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A B S T R A C T

Cyanobacterial harmful algal blooms (CyanoHABs) are a major threat to human and environmental health. As
global proliferation of CyanoHABs continues to increase in prevalence, intensity, and toxicity, it is important to
identify and integrate the underlying causes and controls of blooms in order to develop effective short- and long-
term mitigation strategies. Clearly, nutrient input reductions should receive high priority. Legacy effects of
multi-decadal anthropogenic eutrophication have altered limnetic systems such that there has been a shift from
exclusive phosphorus (P) limitation to nitrogen (N) limitation and N and P co-limitation. Additionally, climate
change is driving CyanoHAB proliferation through increasing global temperatures and altered precipitation
patterns, including more extreme rainfall events and protracted droughts. These scenarios have led to the
“perfect storm scenario”; increases in pulsed nutrient loading events, followed by persistent low-flow, long water
residence times, favoring bloom formation and proliferation. To meet the CyanoHAB mitigation challenge, we
must: (1) Formulate watershed and airshed-specific N and P input reductions on a sliding scale to meet an-
thropogenic and climatic forcings. (2) Develop CyanoHAB management strategies that incorporate current and
anticipated climatic changes and extremes. (3) Make nutrient management strategies compatible with other
physical-chemical-biological mitigation approaches, such as altering freshwater flow and flushing, dredging,
chemical applications, introduction of selective grazers, etc. (4) Target CyanoHAB toxin production and de-
veloping management approaches to reduce toxin production. (5) Develop broadly applicable long-term stra-
tegies that incorporate the above recommendations.

1. Introduction

Global expansion of harmful cyanobacterial blooms (CyanoHABs),
is a major threat to safety and sustainability of water supplies for
human consumption, agriculture (irrigation), inland fisheries resources,
as well as recreational and aesthetic values of impacted waters
(Burford et al., 2020; Paerl et al., 2019a, b). Nutrient over-enrichment
has been strongly linked to CyanoHAB expansion in aquatic ecosystems
(Paerl, 1988). This link has a long history; going back at least to eu-
trophication that spawned massive blooms during the Roman Empire
(Haas et al., 2019). Historically, P over-enrichment associated with
agricultural, urban and industrial development has been identified as a
key factor promoting this expansion (Elser and Bennett, 2011;
Likens, 1972; Motew et al., 2017; Schindler, 2012; Smith, 2003). As
such, reduction of P inputs to CyanoHAB-impacted waters has generally
been prescribed as a key bloom mitigation step (Schindler, 2012). Be-
cause there are no gaseous forms of P that can potentially escape
aquatic ecosystems, P accumulates in both the water column and

sediments, leading to a “P legacy”, supporting persistent internal
loading which can sustain eutrophication and blooms (Lewis et al.,
2011; Reddy et al., 2011). Lake and reservoir systems can have lengthy
water residence (or water age) times, often on the order of months to
multiple years. Therefore, even if P inputs are reduced, it will take
appreciable time to naturally “wean” these systems of internal P sup-
plies (Havens, 1997; Paerl et al., 2016a, b).

The other major nutrient element controlling eutrophication, ni-
trogen (N), while also undergoing excessive anthropogenic enrichment,
has gaseous forms (e.g. N2, N2O, NO, NH3), that can readily exchange
with the atmosphere. Thus, even though anthropogenic N loading has
increased at alarming rates (Erisman et al., 2013; Galloway et al., 2002)
and has been shown to be directly implicated in both marine and
freshwater eutrophication (Boesch et al., 2001; Conley et al., 2009;
Elser et al., 2007; Lewis et al., 2011; Nixon, 1995; Ryther and
Dunstan, 1971; Wurtsbaugh et al., 2019), there is an “escape route” via
gaseous transformation processes. Furthermore, natural inputs of “new”
N via N2 fixation are generally exceeded by losses due to in-system
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denitrification, especially in bloom-prone eutrophic systems
(Paerl et al., 2016b; Scott et al., 2019). As a result, chronic N limitation
is perpetuated, and external N inputs play a key role in maintaining
eutrophic, bloom-prone conditions (Paerl et al., 2016b). Furthermore,
recent studies have stressed the need to reduce N inputs into Cya-
noHAB-plagued systems due to the ties between N inputs, CyanoHAB
growth and toxicity (Gobler et al., 2016; Harke et al., 2016;
Shatwell and Köhler, 2019). Clearly, there is good reason to constrain
external loads of both N and P, and impose more nutrient-limited
conditions in order to help mitigate the CyanoHAB problem
(Chaffin and Bridgeman, 2014; Müller and Mitrovic, 2015;
Zohary et al., 2005).

