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a b s t r a c t 

In this paper we study a design problem to tune the robustness of a membrane by chang- 

ing its vulnerability. Consider an energy functional corresponding to solutions of Poisson’s 

equation with Robin boundary conditions. The aim is to find functions in a rearrangement 

class such that their energies would be a given specific value. We prove that this design 

problem has a solution and also we propose a way to find it. Furthermore, we derive some 

topological and geometrical properties of the configuration of the vulnerability. In addition, 

some explicit solutions are found analytically when the domain is an N-ball. For general 

domain we develop a numerical algorithm based on rearrangements to find the solution. 

The algorithm evolves both minimization and maximization processes over two different 

rearrangement classes. Our algorithm works efficiently for various domains and the nu- 

merical results obtained coincide with our analytical findings. 

© 2021 Elsevier B.V. All rights reserved. 

 

 

 

1. Introduction 

Rearrangement design problems arise naturally in many applications such as fluid mechanics and mechanical vibrations, 

just to name a few [1–18] . In many of these problems we consider an energy functional depending on solutions of a partial

differential equation where its design coefficients are in a rearrangement class of functions. For example, in the design of 

mechanical vibration that explores the possibility to control the total displacement we have an energy functional which de- 

pends on the solution of a Poisson’s equation where the right-hand side function is in a rearrangement class. Moreover, to

find a stationary and stable flow in the planar motion under an irrotational body force of an incompressible, inviscid fluid

contained in an infinite cylinder of uniform cross-section we should find the extremizer of an energy functional correspond- 

ing to the solutions of a Poisson’s equation [1–3,16] . 

In this article, we study an intermediate problem arising in the design of mechanical vibration that explores the possi- 

bility to control the total displacement. The governing elliptic partial differential equation (PDE) is { −�u ( x ) = f ( x ) in �, 

∂u ( x ) 

∂n 

+ βu ( x ) = 0 on ∂�, 
(1.1) 
∗ Corresponding author. 

E-mail addresses: Chiu-Yen.Kao@claremontmckenna.edu (C.-Y. Kao), mohammadi@yu.ac.ir (S.A. Mohammadi). 
1 Chiu-Yen Kao is partially supported by NSF grant DMS-1818948 . 

https://doi.org/10.1016/j.cnsns.2021.105706 

1007-5704/© 2021 Elsevier B.V. All rights reserved. 

https://doi.org/10.1016/j.cnsns.2021.105706
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cnsns
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnsns.2021.105706&domain=pdf
mailto:Chiu-Yen.Kao@claremontmckenna.edu
mailto:mohammadi@yu.ac.ir
https://doi.org/10.13039/100000001
https://doi.org/10.1016/j.cnsns.2021.105706


C.-Y. Kao and S.A. Mohammadi Commun Nonlinear Sci Numer Simulat 96 (2021) 105706 

 

 

 

 

 

 

 

 

 

 

 

 

 

where � is the Laplace operator acting on the function u ( x ) defined on a bounded smooth domain � ⊂ R 

N , f ∈ L 2 (�) , β is

a given positive constant, and 

∂ 
∂n 

is the outward normal derivative along the boundary ∂�. As the solution u depends on f,

we use the notation u f to emphasize this dependence. For a given f ∈ L 2 (�) , u = u f ∈ H 

1 (�) is a (weak) solution of (1.1) if

and only if we have ∫ 
�

∇ u f · ∇ φdx + β

∫ 
∂�

u f φdS = 

∫ 
�

fφdx , ∀ φ ∈ H 

1 (�) . (1.2) 

It is noteworthy that the solution u f of (1.1) corresponding to f is the unique maximizer of the following problem 

sup 

u ∈ H 1 (�) 

G ( f , u, β) , (1.3) 

where 

G ( f , u, β) = 2 

∫ 
�

f udx −
∫ 
�

|∇u | 2 dx − β

∫ 
∂�

u 

2 dS, 

and the maximum value is J( f ) = 

∫ 
� f u f dx . 

In mechanical vibration, (1.1) models the steady state of a vibrating membrane with a constant force, e.g. the gravity 

force of earth, applied to it. Moreover, let the magnitude of the tension be a constant. Accordingly, the function f (x ) in

(1.1) can be considered as an external force such that the quantity ∫ 
�

f (x ) dx , 

measures the mass of the membrane. The Robin condition would be considered to imagine that the membrane at its bound-

ary points are free to move along a track but are attached to a coiled spring or rubber band obeying Hooke’s law which

tends to pull it back to the equilibrium position. In that case the membrane would exchange some of its energy with the

coiled spring [19] . 

The objective function 

J( f ) = 

∫ 
�

f u f dx , (1.4) 

which is called the total displacement, measures the robustness of the membrane from the physical point of view. The 

following shape optimization problem has been considered by several authors [1–3,16,20,21] : Assume that we want to build 

a membrane with a prescribed total mass γ > 0 and consists of two given materials with densities M and m ( M > m > 0 ).

The aim is to distribute these materials in such a way that the total displacement of the resulting membrane is optimal or

desired. This means that the function f (x ) should be considered in the following admissible set 

A m,M,γ = { f | f (x ) = MχD + mχD c where D ⊂ �, | D | = A < | �|} , 
where A is a prescribed constant. The set A m,M,γ which is called a rearrangement class of function is a subset of L 2 (�) and

its weak closure is 

B m,M,γ = { f | m ≤ f (x ) ≤ M, 

∫ 
�

f (x ) dx = γ } , 
where γ := MA + m (| �| − A ) , see [1,2,22] . The difference between functions in two sets A m,M,γ and B m,M,γ is whether f

takes values between m and M. 

The following shape optimization problems have been studied 

J̌ A := min { J( f ) : f ∈ A m,M,γ } . (1.5) 

ˆ J A := max { J( f ) : f ∈ A m,M,γ } , (1.6) 

previously in [20,21] and the optimal forces are found from all possible external forces in A m,M,γ which minimize or maxi-

mize the total displacement, correspondingly. The distribution of materials in the membrane which leads to external forces 

with minimum and maximum vulnerability are obtained. For the minimization problem Liu and Emamizadeh have estab- 

lished the existence and uniqueness of the solution and showed that the solution is a non-decreasing function when the 

domain is an N-ball [20] . Kao and Mohammadi studied both minimization and maximization problems and obtained analyti- 

cal solutions for N-balls. In addition, the properties of the extremizers on general domains including topology and geometry 

of the optimizers have been derived. Moreover, efficient algorithms based on finite element methods and rearrangement 

techniques are proposed to determine the extremizers in just a few iterations on general domains [21] . 

