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Abstract

Dense model theorems, originally introduced by Green and Tao in the context of additive number
theory, can be loosely interpreted as follows: If p is an arbitrary measure over a finite universe, then
either there is a dense measure v so that p and v are indistinguishable (with respect to some class of
tests), or there’s an explanation as to why no such v could exist. We observe two computational lower
bounds on such statements.

1. There are measures u so that any explanation of why u fails to have a dense model can be
used to compute majority. Specifically, we describe an AC’-Turing reduction from black-box
proofs of dense model theorems over {0, 1}" with to computing majority on roughly n¢ bits (with
¢ < 1, depending on the parameters of the reduction) where the size of the circuit computing the
reduction is inversely proportional to the distinguishing probability.

2. There are measures p so that any dense model of 1 must be correlated with a linear threshold
function. The same example applies to the decomposition theorem of Trevisan, Tulsiani and
Vadhan [TTV09].

As far as we know, these are the first computational lower bounds on dense model theorems to appear
in the literature and both are essentially tight, as various authors have shown that thresholds suffice
to both produce a model and to refute the existence of a model.

The proof of 1. is an adaptation of an approach due to Shaltiel and Viola [SV10] used in the
context of hardness amplification and 2. is a simple Fourier-analytic argument. These also imply, by
classical lower bounds in circuit complexity, exponential size lower bounds for AC° and AC® [@] circuits
performing these two tasks. Furthermore, 1. can be used to provide simple proofs of lower bounds for
boosting and hardcore lemmas.
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1 Introduction

For a finite universe U, a class F of bounded tests f : U — [0, 1] and measure p : U — [0, 1] over U, we
say that another measure v : U — [0, 1] is an e-model of u, for 0 < e, with respect to F if for any f € F,

[Elf-v]-E[f-pll <&

that is, if p and v are e-indistinguishable with respect to F. Producing simple models of data turns
out to be a central task in theoretical computer science and beyond. For example, the construction of
pseudorandom generators can be understood as producing explicit, efficiently samplable models of the
uniform distribution with respect to a class of computationally-bounded tests. Even in practice, modern
machine learning employs the use of generative models to automatically produce simple models of complex
data sets and the notion of distinguishability has been used to explain generalization in this setting [Risteki,
Arora papers|. It therefore becomes natural to ask for generic conditions under which simple models of
data exist.

Dense model theorems, originally developed in the context of additive number theory, provide a set of
sufficient conditions under which p has a model which is dense with respect to the underlying universe
U and has enjoyed a variety of applications. The original application, for example, was the Green-Tao
theorem on arithmetic progressions of primes [GT08]. There, it was used to enable an application of
Szemerédi’s theorem on a ‘dense model’ of the prime numbers with respect to tests encoding useful
additive information. In computer science, it has been, for example, used in leakage-resilient cryptography
cite], differential privacy [cite] and connected to proofs of the hardcore lemma and weak graph regularity
lemma [Rei+08].

To formally define such a result, we’ll need a few more definitions. For a measure pu : U — [0, 1], we
say that p is d-dense if E[u] = §. Additionally, we say that p is (d,y)-pseudodense with respect to F if

E[f] > SE[f - pu] — .
Then a dense model theorem can be defined as follows:

Definition 1. For a finite universe U and a bounded class of tests F of the form f : U — [0,1], any
g,0 >0,and k = k(g,9), v = v(g,0), an (g, d,7, k)-dense model theorem for F over U states the following:
Let p: U — [0,1] be a measure over U. Then exactly one of the following hold:

1. There’s a J-dense measure v so that u and v are e-indistinguishable by F.

2. There are k tests f1, ..., fr € F and a function g : [0, 1]¥ — [0, 1] so that the map x — g(f1(z), ..., fx(z))
refutes the (0, 7)-pseudo-density of .

We’ll generally refer to the d-dense measure v as a dense model of v and the function g as a refuter of
g’s pseudo-density.

There are essentially two parameter regimes for which dense model theorems are known. The first,
appearing in the work of Green-Tao |[GT08] and Tao-Ziegler [T708], has -y exponentially small in € and §
but a computationally simple witness g. They use an iterative partitioning approach, similar in spirit to
Szemerédi’s proof of the graph regularity lemma.

Theorem 2 (Green-Tao-Ziegler). For any finite universe U, any set of bounded functions F of the
form f : U — [0,1] and any &,0 > 0, there’s an (g,9,~, k)-dense model theorem for F over U with

k(e,8) = poly(1/e,1/8), v(e,8) = exp(—poly(1/e,1/8)), and g(x1, ..., zx) = [1, .



The second setting, shown independently by Gowers [cite] and Reingold, Trevisan, Tulsiani and Vadhan
[Rei+ 08], obtains a « with polynomial dependence on & and § but uses a more complex function g. Proofs
using linear programming duality or boosting are known.

