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Abstract

Motivation: With growing genome-wide molecular data sets from next-generation sequencing,
phylogenetic networks can be estimated using a variety of approaches. These phylogenetic networks
include events like hybridization, gene flow, or horizontal gene transfer explicitly. However, the most
accurate network inference methods are computationally heavy. Methods that scale to larger data sets
do not calculate a full likelihood, such that traditional likelihood-based tools for model selection are not
applicable to decide how many past hybridization events best fit the data. We propose here a goodness-
of-fit test to quantify the fit between data observed from genome-wide multi-locus data, and patterns
expected under the multi-species coalescent model on a candidate phylogenetic network.
Results: We identified weaknesses in the previously proposed TICR test, and proposed corrections. The
performance of our new test was validated by simulations on real-world phylogenetic networks. Our test
provides one of the first rigorous tools for model selection, to select the adequate network complexity for
the data at hand. The test can also work for identifying poorly-inferred areas on a network.
Availability: Software for the goodness-of-fit test is available as a Julia package at
https://github.com/cecileane/QuartetNetworkGoodnessFit.jl.
Contact: cecile.ane@wisc.edu
Supplementary information: Supplementary material is available at Bioinformatics online, and scripts
are available at https://osf.io/eg6ju/.

1 Introduction
The importance of reticulate evolution is now widely recognized across
all areas in the "tree" of life (Folk et al., 2018). Consequently, many
methods have been developed to estimate phylogenetic networks (reviewed
in Degnan, 2018; Elworth et al., 2019). These network phylogenies
are trees with added reticulation branches to explicitly represent events
such as hybrid speciation, introgression, gene flow, or horizontal gene
transfer. Methods to estimate phylogenetic networks are either based on
parsimony or based on likelihood calculations, and take as input either
genome sequence data or gene trees inferred from multiple sequence
alignments. Parsimony approaches identify a network that displays (or
"almost" displays) all of the input gene trees, using the minimum number of
reticulations (Yu et al., 2013b; Wu, 2013; Markin et al., 2019). One major
disadvantage of parsimony-based methods is that there is no criterion to

select the appropriate number of reticulations. Likelihood methods have
the advantage to consider a model of evolution for how gene trees evolve
within a given species network, including an inheritance parameter γ at
each reticulation event to quantify the proportion of genes inherited from
each parental population. Discordance between a gene tree and the species
network due to incomplete lineage sorting within ancestral populations
may be modelled by the multi-species coalescent (Meng and Kubatko,
2009; Yu et al., 2012). Likelihood-based methods include maximum
likelihood methods (Kubatko, 2009; Yu et al., 2014), pseudo-likelihood
methods to better scale with the number of species (Solís-Lemus and Ané,
2016; Yu and Nakhleh, 2015; Zhu and Nakhleh, 2018), and Bayesian
approaches (Wen et al., 2016; Wen and Nakhleh, 2017; Zhang et al., 2018).

Likelihood-based methods are more accurate than parsimony-based
methods but are dramatically slower, and even more so as the number
of reticulation events increases. In addition, the network likelihood and
pseudolikelihood scores, like the parsimony score, necessarily improve
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as the user allows for more reticulations in the network. Therefore, the
complexity of the network needs to be penalized to estimate the appropriate
number of reticulations. Information criteria like AIC have been used,
but are unfortunately not appropriate for the purpose of estimating a
network because they do not account for the exploding number of network
models when the number of reticulations is increased, so they run the
risk of falsely detecting extra reticulations (Blair and Ané, 2020). The
model selection problem is even harder with pseudolikelihood methods:
a full likelihood is needed to perform a likelihood ratio test or to use
information criteria like AIC or BIC. An empirical solution consists in
finding a number of reticulations after which the rate of improvement in
the pseudolikelihood score stabilizes. Bayesian methods circumvent the
model selection problem because the number of reticulations is implicitly
penalized by the prior distribution. Unfortunately, the scalability of
these methods is very limited (Elworth et al., 2019), and default priors
typically use a very small expected number of reticulations to mitigate the
computational burden.

In short, researchers currently face a dilemma: curtail their data set
to a few taxa and use a Bayesian approach to estimate the number of
reticulations, or use pseudolikelihood or parsimony approaches on more
taxa, but with no rigorous way to estimate the number of reticulations.
Moreover, model selection does not assess model adequacy (Brown and
Thomson, 2018). We provide here a method to assess the adequacy of
a candidate phylogenetic network. Our goal is to assess if a network of
a given complexity is adequate to explain the data at hand, and if not,
which areas in the network do not fit the data adequately. Our work
builds on TICR (Stenz et al., 2015), which was developed to test the
adequacy of a candidate species tree (without reticulation) with polytomies
to represent episodes of current or ancestral panmixia. Input data are
quartet concordance factors (CFs), that is, the proportion of genes that
support each four-taxon tree, considering every subset of four taxa from
the entire taxon set. For each four-taxon set, the quartet CFs expected
from the candidate species phylogeny under the multispecies coalescent
are calculated, and compared to the quartet CFs observed in the data. If the
observed quartet CFs are too far from the CFs expected from the species
phylogeny, the four-taxon set is labelled as an "outlier", via an outlier test
that returns a p-value. TICR then compares the distribution of these outlier
p-values (across all four-taxon sets) to a uniform distribution, as expected
if the species phylogeny provides a good fit to the quartet CF data, to
provide an overall goodness-of-fit measure of the phylogeny.

In this work, we modify TICR to extend it to phylogenetic networks,
and we eliminate fundamental flaws that we discovered in this test. More
specifically, our test uses a different model for the distribution of the
quartet CFs and new ways to conduct the outlier test for each four-
taxon subnetwork. Finally, when assessing the overall goodness-of-fit of
a candidate network, we propose a simulation-based method to account
for the dependency between the outlier test results across four-taxon sets.
This dependency is ignored by TICR’s overall test, which is shown here
to have an unacceptably inflated type I error rate.

In what follows, we provide background on quartet CFs expected under
the multispecies coalescent, then describe our new method. We present
simulations to study the effect of dependence across outlier tests, and a
theoretical bound for a conservative correction to control for dependence.
The new test is used on empirical data from prior studies. In particular, the
conclusions of Stenz et al. (2015) are unchanged qualitatively.

2 The coalescent on phylogenetic networks
Phylogenetic networks use reticulation edges to depict events where a
population received genetic material from two distinct parental lineages,
such as via hybrid speciation, introgression, gene flow, or horizontal gene

transfer (Fig. 1). Such an event is represented by a node that has two parent
branches, called hybrid edges. Each hybrid edge e has an inheritance value
γe that quantifies the proportion of genes the node inherited through e. In
Fig. 1, one reticulation node is highlighted as a red dot. Its two parent edges
are annotated by their inheritance probabilities, to illustrate a scenario with
10% introgression. Branch lengths and inheritance probabilities are used
to calculate the distribution of gene trees evolving along the phylogenetic
network, based on the multi-species coalescent process (Kubatko, 2009; Yu
et al., 2012). This model accounts for both incomplete lineage sorting (via
the coalescent) and reticulation (via the network topology). To measure the
fit of a candidate network to multi-locus data, one would ideally measure
the fit between the expected distribution of gene trees from the network
under the coalescent model, and the distribution of gene trees observed
from the data. However, the space of trees is immense when there are
more than a handful of taxa (Semple and Steel, 2003), which makes it
difficult to compare distributions of full gene trees.