In this paper we consider the following design problem 

J c := { J( f ) = c : f ∈ A m,M,γ } , (1.7) 

where c ∈ ( ̌J A , ̂  J A ) . Instead of searching for external forces with minimum and maximum vulnerability, we address the ques-

tion whether it is possible to tune the robustness of the membrane by changing its vulnerability in c ∈ ( ̌J A , ̂  J A ) . It is note-

worthy that an intermediate value problem has been considered in [20] for a linear energy functional. 
2 
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In this paper, we first prove an existence result for (1.7) . After that we provide a formula to derive a solution of (1.7) by

dividing it into two separate rearrangement optimization problems. This formula allows us to determine an analytical solu- 

tion to (1.7) when the domain is an N-ball. Moreover, we prove that the solution inherits some kind of Steiner symmetry

while our domain is Steiner symmetric with respect to hyperplanes. For general domains, a numerical algorithm based on 

rearrangement techniques and the formula is developed to determine the solution of (1.7) . The algorithm is capable to obtain

the solution efficiently for domains with different geometries. The numerical results coincide with our analytical findings. 

The paper is organized in the following way. In Section 2 , we report the analytical results including existence of a solu-

tion (1.7) and some geometrical and topological properties of our solutions. Moreover, the explicit solutions of N-balls are 

provided. Section 3 is devoted to our numerical method and we illustrate several numerical examples. 

2. Analytical results 

Considering f ∈ B m,M,γ , we have u f (x ) > 0 and u f ∈ H 

2 
loc 

(�) ∩ C 1 ,θ (�) where θ ∈ (0 , 1) . Moreover, function u f attains its

minimum only on ∂� and its maximum at an interior point of � [21] . 

As we will see later, Problem (1.7) does not have a unique solution in general. Here, we address the question of existence

for Problem (1.7) . Without loss of generality in this section we can assume that m = 1 and set ε = (M − 1) . Then, a function

f in A m,M,γ is of the form f = 1 + εχD such that | D | = A . 

Theorem 1. Problem (1.7) has a solution f c ∈ A m,M,γ . 

Proof. In view of Theorem 5.1 in [20] and Theorem 3 in [21] , we know that Problems (1.5) and (1.6) have solutions f̌ and
ˆ f in A m,M,γ respectively. It is known that the set A m,M,γ is path connected using Lemma 2.11 in [2] . Hence, there is a

continuous function η ∈ C([0 , 1] , A m,M,γ ) such that 

η(0) = f̌ , η(1) = 

ˆ f . 

Define function ξ : [0 , 1] → [ ̌J A , ̂  J A ] where 

ξ (t) = J(η(t)) = 

∫ 
�

η(t) u η(t) dx . 

Recall that functional J(·) is continuous, see [20, Lemma 5.2] , and so ξ is a continuous function. Employing the intermediate

value theorem one can find t̄ ∈ [0 , 1] such that ξ ( ̄t ) = c and then f c = η( ̄t ) is a solution for (1.7) . �

In what follows, we determine a solution of (1.7) by using solutions of two rearrangement optimization problems. To do 

so, we need the following lemma. 

Lemma 2.1. Let D 1 be a measurable subset of �. Then maximization problem 

max 
D ⊂D c 

1 
, | D | = t 

J(1 + εχD 1 + εχD ) , 

has a solution D 2 . Moreover, this solution is uniquely defined by 

D 2 = { x ∈ D 

c 
1 : u 1+ εχD 1 

+ εχD 2 
(x ) ≥ θ} , with θ = sup { s : |{ x ∈ D 

c 
1 : u 1+ εχD 1 

+ εχD 2 
(x ) ≥ s }| ≥ t} . (2.1)

Proof. Let us recall here that ∫ 
�

f u g dx = 

∫ 
�

gu f dx , (2.2) 

for all f, g ∈ L 2 (�) , [20] . Setting f = 1 + εχD 1 
, this symmetry property and the fact that D is a subset of D 

c 
1 

yields 

J( f + εχD ) = 

∫ 
�

f u f dx + ε

∫ 
�

f u χD 
dx + ε

∫ 
D c 

1 

χD u f dx + ε2 

∫ 
D c 

1 

χD u χD 
dx 

= 

∫ 
�

f u f dx + 2 ε

∫ 
D c 

1 

χD u f dx + ε2 

∫ 
D c 

1 

χD u χD 
dx . (2.3) 

Hence, J( f + εχD ) can be considered as a functional where χD belongs to the rearrangement set A 0 , 1 ,t ⊂ L 2 (D 

c 
1 
) and our

maximization problem is an optimization of this functional over A 0 , 1 ,t . In order to prove the existence of a maximizer let us

consider the maximization problem over the weak closure set B 0 , 1 ,t . It is well-known that B 0 , 1 ,t ⊂ L 2 (D 

c 
1 
) is a convex weakly

sequentially compact set with A 0 , 1 ,t as its extreme points [1,2] . Due to the weak continuity of the functional J( f + εχD ) , see

[20, Lemma 5.2] , we deduce that there is a maximum for the functional over the weakly compact set B 0 , 1 ,t . Moreover, the

maximum have to be in A 0 , 1 ,t in view of the convexity of the functional, see [20, Lemma 5.2] . So far, we have shown that

the maximization problem has a solution D 2 . 

In order to establish the next assertion in the theorem, we claim that ∫ 
D c 

χD 2 u f+ εχD 2 
dx ≥

∫ 
D c 

χD u f+ εχD 2 
dx , for every D ⊂ D 

c 
1 , with | D | = t. (2.4) 
1 1 

3 
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To prove the claim, we argue by contradiction. Assume there is a set D ⊂ D 

c 
1 

with |D| = t such that ∫ 
D c 

1 

χD 2 u f+ εχD 2 
dx < 

∫ 
D c 

1 

χD u f+ εχD 2 
dx . (2.5) 

This inequality reveals that ∫ 
�
( f + εχD 2 ) u f+ εχD 2 

dx < 

∫ 
�
( f + εχD ) u f+ εχD 2 

dx , (2.6) 

in view of (2.3) . Then, using (2.6) we have ∫ 
�
( f + εχD 2 ) u f+ εχD 2 

dx = G( f + εχD 2 , u f+ εχD 2 
, β) < G( f + εχD , u f+ εχD 2 

, β) ≤ sup 

u ∈ H 1 (�) 

G( f + εχD , u, β) 

= 

∫ 
�
( f + εχD ) u f+ εχD dx , 

which contradicts the maximality of f + εχD 2 
and the claim is proven. 

From (2.4) we deduce that 
∫ 

D c 
1 
χD 2 

u f+ εχD 2 
dx is a maximizer for the functional L (χD ) := 

∫ 
D c 

1 
χD u f+ εχD 2 

dx over the re-

arrangement class A 0 , 1 ,t ⊂ L 2 (D 

c 
1 
) . On the other hand, due to Lemma 2.1 in [21] , we infer that u f+ εχD 2 

satisfies −�u =
f + εχD 2 

almost everywhere in � and so employing Lemma 7.7 in [23] we observe that its level sets have measure zero. 

Now, Lemma 2.9 in [2] yields that there is a non-decreasing function η : R → R such that η(u f+ εχD 2 
) is in the re-

arrangement class A 0 , 1 ,t . Moreover, Lemma 2.4 in [2] reveals that η(u f+ εχD 2 
) is the unique maximizer of the functional

L (χD ) = 

∫ 
D c 

1 
χD u f+ εχD 2 

dx over A 0 , 1 ,t ⊂ L 2 (D 

c 
1 
) and so χD 2 

= η(u f+ εχD 2 
) . This yields the second assertion of the theorem and

(2.1) . �

Theorem 2. There is a solution f = 1 + εχD 1 
+ εχD 2 

for (1.7) such that 

1 + εχD 1 = arg min 

D ⊂�, | D | = A −t 

J(1 + εχD ) , 1 + εχD 1 + εχD 2 = arg max 
D ⊂D c 

1 
, | D | = t 

J(1 + εχD 1 + εχD ) , (2.7) 

where t is a number in (0 , A ) . 

