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Abstract. We prove that pushouts A ∗C B of residually finite-dimensional
(RFD) C∗-algebras over central subalgebras are always residually finite-dimen-
sional provided the fibers Ap and Bp, p ∈ spec C are RFD, recovering and
generalizing results by Korchagin and Courtney-Shulman. This then allows us
to prove that certain central pushouts of amenable groups have RFD group
C∗-algebras. Along the way, we discuss the problem of when, given a central
group embedding H ≤ G, the resulting C∗-algebra morphism is a continuous
field: this is always the case for amenable G but not in general.

Introduction

Residual finiteness properties have elicited considerable interest, both in the
operator algebra literature and in group theory. On the operator-algebraic side one
typically considers residually finite-dimensional (henceforth RFD) C∗-algebras, i.e.
those whose elements are separated by representations on finite-dimensional Hilbert
spaces. The group-theoretic analogue is the concept of a residually finite (or RF)
group, i.e. one whose finite-index normal subgroups intersect trivially (i.e. having
“enough” finite quotients).

The literature on RFD C∗-algebras is rather substantial, as is that on RF groups;
so much so, in fact, that it would be impossible to do it justice. For samplings (the
best a short note such as this one can do) we direct the reader to, say, [2, 3, 11, 14,
15,18,20,21,25] (for RFD C∗-algebras) and [4–6] or [22, §6.5], [24, Chapters 6, 14,
15], [13, Chapter 2] (for RF groups), and references therein.

We are concerned here with the types of “permanence” properties for residual
finiteness as studied, say, in [3, 5, 11, 14, 20, 21, 25], to the effect that various types
of pushouts (also known as amalgamated free products) of RFD or RF objects
are again such. Specifically, the main result of [20] is that pushouts of separable
commutative C∗-algebras are RFD. More generally, the main theorem of [14] proves
this for central pushouts A ∗C B with A and B separable and strongly RFD, i.e.
such that all of their quotients are RFD.

The present note is motivated in part by the desire to recover these results
without the separability and strong RFD-ness assumptions.

The preliminary Section 1 recalls some background and sets conventions.
In the short Section 2 we prove Lemma 2.1, stating that central pushouts of

RFD C∗-algebras with RFD fibers are RFD.

Received by the editors April 28, 2020, and, in revised form, September 7, 2020, and September
29, 2020.

2020 Mathematics Subject Classification. Primary 46L09, 20E26, 22D10, 18A30.
Key words and phrases. C∗-algebra, amenable group, pushout, residually finite, residually

finite-dimensional, Fell topology.
This work was partially supported by NSF grants DMS-1801011 and DMS-2001128.

c©2021 American Mathematical Society

2551

Licensed to Univ at Buffalo-SUNY. Prepared on Sun May  2 07:46:14 EDT 2021 for download from IP 128.205.204.27.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Section 3 is devoted to the problem of when (or whether), given a central group
embedding H ≤ G, the resulting embedding C∗(H) → C∗(G) is a continuous field
over spec C∗(H) in the sense of Lemma 1.1 below. This holds for amenable groups
(Lemma 3.2), but not, for instance, for property-(T) groups (Lemma 3.4).

Section 4 centers around the variant of [25, Theorem 6.9] obtained in Lemma 4.1.
The latter proves that (the full group C∗-algebra of) G1 ∗H G2 is RFD provided Gi

are amenable residually finite (RF) and H ≤ Gi is a common central subgroup such
that the quotients Gi/H are RF. The former result, on the other hand, assumes
that G1 ∗H G2 itself is RF.

Although Lemma 4.1 is formally stronger for that reason, we nevertheless show in
Lemma 4.6 that its hypotheses imply the residual finiteness of the pushout G1∗HG2.
[25, Theorem 6.9] and Lemma 4.1 are thus equivalent, albeit non-obviously.