Therefore, while P input reductions should be part of any long-term
eutrophication and CyanoHAB control strategy, in order to speed up the
“de-eutrophication” or “oligotrophication” process, parallel N input
reductions are urgently needed, especially in light of global agri-
cultural, urban and industrial expansion (Paerl et al., 2019a).

2. Legacy effects of nutrients in freshwater ecosystems

The term legacy effect entered the scientific literature in the late
1980s and early 1990s (Corbet, 1985; Molina and Amaranthus, 1991).
Legacy effects are defined as the impacts that one generation leaves on
the environment for future generations to inherit (Button et al., 1999).
In ecological terms, legacy effects can be considered to be ecological
inheritance (Cuddington, 2011). In freshwater ecosystems, nutrient
legacy effects add to the issues related to anthropogenic eutrophication
(Duff et al., 2009). A large portion of the nutrient legacy is driven by
land use and land cover changes, which have led to nutrient-enriched
urban and agricultural runoff (Bain et al., 2012; Martin et al., 2011).

Since the rapid increases in chemical fertilizer use after WWII, nu-
trient loading has accelerated dramatically (Haygarth et al., 2014). As
mentioned earlier, P can mainly leave aquatic systems by flushing or
ending up in the sediments. Approximately 20−30% of P applied to
agricultural land is exported directly out of the watershed as crop and
animal production. The remaining 70−80% of the applied P ends up as
stores in soils, river sediments, groundwater, wetlands, riparian flood-
plains, lakes, and estuaries (Jarvie et al., 2013; Sharpley et al., 2013).
Even though N can leave the aquatic systems as gases, some N also end
up leaving a legacy on water bodies. Anthropogenic loading of N into
agricultural soils can leach into groundwater, leading to an N legacy in
aquifers (Puckett et al., 2011). A substantial fraction of accumulated
CyanoHAB biomass is decomposed in the water column and surface
sediments, fueling hypoxia (< 2.0 mg O2 L−1) and anoxia (<
0.5 mg O2 L−1) (Buzzelli et al., 2002; Paerl, 2014). The biomass frac-
tion that is not immediately decomposed ends up in the sediments as
legacy organic carbon, organic N, and organic P. Legacy nutrients
provide for a positive feedback loop supporting CyanoHAB growth
(Fig. 1), and it is a key reason why reversing the harmful effects of
eutrophication can take a substantial amount of time, especially in
large, long water residence time aquatic ecosystems (Paerl et al.,
2019b).

3. Climate change effects on nutrient loading in freshwater
ecosystems

While nutrient input reductions represent the “bottom line” in mi-
tigating eutrophication and CyanoHAB expansion, there are additional,
interacting drivers modulating this process, the most prominent and
challenging being climate change (Paerl and Paul, 2012). Global
warming, changes in precipitation patterns and amounts and altered
wind speeds are strong modulators of eutrophication and CyanoHAB
expansion (Deng et al., 2018; Paerl et al., 2016a; Paerl and
Huisman, 2009, 2008; Weber et al., 2020). Both of these symptoms of
climate change are increasing in frequency and geographic distribution
(Burford et al., 2020; Sinha et al., 2017; Trenberth, 2008;

Wuebbles et al., 2013). Increasing temperatures, stronger vertical
stratification, and salinization are also associated with climate change
and linked to CyanoHAB magnitudes, frequency, distribution and
duration (Chapra et al., 2017; Moore et al., 2008; Paerl, 2017;
Paerl et al., 2011; Paerl and Huisman, 2009, 2008). As pointed out in
Paerl et al. (2016a), the “perfect storm” scenario for CyanoHAB de-
velopment and proliferation is excessive episodic rainfall events, fol-
lowed by droughts, which can promote large nutrient input pulses
followed by lengthy residence times, enabling blooms to develop and
proliferate. Increased temperatures and nutrient loading can also en-
hance CyanoHAB toxicity (Botana, 2016; Gehringer and
Wannicke, 2014; Lehman et al., 2013; Moe et al., 2013). Furthermore,
it is likely that these nutrient reduction thresholds will change with
changing climatic conditions, human watershed and airshed activities,
as populations continue to expand (Erisman et al., 2013;
Galloway et al., 2002; Moss et al., 2008; Peierls et al., 1991). Wildfires
brought on by climate change can also lead to nutrient loading due to
increased mobility of sediments (Emelko et al., 2016), especially when
followed by extensive rainfall and flooding as has been the case in
California and most recently in Eastern and Southern Australia
(Malmsheimer et al., 2008; Sharples et al., 2016). In addition to en-
hancing P inputs associated with sediment mobilization, deforestation
also leads to N loading, as seen in N cycle shifts the Laurentian Great
Lakes (Guiry et al., 2020). Therefore, changes in these climatic drivers
will need to be incorporated into the development of nutrient input
reductions that will effectively maintain bloom potentials below spe-
cific nutrient loading thresholds for individual water bodies. Warming,
nutrient loading and temperature synergistically increase the intensity
and recurrence of CyanoHABs, which amplify the feedback loop pro-
moting CyanoHAB growth (Fig. 1).