Following (Stenz et al., 2015), our approach consists of pruning gene
trees to just four taxa at a time, and then combining results across all
possible sets of four taxa. For a given subset of four taxa, it is easy to
compare the distribution of gene trees expected from the network with the
distribution of gene trees observed in the data, because there are only 3
possible unrooted gene tree topologies, or quartets, on 4 taxa. For instance,
if the 4 chosen taxa are a, b, c and d, then the 3 unrooted topologies
correspond to the 3 ways that we can split the 4 taxa into pairs: ab|cd, ad|bd
andad|bc. The concordance factor (CF) of each quartet is the proportion of
genes that evolved under that quartet topology, either inferred from data, or
expected from a network under the coalescent (Baum, 2007). If the species
network contains no reticulation, then it is a species tree, and calculating the
quartet CFs expected under the coalescent is straightforward (e.g. Allman
et al., 2011). If the species network has topology ab|cd, then the expected
CFs are

CFab|cd = 1−
2

3
e−t and CFac|bd = CFad|bc =

1

3
e−t ,

where t is the length of the internal branch in the species quartet, that is,
the total length of the path that connects the two separate groups of taxa
a, b and c, d in the species tree. This branch length is in coalescent units,
that is, number of generations scaled by the effective population size. If
the species phylogenetic network contains a reticulation, the subnetwork
pruned to taxa a, b, c and dmay or may not be a tree, and the calculation of
the expected CFs depends on the topology of the four-taxon subnetwork.
Solís-Lemus and Ané (2016) derived the formulas for expected quartet
CFs in case the network is of level 1, that is, if different reticulations
create cycles that do not share any edges. More formally, a phylogenetic
network is of level 1 if each biconnected component contains at most
one reticulation node. For instance, the quartet CFs expected from the
four-taxon subnetwork in Fig. 1 are

CFab|cd = 0.9

(
1−

2

3
e−t1

)
+ 0.1

1

3
e−t2

CFac|bd = 0.9
1

3
e−t1 + 0.1

1

3
e−t2

CFad|bc = 0.9
1

3
e−t1 + 0.1

(
1−

2

3
e−t2

)
The formulas for all possible cases in level-1 networks are found in
the supplementary material of Solís-Lemus and Ané (2016), and are
straightforward to apply. When the network is of level 2 or higher, the
calculation of expected quartet CFs needs to employ the algorithm from
Yu et al. (2012) or Yu et al. (2013a).

To quantify the fit of a candidate species network to a given genomic
dataset, we compare the quartet CFs expected from the network with
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Fig. 1. Left: example of a phylogenetic network on 7 species, with 3 reticulations. For the reticulation node denoted by the red dot, the two parent hybrid edges are annotated by their
inheritance probabilities, γ and 1 − γ. Middle: subnetwork extracted from the network on the left, on species a, b, c and d, after removing all edges that do not contribute any genetic
material to a, b, c or d. Right: semi-directed version of the four-taxon subnetwork. The quartet concordance factors (proportion of genes having each quartet tree) only depend on this
semi-directed topology, its branch lengths t1 and t2 in coalescent units, and its inheritance parameters γ (here 0.9 and 0.1).

quartet CFs obtained from the data. The simplest way to obtain these CFs
is to estimate a gene tree from each multisequence alignment, and then
calculate the number of genes that support each particular quartet. With this
approach, one may collapse branches with low support in each gene tree.
A gene will contribute information to quartets on subset a, b, c, d if this
gene has sequences for all 4 of these taxa, and if its support for the quartet
is sufficiently high. Therefore, the quartet CFs for different four-taxon
sets may be estimated from different numbers of genes. Alternatively, a
Bayesian approach can be used to estimate quartet CFs for each subset
of 4 taxa, to integrate out gene tree uncertainty in a principled way (Ané
et al., 2006), as implemented in BUCKy (Larget et al., 2010). With this
approach, the estimated CF for a given quartet might not be an exact
fraction of the number of genes that have sequences for the 4 taxon in this
quartet. Like TICR, our test (below) accommodates this possibility. Unlike
TICR, however, our tests requires knowledge of the number of genes that
were used to estimate the observed quartet CFs, for each four-taxon set.

3 Methods
Our goodness-of-fit test takes as input a candidate network, and for each
four-taxon set, the observed quartet CFs on this four-taxon set and the
number of genes used to estimated these observed CFs. First, an outlier
test is conducted on each four-taxon set to quantify the fit between observed
and expected CFs. Second, the outlier test results are combined across all
four-taxon sets into a single overall goodness-of-fit test, and a simulation-
based strategy is employed to correct for the dependency of the test results
between taxon subsets.

3.1 Goodness-of-fit on four taxa

3.1.1 Test statistics
Discrepancy between observed CFs and CFs expected from the network
is due to sampling a limited number of genes, and to factors such as
undetected paralogy or systematic biases during gene tree estimation.
TICR models all these errors with a Dirichlet distribution, whose
concentration parameter α is estimated from the data. Unfortunately, the
Dirichlet distribution provides a poor fit when there are just a handful
of genes that disagree (or agree) with a particular quartet (CFs close to
0 or to 1). This is because the Dirichlet distribution predicts continuous
CF values, not a discrete fraction of genes having a particular quartet.
In our work, we use instead the multinomial distribution for the 3 quartet

resolutions given a known number of genes, and with probabilities set to the
CFs expected from the candidate network. This multinomial distribution
provides a much better fit at CFs close to 0 or 1 (see Fig. S1), and does not
have any parameter to be estimated.

When the species phylogeny is a tree, the "major" quartet can be defined
as the quartet present in the species tree. TICR focuses on this major quartet
to quantify how the expected CFs fit the observed CFs. A species network
may display several of the quartets, however, for a given four-taxon set.
For example, the species network in Fig. 1 displays both ab|cd and ad|bc.
To generalize TICR to species networks, we modified the outlier test on
four taxa to use all three quartet CFs symmetrically. We propose three
outlier tests, depending on the choice of the test statistic. The Pearson’s
statisticX2 is the most common choice for a goodness-of-fit test with the
multinomial distribution:

X2 = n

3∑
i=1

(oi − ei)2

ei
, (1)

where the sum is taken over the three quartets; ei is the expected CF
for quartet i from the network; and oi is the observed CF for quartet i.
Since CFs are defined as proportions, our formula has a factor n, the
number of genes available for the given four-taxon set. The Pearson X2

is known to be unreliable when one of the expected counts (ei) is close
to 0. This situation is expected to be very frequent, whenever a four-
taxon relationship is supported across most genes with no discordance.
Therefore, we propose alternative test statistics, with broader reliability:
the Qlog statistic (Lorenzen, 1995)

Qlog = 2n
∑
i

(oi − ei)2

ei(log oi − log ei)
(2)

and the likelihood ratio test statistic G:

G = 2n
3∑
i=1

oi ∗ log
(
oi

ei

)
. (3)

All three test statistics measure the discrepancy between the expected CFs
ei and the observed CFs oi. They take large values when there is large
discrepancy, and X2 = Qlog = G = 0 when ei = oi, that is, when the
four-taxon network fits the data perfectly. Under the null hypothesis that
the four-taxon network and the multi-species coalescent model are correct,
X2, Qlog and G follow a chi-squared distribution χ2

2 with 2 degrees of
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Fig. 2. Distribution of X2 , Qlog and G for measuring the fit of quartet CFs, when the
data consist of 30 gene trees drawn from a multinomial distribution on 3 quartets with given
expected CFs. The expected number of genes supporting each quartet was 0.1, 0.1, 29.8
(top), 0.5, 0.5, 29 (middle) and 2, 2, 26 (bottom). These values would arise from a tree-
like four-taxon phylogeny with an internal branch length of 4.6 (top), 3.0 (middle) and 1.6
(bottom) coalescent units. 100,000 data sets were simulated in each case. The sorted values
of the 100,000 test statistics are plotted on the vertical axis, versus the theoretical quantiles
expected under a χ2

2 distribution on the horizontal axis. The test statistic is χ2
2-distributed

if the points fall on the diagonal line (in red). When the test statistic is above the diagonal,
the p-value obtained by comparison with the χ2

2 distribution is too small.

freedom approximately. Therefore, we test the goodness of fit, for a given
set of 4 taxa, by comparing the chosen test statistic to the χ2

2 distribution.
We call the resulting p-value an outlier quartet p-value, to avoid confusion
with the p-value in the next section, for the fit of the overall network.

3.1.2 Comparison of quartet test statistics
We studied the behavior of X2, Qlog and G using simulations, to know
which one to recommended for our phylogenetic problem, in which we
expect many four-taxon relationships to be well resolved. For instance,
two taxa could be from one clade and the other two taxa from another
well-separated clade. One might easily expect very few genes to have a
quartet that disagrees with these clades. Yet, the approximation of X2 by
the χ2

2 distribution deteriorates if any of the 3 quartets is expected to be
supported by 5 or fewer genes.

We simulated observed CFs for four-taxon sets that challenge the
reliability of the χ2

2 approximation: with 30 genes and expected CFs such
that two quartets are expected to be supported by 0.1, 0.5, or 2 genes only.
Fig. 2 shows the quality (or lack thereof) of the χ2

2 approximation, for
each choice of test statistic. Results are similar (Fig. S2) when only one
quartet is supported by very few genes, the other two having equally high
CFs (which requires reticulation). As expected, the Pearson statistic X2

performs poorly, leading to p-values that tend to be much smaller than
they should be. Qlog performs much better, although its p-values also
tend to be too small. The likelihood ratio statistics G performs best, with
p-values behaving adequately. When all 3 quartets are supported by 2 or
more genes, the χ2

2 distribution approximation performs adequately for
both the Qlog and G statistics. Consequently, we recommend the use of
G for future studies.

d e fa b c a1 a2 b1 b2 c1 c2 d1 d2

ta
tb tc

td

Fig. 3. Edge overlap between four-taxon sets causes dependence between their quartet CFs.
Left: the four-taxon sets a, b, c, d and a, b, e, f share edges ancestral to a, b. If a and b
coalesce deeply in a given gene tree (thick black lines), then this gene is less likely to have
quartets where a and b are sister, for both a, b, c, d or a, b, e, f . Right: the four-taxon
sets a1, b1, c1, d1 and a2, b2, c2, d2 have no taxon overlap, but share many edges. If
the alleles from each clade coalesce early for a given gene (that is, a1 and a2 coalesce
along the branch of length ta , etc.) then this gene has the same topology when restricted
to a1, b1, c1, d1 or to a2, b2, c2, d2 . This shared topology depends on coalescences
along ancestral branches (highlighted area). Therefore, the dependence between these two
four-taxon sets’ CFs increases with branch lengths ta , tb , tc and td . More generally, a
higher overall degree of dependence is expected with increased branch lengths.

3.2 Goodness-of-fit of a candidate network

If the candidate network provides a good fit, one would expect outlier
quartet p-values of four-taxon sets to have a uniform distribution, with
5% of four-taxon sets having outlier p-values below 0.05, for instance.
TICR compares the proportion of outlier p-values in the intervals 0-0.01,
0.01-0.05, 0.05-0.1, 0.1-1, to the expected proportions of 0.01, 0.04, 0.05,
0.90. Here, we use a one-sided test instead, to detect if there are more
outlier four-taxon sets than expected. Each four-taxon set is classified as
an "outlier" if its outlier quartet p-value is below 0.05. If the network
provides a good fit, we expect 5% of four-taxon sets to be outliers. If there
is less than 5% outliers, then the network can be said to provide a good
fit to the data. If there is more than 5% outliers, then a rigorous test is
needed. A chi-square goodness-of-fit test for proportions is used by TICR,
but four-taxon sets violate a fundamental assumption of this test: they are
not all independent.

For example, consider the four-taxon sets a, b, c, d and a, b, e, f

(Fig. 3). The quartets obtained by pruning a gene tree to a, b, c, d and
a, b, e, f are not independent, because a, b and their adjacent edges are
retained in both. So the outlier p-values of these two four-taxon sets
could be correlated. Consider now the four-taxon sets a1, b1, c1, d1 and
a2, b2, c2, d2, that represent one taxon from each of 4 well-defined clades,
such that a1 and a2 are close sisters, etc. (Fig. 3). Rapid coalescence
between sister taxa (a1 with a2, b1 with b2 etc.) would cause the quartet
tree on a1, b1, c1, d1 to be equal to the quartet tree on a2, b2, c2, d2,
for a given gene. Therefore, non-overlapping four-taxon sets can also have
correlated outlier p-values. The main reason for dependence is gene sharing
(not taxon sharing), in the data used to calculate outlier p-values: the same
gene trees are used across different four-taxon sets.

To determine if the proportion of outlier four-taxon sets deviates from
5% significantly, we propose a simulation-based strategy to account for
dependence. We first consider the traditional z statistic for a proportion
test:

Z =
p̂out − pout√

pout(1− pout)/N
=

p̂out − 0.05√
0.0475/N

(4)

where pout = 0.05 is the expected proportion of outliers, p̂out is
the observed proportion of outliers, and N is the total number of four-
taxon sets. If four-taxon sets were independent, then Z ∼ N (0, 1)

approximately.
To account for dependence, we simulate a large numberB of data sets

under the coalescent on the candidate network, each with the same number
of gene trees as in the original data. From each simulation i we calculate
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Zi using (4). These values are then used to estimate σ2 = IEZ2 as

σ̂2 =
1

B

B∑
i=1

Z2
i .