Proof. Recall that the minimization problem in (2.7) is a rearrangement optimization problem on rearrangement classes 

A 1 , 1+ ε,γt 
with γt = | �| + ε(A − t) . Then applying Theorem 5.1 in [20] , we observe that minimization problem in (2.7) is

uniquely solvable. Moreover, using Lemma 2.1 , we know that the maximization problem in (2.7) has a solution. Let us define

ξ (t) = J(1 + εχD 1 
+ εχD 2 

) for t ∈ (0 , A ) then it is inferred that ξ (t) is well-defined. Moreover, it is easy to check that 

ξ (0) = J̌ A ξ (A ) = 

ˆ J A . 

In order to employ the intermediate value theorem, we show that ξ is continuous. 

Consider { t n } ∞ 

1 
in (0 , A ) such that t n → t̄ as n → ∞ . We establish that ξ (t n ) → ξ ( ̄t ) when n → ∞ . At first, we show that

the solution of the minimization problem in (2.7) corresponding to t n converge to the solution corresponding to t̄ . It is

noteworthy to mention here that a similar question has been investigated in [24] . 

For each t n , problems in (2.7) have solutions 1 + εχD n 
1 

and 1 + εχD n 
1 

+ εχD n 
2 

respectively. Furthermore, 1 + εχD̄ 1 
and 1 +

εχD̄ 1 
+ εχD̄ 2 

are the solutions of the problems in (2.7) corresponding to t̄ . There are sub-sequences (still denoted by { χD n 
1 
} ∞ 

1 ,

{ χD n 
2 
} ∞ 

1 
) such that 

χD n 
1 

⇀ η1 , χD n 
2 

⇀ η2 , in L 2 (�) , (2.8) 

as n → ∞ . It is easy to check that 1 + εη1 belongs to B 1 , 1+ ε,γt̄ 
. Consider an arbitrary function 1 + εχD in the rearrangement

class A 1 , 1+ ε,γt̄ 
. We claim that there is a sequence of functions { χE n } ∞ 

1 
where E n ⊂ � with | E n | = A − t n and χE n → χD in

L 2 (�) . The sets { E n } ∞ 

1 
can be constructed in the following way. If A − t n > A − t̄ , then set E n = D ∪ F n where F n ⊂ D 

c with

| F n | = t̄ − t n . If A − t n < = A − t̄ , then we set E n = D \ F n where F n ⊂ D with | F n | = t n − t̄ . Now in view of weak continuity of J

and (2.7) , we observe that 

J(1 + εχD ) = lim 

n →∞ 

J(1 + εχE n ) ≥ lim 

n →∞ 

J(1 + εχD n 
1 
) = J(1 + εη1 ) . (2.9) 

Let us recall here that due to the weak continuity and strict convexity of the functional J, see [20, Lemma 5.2] , the minimizer

in (2.7) is uniquely solvable even considering the minimization problem over the weak closure of the rearrangement class, 

B 1 , 1+ ε,γt 
. This fact and (2.9) reveal that 1 + εη1 is the unique solution of the minimization problem in (2.7) when t = t̄ and

so we have η1 = χD̄ 1 
. 

So far, we have shown that the solution of the minimization problems in (2.7) corresponding to t n converge to 1 + εχD̄ 1 
,

the solution of the minimization corresponding to t̄ . Since ‖ χD n 
1 
‖ L 2 (�) → ‖ χD̄ 1 

‖ L 2 (�) and in view of (2.8) , we have 

χD n → χD̄ , in L 2 (�) , (2.10) 

1 1 

4 
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invoking a special case of the Radon-Riesz theorem. This yields that 

χD n 
1 
(x ) → χD̄ 1 

(x ) , a.e. (2.11) 

Next, we show that the support of function η2 is a subset of D̄ 

c 
1 
. Consider an entire point x 0 ∈ D̄ 1 . Then applying (2.11) ,

we observe that x 0 ∈ D 

n 
1 

for large n and so χD n 
2 
(x 0 ) = 0 for such n since D 

n 
2 

⊂ (D 

n 
1 
) c . Hence, we obtain 

χD n 
2 
(x ) χD̄ 1 

(x ) → 0 , a.e. (2.12) 

Then we see that ∫ 
�

η2 χD̄ 1 
dx = lim 

n →∞ 

∫ 
�

χD n 
2 
χD̄ 1 

dx = 0 , (2.13) 

employing (2.8), (2.12) . Therefore, we observe that the support of η2 is a subset of D̄ 

c 
1 
. 

Consider an arbitrary set D ⊂ D̄ 

c 
1 

with | D | = t̄ . One can find a sequence of sets { D n } ∞ 

1 
where D n ⊂ (D 

n 
1 
) c with | D n | = t n 

and also χD n → χD in L 2 (�) . The sequence of sets { D n } ∞ 

1 
is constructed in the following way. For each n, set E n = (D 

n 
1 
) c ∩ D .

Remember that χ(D n 
1 
) c → χ( ̄D 1 ) 

c a.e. applying (2.11) and so χE n → χD in L 2 (�) . But, the problem is that may be | E n | = θn � = t n .

If θn > t n then we consider a set F n ⊂ E n with | F n | = θn − t n and D n = E n \ F n . If θn < t n then set D n = E n ∪ F n with | F n | = t n − θn

such that F n ⊂ (D 

n 
1 
) c and | F n ∩ D | = 0 . Now it is easy to check that χD n → χD in L 2 (�) . Using this, the weak continuity of J,

(2.7) and (2.10) , we have 

J(1 + εχD̄ 1 
+ εχD ) = lim 

n →∞ 

J(1 + εχD n 
1 
+ εχD n ) ≤ lim 

n →∞ 

J(1 + εχD n 
1 
+ εχD n 

2 
) = J(1 + εχD̄ 1 

+ εη2 ) . (2.14)

Let us recall here that the maximizer in the maximization problem of (2.7) is also a solution when considering the problem

over the weak closure of the rearrangement class due to the weak continuity of J. We have shown that the support of η2 is

a subset of D̄ 

c 
1 

and so it belongs to B 0 , 1 , ̄t ⊂ L 2 ( ̄D 

c 
1 
) . Expression (2.14) reveals that indeed η2 is a solution of the maximization

problem in (2.7) considering it over the weak closure of the corresponding rearrangement class and so we have 

J(1 + εχD̄ 1 
+ εη2 ) = J(1 + εχD̄ 1 

+ εχD̄ 2 
) . 

In summary, we have shown 

lim 

n →∞ 

ξ (t n ) = lim 

n →∞ 

J(1 + εχD n 
1 
+ εχD n 

2 
) = J(1 + εχD̄ 1 

+ εη2 ) = J(1 + εχD̄ 1 
+ εχD̄ 2 

) = ξ ( ̄t ) . 