Anthropogenic influences on the atmosphere are also modulating
CyanoHABs. Increasing atmospheric pCO2 can enhance phytoplankton
blooms, including CyanoHABs (Verspagen et al., 2014). The augmented
pCO2 will also favor CyanoHAB growth due to rapid adaptation to
higher pCO2 environments as seen in microcosm and chemostat ex-
periments (Sandrini et al., 2016; Shi et al., 2017; Ji et al., 2020). While
the effects of increased pCO2 appear to promote CyanoHABs, much less
is known about the in situ mechanisms compared to the effects of
temperature (Verspagen et al., 2014; Ji et al., 2020). In addition to
atmospheric carbon emissions, N and P emissions also impact Cya-
noHAB proliferation. Atmospheric deposition has been shown to be
significant source of both N and P into aquatic systems. For example,
Paerl et al. (2002) estimated that from 20 to >35% of N inputs to N-
limited US Atlantic estuarine and coastal waters was attributed to at-
mospheric N deposition, while 63% of total N and 42% of total P
loading in Cultus Lake near Vancouver, BC, Canada, come from atmo-
spheric deposition (Putt et al., 2019). Atmospheric deposition also in-
directly impacts coastal systems, as an average of 64% of riverine N
export to coastal ocean systems is derived from NOx and NHx deposition
(Church and Sickle, 1999; Jaworski et al., 1997). Groundwater inputs of
N and P, much of it due to human pollution, provide an additional
source of nutrients promoting eutrophication along the freshwater to
marine continuum (Paerl, 1997). The combined effect of increased
anthropogenic surface, subsurface and atmospheric nutrient loading, in
addition to promoting eutrophication, has driven receiving waters into
N and P co-limitation and N-limitation (Chaffin et al., 2014; Dodds and
Smith, 2016; Elser et al., 2007).

4. Management recommendations

When reducing external N&P loading, both point-source and non-
point-source nutrient inputs need to be addressed. Point source pollu-
tion is the easiest target for N and P reduction, as this source can be
reduced by targeting readily identified and well-defined origins, such as
effluents from wastewater treatment plants and industrial discharge
points (Hamilton et al., 2016; Wu et al., 2006). Reduction in point
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Fig. 1. Conceptual diagram, showing the feedback loops of climatic effects and nutrients on CyanoHAB biomass. (a) Climate change is causing more intense wet/dry
cycles, widespread wildfires, and warming, leading to an increase in CyanoHAB biomass. (b) Increased CyanoHAB biomass is involved in a positive feedback loop
with legacy nutrients and regenerated nutrients derived from the microbial loop. (c) These feedback loops combined with climatic effects constitute a key challenge
to mitigating CyanoHABs.
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source pollution generally involves diversion of sewage from water-
bodies and reduction in P and N concentrations in the wastewater
discharge (Sedlak, 1991). N removal from wastewater generally makes
use of coupled nitrification–denitrification (US EPA, 2013). P removal
occurs either through burial or flushing of P bound in biomass out of the
system (Downing, 1997). Buried P can be removed by dredging
(Reddy et al., 2007), although a short term P spike often results from
dredging (Smith et al., 2006). While P-based detergent bans have been
successful at reducing blooms (Dolan and McGunagle, 2005), there are
cases where P from detergents continues to be an important component
of P in surface waters while also imposing a major burden on waste-
water treatment processes (Hamilton et al., 2016; Van Drecht et al.,
2009). Greater attention needs to be focused on nonpoint sources of
nutrients, which in many watersheds is the largest source of nutrient
loading and is often dominated by agriculture (Hamilton et al., 2016).
Furthermore, nonpoint-source pollution continues to increase as a re-
lative proportion of total loading as more advanced treatment of point
source pollution is implemented (Hamilton et al., 2016). Removing N
and P from stormwater runoff can be achieved by using combined
wetlands and infiltration ponds to naturally filter N and P
(Marsalek and Schreier, 2009; Zheng et al., 2006). Retaining fertilizer-
based N and P in agricultural soils should receive high priority
(Hamilton et al., 2016). Maintaining N and P in soils at levels close to or
below agronomic optima is critical and represents one of the simplest
and most cost-effective methods to reduce eutrophication in receiving
waters (Drewry et al., 2006; Rasouli et al., 2014). Where feasible, fer-
tilizer should be directly injected into the soil to minimize nutrient-rich
surface runoff (Seo et al., 2005).