1. Preliminaries

1.1. Fields of C∗-algebras. All C∗-algebras and pushouts are assumed unital.
Pushouts over C are undecorated, i.e. A ∗ B denotes what in the literature (e.g.
[15]) is sometimes referred to as A ∗C B. Given a C∗ morphism C → A with
C = C(X) commutative, we denote by Ap, the fiber of A at the point p of the
spectrum X of C:

Ap := A/〈ker p〉,

where p ∈ X is regarded as a character p : C(X) → C and angled brackets denote
the ideal generated by the respective set. Similarly, for a ∈ A we denote by ap its
image through the surjection A → Ap.

We will refer to a central C∗ morphism C → A as a C-algebra A (e.g. [19,
Definition 1.5] or [9, Définition 2.6]). Following standard practice (see [9, Définition
3.1] for instance), we have

Definition 1.1. A C-algebra A constitutes a continuous field of C∗-algebras if for
every A the norm function

spec C ∋ p 	→ ‖a‖Ap

is continuous.

The function is known to always be upper semicontinuous, for example by [23,
Proposition 1.2].

1.2. Group filtrations. Following [5, §2.2], we need the following notion applica-
ble to a residually finite group G.

Definition 1.2. A filtration on G is a family of finite-index normal subgroups
Nα � G with trivial intersection.

Let H ≤ G be a subgroup. A filtration {Nα} of G is an H-filtration provided

⋂

α

HNα = H.
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2. Pushouts over central subalgebras

The main result of this section is

Theorem 2.1. Let A and B be two C∗-algebras, C ⊆ A,B central C∗-embeddings,
and assume all corresponding fibers Ap and Bp are RFD for

p ∈ X := spec C.

Then, M := A ∗C B is RFD.

Proof. Because C is central in A and B it is central in M . Note the isomorphism

Mp
∼= Ap ∗Cp

Bp
∼= Ap ∗Bp.

For m ∈ M we have

(2-1) ‖m‖ = sup
p∈X

‖mp‖Mp

by [9, Proposition 2.8] and hence we can approximate the norm of m arbitrarily well
with the norms of its images through representations of Mp

∼= Ap ∗Bp as p ranges
over X. By the RFD-ness assumption on Ap and Bp, their coproduct Ap ∗ Bp is
again RFD by [15, Theorem 3.2]. This finishes the proof. �

Remark 2.2. Note that in fact, in the proof above one does not need the precise
norm estimate (2-1): all that is needed is that every 0 
= m ∈ M be non-zero in
some quotient M → Mp, p ∈ X.

Remark 2.3. The conclusion of Lemma 2.1 cannot hold without the RFD-fiber
assumption, as shown in [25, Proposition 8.3]. That result relies on the construction
in [1] of an amenable RF group Γ with a central subgroup N < Γ such that Γ/N
is not RF, and in that context proves that the pushout C∗(Γ) ∗C∗(N) C

∗(Γ) is not
RFD.

We can see directly, in this case, that the fiber

C∗(Γ)p ∼= C∗(Γ/N)

at the point p ∈ spec C∗(N) corresponding to the trivial morphism N → {1} is
not RFD. Indeed, since Γ/N is finitely generated (finitely presented, even) by [1],
the RFD-ness of C∗(Γ/N) would entail the residual finiteness of Γ/N (e.g. by
[25, Proposition 2.4]), yielding a contradiction.

3. Fibers over dense sets

It will be useful, in working with group C∗-algebras, to allow the points p ∈ X
from Lemma 2.1 to range only over a dense subset Y ⊆ X := spec C rather than
the entire spectrum. We cannot do this in full generality, as (2-1) does not hold for
the supremum over only a dense subset Y ⊆ X:

Example 3.1. Let I = [0, 1], M = Cb(I) (all bounded functions) and C = C(I) ⊂
M (continuous functions), both equipped with the supremum norm. The indicator
function m of {0} ⊂ I is non-zero, even though its image in every fiber

Mp, p ∈ Y := (0, 1] ⊂ I

vanishes. For that reason, we do not have

‖m‖ = sup
p∈Y

‖mp‖Mp
.
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What went wrong in the above example is that M was not a continuous field over
C in the sense of Lemma 1.1. One might hope that the pathology in Lemma 3.1 is
at least avoidable for group C∗-algebras; this is not the case, as Lemma 3.4 below
shows. Nevertheless, for amenable groups one can do better (see also [10, Theorem
3.7] for a broader discussion of the continuity of pushout fields).