Consequently, we obtain that ξ : [0 , A ] → [ ̌J A , ̂  J A ] is a continuous function and the intermediate value theorem yields that

(1 . 7) has a solution in the form asserted in this theorem. �

Remark 2.2. In view of Theorem 1 in [21] , it is noteworthy that the minimizer in (2.7) has the following form 

D 1 = { x ∈ � : u 1+ εχD 1 
(x ) ≤ τ } , τ = inf { s : |{ x ∈ � : u 1+ εχD 1 

(x ) ≤ s }| ≥ A − t} . (2.15)

Also, there is a connected component D 0 of the interior of D 1 hits the boundary, i.e., D̄ 0 ∩ ∂� � = ∅ . Moreover, if A − t is

large enough then D 1 contains a tubular neighborhood of the boundary ∂� and ∂� ⊂ ∂D 1 . In particular, if � ⊂ R 

2 is simply

connected, then D 1 is connected when A − t is large enough. 

The next two theorems determine a geometrical property of a solution of (1.7) . 

Theorem 3. Let f = 1 + εχD 1 
+ εχD 2 

be a solution of (1.7) derived from Theorem 2 and u 1+ εχD 1 
+ εχD 2 

is not constant on ∂�. If

t is large enough, then both D 1 and D 2 touch the boundary ∂�. 

Proof. In view of Remark 2.2 we know that D 1 touches the boundary. When t is large enough then due to (2.1) we infer

that D 2 touches the boundary using a method similar to that for proof of Theorem 4 -(iv) in [21] . �

Theorem 4. Let f = 1 + εχD 1 
+ εχD 2 

be a solution of (1.7) obtained in Theorem 2 when β = ∞ , the Dirichlet boundary condi-

tions. If � is a simply connected subset of R 

2 , then D 1 is a connected tubular neighborhood of the boundary ∂�. 

Proof. In view of Remark 2.2 and the Dirichlet boundary conditions we see that ∂� ⊂ ∂D 1 . This shows that D 1 contains a

tubular neighborhood of the boundary ∂�. In order to establish that D 1 is connected we argue by contradiction. Assume 

there is an open subset D 0 of D 1 = { x ∈ � : u 1+ εχD 1 
(x ) ≤ τ } such that ∂D 0 ⊂ { x ∈ � : u 1+ εχD 1 

(x ) ≥ τ } . Then we see ∂D 0 ⊂
{ x ∈ � : u 1+ εχD 1 

(x ) = τ } . Consequently, u 1+ εχD 1 
has a minimum in D 0 and also { 

−�u 1+ εχD 1 
( x ) = 1 + ε in D 0 , 

u 1+ εχD 1 
( x ) = τ on ∂D 0 , 

(2.16) 

which contradicts the maximum principle [25] . �

Next theorem reveals a symmetry property for solutions of problems in (2.7) . 
5 
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Theorem 5. Let � be a Steiner symmetric domain with respect to a hyperplane T and β = ∞ , the Dirichlet boundary conditions.

Assume 1 + εχD 1 
is the unique solution of the minimization problem in (2.7) . Then, D 

c 
1 

is a Steiner symmetric domain with respect

to hyperplane T . Moreover, the maximization problem in (2.7) has a solution 1 + εχD 1 
+ εχD 2 

where D 2 is Steiner symmetric with

respect to T . 

Proof. Let w = u 1+ εχD 1 
. Then it is known that w is the unique minimizer of the following functional over H 

1 
0 (�) 

I(u ) = 

1 

2 

∫ 
�

|∇u | 2 dx + 

∫ 
�

ζ (u ) dx , (2.17) 

where ζ : R → R is a convex and so continuous function [20] . Assume that w 

∗ is a Steiner symmetrization of function w

with respect to the hyperplane T . It is known that w 

∗ ∈ H 

1 
0 
(�) , and also ∫ 

�
|∇w | 2 dx ≥

∫ 
�

|∇w 

∗| 2 d x , 

∫ 
�

ζ (w ) d x = 

∫ 
�

ζ (w 

∗) dx , (2.18) 

see [2,26,27] . Consequently, we observe that 

I(w ) = 

1 

2 

∫ 
�

|∇w | 2 dx + 

∫ 
�

ζ (w ) dx ≥ 1 

2 

∫ 
�

|∇w 

∗| 2 dx + 

∫ 
�

ζ (w 

∗) dx 

= I(w 

∗) , 

using (2.18) . This shows that w = w 

∗ since w is the unique minimizer of I(u ) . Employing (2.15) , we know that there is τ > 0

such that D 

c 
1 

= { x ∈ � : w (x ) > τ } . This yields that D 

c 
1 

is Steiner symmetric since w is Steiner symmetric with respect to T . 

Now we turn to the second assertion of the theorem. Using (2.3) , we see that 

J( f + εχD 2 ) = 

∫ 
�

f u f dx + 2 ε

∫ 
D c 

1 

χD 2 u f d x + ε2 

∫ 
D c 

1 

χD 2 u χD 2 
d x , (2.19) 

where indeed f = 1 + εχD 1 
and u f is w . Then, u f is Steiner symmetric. In the second integral of (2.19) , invoking (2.2) and

Hardy-Littlewood inequality we have ∫ 
D c 

1 

χD 2 u f dx = 

∫ 
�

χD 2 u f dx ≤
∫ 
�

χD ∗
2 
u f dx = 

∫ 
D c 

1 

χD ∗
2 
u f dx , (2.20) 

where D 

∗
2 

is the Steiner symmetrization of the set D 2 . In the last equality we have used the fact that D 

∗
2 

⊂ D 

c 
1 

since D 

c 
1 

is

Steiner symmetric with respect to T . 

For the third integral of (2.19) , let us recall that we have { 

−�u χD 2 
= χD 2 in �, 

u χD 2 
= 0 on ∂�, 

and by using a method similar to that in the proof of Theorem 5 in [21] one can say ∫ 
D c 

1 

χD 2 u χD 2 
dx = 

∫ 
�

χD 2 u χD 2 
dx ≤

∫ 
�

χD ∗
2 
u 

∗
2 dx , (2.21) 

where u ∗
2 

is the solution of (1.1) corresponding to χD ∗
2 
. Applying (2.20) and (2.21) , we deduce that 

J( f + εχD 2 ) ≤
∫ 
�

f u f dx + 2 ε

∫ 
D c 

1 

χD ∗
2 
u f d x + 

∫ 
�

χD ∗
2 
u 

∗
2 d x = J( f + εχD ∗

2 
) , 

and hence D 

∗
2 

is a solution of the maximization problem in (2.7) . �

Due to the Steiner symmetry property of D 

c 
1 

and its subset D 2 we obtain the following theorem. 

Theorem 6. Let � ⊂ R 

N be Steiner symmetric with respect to a family of N mutually perpendicular hyperplanes { T i } N 1 
, β = ∞

and f = 1 + εχD 1 
+ εχD 2 

be a solution of (1.7) derived by (2.7) such that D 

c 
1 

and D 2 are Steiner symmetric with respect to those

hyperplanes. Then, 

i) both functions u 1+ εχD 1 
(x ) and u 1+ εχD 1 

+ χD 2 
(x ) have a unique maximum point which is the intersection point of { T i } N 1 

. 

ii) The sets D 

c 
1 

and D 2 are star-shaped domains. 

