€Xp, T €Xp, are the solutions of the problems in (2.7) corresponding to . There are sub-sequences (still denoted by {XD?}?",
{XDE}?’) such that

Xor =M. Xpr = 72, in [P(R), (2.8)
as n — oo. It is easy to check that 1 + €n; belongs to Bi,14e.y; Consider an arbitrary function 1+ € xp in the rearrangement
class Aj 11e .- We claim that there is a sequence of functions {xg,}3° where E, c  with |Eq| =A—t; and xg, — xp in

12(S2). The sets {En}°c can be constructed in the following way. If A—t, > A—t, then set E, = DUF, where F, c D¢ with
|Fa| =t —tn. If A—ty <= A — 1, then we set E, = D\ F, where F, ¢ D with |F| =t; —t. Now in view of weak continuity of J
and (2.7), we observe that

JA+e€xp) = imJ(1 + €xg,) = ImMJ(1 + €xpy) =J(1 +€m1). (2.9)

Let us recall here that due to the weak continuity and strict convexity of the functional J, see [20, Lemma 5.2], the minimizer
in (2.7) is uniquely solvable even considering the minimization problem over the weak closure of the rearrangement class,
B1 1+4e.y,- This fact and (2.9) reveal that 14 €n; is the unique solution of the minimization problem in (2.7) when t = t and
so we have n; = Xp,-

So far, we have shown that the solution of the minimization problems in (2.7) corresponding to t; converge to 1+ €Xp,-

the solution of the minimization corresponding to t. Since ||XD711 2 — ||XD1 ll;2(q) and in view of (2.8), we have

XD’]’ - XDl’ in LZ(Q), (210)
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invoking a special case of the Radon-Riesz theorem. This yields that
Xon(X) — xp, (X), ae. (2.11)

Next, we show that the support of function 7, is a subset of Dg . Consider an entire point X € Dy. Then applying (2.11),
we observe that xg € D] for large n and so Xy (Xg) = 0 for such n since D} c (D})°. Hence, we obtain

Xy (X) xp,(X) > 0, ae. (212)
Then we see that
/9 M2Xp, dx = lim /9 X3 Xp,dx =0, (2.13)

employing (2.8), (2.12). Therefore, we observe that the support of 1, is a subset of Dg.

Consider an arbitrary set D c D‘i’ with |D| =&. One can find a sequence of sets {D;}5° where D, c (D¥)¢ with |Dy| = t,
and also xp, — xp in L?(€2). The sequence of sets {Dn}$° is constructed in the following way. For each n, set En = (D}) N D.
Remember that XD = XD, &€ applying (2.11) and so xg, — xp in L?(€2). But, the problem is that may be |Eq| = 6, # tn.
If 6, > t, then we consider a set F, c E, with |F;| =6, — t; and Dy = Ep \ Fy. If 6, < t, then set Dy, = E, UF, with |Fy| =t;, — 6,
such that F, c (D}) and |F, N D| = 0. Now it is easy to check that yp, — xp in L2(R2). Using this, the weak continuity of J,
(2.7) and (2.10), we have

JA +€xp, +€xp) = imJ(1 + € xpy + €xp,) < imJ(1 + € xpy + € xpy) =J(1 + €5, +€n2). (214)

Let us recall here that the maximizer in the maximization problem of (2.7) is also a solution when considering the problem
over the weak closure of the rearrangement class due to the weak continuity of J. We have shown that the support of 1, is
a subset of Dg and so it belongs to By ; ; C 12 (Dﬁ). Expression (2.14) reveals that indeed 7, is a solution of the maximization
problem in (2.7) considering it over the weak closure of the corresponding rearrangement class and so we have

JA+exp +€m) =]J(1+ex5 +€x5,)-
In summary, we have shown

Nim & (tn) = imJ(1+ € xpy + €xpy) =J(1 +€Xp, +€m) =J(1 +€x5, +€xp,) =& (D).

Consequently, we obtain that & : [0,A] — [J4.J4] is a continuous function and the intermediate value theorem yields that
(1.7) has a solution in the form asserted in this theorem. O

Remark 2.2. In view of Theorem 1 in [21], it is noteworthy that the minimizer in (2.7) has the following form
D;={xeQ: Utteyp, (X) < T}, T=inf{s: |{xeQ: Utreyp, (X) < s} > A—t}. (2.15)

Also, there is a connected component Dy of the interior of D; hits the boundary, i.e., Dy N 3 # ¢. Moreover, if A—t is
large enough then Dy contains a tubular neighborhood of the boundary 92 and 92 c dD;. In particular, if  c R? is simply
connected, then D; is connected when A —t is large enough.