Theorem 3.2. Let Gi, i = 1, 2 be two amenable groups and H ≤ Gi a common
central subgroup. Then,

C∗(G1 ∗H G2) ∼= C∗(G1) ∗C∗(H) C
∗(G2)

is a continuous field of C∗-algebras over Ĥ = spec C∗(H) in the sense of Lemma 1.1.

Proof. Since, as noted in §1.1, for C := C∗(H) the map

C∗(G1) ∗C C∗(G2) =: M ∋ m 	→ ‖mp‖Mp

is always upper semicontinuous, it remains to prove that for every dense subset

Y ⊆ Ĥ

of the spectrum of and every m ∈ M we have

‖m‖ = sup
p∈Y

‖mp‖Mp
.

First, fix an arbitrary unitary representation ρ2 of G2 where H acts by scalars, with

central character p0 ∈ Ĥ. Let

Y ∋ pλ → p0

be a net of characters from Y converging to p0 and set

qλ := pλp
−1
0 → 1 ∈ Ĥ

be the corresponding “error”.
Because

Gi/H, i = 1, 2

are amenable homogeneous spaces of Gi respectively in the sense of [8, §2], the triv-

ial representation 1G2
is weakly contained in the induced representation IndG2

H 1H .
Since qλ → 1H and induction is continuous [7, Theorem F.3.5], we have

IndG2

H qλ → IndG2

H 1H → 1G2

in the Fell topology, and hence

(3-1) ρ2 ⊗ IndG2

H qλ → ρ2 ⊗ 1G2

∼= ρ2.

Because H acts by p0 in ρ2, it acts via pλ = qλp0 in the left hand side of (3-1).
In short, we can Fell-approximate ρ2 with unitary representations where H acts by
characters from Y .

Now fix m ∈ M . According to [9, Proposition 2.8], the norm of m is achieved
in some unitary representation ρ of G := G1 ∗H G2 where H acts by scalars,

with central character p0 ∈ Ĥ. Working only with non-degenerate (indeed, unital)
representations isomorphic to their own ℵ0-multiples, [16, Lemma 2.4] implies that
it will suffice to approximate ρ arbitrarily well in the Fell topology [7, Appendix F.2]
with unitary representations where H operates with central characters belonging

to the dense subset Y ⊆ Ĥ .
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In turn, in order to achieve the above it is enough to approximate the restrictions
ρ|Gi

with representations where H acts via elements of Y . This, however, is what
the first part of the proof does. �

Over the course of the proof of Lemma 3.2 we have obtained

Proposition 3.3. Let H ≤ G be a central subgroup of an amenable group. Then,
for every dense subset

Y ⊆ Ĥ = spec C∗(H)

the canonical map

(3-2) C∗(G) →
∏

p∈Y

C∗(G)p

is one-to-one.

In other words, a variant of [9, Proposition 2.8] with only a dense subset of the
spectrum rather the entirety of it.

To prepare the ground for Lemma 3.4, note that by [7, Theorem F.4.4] (3-2) is
an embedding if and only if the G-representations where H acts by characters in
Y form a dense set in the Fell topology. This cannot possibly happen if

• G has the Kazhdan property (T) (e.g. [7, §1.1]), and hence the trivial
representation is isolated in the unitary dual;

• the dense subset Y ⊂ Ĥ does not contain the trivial element.