Finally, we quantify the overall goodness-of-fit of the network by
comparing Z from the original data to the normal distribution N (0, σ̂2)

with variance σ̂2.
This test assumes that the right tail of the distribution of Z remains

that of a normal distribution approximately, even when four-taxon sets
are dependent. We assess the reliability of this assumption next. In any
case, the simulations used to estimate σ2 would naturally reveal if this
assumption is not satisfied for the network at hand. In this case, an
empirical p-value can be estimated using the simulated Zi values directly,
as the proportion of Zi values greater than or equal to the original Z.
This alternative estimation of the p-value requires a larger number of
simulations B, because it amounts to estimating the tail, instead of the
variance, of the distribution of Z.

4 Results

4.1 Simulations

We simulated the distribution of Z on three different networks, from low
dependence to high dependence across four-taxon sets. As our baseline
network (“net1”, moderate dependence), we used the network phylogeny
of New World kingsnakes Lampropeltis. This network has 23 taxa, one
hybridization, was inferred using 304 loci by Burbrink and Gehara (2018),
and was rooted at the outgroup Cemophora coccinea. We modified the
branch lengths around the reticulation to make the network time-consistent,
as required by HybridLambda for simulation: such that all paths from
the root to any given hybrid node are of equal length. External branch
lengths were set to make all paths from the root to the tips of equal length.
Internal branch lengths, which determine the level of ILS, had an average
of 0.66 coalescent units. For a network with minimal dependence, we
used the star topology on 23 taxa, that is, a network whose internal branch
lengths are all 0 to represent ancestral panmixia. This topology is treated
more theoretically below. For a network with high dependence, we used
our baseline network and multiplied all its branch lengths by a factor
or 3 (“net3”). The maximum of the three quartet CFs, averaged across
all four-taxon sets, was one third under the star network, 77% under
net1 and 91% under net3. HybridLambda (Zhu et al., 2015) was used
to simulate 304 gene trees under the coalescent along the network. We
then calculated the observed quartet CFs from the simulated gene trees,
the outlier quartet p-values (using either X2, Qlog or G), and the Z
statistics in (4) using QuartetNetworkGoodnessFit, which builds
on PhyloNetworks (Solís-Lemus et al., 2017). These simulations were
repeated 1000 times on each network.

Fig. 4 shows the results using theG statistic. Results are similar when
using X2 or Qlog instead of G for calculating outlier quartet p-values
(Fig. S3 and S4). The distributions of outlier quartet p-values are relatively
uniform with almost 5% of four-taxon sets labelled as outliers, except on
the network with long branches (net3). This is expected, because long
branches in coalescent units means that deep coalescence is very rare,
and genes are expected to be highly concordant with each other (except
where reticulation is involved). In this case, many four-taxon sets will have
one or two quartets with almost no genes supporting them, a situation
that degrades the χ2

2 approximation, as seen in section 3.1.2. Still, the
proportion of outliers is conservative and remains close to 5%: 0.036.

Failing to account for dependence using a traditional proportion test
that compares Z to a standard normal distribution (σ2 = 1), like TICR
does, leads to greatly inflated rate of type 1 errors: from 20% to 36%

depending on the network (Fig. 4, second column). P-values from this
uncorrected test cluster near zero and one. To correct for dependence, we
approximated the distribution of Z usingN (0, σ̂2). As expected, the star
topology showed to the least amount of dependence, as quantified by the
smallest σ̂2 = 19.1. The baseline network (net1) had a larger σ̂2 = 82.7,
that is, required more correction for dependence. The network with
increased branch lengths (net3) had the largest σ̂2 = 150.1, indicating
the highest level of dependence across four-taxon sets. Regardless of
the network, these σ̂2 values are very far from 1, confirming that the
dependence between four-taxon sets is a major factor. On all three
networks,Z shows some degree of right skew, due in part to its lower bound
at −0.05/

√
.0475/N when the proportion of outliers is zero. However,

the right tail of Z is fairly well approximated by the corrected normal
distribution, which is what matters for our one-sided test. After correction,
the p-value for testing the overall goodness-of-fit has an acceptable rate of
type I error close to the desired 5% level, or conservatively below 5% for
the network with long branches (Fig. 4, right). Therefore, our test accounts
for dependence appropriately.

4.2 Star phylogeny

In this section, we assume a start phylogeny, that is, a phylogeny where all
internal branches have length 0 in coalescent units. In this case, we derive
the value of σ2 exactly, asymptotically when the number of genes is large:

σ2 = 1 +
ntax − 4

0.0475

(
3(ntax − 5)v2 + 4v3

)
(5)

where ntax is the number of tips, v2 ' 0.000373186 and v3 '
0.002275837.

We conjecture that the star phylogeny has the smallest σ2 among
all phylogenies with the same number of taxa, such that (5) provides a
lower bound for any phylogeny, which is very fast to calculate. Even if
this conjecture is true, this lower bound can be far from the true σ2, as
exemplified by the range of values from the simulations above. As seen in
the proof below (and in the Supplementary Material), this bound assumes
no bias in Z (that is, the outlier test statistic has type I error rate of 0.05
exactly and IEZ = 0), and only quantifies dependence due to taxon-
sharing between four-taxon sets. It does not account for dependence due
to shared coalescent events on internal branches (Fig. 3), since there are
no such events on a star phylogeny.

In the rest of this section, we sketch the proof of (5), and refer to the
Supplementary Material for details. We can rewrite (4) as

Z =
1
√
N

N∑
q=1

Yq − 0.05
√
0.0475

where Yq = 1 if the four-taxon set q is detected as an outlier, Yq = 0

otherwise. Yq was designed to satisfy IP{Yq = 1} = 0.05 under the null
hypothesis, so it has mean 0.05 and variance 0.0475 asymptotically (with
a large number of genes). In the Supplementary Material, we prove that
the covariance of Yq and Yq′ for distinct q and q′ is 0 if q and q′ share one
taxon at most; v2 if they share two taxa, and v3 if they share three taxa.
Given these pairwise covariances, (5) follows from counting the number of
pairs of four-taxon sets that share exactly 2 taxa: 3(ntax−4)(ntax−5)N ;
and the number of pairs that share exactly 3 taxa: 4(ntax − 4)N .

4.3 Case studies

We re-analyzed the Arabidopsis thaliana data from Stenz et al. (2015) on
23 taxa and over 3000 genes (Table 1). The outlier p-values from our new
test are much smaller than the TICR p-values. All population histories
considered by Stenz et al. (2015) are found inadequate to describe the
pattern in the data, with much stronger evidence than in the original study.
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Fig. 4. Simulations of the goodness-of-fit test using the likelihood ratio statistic G for the outlier test on each four-taxon set, on three different 23-taxon networks (top: star phylogeny;
middle: baseline network from Burbrink and Gehara (2018); bottom: baseline network where all branch lengths have been multiplied by 3). For each network, 1000 data sets were simulated
from that network, so the null hypothesis of adequacy was true. Left column: distribution of outlier p-values, across all simulation replicates and all four-taxon sets. About 5% of four-taxon
set appear as outliers with a p-value below 5% (shown as black histogram bars, with actual proportion value indicated in black). Second column: distribution of the p-value obtained by
comparing z to N (0, 1), without any correction for dependence. The black histogram bars represent the simulation replicates with a p-value below 5%, with the proportions indicated
in black (all above 20%). Third column: distribution of z from (4) (grey histogram) and density of the centered normal N (0, σ̂2) used to approximate the right tail of z (black curve).
Right column: distribution of the goodness-of-fit p-value with correction for dependence. The black histogram bars represent the simulation replicates with a p-value below 5%, with the
proportions indicated in black (all around 5%).