Theorem 3 (RTTV, Gowers). For any finite universe U, any set of bounded functions F of the form
f:U — [0,1] and any &, > 0, there’s an (g, 0,7, k)-dense model theorem for F over U with k(g,d) =
O(log(1/68)/€?), v(g,9) = O(e6), and g(z1, ..., ) = sign(—t + Zle +1;).!

In the latter case, it can be shown that when a dense model v does indeed exist, it can be written in
the form v(z) = Zle w; fi(x) for weights w; € R and f; € F.

We’re now in a position to frame the question underlying this work — what does it mean for a dense
model theorem to require majority? Answering this can be explained in terms of the following more
qualitative description of a dense model theorem: either a distribution has a simple, dense model or there
is an explanation as to why it doesn’t. The two natural notions of computational complexity here are the
the simplicity of the explanation as to why the input measure fails to have a dense model or the simplicity
of the dense model itself. In both cases, we’ll prove lower bounds that roughly match the known upper
bounds.

Regarding the first notion of complexity, we borrow an approach from Shaltiel and Viola for proving
complexity lower bounds on hardness amplification proofs, and show that any ‘explanation’ that the
distribution of n independent biased coin tosses fails to be pseudo-dense can be used in a constant-depth
oracle circuit computing majority. Specifically, let N, be the product of n Bernoulli random variables
Ber(p) with p = 1/2 — . Then,

Theorem 4 (Informal). Let U = {0,1}" and F be the set of functions = — z; for each i € [n]. For any
€,0,v and n ~ 7,

1. N, is e-distinguishable from every ¢-dense measure by F.

2. Any ¢ : {0,1}" — {0,1} which refutes the (d,7)-pseudo-density of IN,, can be used in a constant-
depth oracle circuit C' of size poly(62/17373) so that C' computes the majority on inputs of length
O(1/n) where n =~ ¢.

The first thing to note is the similarity to the result of Shaltiel and Viola [SV10]: they provide an
AC-Turing reduction from majority to the coin problem — distinguishing between the biased distribution
and the uniform distribution — and further show that (non-adaptive, later improved to adaptive in
[GSV18]) black-box hardness amplification procedures produce algorithms for solving the coin problem.
This similarity is of course no coincidence, given the relationship between the hardcore lemma (an instance
of hardness amplification) and the dense model theorem. Indeed, that dense model theorems require
majority (in terms of ¢g’s complexity) could be deduced as a corollary of their result if we had a reduction
from hardcore lemmas to dense model theorems. While there is a reduction in the other direction —
an optimal hardcore lemma implies a dense model theorem — the other direction remains unclear. We
circumvent this by designing a reduction directly from dense model theorems to the coin problem.

Note also that the condition of booleanity on ¢ is essentially without loss of generality: if we had a
bounded test g : [0,1]* — [0, 1] which refutes the pseudo-density of a measure p, we can convert g into a
boolean-valued refuter g so that

E.[g(z)] = Pr[g(z) = 1].

xT

!Formally, we mean that there is some ¢ € Z, some sign pattern b1, ...,b; € {£1} so that sign(—t + Zle bix;) satisfies
the requirements of g.



To do so, let C' be a randomized circuit that does the following: on input z, it computes (a dyadic
approximation of) g(x) and then flips a coin with bias g(z) and outputs the result. Then the probability
over C and z that C'(z) = 1 is simply E,[g(x)], with a small amount of error introduced by approximating
g(x) with finite precision. Non-uniformly, we can then average out the randomness to get a deterministic
circuit. This conversion was observed before in [T TV09].

For the second notion of complexity, it is relatively straightforward to get some type of lower bound
on the complexity of the model. For example, let F be the class of delta functions d,(y) = 1 iff. y = x for
each z € {0,1}"™. Then by taking u to be the 1s of majority, any e-approximation v of x with respect to F
has the property that for all z, |v(z) —u(z)| < e. Specifically, v is an e-approximation of x in the £-norm.
From here, it is known that any polynomial p which e-approximates p point-wise must have high degree
(see, e.g., Paturi), and therefore ¥ must have high-degree. However, this approach doesn’t explain the
structure of g in a very useful way: even the g used in the Green-Tao proof has high approximate degree.
Additionally, an ideal example would make the difference in the complexities of F and g o F as large as
possible.

For a stronger example, we’ll still choose i to itself be a linear threshold function with integer weights
but now take F be the set of functions x + x; for i € [n]. A simple Fourier-analytic argument tells us
that any model of y must be correlated with u, as F, by definition, detects large-enough differences in the
linear Fourier coefficients:

Theorem 5 (Informal). Let U = {—1,1}" and F be the set of projections. Then for each 6 > 0 and ¢
sufficiently small, there’s a measure p : {—1,1}" — {0, 1} so that

1. pis a linear threshold function with integer weights. That is, pu(z) = sign(—60+ >, w;z;) for some
parameters 6, w1, ..., w, € Z.