The next two theorems determine a geometrical property of a solution of (1.7).

Theorem 3. Let f =1-+€xp, +€xp, be a solution of (1.7) derived from Theorem 2 and Ul texp, +€Xp, is not constant on 9. If
t is large enough, then both D, and D, touch the boundary 0.

Proof. In view of Remark 2.2 we know that D; touches the boundary. When t is large enough then due to (2.1) we infer
that D, touches the boundary using a method similar to that for proof of Theorem 4-(iv) in [21]. O

Theorem 4. Let f =1+ ¢€xp, +€xp, be a solution of (1.7) obtained in Theorem 2 when B = oo, the Dirichlet boundary condi-
tions. If Q is a simply connected subset of R2, then D; is a connected tubular neighborhood of the boundary 9.

Proof. In view of Remark 2.2 and the Dirichlet boundary conditions we see that 2 ¢ dD;. This shows that D; contains a
tubular neighborhood of the boundary 0<2. In order to establish that D; is connected we argue by contradiction. Assume
there is an open subset Dy of D1 = {x € Q: Ultexp, (x) < 7} such that Dy c {x € Q2 : Ultexp, (x) > 7}. Then we see 0Dy C

(xeQ: Uttexp, (x) = t}. Consequently, Uttexp, has a minimum in Dy and also

{—AuHGXD1 X)=1+€ in Dy, (216)

Uiteyp, (X) =T on 9Dy,
which contradicts the maximum principle [25]. O

Next theorem reveals a symmetry property for solutions of problems in (2.7).
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Theorem 5. Let Q2 be a Steiner symmetric domain with respect to a hyperplane T and B = oo, the Dirichlet boundary conditions.
Assume 1+ € xp, is the unique solution of the minimization problem in (2.7). Then, D is a Steiner symmetric domain with respect
to hyperplane T. Moreover, the maximization problem in (2.7) has a solution 1 + € xp, + € xp, where D, is Steiner symmetric with
respect to T.

Proof. Let w=uq Xp," Then it is known that w is the unique minimizer of the following functional over H(l) ()

I(u) = %/ﬂ |Vu|2dx+/9§(u)dx, (217)

where ¢ : R — R is a convex and so continuous function [20]. Assume that w* is a Steiner symmetrization of function w
with respect to the hyperplane T. It is known that w* H(l) (£2), and also

/Q|Vw|2dxz'/Q|Vw*|2dx, L{(w)dx:/ﬂ{(w*)dx, (2.18)

see [2,26,27]. Consequently, we observe that

I(w) = %/Q|Vw|2dx+/g§(w)dxz %L|Vw*|2dx+/9§(w*)dx
=I(w"),

using (2.18). This shows that w = w* since w is the unique minimizer of I(u). Employing (2.15), we know that there is T > 0
such that D] = {x € 2 : w(X) > t}. This yields that D is Steiner symmetric since w is Steiner symmetric with respect to T.
Now we turn to the second assertion of the theorem. Using (2.3), we see that

J(f +€xp,) =/ fufdx+26/ XDzufdx—i—ez/ XDZuXDde, (2.19)
Q DS D¢

where indeed f=1+¢€xp, and uy is w. Then, uy is Steiner symmetric. In the second integral of (2.19), invoking (2.2) and
Hardy-Littlewood inequality we have

Ai XDZdeX = /Q XDZdeX =< /;}XDEdeX = /L;g XDzude, (220)

where D3 is the Steiner symmetrization of the set D,. In the last equality we have used the fact that Dj c Df since D is
Steiner symmetric with respect to T.
For the third integral of (2.19), let us recall that we have

—Auy, =xp, in Q
Uy,, =0 on 0%,

and by using a method similar to that in the proof of Theorem 5 in [21] one can say
f XDy Uxp, dx Z/ XDy Uxp, dx < f XDﬁuzdxs (2.21)
DS Q Q

where uj is the solution of (1.1) corresponding to XDs- Applying (2.20) and (2.21), we deduce that

I +exn) = [ fugdxr2e [ xousdxet [ xopusdx—J(f +exop).

and hence Dj is a solution of the maximization problem in (2.7). O
Due to the Steiner symmetry property of D{ and its subset D, we obtain the following theorem.