Their qualitative conclusions remain: full panmixia is strongly rejected,
and a partially resolved population tree with episodes of panmixia provides
a better fit to the data than either panmixia or a fully resolved tree. However,
we find that this fit is still inadequate when the test properly accounts for
dependence.

The outlier taxa detected by Stenz et al. (2015) are still detected as
outliers in our new test. In the stratified subsample, we ranked outlier
p-values under the tree with optimized branch lengths and retained the
519 four-taxon sets with an outlier p-value below 10−50. This list is of
comparable size as the list of 483 outlier four-taxon sets found to have a
TICR p-value below 0.01, of which 212 contained two accessions from
the United Kingdom hypothesized to have undergone recent gene flow,
Cnt_1 and Vind_1 (Stenz et al., 2015). In our 519 most outlier four-taxon
sets from our new test, 322 contain both Cnt_1 and Vind_1, confirming
the original conclusion by Stenz et al. (2015).

Next, we analyzed data from Karimi et al. (2020) on baobabs
(Adansonia), from 372 loci across 17 accessions (8 ingroup and 2 outgroup
species). Karimi et al. (2020) found evidence for gene flow, but uncertainty
about the placement and number of gene flow events, so we tested the two
network topologies estimated from the 372 loci: one estimated using all

Data set Topology z σ̂ z/σ̂

panmixia 641.66 6.24 103.8
PD full tree 557.54 6.28 88.7
subsample BPP partial tree 636.81 6.25 101.9

TICR partial tree 556.21 6.49 85.7
panmixia 676.36 6.13 110.4

Stratified full tree 584.51 7.04 83.0
subsample BPP partial tree 602.05 6.69 90.0

TICR partial tree 580.40 6.90 84.2

Table 1. Analysis of the Arabidopsis thaliana data sets from Stenz et al. (2015),
each with 30 taxa, using the G statistics. The test statistic z/σ̂ corrects for
dependence, with σ̂ obtained using simulations of 1000 data sets, with the
same number of gene trees as in the original data (PD: 3064; stratified: 3191).
All trees were inadequate with overwhelming evidence (p-values � 10−100).

taxa, and one estimated with the outgroups excluded. Both networks were
found to provide an inadequate fit to the data (Table 2). When considering
the most outlying four-taxon sets (with outlier p-values below 0.01), we
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Outgroups Network z σ̂ z/σ̂ p-value
included 3(a) 25.8 6.32 4.07 0.00002
excluded 3(a) 22.2 4.92 4.51 0.000003
excluded 3(c) 20.3 5.17 3.93 0.00004

Table 2. Analysis of the 372-locus baobab data from Karimi et al. (2020) using
theG statistic. The network in their Figure 3(a) was estimated using outgroups,
with gene flow (γ = 12%) from A. digitata into the stem of Brevitubae.
Network 3(c) was estimated using ingroup taxa only, with gene flow (γ = 17%)
from A. rubrostipa into the stem of the core Malagasy Longitubae clade. Branch
lengths were optimized for each network. Simulations used 10,000 replicates
to estimate σ̂. All networks fit poorly.

found an over-representation (81% or more) of sets containing either
accession from A. za or A. perrieri. In fact, a majority of the most outlying
four-taxon sets had either both accessions from A. za, or both accessions
from A. perrieri. Note that in both candidate networks, A. za were not
monophyletic, and A. perrieri formed a clade sister to one of the A. za
accession. When both A. za accessions or both A. perrieri accessions were
excluded, the network adequacy increased substantially, with p-values
of 0.01 (A. za excluded) or above 0.04 (A. perrieri excluded). When
A. za and A. perrieri accessions were both excluded, the networks fitted
adequately, with p-values above 0.05. This pattern suggests that both
candidate networks are missing possible gene flow involving A. za and
A. perrieri.

Finally, we analyzed data on Stachyurus, a genus of shrubs and small
trees in which species delimitation is difficult. We analyzed data on 17
taxa and 1362 genes from Feng et al. (2020), who reported evidence for
reticulation in this genus. Their networks did not fit the data adequately,
even with up to 3 reticulations. Using outlier quartets, we identified a subset
of taxa for which the subnetwork with two reticulations fits adequately,
whereas one or no reticulations did not fit adequately (see Supplementary
Material).

4.4 Implementation

Our new tests and TICR are implemented in Julia (Bezanson et al.,
2012), in package QuartetNetworkGoodnessFit, available at
github.com/cecileane/QuartetNetworkGoodnessFit.jl.
Since it depends on PhyloNetworks (Solís-Lemus et al., 2017), the
current implementation assumes that the species network is of level 1.
By default, the test uses the G statistic to obtain outlier quartet p-values,
and 1000 replicates for simulations. These options can be adjusted by the
user, as demonstrated in the package documentation. The scripts for our
analyses are available at https://osf.io/eg6ju/.

5 Discussion
We developed a method to decide if the multi-species coalescent model
on a given (possibly reticulate) phylogeny adequately describes the
concordance pattern in a genome-wide data set. The strategy extends
that from TICR (Stenz et al., 2015), with proper handling of dependence
among four-taxon sets and extension to phylogenetic networks. Like TICR,
this method provides information beyond network fit by detecting outlier
species that drive the lack of fit. Species over-represented in outlier four-
taxon sets could be misplaced in the network, or might be of undetected
reticulate origin. Even if most of the phylogeny fits the data well, the
outlier tests could help identify local areas that fit the concordance pattern
poorly.

A limitation of our method is its reliance on simulations to quantify the
dependence across four-taxon sets. Future theoretical work could extend

our results on the star phylogeny to general network topologies, to avoid
reliance on simulations.

Another limitation is the use of quartet CFs as input data, as estimated
from multi-locus data. Estimating CFs from concatenated alignments, such
as concatenated bi-allelic or SNP data, has only recently been attempted
(Olave and Meyer, 2020). Other measures of goodness-of-fit could be
based on SNP patterns instead of CF patterns, but there are many more
possible site patterns on 4 taxa for DNA (44 = 256) or biallelic markers
(24 = 16), than possible quartets (3), making the use of site patterns more
complicated. Using site patterns could bring more power, but could also be
more prone to inconsistencies due to long branch attraction or rate variation
across sites and/or lineages, something that can be mitigated by using best-
fitting substitution models when estimating gene trees and CFs. Ruffley
et al. (2018) used SNP data from multiple alleles in two populations. They
used site patterns as summarized by the joint allele frequency spectrum,
then quantified the goodness-of-fit of various migration models with a
global likelihood ratio statistic and a simulation approach. The limitation
of this SNP-based approach is that it requires few populations (or taxa),
multiple individuals per population and within-taxon allele variation that
is shared between taxa.