2. p is d-dense (and therefore (v, d)-pseudodense with respect to g o F for any g).

3. If v : {—1,1}" — {0,1} is a d-dense e-model of p with respect to F, then Priv(z) # p(x)] <
1 —min{O(e),0(9)}.

Indeed, work on the Chow parameters problem allows us to pick any linear threshold function as an
example. Specifically, [cite, cite] show that if the linear Fourier coefficients of 1 and v are close where p
is linear threshold function, then p and v are actually close in ¢;-distance.

Trevisan, Tulsiani and Vadhan noticed that dense model theorems are a special case of a more general
result, a type of decomposition theorem, which explains that any bounded function f : U — [0,1] can be
approximated by a function g of ‘constant’ complexity, in the sense that f is indistinguishable from ¢ by
tests F and g built out of a small combination of functions in F, the size of which is independent of |U|.
Specifically,

Theorem 6 (Decomposition theorem, [TTV09]). Let U be a finite universe, F a set of bounded tests
f:U —10,1] and g : U — [0, 1] a measure over U. Then there exists a measure v with Ev = Epu so that

1. v can be built out of k = poly(1/¢) functions fi, ..., fr € F using multiplication by a constant, sums,
products and linear threshold functions.

2. p and v are e-indistinguishable with respect to F.

Informally, this says that simple tests can be fooled by distributions which are almost as simple, and the
dense model theorem, the hardcore lemma and the weak graph regularity lemma all follow as corollaries.
It is simple to see that our example also provides a lower bound on the complexity of the approximator v,
explaining that, in some cases, there is a necessary gap between the tests F and and distributions which
fool them.



1.1 Preliminaries

Call a distribution X over {0, 1}" §-smooth if Pr[X = z] < (1/0)-27" for all x € {0,1}". Note that this is
equivalent to having min-entropy at most n — log(1/0). We first note the smooth distributions and dense
measures are interchangable.

Lemma 7. A measure p has density at least ¢ if and only if the distribution X,, defined by

Pr(X, =z] = o) 27"

d(p)

is d-smooth.

Proof. For the forward direction, note that max, Pr[X, = z] = W max, p(x) < 1/d(p)2", and so X,
is 0-smooth when d(p) > 4. In the other direction, since max, Pr[X, = z] = W max, pu(z) < 53 by
assumption, we get 0 < d(u). |

The distribution X, can be sampled by rejection sampling according to p. As the distinction will always
be clear from context, we will hereafter abuse notation and avoid distinguishing between the measure pu
and the distribution X, induced by p.

Indeed note that f refuting the (0, y)-pseudo-density of Ny, in that Pr[f(U) = 1] < 6 Pr[f(Ny,)] — 7,
clearly implies that U and N, are n-indistinguishable by f and in particular f solves the n-coin problem
with advantage ~.

Let N, denote the distribution on {0,1}" obtained by sampling n i.i.d. Bernoulli random variables
X1, ..., Xp, with Pr[X; = 1] = 1/2 — n for each i.

The connection Fourier analysis is simple: for both claims, we’ll be interested in the class of tests of
the form z — =x; which are simply the linear characters of F5. Specifically, the bias of the map =z — z;
when z is drawn from a measure p is exactly the Fourier coefficients i(7).

1.2 Proof overviews
1.2.1 Refuting pseudo-density requires majority

We begin with the simple observation that for any 1/2 > n > 0 sufficiently large, the noise distribution
N,, satisfies the promise of the dense model reduction in that IV, is distinguishable from dense distribution
with significant advantage, so long as our test class contains monotone projections x +— z; for each i € [n].
This follows by a simple observation — made many times before — that any dense distribution over {0, 1}"
has a bit which is relatively unbiased. Then by the dense model theorem, we are left with a family of tests
which refute the pseudo-density of NV, for any sufficiently large 1, which we’ll use to build our majority
circuit.

To do so, we’ll largely follow the reduction from majority to the coin problem from Shaltiel-Viola with
a minor modification. Since any f solving (7, d,~y)-coin-density problem also solves the n-coin problem
with advantage v, we might hope to employ the following construction from Shaltiel and Viola:

Lemma 8 ([SV10]). Suppose A solves the n-coin problem with advantage -y, where v > 1/log(1/n). Then
there’s an AC? circuit with oracle access to R solving majority on inputs of length 1 /n.

The technicality that arises is the dependence on . In our context, we need to think of > € and therefore
~v will need to be exponentially larger than . However, a straightforward construction shows that the
dense model theorem is actually false in this regime, as observed by Zhang in [Zhall].