Another method of removing nutrients from non-point sources is
through in situ biological filtration, using non-harmful algal “scrubber”
and “raceway” devices (Adey et al., 2013; Barnard et al., 2017;
Mulbry et al., 2010, 2008). Adding denitrifying bacteria can greatly
speed up N removal (Chen et al., 2017). Vegetated buffers are also a
useful tool for remediating nonpoint source pollution; trees, shrubs and
grasses in the vegetated buffer have been shown to remove more than
85% of pollutants (Zhang et al., 2010), including 85% of N and 84% of
P (Polyakov et al., 2005). However, the biomass from buffers needs to
be periodically harvested and exported in order to have net nutrient
removal effect, unless processes such as denitrification are additionally
enhanced by this approach (Hoffmann et al., 2009). Additionally, nat-
ural and constructed wetlands are very effective, low cost solutions for
removal of nonpoint source nutrients from aquatic systems
(O'Geen et al., 2010; Ribaudo et al., 2001), with removal of over 80% of
N loading and over 50% of P loading (Braskerud, 2002a, 2002b;
Kao and Wu, 2001).

There is a significant association between cyanobacterial blooms
and land use types (i.e., industrial, commercial, and transport areas)
(Arthington, 1996; Soranno et al., 1996). These results are relevant to
landscape planning for mitigating future impacts of climate change on
the drainage network, surface runoff, nutrient loads and, ultimately, on
the development of toxigenic cyanobacteria (Hamilton et al., 2016). A
better knowledge of the relationships between land use type and dis-
charge is essential to foresee the effects of climate change on drainage
basins and therefore to evaluate potential triggers of CyanoHABs
(Jimenez Cisneros et al., 2014).

Higher amounts of freshwater runoff can enhance vertical density
stratification (reduced vertical mixing) in waters having appreciable
salinity, including estuarine and coastal waters as well as saline lakes
and rivers; by allowing relatively light freshwater lenses to establish
themselves on top of heavier (denser) saltwater. The resultant enhanced
vertical stratification will favor CyanoHABs capable of rapid vertical
migration to position themselves at physically-chemically favorable
depths in both freshwater and marine systems (Paerl, 2014; Paerl and
Huisman, 2009) by rapidly altering their buoyancy in response to
varying light, temperature and nutrient regimes (Walsby et al., 1997).

The large biomass and long survival time of CyanoHABs in

sediments can help explain the delayed recovery of affected lakes after
reduction of external nutrient loads (Brunberg and Boström, 1992;
Paerl et al., 2016a). Sediment removal involves expensive dredging and
disturbance of lake bottoms, which can release additional nutrients
(and potentially toxic substances) and adversely affect benthic flora and
fauna. However, CyanoHABs were eradicated successfully with this
approach in Lake Trummen, Sweden (~1 km2, mean depth 1.6 m),
which experienced CyanoHABs and water quality degradation from
domestic sewage and industrial nutrient inputs during the mid-1900s
(Cronberg, 1982; Peterson, 1982). Suction dredging the upper half-
meter of sediments over two years led to significant decreases in nu-
trient concentrations and CyanoHABs (Cronberg, 1982;
Peterson, 1982). Lake Trummen's rapid CyanoHAB eradication is at-
tributed to its small size and the ability to simultaneously reduce ex-
ternal nutrient loads effectively from its small watershed (13 km2)
(Cronberg, 1982; Peterson, 1982). Dredging is not a feasible solution
for reducing internal P loading in large lakes, where P-rich sediments
are distributed over hundreds or thousands of square kilometers and are
highly mobile (James and Pollman, 2011).