Proof. The proof of (i)-(ii) can be done using a method similar to that for the proof of Theorem 6 in [21] . �

One can determine a solution for (1.7) when � is an N-ball. Define B(0 , a ) as a ball in R 

N centered at the origin with

radius a . Set D 

t 
2 

= B(0 , r 2 ) such that | D 

t 
2 
| = t and D 

t 
1 

= B(0 , a ) \ B(0 , r 1 ) where the radius r 1 is chosen such that | D 

t 
1 
| = A − t .

It is easy to check that 

r 2 = ( 
t 

σ
) 

1 
N , r 1 = ( 

σN a 
N − A + t 

σ
) 

1 
N , (2.22) 
N N 
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where σN is the volume of unit ball B(0 , 1) . 

Theorem 7. Let � = B(0 , a ) and β = ∞ . Then there is t̄ in (0 , A ) such that f c = 1 + εχ
D t̄ 

1 

+ εχ
D t̄ 

2 

is a solution for (1.7) . 

Proof. We know that � is symmetric with respect to all hyper-planes T which pass through the origin. Employing 

Theorem 5 , D 

t̄ 
1 

which is a ring around the boundary is the unique solution of the minimization problem in (2.7) . More-

over, D 

t̄ 
2 

is a solution of the maximization problem in (2.7) . 

�

Remark 2.3. Indeed, the solution provided by Theorem 2 is one of solutions for (1.7) . Although the minimization problem

in (2.7) has a unique solution, the maximization problem may have different solutions. Even for the case that � = B(0 , a ) ,

we do not have a proof that the maximization problem in (2.7) has a unique solution. However, it has been established that

a ball is the only radial maximizer for the maximization problem in (2.7) [21] . 

2.1. Explicit solutions for (1.7) 

The explicit solutions for design problems like (1.7) are rare due the fact that we do not have so much information on

the topology or geometry of the solution. This section is devoted for explicit solutions of (1.7) when the domain is a ball. 

First we consider the one-dimensional case � = (0 , 1) . In this case we can find a solution for (1.7) for general β . 

Theorem 8. Let � = (0 , 1) . There is t ∈ (0 , A ) such that 

f = 1 + εχ[0 , A −t 
2 ] + εχ[ 1 −t 

2 , 1+ t 
2 ] + εχ[1 − A −t 

2 , 1] , 

is a solution of (1.7) . 

Proof. Recall that there is t ∈ (0 , A ) where (1.7) has a solution in the form (2.7) . For one-dimensional domain � = (0 , 1) ,

the solution of the minimization problem in (2.7) is available explicitly [21] . Indeed in the minimization problem we have

D 1 = [0 , A −t 
2 ] ∪ [1 − A −t 

2 , 1] and u 1+ εχD 1 
is symmetric around x = 

1 
2 and increasing in [0 , 1 2 ] . 

Now setting f = 1 + εχD 1 
, recall that 

J( f + εχD ) = 

∫ 
�

f u f dx + 2 ε

∫ 
D c 

1 

χD u f d x + ε2 

∫ 
D c 

1 

χD u χD 
d x, 

where ⎧ ⎨ 

⎩ 

−�u χD 
= χD in �, 

∂u χD 

∂n 

+ βu χD 
= 0 on ∂�. 

For D ⊂ � with | D | = t, it is inferred by using a method similar to that in the proof of Theorem 5 in [21] that ∫ 
D c 

1 

χD u χD 
dx ≤

∫ 
D c 

1 

χD 2 u χD 2 
dx, 

where D 2 = [ 1 −t 
2 , 1+ t 

2 ] . Invoking Hardy-Littlewood inequality and the symmetry of u f , it is observed that ∫ 
D c 

1 

χD u f dx ≤
∫ 

D c 
1 

( χD ) 
∗u 

∗
f dx = 

∫ 
D c 

1 

χD 2 u f dx. 

Therefore, we can conclude that D 2 is a maximizer for the maximization problem in (2.7) . �

In view of Theorem 8 , let 

f = 1 + εχ[0 , A −t 
2 ] + εχ[ 1 −t 

2 , 1+ t 
2 ] + εχ[1 − A −t 

2 , 1] , 

and it is easy to check that f ∈ A m,M,γ . Inserting this f into (1.1) , we obtain 

u f (x ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

−( 
1 + ε

2 

) x 2 + ( 
Aε + 1 

2 

) x + 

Aε + 1 

2 β
, 0 ≤ x ≤ A −t 

2 
, 

−x 2 

2 

+ 

x ( 1 + εt ) 

2 

+ 

β ε( A − t ) 
2 + 4 ( Aε + 1 ) 

8 β
, A −t 

2 
≤ x ≤ 1 −t 

2 
, 

−( 
1 + ε

2 

) x 2 + ( 
1 + ε

2 

) x + 

βε( A − 1 ) ( A − 2 t + 1 ) + 4 ( Aε + 1 ) 

8 β
, 1 −t 

2 
≤ x ≤ 1+ t 

2 
, 

−x 2 

2 

+ 

x ( 1 − εt ) 

2 

+ 

β ε( A − t ) 
2 + 4 β ε t + 4 ( Aε + 1 ) 

8 β
, 1+ t 

2 
≤ x ≤ 1 − A −t 

2 
, 

−( 
1 + ε

2 

) x 2 + ( 
−Aε + 2 ε + 1 

2 

) x + 

βε( A − 1 ) + Aε + 1 

2 β
, 1 − A −t 

2 
≤ x ≤ 1 . 

(2.23) 
7 
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Using this formula, we derive 

J( f ) = 

1 

12 β
(−3 βε( ε + 1 ) ( A − 1 ) t 2 + 3 βε( A − 1 ) 

2 t + A 

2 ( Aβ + 6 ) ε2 + A 

(
−A 

2 β + 3 Aβ + 12 

)
ε + β + 6) . (2.24) 

In order to find a solution for (1.7) , we should solve quadratic equation J( f ) = c with respect to t . Applying Theorem 8 we

know that this equation has a solution t̄ in (0 , A ) . It is noteworthy that (2.24) is increasing with respect to t in (0 , A ) since

A < 1 and the minimum point of this quadratic equation is A −1 
2(ε+1) 

. Therefore, t̄ is unique and we have just one solution for 

(1.7) in the form mentioned in Theorem 8 . 

Remark 2.4. We do not have the uniqueness property for the solutions of (1.7) . Here, we calculate two other solutions for

(1.7) when � = (0 , 1) . 