Theorem 6. Let Q c RN be Steiner symmetric with respect to a family of N mutually perpendicular hyperplanes {T;}, B = oo
and f =1+ €xp, + € Xp, be a solution of (1.7) derived by (2.7) such that D{ and D, are Steiner symmetric with respect to those
hyperplanes. Then,

i) both functions Ultexp, (x) and Ultexp, +1p, (x) have a unique maximum point which is the intersection point of {Ti}’l".

it) The sets D{ and D, are star-shaped domains.
Proof. The proof of (i)-(ii) can be done using a method similar to that for the proof of Theorem 6 in [21]. O

One can determine a solution for (1.7) when € is an N-ball. Define B(0,a) as a ball in RN centered at the origin with
radius a. Set D, = B(0, r5) such that |D4| =t and D = B(0, a) \ B(0, r1) where the radius r; is chosen such that [D}|=A—t.
It is easy to check that

= (b, o (AT (2.22)
N



C.-Y. Kao and S.A. Mohammadi Commun Nonlinear Sci Numer Simulat 96 (2021) 105706

where oy is the volume of unit ball B(0, 1).

Theorem 7. Let Q = B(0,a) and B = cc. Then there is t in (0, A) such that fo =1+ €Xpi +€Xpi is a solution for (1.7).
1 2

Proof. We know that 2 is symmetric with respect to all hyper-planes T which pass through the origin. Employing
Theorem 5, DY which is a ring around the boundary is the unique solution of the minimization problem in (2.7). More-
over, DY is a solution of the maximization problem in (2.7).

O

Remark 2.3. Indeed, the solution provided by Theorem 2 is one of solutions for (1.7). Although the minimization problem
in (2.7) has a unique solution, the maximization problem may have different solutions. Even for the case that 2 = B(0, a),
we do not have a proof that the maximization problem in (2.7) has a unique solution. However, it has been established that
a ball is the only radial maximizer for the maximization problem in (2.7) [21].

2.1. Explicit solutions for (1.7)

The explicit solutions for design problems like (1.7) are rare due the fact that we do not have so much information on
the topology or geometry of the solution. This section is devoted for explicit solutions of (1.7) when the domain is a ball.
First we consider the one-dimensional case 2 = (0, 1). In this case we can find a solution for (1.7) for general .

Theorem 8. Let 2 = (0, 1). There is t € (0,A) such that
f=T+exon+ Xy +€Xp-ae .
is a solution of (1.7).

Proof. Recall that there is t € (0,A) where (1.7) has a solution in the form (2.7). For one-dimensional domain € = (0, 1),
the solution of the minimization problem in (2.7) is available explicitly [21]. Indeed in the minimization problem we have
Dy =[0. 411U 1 - 45t 1] and Utscyp, is symmetric around x = 3 and increasing in [0, 1].

Now setting f =14 € xp,, recall that

J(f+€XD)=/ fufdx+2€/ XDude—i-Gz/ XUy, dX,
Q D¢ D¢

where
—AUy, = Xp in €,

+Buy, =0 on 0Q.

For D c Q with |D| =t, it is inferred by using a method similar to that in the proof of Theorem 5 in [21] that

/C XpUy,dx < /C XD, Uy, dX,
Dl Dl

where D, = [%, %]. Invoking Hardy-Littlewood inequality and the symmetry of uy, it is observed that

u dxg/ *u*dx:/ urdx.
/Di XpUs b (Xp)"u} b Xp, Uf

Therefore, we can conclude that D, is a maximizer for the maximization problem in (2.7). O
In view of Theorem 8, let
f=1 +E€X[0, 45 T EX 15 1)+ EX oAz gy
and it is easy to check that f € Ay, u,, . Inserting this f into (1.1), we obtain

1+€. , Ae+1 Ae +1 At
(o (C S Osx=77
X2 x(1+et)  Be(A—1) +4(Ac +1) 5 7}
2ttt 86 ’ B
Sty Ee PEADAZAAD HAAHD
wio o) TCTOR S 57 22