To construct such examples all we need is a property-(T) group G with an infinite
central subgroup H, whereupon we can simply take

Y = Ĥ \ {1}.

Example 3.4. Let G be the universal cover S̃p4(R) of the 4 × 4 real symplectic
group. It is shown in [17, Theorem 6.8] that G has property (T) (indeed, even the
stronger property (T∗); note that the authors of that paper denote Sp4 by Sp2).

The fundamental group of Sp4(R) is Z, so we can simply take that copy of Z as
the infinite central subgroup H < G.

Finally, if a discrete group is desired then one can simply take the preimage
through

S̃p4(R) → Sp4(R)

of any lattice in the latter (it will again have property (T) by [7, Theorem 1.7.1]).
See also [7, §1.7] for a discussion of property (T) permanence under passage to
universal covering groups.

4. Central pushouts of RF groups

The present section attempts to prove a slightly more general version of [25,
Theorem 6.9]. The difference is that we only assume that Gi are individually RF
rather than assuming that G1 ∗H G2 is.

Theorem 4.1. Let Gi, i = 1, 2 be two amenable groups and H ≤ Gi a common
central subgroup such that

• each Gi is RF;
• each Gi/H is RF.

Then, G1 ∗H G2 is RFD.
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Proof. We will obtain the result as an application of Lemma 3.2, with

A = C∗(G1), B = C∗(G2) and C = C∗(H).

According to that result, what we have to argue is that the fibers Ap and Bp are
RFD for a dense set of points p in the spectrum

Ĥ = Pontryagin dual of H = spec C∗(H).

This is precisely what Lemma 4.5 does, finishing the proof. �

Lemma 4.2. Let H ≤ G be a central inclusion such that G and G/H are both RF.
Then, the characters p : H → S1 whose kernels

N = ker p

give rise to RF quotients G/N form a dense subset of the Pontryagin dual Ĥ.

Proof. Since G is RF the normal finite-index subgroups Gα � G have trivial in-
tersection. Additionally, since G/H is RF, G has an H filtration in the sense of
Lemma 1.2 (e.g. [25, Proposition 3.3]) and hence

(4-1)
⋂

α

HGα = H.

Since

Hα := Gα ∩H ≤ H

have trivial intersection, the union of the duals

Ĥ/Hα ⊆ Ĥ

is a dense subgroup. We claim that any p ∈ Ĥ/Hα will meet the requirements in
the statement; proving this will achieve the desired conclusion, so it is the task we
turn to next.

Fix such a character p : H → S1, factoring through some

H → H/Hα0
,

and let N ≤ H be its kernel. Then, by its very construction, N will contain
Hα0

= H ∩Gα0
. This means that

NGα0
∩H ⊆ N

(which is then an equality), and hence the intersection
⋂

α

NGα ⊆ H

(where the latter inclusion uses (4-1)) cannot possibly contain N strictly. In con-
clusion we have ⋂

α

NGα = N,

meaning that the filtration {Gα} is compatible with N (i.e. an N -filtration) and
hence G/N is RF. �
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Remark 4.3. The RF requirements in Lemma 4.1 are both crucial:
On the one hand, [25, §8] recalls the example given by Abels in [1] of a central

inclusion Z < G into an RF amenable group such that G/Z is not RF.
On the other hand, [12] contains an example (attributed there to C. Kanta

Gupta) of a non-residually finite amenable group G whose quotient by an order-
two normal subgroup K � G is residually finite. Centrality is easy to arrange, since
the centralizer of K in G will have finite index in the latter.

Although Lemma 4.2 ensures that the quotients G/N for

N = ker(p : H → S1)

are RF, we have yet to prove that the resulting fiber algebras C∗(G)/〈h−p(h), h ∈
H〉 are RFD.