Consider the following function 

g t = χ[0 ,t] + (1 + ε) χ[ t ,t + A 2 ] 
+ χ[ t + A 2 , 1 −(t + A 2 )] + (1 + ε) χ[1 −(t+ A 2 ) , 1 −t] + χ[1 −t, 1] , t ∈ [0 , 

1 

2 

− A 

2 

] , (2.25)

in the rearrangement class A m,M,γ . Theorem 5.1 in [20] and Theorem 4 in [21] tell us that 

f̌ = 1 + εχ[0 , A 2 ] 
+ εχ[1 − A 

2 , 1] , 
ˆ f = 1 + εχ[ 1 2 − A 

2 , 
1 
2 + A 2 ] 

, 

are the unique minimizer and maximizer of J( f ) over the set A m,M,γ corresponding to the cases g 0 and g 1 
2 

− A 
2 

respectively.

Hence, g t is a continuous path in A m,M,γ connecting f̌ to ˆ f . Consider 

J(t) = 

∫ 
�

g t u g t dx , 

then, we have 

J(t) = 

1 

12 β
(6 Aβεt ( −2 t + 2 − A + Aε) t + A 

2 ( Aβ + 6 ) ε2 + A 

(
−A 

2 β + 3 Aβ + 12 

)
ε + β + 6) . (2.26) 

Since t ∈ [0 , 1 2 − A 
2 ] , we have ( −2 t + 2 − A + Aε) > 0 . Then J(t) is a monotone function in t . This shows that the equation

J(t) = c has a unique solution t̄ ∈ [0 , 1 2 − A 
2 ] . 

This yields that problem (1.7) has a solution in form (2.25) . 

The solution in form (2.25) has a symmetry around point x = 

1 
2 and one can find an asymmetric solution as well. Con-

sider 

g 1 t = (1 + ε) χ[0 , A 2 ] 
+ χ[ A 2 ,t] + (1 + ε) χ[ t ,t + A 2 ] 

+ χ[ t+ A 2 , 1] , t ∈ [ 
A 

2 

, 1 − A 

2 

] , (2.27)

this is a path connecting the decreasing rearrangement of f̌ which is f � = (1 + ε) χ[0 ,A ] + χ[ A, 1] and f̌ . On the other hand,

set 

g 2 t = χ[0 ,t− A 
2 ] 

+ (1 + ε) χ[ t − A 
2 ,t + A 2 ] 

+ χ[ t+ A 2 , 1] , t ∈ [ 
A 

2 

, 
1 

2 

] , (2.28) 

which defines a path connecting f � and 

ˆ f . Consequently, if c ∈ ( ̌J A , ̂  J A ) then (1.7) has a solution which is in the form g 1 t or

g 2 t where none of them are symmetric. 

Now we derive a solution for (1.7) when � = B(0 , a ) and β = ∞ . In view of Theorem 7 , we know that f c is a radial

function such that f c (r) = 1 + εχ[0 ,r 1 ] 
(r) + εχ[ r 2 ,a ] 

(r) , 0 ≤ r ≤ a with r 1 < r 2 . This explicit formula allows to determine the

value of J c and the solution of (1.1) corresponding to f c (r) . Although Theorem 7 is valid when β = ∞ , we derive u f c and

J( f c ) for the general Robin boundary condition. This is because of the fact that our numerical experiments suggest that f c (r)

is also the solution of (1 . 7) when β < ∞ . 

Since f c is radial, u f c should be a radial function and indeed it satisfies the following boundary value problem 

− 1 

r N−1 
(r N−1 u 

′ ) ′ = f c (r) , u 

′ (0) = 0 , u 

′ (a ) + βu (a ) = 0 . (2.29)

Now, integrating this equation we obtain 

u f c (r) = 

1 

βa N−1 

∫ a 

0 

s N−1 f c (s ) ds + 

∫ a 

r 

1 

t N−1 

∫ t 

0 

s N−1 f c (s ) d sd t. (2.30) 

Then, one can calculate u f c (r) explicitly for different N. Using integration in polar coordinates, we have 

J c = 

∫ 
f c u f c dx = NσN 

∫ a 

r N−1 f c (r) u f c (r) dr. (2.31) 

� 0 

8 
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Fig. 1. The solutions f and their corresponding u . β = 1 (a) J̌ A (b) ̂ J A (c) J = 0 . 5( ̌J A + ̂

 J A ) . 

 

 

 

 

Let us set N = 2 and derive the explicit formula for f c when � is a circle. Indeed, we only should calculate the parameter

t̄ in the formula of f c mentioned in Theorem 7 . Consider f c (r) = 1 + εχ[0 ,r 1 ] 
(r) + εχ[ r 2 ,a ] 

(r) where t in formula (2.22) is an

arbitrary number in (0 , A ) . Now employing formulas (2.22) and (2.30) for this f c , we obtain 

u f (r) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

u 1 

4 πβa 
, 0 ≤ r ≤ r 1 , 

u 2 

4 πβa 
, r 1 ≤ r ≤ r 2 , 

u 3 

4 πβa 
, r 2 ≤ r ≤ a, 

(2.32) 

where 

u 1 = ε
(
(πa 2 − A + t) ln (πa 2 − A + t) − (πa 2 − A ) ln (πa 2 ) − ln (t ) t 

)
aβ + πa 2 ( aβ + 2 ) + (−r 2 (ε + 1) π + εA ) aβ

+ 2 εA, 

u 2 = β((πa 2 − A + t) ln ((πa 2 − A + t) /π ) − 2(πa 2 − A ) ln (a ) − 2 ln (r) t) εa + πa 2 ( aβ + 2 ) + ((A − t) ε − π r 2 ) aβ

+ 2 εA, 

u 3 = 2 aβε ln 

(
r 

a 

)(
πa 2 − A 

)
+ a 

(
β( ε + 1 ) 

(
a 2 − r 2 

)
+ 2 a 

)
π + 2 εA. 

Now, employing formula (2.31) , it is obtained that 

J(t) = ( 
1 

8 πaβ
)(−2 aβε2 

(
(A − πa 2 ) 2 − t 2 

)
ln 

(
πa 2 − A + t 

)
+ 2 aβε2 

(
A − πa 2 

)2 
ln 

(
πa 2 

)
− 2 ln ( t ) aβε2 t 2 

+ π2 a 4 ( aβ + 4 ) − 2 ( ( A − t ) ε − 2 t ) πβεa 3 + 8 εAπa 2 + ( ( 3 A − 2 t ) ε + 2 A − 4 t ) εAaβ + 4 A 

2 ε2 ) . (2.33) 

Solving non-linear equation J(t) = c with respect to t, we derive t̄ . 

Now we assume N = 3 and derive the explicit formula for f c when � is a sphere. Again, we only should calculate the

parameter t̄ in the formula of f c mentioned in Theorem 7 . Similar to that of N = 2 , we consider f c (r) = 1 + εχ[0 ,r 1 ] 
(r) +

εχ[ r 2 ,a ] 
(r) where t in formula (2.22) is an arbitrary number in (0 , A ) . Then using formulas (2.22) and (2.30) , we have 

u f (r) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

v 1 
6 βa 2 

, 0 ≤ r ≤ r 1 , 

v 2 
6 a 2 βr 

, r 1 ≤ r ≤ r 2 , (
a 3 + r 1 

3 − r 2 
3 
)
ε + a 3 

3 βa 2 
+ 

v 3 
6 ar 

, r 2 ≤ r ≤ 1 , 

(2.34) 
9 
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Fig. 2. The solutions f and their corresponding u . β = 1 (a) J = 0 . 75 ̌J A + 0 . 25 ̂ J A (b) J = 0 . 5( ̌J A + ̂

 J A ) (c) J = 0 . 25 ̌J A + 0 . 75 ̂ J A . 