Relying on quartets also means that the computing time increases
polynomially with the number of taxa, as N = O(n4

tax) if all four-
taxon sets are used. Extensions should consider reducing the number of
input four-taxon sets while minimizing the loss of power to detect a lack
of fit, such as using efficient quartet representations of input gene trees
(Davidson et al., 2018).

Performing tests on subsets of 3 or 4 taxa is a common strategy on large
genome-wide data sets. Most methods using quartets or rooted triplets
focus on detecting introgression, such as the ABBA-BABA test (Green
et al., 2010; Durand et al., 2011), HyDe (Blischak et al., 2018), Quartet
Sampling (Pease et al., 2018) orD3 (Hahn and Hibbins, 2019). Our method
is similar as it performs a very large number of tests, one on each four-
taxon subset. It is unique in that it combines all these test results into an
overall test, accounting for dependence across them. Some quartet / triplet
methods aim to estimate an overall phylogenetic network (Solís-Lemus
and Ané, 2016; Yu and Nakhleh, 2015; Allman et al., 2019; Zhu et al.,
2019), although without assessing the adequacy of the estimated network.
The NANUQ method (Allman et al., 2019) is closest to our work, as it
involves a test based on the quartet CFs on each four-taxon set. They also
use the G statistic, but perform different tests then we do: one test to
decide if a star tree is an adequate explanation for the CF data (to avoid
using four-taxon sets with too little information), and one test to decide
if there is evidence for a four-taxon reticulate network over a four-taxon
species tree. In our work, our null hypothesis corresponds to the candidate
network, because our method aims to measure the goodness-of-fit instead
of inferring a network.

Our test offers the first rigorous method to measure and compare the
fit of various candidate phylogenetic networks with different number of
reticulations, when the data include more than a handful of taxa. The
test could be used to select the appropriate number of past hybridizations,
to avoid over-parametrization with unnecessary reticulations. Yu et al.
(2014) used cross-validation, an adequate way to select the number of
reticulations. However, it is intensive (10-fold cross-validation requires
about 10 times the computing time of a single network). More importantly,
it does not scale to many taxa because the quality of a given network is
calculated by comparing the frequency of every gene tree topology in the
validation subset, and its probability under the estimated network. With
more taxa, the number of possible gene topologies grows exponentially,
rendering this quality measure difficult to calculate, and possibly unstable.

Some empirical studies have used BIC, AIC or AICc to select the
optimal number of reticulations (e.g. Mason et al., 2019; Kleinkopf et al.,
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2019; Zhang et al., 2019). However, AIC and BIC approaches have two
major drawbacks. First, they should not be used with pseudo-likelihood
(also called composite likelihood, Varin et al., 2011; Excoffier et al.,
2013). Pseudo-likelihood is valid for parameter estimation, but not valid
for hypothesis testing or model selection, unless special care is taken (e.g.
Godambe information, Varin et al., 2011). Second, AIC and BIC are not
meant to deal with a number of models that grows exponentially with
the number of reticulations (Blair and Ané, 2020). A similar problem is
encountered for phylogenetic adaptive niche models, based on Ornstein-
Uhlenbeck processes with variable niches represented by variable drift
parameters. AIC and BIC are inappropriate criteria to select the number
k of adaptive shifts, because the number of ways to place k shifts on a
phylogeny grows very fast with k (Ho and Ané, 2014; Khabbazian et al.,
2016; Bastide et al., 2018). Similarly, the number of ways to place k
reticulations on a given phylogenetic network grows very fast with k, and
this growth in model space is not accounted for by AIC or BIC.

Many studies used a slope (or broken stick) heuristic approach, looking
at the number of reticulations beyond which the network score has little
improvement (e.g. Burbrink and Gehara, 2018; Hejase et al., 2018). This
slope heuristic has proven guarantees in some situations (Baudry et al.,
2012, implemented in R package capusche), but its rigorous application
still requires to estimate a network for a large range of reticulation numbers,
which might be computationally prohibitive.

Alternative rigorous methods for the selection of network complexity
include machine learning approaches, after obtaining a short list of
candidate networks. Data sets are simulated under each network in the
list, and used to train a model that predicts from which network (in
the list) the data came from, based on summary statistics. For example,
Burbrink and Gehara (2018) used a neural network approach to formally
compare one tree-like and two reticulate phylogenies, after estimation
with a pseudo-likelihood method SNaQ (Solís-Lemus and Ané, 2016).
Approximate Bayesian computation (ABC) methods can then be used to
estimate posterior probabilities for each network in the list (Nater et al.,
2015; Pudlo et al., 2016; Smith et al., 2018). The downside of these
methods is that a suitable set of summary statistics needs to be chosen.

Our method provides a rigorous tool that can be used after network
estimation, to measure the adequacy of networks with various number of
reticulations and select the optimal network complexity. It scales to much
larger phylogenies than other rigorous alternatives, and goes beyond model
comparison by measuring the absolute fit of the coalescent on a candidate
network.
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Figure S1: Distribution of quartet CFs from 300 loci simulated by Soĺıs-Lemus and Ané
(2016) under a network with 15 species and three hybridization events, from https://

github.com/crsl4/PhyloNetworks.jl/wiki/Example-Data. Observed CFs are posterior
means from a Bayesian inference with BUCKy (histogram). These CFs were used to fit
a network with one reticulation using SNaQ (Soĺıs-Lemus and Ané, 2016). CFs expected
from this fitted network were then used to predict the distribution of observed CFs with a
Dirichlet model whose precision parameter was fitted to the CF data (dashed line), and with
a multinomial model (probability mass: vertical lines, or density: solid line). Each column
shows observed and predicted distribution of CFs whose expectation falls in a particular
interval: very close to 0 (left), intermediate (middle), or very close to 1 (right). For CFs
with expectations close to 0 or close to 1, the multinomial distribution fits the data much
better than the Dirichlet distribution.
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Figure S2: Distribution of X2, Qlog and G for measuring the fit of quartet CFs, when the
data consist of 30 gene trees drawn from a multinomial distribution on 3 quartets, with
given expected CFs. The expected number of genes supporting each quartet was 0.1, 14.95,
14.95 (top), 0.5, 14.75, 14.75 (middle) and 2, 14, 14 (bottom). These values would arise, for
example, from a reticulate four-taxon phylogeny as in Fig. 1 but with inheritance γ = 0.5 on
both reticulation edges, and with branch lengths t1 = t2 = 4.6 (top), 3.0 (middle) and 1.6
(bottom) coalescent units. 100,000 data sets were simulated in each case. The sorted values
of the 100,000 test statistics are plotted on the vertical axis, versus the theoretical quantiles
expected under a χ2

2 distribution on the horizontal axis. The test statistic is χ2
2-distributed

if the points fall on the diagonal line (in red). When the test statistic is above the diagonal,
the p-value obtained by comparison with the χ2

2 distribution is too small.
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Figure S3: Simulations of the goodness-of-fit test as in Fig. 4, using the Pearson statistic X2

for the outlier test on each four-taxon set,
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Figure S4: Simulations of the goodness-of-fit test as in Fig. 4, using the Qlog statistic for the
outlier test on each four-taxon set,
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2 Derivation of the null variance on a star phylogeny

In this section, we prove the claims that were used in the main text to derive (5) for the null
variance σ2 under a star phylogeny. Recall that for a four-taxon set q, the outcome of the
outlier test was quantified with the Bernoulli variable Yq = 1 if q is detected as an outlier,
Yq = 0 otherwise. We prove here the following claims about the covariance between Yq and Yq′
for two distinct four-taxon sets q and q′, under a null phylogeny: cov(Yq, Yq′) = 0 if |q∩q′| = 0
or 1, cov(Yq, Yq′) = v2 ' 0.000373186 if |q ∩ q′| = 2, and cov(Yq, Yq′) = v3 ' 0.002275837 if
|q ∩ q′| = 3.