X2 x(1—€t) PBe(A—-t)>+4Bet+4(Ac+1) -
Tttt 8 | el
_(1—56)x2+(—/\6+22€+1)x+,BG(A_1233+A€+1, 1-4t<x<1
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Using this formula, we derive

1
J(f) = ﬁ(—3/86(6 +1)(A- D> +3Be(A—1)°t + A2 (AB + 6)€? + A(—A*B + 3AB + 12)e + f + 6). (2.24)
In order to find a solution for (1.7), we should solve quadratic equation J(f) = ¢ with respect to t. Applying Theorem 8 we
know that this equation has a solution t in (0, A). It is noteworthy that (2.24) is increasing with respect to t in (0, A) since
A <1 and the minimum point of this quadratic equation is sA=L-. Therefore, f is unique and we have just one solution for

2(e+1)°
(1.7) in the form mentioned in Theorem 8.

Remark 2.4. We do not have the uniqueness property for the solutions of (1.7). Here, we calculate two other solutions for
(1.7) when @ = (0, 1).
Consider the following function

1 A
&= Xpon+ 0+ G)X[t,H_;] + Xjerd -+t 1+ 6)X[1_([+/Zi),1_t] + Xp-ta,  tel0, 57 j]: (2.25)

in the rearrangement class Ay y,,. Theorem 5.1 in [20] and Theorem 4 in [21] tell us that

~

f=T+exon+expga f=T+€xX1 4144

are the unique minimizer and maximizer of J(f) over the set Ay, y, corresponding to the cases g and g;

4 Trespectively.
272

Hence, g is a continuous path in Ay, connecting f to f Consider

J@t) = /Qgtug[dx,

then, we have
1
128

Since t € [0, % - ’%], we have (-2t +2 — A+ Ae€) > 0. Then J(t) is a monotone function in t. This shows that the equation
J(t) = ¢ has a unique solution € [0, J — 4].

This yields that problem (1.7) has a solution in form (2.25).

The solution in form (2.25) has a symmetry around point x = % and one can find an asymmetric solution as well. Con-

sider

J©) = (6ABet(-2t +2 — A+ Ae)t + A*(AB +6)€” + A(~A”B + 3AB + 12)€ + B +6). (2.26)

A A
8 =0+Xo0a T X2+ A+ Xera + Xpaap L€ [5.1-51 (2.27)

2
this is a path connecting the decreasing rearrangement of f which is f&4 =1+ €)Xj0.A] + Xja1) and f On the other hand,
set

A1
g = o417+ ( +€)X[t,g,t+g] T Xjesap L€ [i 5] (2.28)

which defines a path connecting f2 and f Consequently, if c € (4, /) then (1.7) has a solution which is in the form gl or
gf where none of them are symmetric.

Now we derive a solution for (1.7) when Q = B(0,a) and B = oco. In view of Theorem 7, we know that f. is a radial
function such that fc(r) =1+ €x0,r,1(") + € X[r,.q) (1), 0 <71 < a with ry < ;. This explicit formula allows to determine the
value of J. and the solution of (1.1) corresponding to fc(r). Although Theorem 7 is valid when 8 = co, we derive uy. and
J(fc) for the general Robin boundary condition. This is because of the fact that our numerical experiments suggest that f.(r)
is also the solution of (1.7) when 8 < oco.

Since f is radial, uy, should be a radial function and indeed it satisfies the following boundary value problem

1

—r,T](rN’lu/)’ =fe(r), w'(0)=0, u'(a)+pu(a)=0. (2.29)

Now, integrating this equation we obtain
1 a a 1 t
up(r) = W/o stlfc(s)ds—i-/ t"’i—]/o sN1f.(s)dsdt. (2.30)
r

Then, one can calculate uy, (r) explicitly for different N. Using integration in polar coordinates, we have

_ _ ¢ N—-1
Je= /Q faugdx = Noy /0 NUf (g () (2.31)
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Fig. 1. The solutions f and their corresponding u. 8 =1 (a) Ju (b)x (¢) J = 0.5(4 + 1)

Let us set N = 2 and derive the explicit formula for f. when  is a circle. Indeed, we only should calculate the parameter
t in the formula of f. mentioned in Theorem 7. Consider fc(r) =1+ € X[0,r,1(T) + € X[r,,q1(r) Where t in formula (2.22) is an
arbitrary number in (0,A). Now employing formulas (2.22) and (2.30) for this f., we obtain