Lemma 4.4. Let H ≤ G be a central subgroup, p ∈ Ĥ a character of finite order,
and N = ker p its kernel in H. If G/N is RFD then so is the fiber C∗-algebra

(4-2) C∗(G)p := C∗(G)/〈h− p(h), h ∈ H〉

corresponding to p is RFD.

Proof. Note that C∗(G)p is precisely the fiber of C∗(G/N) at the character p in-
duced by p on the quotient (finite cyclic) group H/N : indeed, denoting images of
elements g ∈ G in G/N by g, we have

C∗(G)p=C∗(G)/〈h−p(h), h ∈ H〉=C∗(G/N)/
〈
h−p

(
h
)
, h ∈ H/N

〉
=C∗(G/N)p

because the kernel of C∗(G) → C∗(G/N) is generated by h− 1, h ∈ N , which are
already contained in the ideal we are modding out in (4-2).

For that reason, we may as well assume that

• N is trivial, and hence
• H is finite cyclic;
• G is RFD.

But now note that C∗(G)p is a fiber of the RFD C∗-algebra over the finite-
dimensional central subalgebra C∗(H) ≤ C∗(G). In general, a C∗-algebra A
will break up as a product of the fibers Ap over a finite-dimensional central C∗-
subalgebra C ≤ A, by simply cutting A with the minimal projections in C.

In particular, under our assumptions the fiber C∗(G)p is a Cartesian factor of
C∗(G), and hence the RFD-ness of the latter entails that of the former. �

Corollary 4.5. Under the hypotheses of Lemma 4.2 the characters p : H → S1 for

which the fiber (4-2) is RFD form a dense subset of Ĥ.

Proof. Indeed, the characters p in the proof of Lemma 4.2 are of finite order, and
hence Lemma 4.4 applies. �

4.1. Recovering residual finiteness for a pushout. Recall that [25, Theorem
6.9] assumes G1 ∗C G2 is RF, whereas Lemma 4.1 only requires that Gi, i = 1, 2
be RF individually (along with Gi/H). We argue here that that distinction is only
apparent:

Theorem 4.6. Let H ≤ Gi, i = 1, 2 be a common central subgroup such that Gi

and Gi/H are all RF. Then, G1 ∗H G2 is RF.
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Proof. Note first that the case G1 = G2 is clear: indeed, the assumptions that
G and G/H are RF then show that G has an H-filtration. The two copies of
that filtration in the two copies of G are then (H,H, id)-compatible in the sense of
[5, §2.2], and hence G ∗H G is RF by [5, Proposition 2].

It thus remains to reduce the problem to the case G1 = G2. To do this, consider
the tensor product

G := G1 ⊗H G2

defined by identifying the two copies of H in G1 × G2; in other words, G1 ⊗H G2

is G1 ∗H G2 modulo the relations making the elements of

G1 and G2 ≤ G1 ∗H G2

commute.
We then have

G/H ∼= (G1/H)× (G2/H),

which is thus RF by assumption. On the other hand, if we show that G ∗H G itself
is RF then so is

G1 ∗H G2 ≤ G ∗H G

(where the inclusions Gi ≤ G = G1 ⊗H G2 are the obvious ones).
To summarize, we have thus far

• observed that the conclusion holds when G1 = G2 (equal to a common
group G, say);

• reduced the problem to its instance for G = G1 ⊗H G2, modulo
• the desired hypothesis that that G is RF.

In conclusion, all that remains to be proven is that under our hypotheses G :=
G1 ⊗H G2 is indeed RF; we relegate this to Lemma 4.7. �

Lemma 4.7. Let H ≤ Gi, i = 1, 2 be a common central subgroup such that Gi and
Gi/H are all RF. Then, g := G1 ⊗H G2 is RF.

Proof. If {Gi,α} are H-filtrations of Gi respectively for i = 1, 2 then the images Gα

of

G1,α ×G2,α ≤ G1 ×G2

through the surjection

G1 ×G2 → G = G1 ⊗H G2

identifying the two copies of H will form an H-filtration for G. �
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