Without loss of generality, let q = {1, 2, 3, 4}. For a given gene, the quartet tree for this
gene on q only depends on the coalescent events that occur above the root node, because
the phylogeny is a star. Under the coalescent, this quartet can be generated by drawing
six independent random variables from the exponential distribution E(1), that represent the
potential coalescent times between each pair of two taxa: T12, T13, T14, T23, T24, T34. The
smallest of these values determines which pair coalesces first, and hence which quartet the
gene has on {1, 2, 3, 4}.

First consider the case when q and q′ do not overlap, or overlap by one taxon. Without
loss of generality, let q′ = {5, 6, 7, 8} (no overlap) or q′ = {1, 5, 6, 7} (1-overlap). For a given
gene, this gene’s quartet on q′ is determined by random variables that are independent of
those that determine the gene’s quartet on q, namely: T56, T57, T58, T67, T68, T78 (no overlap),
or T15, T16, T17, T56, T57, T67 (1-overlap). Therefore, the gene’s quartet on q is independent of
the gene’s quartet on q′, so Yq is independent of Yq′ , and cov(Yq, Yq′) = 0.

Next, consider the case when q and q′ share exactly three taxa. Without loss of generality,
let q′ = {1, 2, 3, 5}. In this case, T12, T13, T23 influence both the quartet on q and the quartet
on q′. We first derive the covariance between the quartets on q (12|34, 13|24, 23|14) and
the quartets on q′ (12|35, 13|25, 23|15), then derive the covariance between the outlier test
outcomes, Yq and Yq′ . Let E3 = min{T12, T13, T23} and let {a, b} be the pair that coalesce first
among taxa 1, 2, 3, that is, Tab = E3. The minimum coalescent time E3 has an exponential
distribution with rate 3, and {a, b} equals each pair with probability 1/3, independently of
E3. Conditional of E3 = t and {a, b} = {1, 2}, say, the quartet on q is:

• 12|34 if E2 = min{T14, T24} > t, which occurs with probability e−2t since E2 ∼ E(2),

• 13|24 if E2 < t and T14 > T24, which occurs with probability (1− e−2t)/2,

• 23|14 if E2 < t and T14 < T24, which occurs with probability (1− e−2t)/2.

For q′, we get similar conditional probabilities for quartets 12|35, 13|25 and 23|15, depending
on T15 and T25. Since (T14, T24) and (T15, T25) are independent of each other, the quartets on
q and on q′ are independent and we get the following probabilities for each pair of quartet,
conditional on E3 = t and {a, b} = {1, 2}.
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q
12|34 13|24 23|14

12|35 e−4t e−2t(1− e−2t)/2 e−2t(1− e−2t)/2
q′ 13|25 e−2t(1− e−2t)/2 (1− e−2t)2/4 (1− e−2t)2/4

23|15 e−2t(1− e−2t)/2 (1− e−2t)2/4 (1− e−2t)2/4

Integrating over t = E3 ∼ E(3), we get the probabilities of quartet pairs conditional on
{a, b} = {1, 2}:

q
12|34 13|24 23|14

12|35 15/35 3/35 3/35
q′ 13|25 3/35 2/35 2/35

23|15 3/35 2/35 2/35

Finally, integrating over {a, b} gives the joint probabilities of quartet pairs, that is, the joint
expected concordance factors:  19 8 8

8 19 8
8 8 19

 /(3× 35)

using the same ordering of quartets for q and for q′ as previously. Note that, as expected,
the marginals are all 1/3, since each quartet of q (or of q′) has equal CF, 1/3.

Asymptotically, all three outlier test statistics are equivalent to S = 3(X2
1 + X2

2 + X2
3 )

where Xi =
√
n(p̂i − 1/3) is a centered and rescaled version of the observed CF for quartet

i, such that, as the number of genes n gets large, X has a multivariate normal distribution
with mean 0 and variance from the multinomial distribution:

Σ =
1

9

 2 −1 −1
−1 2 −1
−1 −1 2

 .

The outlier test outcome for four-taxon sets q and q′ are then: Yq = 1 if Sq > 5.99 and 0
otherwise, where Sq is calculated from the quartets on q, and 5.99 is the 0.05 tail quantile
for χ2

2, the chi-square distribution with 2 degrees of freedom, since S ∼ χ2
2 asymptotically.

The covariance between Yq and Yq′ is therefore:

cov(Yq, Yq′) = IP{Sq > 5.99 and Sq′ > 5.99} − 0.05× 0.05 .

To calculate this quantity, we consider the joint distribution of Xq and Xq′ , which is multi-
variate with mean 0 and covariance(

Σ C
C Σ

)
where C =

11

9× 35

 2 −1 −1
−1 2 −1
−1 −1 2


5



was derived from the joint probabilities of quartet pairs above and the general formula for
multinomial covariances. Importantly, we can diagonalize Σ and C with the same eigenvec-
tors:

Σ = P

 1/3 0 0
0 1/3 0
0 0 0

PT and C = P

 11
3×35 0 0

0 11
3×35 0

0 0 0

PT

with

P =

 2/
√

6 0 1/
√

3

−1/
√

6 1/
√

2 1/
√

3

−1/
√

6 −1/
√

2 1/
√

3

 and PT = P−1 .

Therefore, we can write

Xq = P diag

(√
11

3× 35
,

√
11

3× 35
, 0

)
U + P diag

(√
24

3× 35
,

√
24

3× 35
, 0

)
Z

and Xq′ = P diag

(√
11

3× 35
,

√
11

3× 35
, 0

)
U + P diag

(√
24

3× 35
,

√
24

3× 35
, 0

)
Z′

where U, Z and Z′ are 3-dimensional independent N (0, I) random variables. The correlation
between quartet CFs is mediated by U, which affects both four-taxon sets q and q′. Finally,
the outlier test statistics can be written as

Sq = 3XT
q Xq =

(√
11

35
U1 +

√
24

35
Z1

)2

+

(√
11

35
U2 +

√
24

35
Z2

)2

Sq′ = 3XT
q′Xq′ =

(√
11

35
U1 +

√
24

35
Z ′1

)2

+

(√
11

35
U2 +

√
24

35
Z ′2

)2

.