Fig. 3. The solutions f and their corresponding u . β = 10 (a) J = 0 . 75 ̌J A + 0 . 25 ̂ J A (b) J = 0 . 5( ̌J A + ̂

 J A ) (c) J = 0 . 25 ̌J A + 0 . 75 ̂ J A . 

 

where 

v 1 = β( 1 + ε) a 4 + 2 ( ε + 1 ) a 3 − β
((

r 2 − 3 r 1 
2 + 3 r 2 

2 
)
ε + r 2 

)
a 2 + 2 ε

(
r 2 

3 − r 1 
3 
)
( aβ − 1 ) , 

v 2 = a 3 r ( 1 + ε) ( aβ + 2 ) − a 2 β
(
r 3 + 3 εr r 2 2 − 2 εr 3 1 

)
+ 2 ε

(
r 2 

3 − r 1 
3 
)
( aβ − 1 ) r, 

v 3 = ( a − r ) 
(
ar ( a + r ) ( 1 + ε) + 2 ε

(
r 1 

3 − r 2 
3 
))

. 

Now, applying formula (2.31) , it is obtained that 

J = 

4 π

45 a 2 β
(a 6 ( aβ + 5 ) ( 1 + ε) 

2 + 5 ε( 1 + ε) ( aβ + 2 ) 
(
r 1 

3 − r 2 
3 
)
a 3 + 3 ε2 

(
2 r 1 

5 − 5 r 1 
3 r 2 

2 + 3 r 2 
5 
)
βa 2 

+ 3 a 2 εβ
(
r 2 

5 − r 1 
5 
)

− 5 ε2 
(
r 2 

3 − r 1 
3 
)2 

( aβ − 1 ) ) . 

Substituting the values of r 1 and r 2 according to formula (2.22) into J we arrive at J(t) which is non-linear with respect

to t . Solving J(t) = c we obtain t̄ . 
10 
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Fig. 4. The solutions f and their corresponding u . Dirichlet boundary condition (a) J = 0 . 75 ̌J A + 0 . 25 ̂ J A (b) J = 0 . 5( ̌J A + ̂

 J A ) (c) J = 0 . 25 ̌J A + 0 . 75 ̂ J A . 

Fig. 5. The solutions f and their corresponding u . β = 1 (a) J = 0 . 75 ̌J A + 0 . 25 ̂ J A (b) J = 0 . 5( ̌J A + ̂

 J A ) (c) J = 0 . 25 ̌J A + 0 . 75 ̂ J A . 

 

 

 

 

 

 

3. Numerical discretization, rearrangement algorithms, and numerical results 

As analytical solutions of the intermediate value problem (1.7) can be found only on domains with very simple geometry 

such as an interval, a disk, and a sphere, we propose an iterative algorithm to compute solutions on general domains. The

algorithm consists of several essential calculations: the forward solver, the minimum solver, and the maximum solver. Here 

we will discuss each one in detail. 

The forward solver is to find the solution u of Poisson’s Eq. (1.1) when f, β, and � are specified. We use a finite ele-

ment approach which is based on the variational form of (1.1) and approximate u by a piecewise polynomial function. For

simplicity, we use polynomial of degree one which leads to a second order convergence for the solution u . Our calculation

is implemented by MATLAB partial differential equation toolbox. 

We have shown in Theorem 2 that there exists a t ∈ (0 , A ) such that f can be found to satisfies the conditions (2.7) . We

use a bisection algorithm to find this particular t . Thus, we just need to focus on how to determine D 1 and D 2 such that

conditions (2.7) are satisfied for a given t . 
11 
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Fig. 6. The solutions f and their corresponding u . β = 10 (a) J = 0 . 75 ̌J A + 0 . 25 ̂ J A (b) J = 0 . 5( ̌J A + ̂

 J A ) (c) J = 0 . 25 ̌J A + 0 . 75 ̂ J A . 

Fig. 7. The solutions f and their corresponding u . Dirichlet boundary condition. (a) J = 0 . 75 ̌J A + 0 . 25 ̂ J A (b) J = 0 . 5( ̌J A + ̂

 J A ) (c) J = 0 . 25 ̌J A + 0 . 75 ̂ J A . 

 

 

 

The minimum solver is to determined D 1 such that 

1 + εχD 1 = arg min 

D ⊂�, | D | = A −t 

J(1 + εχD ) , (3.1) 

for given �, t, and A . We use the rearrangement approach, Algorithm 2, proposed in [21] to find the optimal set D 1 . The

maximum solver is to determined D 2 such that 

1 + εχD 1 + εχD 2 = arg max 
D ⊂D c 

1 
, | D | = t 

J(1 + εχD 1 + εχD ) , (3.2) 

for given �, D 1 , and t . Similarly, we use the rearrangement approach, Algorithm 1, proposed in [21] to find the optimal set

D 2 . A pseudo code is given in Algorithm 1 . 

In the following numerical simulations, we choose m = 1 and M = 2 for all examples. The mesh size will be reported for

each individual cases. The stopping criterion is that the absolute value of the difference between the numerical value of J

and c is less that 10 −6 . 
12 
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Fig. 8. The solutions f and their corresponding u . β = 1 (a) J = 0 . 75 ̌J A + 0 . 25 ̂ J A (b) J = 0 . 5( ̌J A + ̂

 J A ) (c) J = 0 . 25 ̌J A + 0 . 75 ̂ J A . 

Fig. 9. The solutions f and their corresponding u . β = 10 (a) J = 0 . 75 ̌J A + 0 . 25 ̂ J A (b) J = 0 . 5( ̌J A + ̂

 J A ) (c) J = 0 . 25 ̌J A + 0 . 75 ̂ J A . 

Algorithm 1 A pseudo code to find the solution f of Problem (1.7) . 

Given �, m, M, A and c.(1) Find J̌ A := min { J( f ) : f ∈ A m,M,γ } and 

ˆ J A := max { J( f ) : f ∈ A m,M,γ } . 
(2) If c < J̌ A or c > 

ˆ J A then stop and report that no such f exists; 

else 

use bisection algorithm to find t ∈ [0 , A ] which satisfies J( f ) − c = 0 

where f = 1 + εχD 1 
+ εχD 2 

and 

1 + εχD 1 
= arg min 

D ⊂�, | D | = A −t 

J(1 + εχD ) , 1 + εχD 1 
+ εχD 2 

= arg max 
D ⊂D c 

1 
, | D | = t 

J(1 + εχD 1 
+ εχD ) . 

end 

13 
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Fig. 10. The solutions f and their corresponding u . Dirichlet boundary condition (a) J = 0 . 75 ̌J A + 0 . 25 ̂ J A (b) J = 0 . 5( ̌J A + ̂

 J A ) (c) J = 0 . 25 ̌J A + 0 . 75 ̂ J A . 