Uy
m, O<r<rm,
u
up(r) = ﬁ, rn<r<r, (2.32)
Uz
m, rn<r<a,
where
Uy = 6((7‘[(12 —A+t)In(ma* —A+t) — (ma®> —A)In(wa®) — ln(t)t)aﬁ +ma* @B +2)+ (=r*(e + 1) + €A)ap
+ 2€A,
U =B((a* —A+t)In((ma®> —A+t)/m) = 2(wra® — A) In(a) — 2In(Nt)ea+ mwa*@apf +2) + ((A—t)e — wr?)ap
+ 2€A,

us = 2apeln (g) (ma® — A) +a(B(e +1)(a® - 17) + 2a) + 2€A.

Now, employing formula (2.31), it is obtained that

Jt) = (ﬁ)(—Zuﬁez((A —nma®)? —t*)In(wa® —A+t) +2aBe*(A— y'raz)2 In (7a*) - 2In (t)aBet>
+m2a*(aB +4) — 2((A—t)e — 2t)m Bea® + 8eAma® + ((3A — 2t)e + 2A — 4t)eAaB + 4A%€?). (2.33)

Solving non-linear equation J(t) = ¢ with respect to t, we derive t.

Now we assume N = 3 and derive the explicit formula for f. when € is a sphere. Again, we only should calculate the
parameter f in the formula of f. mentioned in Theorem 7. Similar to that of N =2, we consider f.(r) =1+¢ X[o.r,1 (1) +
€ X[r,.q(r) where t in formula (2.22) is an arbitrary number in (0,A). Then using formulas (2.22) and (2.30), we have

Uy
=25 O<r=<n
68a?’ '
%
) rn=r=ry, 234
up(r) = 6a2Br (2.34)
(a3-|—r13—r23)6+a3 V3 n<r<l
=, 2=<r=1,

3Ba? * ar
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Fig. 2. The solutions f and their corresponding u. 8 =1 (a) J = 0.75]4 + 0.25[ (b) J = 0.5 +/1) () J = 0.25[4 + 0.75].
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Fig. 3. The solutions f and their corresponding u. 8 = 10 (a) J = 0.75]4 + 0.25{4 (b) J = 0.5([4 + /1) (¢) J = 0.25]4 + 0.75] 4.

where

v =B +e)a* +2(e + 1)a® - B((r* — 3> +3r2%)e +17)a® + 2¢ (1> —r®) (@B - 1),

v =@r(1+e€)(ap +2) — a®B(1* + 3err3 — 2er]) +2€(ra® — %) (@B - 1y,

vs=(a-n)(ar(@+n(1+e)+2e(rn’ —n’)).
Now, applying formula (2.31), it is obtained that

4
J= 45(7;’3 (@@ +5)(1+€)* +5e(1+€)(@af +2)(n’ —r2*)a® + 3€2(2r1° — 5% + 3, ) B

+3a’eB(r° —1ry°) — 5€2(ry?

—r?)* @ -1)).

Substituting the values of r; and r, according to formula (2.22) into J we arrive at J(t) which is non-linear with respect

to t. Solving J(t) = ¢ we obtain f.

10
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Fig. 4. The solutions f and their corresponding u. Dirichlet boundary condition (a) J = 0.75]4 + 0.25]4 (b) J = 0.5(x +fx) (c) J = 0.25[4 + 0.75[.
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Fig. 5. The solutions f and their corresponding u. 8 =1 (a) J = 0.75]4 + 0.25[4 (b) J = 0.5(4 +J4) () J = 0.25]4 + 0.75].

3. Numerical discretization, rearrangement algorithms, and numerical results

As analytical solutions of the intermediate value problem (1.7) can be found only on domains with very simple geometry
such as an interval, a disk, and a sphere, we propose an iterative algorithm to compute solutions on general domains. The
algorithm consists of several essential calculations: the forward solver, the minimum solver, and the maximum solver. Here
we will discuss each one in detail.

The forward solver is to find the solution u of Poisson’s Eq. (1.1) when f, B, and Q2 are specified. We use a finite ele-
ment approach which is based on the variational form of (1.1) and approximate u by a piecewise polynomial function. For
simplicity, we use polynomial of degree one which leads to a second order convergence for the solution u. Our calculation
is implemented by MATLAB partial differential equation toolbox.