This implies that, conditional on U, 35
24
Sq and 35

24
Sq′ are independent and both have a non-

central chi-squared distribution with 2 degrees of freedom, with non-centrality parameter
determined by λ = 11

24
(U2

1 + U2
2 ). We can then use the density of the non-central chi-square

distribution to calculate the probability of both Sq > 5.99 and Sq′ > 5.99 conditional on
U, then integrate over u = U2

1 + U2
2 , which has a (central) chi-squared distribution with 2

degrees of freedom:

IP{Sq > 5.99 and Sq′ > 5.99} =

∫ ∞
u=0

IP

{
χ2
2,λ=(11/24)u >

35

24
5.99

}2
1

2
e−u/2du ' 0.004775837.

This integral was calculated numerically, using the R package cubature v2.0.4. After sub-
tracting 0.05× 0.05, we get v3 ' 0.002275837, as claimed in the main text.

Finally, consider the case when q and q′ share exactly two taxa. This reasoning is similar
to that in the previous case: we first derive the joint probability of each of the quartets on q
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and on q′, then the covariance matrix C, which lets us write Sq and Sq′ as independent non-
central chi-squared conditional on a shared U. The last step is a slightly more complicated
integral. Without loss of generality, let q = {1, 2, 3, 4} and q = {1, 2, 5, 6}. They share a
single coalescent time: T12. Conditional of T12 = t, the quartet on q is:

• 12|34 if E5 = min{T13, T23, T14, T24, T34} > t, which occurs with probability e−5t since
E5 ∼ E(5); or if E5 ≤ t and T34 = E5, which occurs with probability (1− e−5t)/5;

• 13|24 if E5 ≤ t and E5 = T13 or T24, which occurs with probability (1− e−5t)× 2/5;

• 23|14 if E5 ≤ t and E5 = T23 or T14, which occurs with probability (1− e−5t)× 2/5.

For q′, the conditional probabilities are the same for quartets 12|56, 15|26 and 25|16, de-
pending on T15, T25, T16, T26 and T56. Since these coalescent times are independent of those
determining the quartet on q, the quartets on q and q′ are independent conditional on T12 = t,
so we can calculate their joint conditional probabilities. After integrating over T12 we get
the joint (unconditional) probabilities:

q
12|34 13|24 23|14

12|56 5/33 3/33 3/33
q′ 15|26 3/33 4/33 4/33

25|16 3/33 4/33 4/33

It follows that the covariance between Xq and Xq′ is now:

C =
1

9× 11

 4 −2 −2
−2 1 1
−2 1 1

 = P

 2
3×11 0 0

0 0 0
0 0 0

PT

such that we can write

Xq = P diag

(√
2

3× 11
, 0, 0

)
U + P diag

(√
9

3× 11
,

√
1

3
, 0

)
Z

and Xq′ = P diag

(√
2

3× 11
, 0, 0

)
U + P diag

(√
9

3× 11
,

√
1

3
, 0

)
Z′

where, as before, U, Z and Z′ are 3-dimensional independent N (0, I) random variables. The
outlier test statistics can be written as

Sq = 3XT
q Xq =

(√
2

11
U1 +

√
9

11
Z1

)2

+ Z2
2

Sq′ = 3XT
q′Xq′ =

(√
2

11
U1 +

√
9

11
Z ′1

)2

+ Z ′2
2
.
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Conditional on U1, Sq and Sq′ are independent, but have a more complicated conditional
distribution than before: the sum of a rescaled non-central chi-squared distribution and an
independent chi-squared distribution, both with 1 degree of freedom: χ2

1 + 9
11
χ2
1,λ=(2/9)u2 . We

can calculate the conditional probability that q is detected as an outlier numerically:

IP{Sq > 5.99|U1 = u} =

∫
z

IP

{
χ2
1,λ=(2/9)u2 >

11

9
(5.99− z2)

}
e−z

2/2

√
2π

dz ' 0.003030943

The numerical integration was performed using the R package cubature v2.0.4. After sub-
tracting 0.05× 0.05, we get v2 ' 0.000373186, as claimed in the main text. As expected, v2
is much smaller than v3, because q and q′ are less correlated (via a single pair only) when
they share 2 taxa than when they share 3 taxa.

On 23 taxa, (5) gives σ2 = 12.7. The discrepancy with our estimate σ̂ = 19.1 from
simulations is likely due to the fact that 19.1 is an estimate of IE(Z2) rather than the
variance IE(Z2)− (IEZ)2. For a conservative test, we recommend the normalization of Z by
IE(Z2), as done in the main text.

3 Analysis of Stachyurus data from Feng et al. (2020)

Stachyurus is a genus of shrubs and small trees from East Asia, recently studied by Feng
et al. (2020). We analyzed their data on 17 taxa and 1362 genes. For candidate networks,
we used their phylogenetic networks estimated with 0 to 3 reticulations, because Feng et al.
(2020) present a network with 2 reticulations, and because networks estimated with 4 or
more reticulations conflicted with the rooting in which S. praecox (from Japan) is sister to
the remainder of the genus (from the Asian mainland). All networks failed the goodness-of-
fit test, but the lack of adequacy was very similar between networks with 1 to 3 reticulations
(Table S1), in line with the conclusion by Feng et al. (2020) that there is support of one
reticulation and uncertainty about other reticulations.

We sought to find a subnetwork that fits adequately, so we removed taxa from the network
with h = 2 favored by Feng et al. (2020), until we obtained a subnetwork with a p-value above
0.05. The subsample was selected by removing taxa most represented in outlier quartets on
the network with h = 2 reticulations, except that we kept taxa whose removal would have
removed a reticulation in the network, such that the subnetwork retained h = 2 reticulations.
The subsample had the following 9 taxa: S. oblongifolius, S. yunnanensis (EM), S. obovatus,
S. chinensis (SX), S. chinensis (ZJ), S. chinensis (AH), S. chinensis (QCS), S. retusus, and
S. chinensis var. latus. We then tested the goodness of fit of the networks with 1 or no
reticulations on the same subsample. Both subnetworks were rejected (Table S1), showing
that the 2 reticulations do contribute to the fit of the subnetwork with h = 2, not simply
the pruning of taxa whose data were poorly fit by the larger network.
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Taxon set Topology: number z σ̂ z/σ̂ p-value
of reticulations

h = 0 144.2 4.688 30.7 p� 10−100

full h = 1 126.6 4.685 27.0 p� 10−100

taxon set h = 2 123.8 4.678 26.5 p� 10−100

h = 3 119.9 4.639 25.8 p� 10−100

h = 0 23.18 2.234 10.4 2× 10−25

subsample h = 1 5.191 2.239 2.32 0.010
h = 2 3.147 2.203 1.43 0.077

Table S1: Analysis of the Stachyurus data sets from Feng et al. (2020) with 1362 genes,
using the G statistics. The test statistic z/σ̂ corrects for dependence, with σ̂ obtained using
simulations of 10,000 data sets, each with 1362 genes. Branch lengths were optimized for
each network. The full taxon set has the 17 Stachyurus taxa sampled by Feng et al. (2020).
The subsample has 9 taxa. After pruning the network with h = 3 reticulations, the resulting
subnetwork has only 2 visible reticulations, making it equivalent to the subnetwork with
h = 2.
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