Fig. 11. The solutions f and their corresponding u . β = 1 (a) J = 0 . 75 ̌J A + 0 . 25 ̂ J A (b) J = 0 . 5( ̌J A + ̂

 J A ) (c) J = 0 . 25 ̌J A + 0 . 75 ̂ J A . 

 

 

 

 

 

 

 

 

 

 

In Fig. 1 , we show the results on a circle with 2,097,152 triangular elements. The radius of the circle is a = 2 , | D | = π and

β = 1 . The theoretical minimal and maximal values are J̌ A ≈ 26 . 7735 and 

ˆ J A ≈ 32 . 8974 as provided by Formula (2.33) when

t → 0 and t = A . The minimizer is achieved when t = 0 and the set D is a ring which attaches to the boundary while the

maximizer is achieved when t = | A | and the set D is a disk in the center of the domain, as shown in Fig. 1 (a) and (b). We

then solve the intermediate value problem (1.7) and choose J to be the mean value of J̌ A and 

ˆ J A , i.e. J ≈ 29 . 8355 . A solution

f c of (1.7) is a radial function such that D consists of two regions. One region is a ring attached to the boundary of the

circle while the other region is a disk in the center of the domain. In Fig. 2 , we show the f c which achieves (1 − c) ̌J A + c ̂  J A 
for c = 0 . 25 , 0 . 5 , and c = 0 . 75 , respectively, with the parameter β = 1 in the Robin boundary condition. When c increases,

we observe that the area of the light gray disk gets larger while the ring becomes thinner. This results match the analytical

radial solution given in Formula (2.32) with r 1 and r 2 given in Formula (2.22) where t needs to be determined numerically.

Similar results are obtained for β = 10 and β approaching to the infinity (Dirichlet boundary condition) in Figs. 3 and 4 ,

respectively. 
14 
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Fig. 12. The solutions f and their corresponding u . β = 10 (a) J = 0 . 75 ̌J A + 0 . 25 ̂ J A (b) J = 0 . 5( ̌J A + ̂

 J A ) (c) J = 0 . 25 ̌J A + 0 . 75 ̂ J A . 

Fig. 13. The solutions f and their corresponding u . Dirichlet boundary condition (a) J = 0 . 75 ̌J A + 0 . 25 ̂ J A (b) J = 0 . 5( ̌J A + ̂

 J A ) (c) J = 0 . 25 ̌J A + 0 . 75 ̂ J A . 

 

 

 

 

 

 

 

 

 

 

In Figs. 5–7 , the f c which achieves (1 − c) ̌J A + c ̂  J A for c = 0 . 25 , 0 . 5 , and c = 0 . 75 with β = 1 , β = 10 , and Dirichlet

boundary conditions are shown on a unit square, respectively. These calculations are performed on a triangular mesh with 

1,048,576 elements and | D | = 0 . 25 . The set D of the minimizer f̌ contains a tubular neighborhood of the boundary and is

connected while the set D of the maximizer ˆ f is a disk in the center [21] . When one seeks for f c which takes an interme-

diate value between J̌ A and 

ˆ J A , one can achieve this by interleaving D and D 

c . We see that the solutions have D 

c (dark gray

region) which looks like a ring. This ring may or may not touch the boundary of the domain. When the boundary condition

is Dirichlet and J � = 

ˆ J A , this ring does not touch the boundary as shown in Fig. 7 . 

In Figs. 8–10 , the f c which achieves (1 − c) ̌J A + c ̂  J A for c = 0 . 25 , 0 . 5 , and c = 0 . 75 with β = 1 , β = 10 , and Dirichlet

boundary conditions are shown on a cross-shaped domain which is Steiner symmetric with respect to x - and y -axis, re-

spectively. These calculations are performed on a triangular mesh with 1,835,008 elements and | D | = 0 . 3 | �| . As discussed

in Theorem 5 , assuming 1 + εχD 1 
is the unique solution of the minimization problem in (2.7) , D 

c 
1 

is a Steiner symmetric

domain with respect to x - and y -axis. Moreover, the maximization problem in (2.7) has a solution 1 + εχD 1 
+ εχD 2 

where
15 
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Fig. 14. The solutions f and their corresponding u . β = 1 (a) J = 0 . 75 ̌J A + 0 . 25 ̂ J A (b) J = 0 . 5( ̌J A + ̂

 J A ) (c) J = 0 . 25 ̌J A + 0 . 75 ̂ J A . 

Fig. 15. The solutions f and their corresponding u . β = 10 (a) J = 0 . 75 ̌J A + 0 . 25 ̂ J A (b) J = 0 . 5( ̌J A + ̂

 J A ) (c) J = 0 . 25 ̌J A + 0 . 75 ̂ J A . 

 

 

 

 

 

 

 

 

 

 

D 2 is Steiner symmetric with respect to x - and y -axis. These D 1 and D 2 are the light gray regions in the figures. Furthermore,

as discussed in Theorem 6 , the sets D 

c 
1 

and D 2 are star-shaped domains. 

In Figs. 11–13 , the f c which achieves (1 − c) ̌J A + c ̂  J A for c = 0 . 25 , 0 . 5 , and c = 0 . 75 with β = 1 , β = 10 , and Dirichlet

boundary conditions are shown on an ellipse with two circular holes, respectively. These calculations are performed on a 

triangular mesh with 2,506,752 elements and | D | = 0 . 37 | �| . One can see how the topology of dark gray region changes

with respect to different β and c. It is interesting to see that the dark gray region could have one or two holes in these

simulation results. It is likely to expect that the dark gray region could even have three holes when J is chosen to be very

close to ˆ J A . 
The results on an annulus with 2,752,512 elements and | D | = 0 . 5 | �| are shown in Figs. 14–16 . These results are interest-

ing as they demonstrate that it is possible to have D 1 and D 2 being connected with each other as shown in Fig. 14 . On an

annulus, the set D of the minimizer f̌ contains two concentric rings with one attached the inner boundary and the other

attached the outer boundary while the set D of the maximizer ˆ f is either an interior ring for large β or forms a connected

region which stays on one side of the domain for small β [21] . We see that, when β is small, D and D are connected as
1 2 

16 
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Fig. 16. The solutions f and their corresponding u . Dirichlet boundary condition (a) J = 0 . 75 ̌J A + 0 . 25 ̂ J A (b) J = 0 . 5( ̌J A + ̂

 J A ) (c) J = 0 . 25 ̌J A + 0 . 75 ̂ J A . 

 

 

 

 

 

 

 

 

 

 

 

 

shown in Fig. 14 although they are disjoint sets. When β is large enough, D 1 and D 2 are disconnected from each other. The

set D 1 consists of two concentric rings with one attached the inner boundary and the other attached the outer boundary.

The set D 2 could be a simply connected domain ( Figs. 15 (a–c) and 16 (a)) or an interior ring ( Fig. 16 (b) and (c)) depending on

the choice of β and c. It is noteworthy that for the annulus we do not have uniqueness obviously in view of our numerical

results. This is due to the fact that in Figs. 14–16 (a) a rotation of the light gray domain about the origin by any degree

yields another solution. 
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