We have shown in Theorem 2 that there exists a t € (0,A) such that f can be found to satisfies the conditions (2.7). We
use a bisection algorithm to find this particular t. Thus, we just need to focus on how to determine D; and D, such that
conditions (2.7) are satisfied for a given t.

n
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Fig. 6. The solutions f and their corresponding u. 8 =10 (a) J = 0.75]4 + 0.25{4 (b) J = 0.5([x +[1) (c) J = 0.25]4 + 0.75].
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Fig. 7. The solutions f and their corresponding u. Dirichlet boundary condition. (a) J = 0.75]4 + 0.25f4 (b) J = 0.5([4 +J1) (c) J = 0.25]4 + 0.75[ 4.

The minimum solver is to determined D; such that

argmin J(1+€xp),

1+€exp = (3.1)

DcQ, |D|=A-t
for given 2, t, and A. We use the rearrangement approach, Algorithm 2, proposed in [21] to find the optimal set D;. The
maximum solver is to determined D, such that

1+e€xp, +€xp, = argmaxJ(1 +€xp, +€xp),

(3.2)
DcDs, |D|=t

for given 2, Dy, and t. Similarly, we use the rearrangement approach, Algorithm 1, proposed in [21] to find the optimal set
D,. A pseudo code is given in Algorithm 1.

In the following numerical simulations, we choose m =1 and M = 2 for all examples. The mesh size will be reported for
each individual cases. The stopping criterion is that the absolute value of the difference between the numerical value of |
and c is less that 1076,

12
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Fig. 8. The solutions f and their corresponding u. 8 =1 (a) J = 0.75]4 + 0.25{ (b) J = 0.5([x +f1) (¢) J = 0.25]4 + 0.75[4.

3 J = 14.7846 5 J = 17.5056 5
2 18 18
1
16 16
0
14 14
-1
2 12 12
3 1 1
2 0 2 2 0 2
u
14 16
Iy 14
12
1
y
08
08
06 06
04 P
0.2 0.2

Fig. 9. The solutions f and their corresponding u. 8 =10 (a) J = 0.75]4 + 0.25{4 (b) J = 0.5([x + 1) (¢) J = 0.25]4 + 0.75].

Algorithm 1 A pseudo code to find the solution f of Problem (1.7).

Given ,m, M, A and c.(1) Find J; := min{J(f) : fe Amm,y} and Ji=max{J(f) : fe Ammy
(2) If ¢ < J4 or ¢ > f; then stop and report that no such f exists;

else

use bisection algorithm to find t € [0, A] which satisfies J(f) —c=0

where f=1+€xp, +€xp, and

1+exp, = argmin J(1+€xp), 1+€xp, +€xp, = argmax J(1+€xp, +€xp)-
Dc, |D|=A-t DcDf. |D|=t

end

13
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Fig. 10. The solutions f and their corresponding u. Dirichlet boundary condition (a) J = 0.75[4 + 0.25[4 (b) J = 0.5(/x +J1) (¢) J = 0.25]4 + 0.75].
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Fig. 11. The solutions f and their corresponding u. 8 =1 (a) J = 0.75]4 + 0.25f (b) J = 0.5(/x +J1) (c) J = 0.25]4 + 0.75] 4.

In Fig. 1, we show the results on a circle with 2,097,152 triangular elements. The radius of the circle is a = 2, |D| = & and
B = 1. The theoretical minimal and maximal values are J; ~ 26.7735 and f, ~ 32.8974 as provided by Formula (2.33) when
t — 0 and t = A. The minimizer is achieved when t =0 and the set D is a ring which attaches to the boundary while the
maximizer is achieved when t = |A| and the set D is a disk in the center of the domain, as shown in Fig. 1 (a) and (b). We
then solve the intermediate value problem (1.7) and choose J to be the mean value of [, and [, ie. J ~ 29.8355. A solution
fe of (1.7) is a radial function such that D consists of two regions. One region is a ring attached to the boundary of the
circle while the other region is a disk in the center of the domain. In Fig. 2, we show the f. which achieves (1 — c)Jx + ¢fx
for ¢ =0.25,0.5, and ¢ = 0.75, respectively, with the parameter 8 =1 in the Robin boundary condition. When c increases,
we observe that the area of the light gray disk gets larger while the ring becomes thinner. This results match the analytical
radial solution given in Formula (2.32) with ry and r, given in Formula (2.22) where t needs to be determined numerically.
Similar results are obtained for 8 =10 and B approaching to the infinity (Dirichlet boundary condition) in Figs. 3 and 4,
respectively.