CyanoHABs can be treated with chemical and/or biological agents
to limnetic systems. Chemical treatments, including precipitation and
immobilization of phosphorus in bottom sediments (Phoslock, alum,
etc.), application of algaecides (Cu compounds, hydrogen peroxide,
permanganate, etc.), as well as biological controls, such as the in-
troduction of invertebrate and fish grazers, lytic bacteria, and viruses,
may temporarily halt the advance of CyanoHABs (Matthijs et al., 2012;
Paerl et al., 2015; Pan et al., 2006; Robb et al., 2003). However, there
are unintended negative impacts on flora and fauna of the limnetic
systems that make these chemical treatments potentially detrimental to
these systems (Bishop et al., 2018; Escobar-Lux et al., 2019; Paerl et al.,
2015). Addition of selective grazers is another option, but successful
control of CyanoHABs by grazers is unlikely except in specific cases
(Paerl et al., 2001). This is due to cyanobacteria being generally con-
sidered to be relatively low preference foods for marine and freshwater
herbivores because of chemical and structural defenses and poor nu-
tritional quality (Cruz-Rivera and Villareal, 2006; DeMott and
Moxter, 1991; Paerl et al., 2001; Paerl and Paul, 2012). The addition of
the grazers can also have negative effects on the food webs through
trophic cascades (Jeppesen et al., 2007; Wright and Shapiro, 1984).
Given the lack of feasibility, unpredictable and unintended effects of
chemical and biological additions, the most prudent and defensible
approach is to prioritize nutrient input reductions; however, if nutrient
reduction is not enough to reduce the impacts of the blooms, then re-
assessment of nutrient reduction thresholds as well as the use of any of
the above mitigation methods should be considered to manage the
CyanoHABs.

Remote sensing technology can be useful for tracking and evalu-
ating management of blooms as a means of linking nutrient sources to
bloom dynamics over varying temporal and spatial scales (Dorigo et al.,
2007; Field et al., 1995; Mishra et al., 2019). Using remote sensor
networks, satellite imagery, and machine learning, the extent and dri-
vers of CyanoHABs can be remotely sensed and analyzed (Davis et al.,
2019; Mishra et al., 2018, 2019; Zhang et al., 2016). Satellite-based
imagery paired with Raspberry-Pi-based remote sensors (CyanoSense),
cellular-phone-based application CyanoTracker, and social networking
services such as Twitter can document the progression and proliferation
of blooms (Boddula et al., 2017; Mishra et al., 2018, 2019, 2020;
Page et al., 2018; Scott et al., 2016; Stumpf et al., 2016). While satellite
imagery can measure biomass in CyanoHABs using the different spec-
tral properties of chlorophyll and phycocyanin (Binding et al., 2019), it
cannot accurately measure cyanotoxin production as CyanoHAB cel-
lular toxin content can vary even on short time scales and can persist
extracellularly after bloom biomass is dissipated (Davis et al., 2019).
Therefore, remote sensing should be paired with long-term monitoring.
On-lake long-term monitoring of water quality parameters is also cri-
tical for protecting human exposure to cyanotoxins during blooms
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(Davis et al., 2019). Management recommendations are outlined in
Fig. 2.

Anthropogenic forcing continues to alter natural systems and the
climate, with major ramifications for nutrient loading, hydrologic
changes (e.g., more intense and larger rainfall and flooding events),
warming and changes in wind speed - all of which will alter the rates of
eutrophication and nutrient-bloom threshold relationships. This calls
for the formulation of adaptive nutrient management strategies aimed
at maintaining bloom potentials and proliferation below critical nu-
trient-bloom thresholds. Given the current trajectory of climate change
(warming, more extreme wet/dry cycles, reduced wind speed in many
locations), it is likely that nutrient loading threshold levels above which
blooms will occur, will be lowered, because CyanoHABs will grow more
efficiently at elevated temperatures and persist longer under extreme
wet/dry cycles (Paerl et al., 2016a). Furthermore, with more extensive
wet/dry cycles, both external and internal nutrient cycling will be al-
tered, and this will likely benefit CyanoHABs, which can affect internal
cycling by lasting longer during the growth season and can promote
positive feedbacks on sediment-water column nutrient cycling to
maintain blooms (Fig. 1). This is especially true if CyanoHABs are not
effectively consumed by grazers and ultimately finfish or shellfish,
which can be exported from the system. More likely, CyanoHAB bio-
mass will enter the detrital-microbial loop component of nutrient cy-
cling, enhancing microbial decomposition and recycling of nutrients
more effectively during a single growth season. Overall, this means that
current nutrient loading targets aimed at controlling CyanoHABs will
need to be set at lower levels than currently prescribed for many re-
gions. With legacy nutrients and climate change leading to positive
feedback loops of CyanoHAB proliferation, we need to focus on wa-
tershed and airshed nutrient reductions that can help reduce and ulti-
mately break the loops. Lastly, we can complement these efforts with
(where feasible and effective) biological and chemical treatments, re-
mote sensing technology, and routine monitoring to help manage Cy-
anoHABs into the future.
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