14
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Fig. 13. The solutions f and their corresponding u. Dirichlet boundary condition (a) J = 0.75]4 + 0.25[ (b) J = 0.5(4 +/1) (c) J = 0.25[4 + 0.75[4.

In Figs. 5-7, the f. which achieves (1 —c)f4+cf4 for c=0.25,0.5, and c=0.75 with =1, B =10, and Dirichlet
boundary conditions are shown on a unit square, respectively. These calculations are performed on a triangular mesh with
1,048,576 elements and |D| = 0.25. The set D of the minimizer f contains a tubular neighborhood of the boundary and is
connected while the set D of the maximizer f is a disk in the center [21]. When one seeks for f. which takes an interme-
diate value between [ and [, one can achieve this by interleaving D and D¢. We see that the solutions have D¢ (dark gray
region) which looks like a ring. This ring may or may not touch the boundary of the domain. When the boundary condition
is Dirichlet and J # f, this ring does not touch the boundary as shown in Fig. 7.

In Figs. 8-10, the f. which achieves (1 —c)4 + ¢f4 for ¢ =0.25,0.5, and c=0.75 with 8 =1, 8 =10, and Dirichlet
boundary conditions are shown on a cross-shaped domain which is Steiner symmetric with respect to x- and y-axis, re-
spectively. These calculations are performed on a triangular mesh with 1,835,008 elements and |D| = 0.3|€2|. As discussed
in Theorem 5, assuming 1+ € xp, is the unique solution of the minimization problem in (2.7), D{ is a Steiner symmetric
domain with respect to x- and y-axis. Moreover, the maximization problem in (2.7) has a solution 1+ € xp, + € xp, where

15
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Fig. 15. The solutions f and their corresponding u. 8 = 10 (a) J = 0.75[4 + 0.25[4 (b) J = 0.5([x + 1) (¢) J = 0.25]4 + 0.75].

D, is Steiner symmetric with respect to x- and y-axis. These D; and D, are the light gray regions in the figures. Furthermore,
as discussed in Theorem 6, the sets D{ and D, are star-shaped domains.

In Figs. 11-13, the f. which achieves (1 —c)j, +¢f4 for c=0.25,0.5, and c=0.75 with 8 =1, 8 =10, and Dirichlet
boundary conditions are shown on an ellipse with two circular holes, respectively. These calculations are performed on a
triangular mesh with 2,506,752 elements and |D| = 0.37|2|. One can see how the topology of dark gray region changes
with respect to different S and c. It is interesting to see that the dark gray region could have one or two holes in these
simulation results. It is likely to expect that the dark gray region could even have three holes when J is chosen to be very
close to [ 4.

The results on an annulus with 2,752,512 elements and |D| = 0.5|€2| are shown in Figs. 14-16. These results are interest-
ing as they demonstrate that it is possible to have D; and D, being connected with each other as shown in Fig. 14. On an
annulus, the set D of the minimizer f contains two concentric rings with one attached the inner boundary and the other
attached the outer boundary while the set D of the maximizer f is either an interior ring for large 8 or forms a connected
region which stays on one side of the domain for small 8 [21]. We see that, when § is small, D; and D, are connected as

16
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Fig. 16. The solutions f and their corresponding u. Dirichlet boundary condition (a) J = 0.75]4 + 0.25[4 (b) J = 0.5([x +f1) (c) J = 0.25]4 + 0.75]4.

shown in Fig. 14 although they are disjoint sets. When g is large enough, D; and D, are disconnected from each other. The
set D; consists of two concentric rings with one attached the inner boundary and the other attached the outer boundary.
The set D, could be a simply connected domain (Figs. 15(a-c) and 16(a)) or an interior ring (Fig. 16(b) and (c)) depending on
the choice of 8 and c. It is noteworthy that for the annulus we do not have uniqueness obviously in view of our numerical
results. This is due to the fact that in Figs. 14-16 (a) a rotation of the light gray domain about the origin by any degree
yields another solution.
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