Claim 9 (|Zhall]). There is no (g, d,7y)-dense model reduction for any v > &d.

Proof. Let i C U be a set of size §(1 — ¢)|U| and let the class of tests solely consist of the characteristic
function of pu, call it f. Then

1. There’s no d-dense e-model of p with respect to f. This is because Prp[f(z) = 1] < 1 —¢, as any
such d-dense v has to cover a (1 — &)-factor larger subset of the universe.

2. w is (9, de)-pseudodense with respect to any test g

Prlg() = 1] = (1 — ) Plg(w) = 1] = 6 Prlg(x) = 1] — b= Prlg(w) = 1] = 6 Prlg(w) = 1] - b

Fortunately, we have a stronger guarantee than distinguishing the noise distribution from uniform, as the
acceptance probabilities are bounded away by a multiplicative constant 9.

We will use this stronger assumption roughly as follows: let w < 1/2n and suppose that A, solves
the (wn, 8, y)-coin-density problem. We'll build a randomized algorithm S,, : {0,1}'/7 — {0,1} so that
for @ := Pr[Sy(x) = 1] = has weight 1/2n], 8 := Pr[S(x) = 1| z has weight w], we have a < 68 — ~. By
independently sampling g,,, we’ll produce a test Sy, : {0,1}" — N so that S,(z) < dBm when z has
weight 1/2n and S, (z) > fm when z is balanced (for an appropriate choice of m). Thus, a relative-
error approximate majority circuit, implementable in AC?, can successfully distinguish these two cases.?
From here, we can combine S,, for each w < 1/27n into a simple depth-2 circuit, the result of which
computes majority. This approach follows Shaltiel-Viola almost exactly, with the difference being the use
of a relative-error approximate majority circuit as opposed to their use of an additive-error approximate
majority circuit. Since they begin with only an additive distinguishing gap, they need an additive-error
approximate majority circuit, which in turn produces the undesirable dependence on .3

1.2.2 Modeling sometimes requires thresholds

Let B be the Hamming ball centered on 1" with density . Any d-dense model v of B with respect to bit
queries has the property that [D(i) — B(i)| < 2, where D(i) denotes the ith linear Fourier coefficient of v.

We would like to show that this implies that v and B are actually correlated. Note that this isn’t
tautological because having a model according to F does not imply correlation. Specifically, we could take
f to be a random function and still model it with respect to constantly-many functions F combined with
linear threshold functions (see [TTV09]) and yet they won’t be correlated. Modeling simply means that
F can’t reliably detect the differences between f and its model.

A simple claim from Birkendorf et al. tells us that this is indeed that case when ¢ is sufficiently small:

Claim 10. Let B: {—1,1}" — {—1,1} be a Hamming ball,

sign(z z; — tv/n)
i=1

2We’ll also need to ensure that o and § aren’t too small, which is dealt with in the full proof.

3We note that [cite] provide a reduction from approximating majority (the correlation problem) to the coin problem with
better parameters when + is a constant. Since constant-probability approximations of majority have large F-degree, this
yields exponential-size lower bounds for AC°[®] circuits. The approach does not seem applicable here, however, where the
dependence on v becomes crucial.



and v: {—1,1}" — [—1,1] an arbitrary bounded function. Then if EB = Ev and for each i € [n],
|B(i) - 0(i)| <«

then
E[|B(z) —v(z)[]] < en

Applying this directly gives the desired conclusion for small €.
Note that this claim has no dependence §, which in this example is roughly 2t (thinking of B as a
set). For larger ¢, we can make a similar argument where now the error depends on §:

Claim 11. Let v : {—1,1}" — {—1,1} and E[v] = E[B] = §. Suppose |B(i) — D(i)| < 2¢ for all i € [n]

and
e < \/1271(\/5 — \/621og(1/9)).
Then

Pr[B(z) # v(z)] <o

2 Refuting pseudo-density requires majority

2.1 Dense measures have nearly-unbiased bits
Claim 12. For any d-dense distribution v, there’s some index i € [n] so that Pr,jz; = 1] < 1/2 £
/0% log(1/6)/2n.

Proof. By Chang’s inequality,
> D(i)? < 26%1og(1/6).

i<n

Averaging, there’s some i so that |U(7)] < 1/26%21og(1/d)/n. Note that

v(i) = Prjx; = 1] — Pr[z; = —1] = 2Pr[z; = 1] — 1,

and hence Pr,[z; = 1] = 1/2 £ 7(i)/2, which gives us the desired conclusion. [ |
We can immediately conclude the following.

Corollary 13. For any d-dense distribution v with § < 1, there is a test T of the form = — x; which
e-distinguishes between N, and v for any 1/2 > n > e + +/0%log(1/0)/2n.

Proof. Let i be the index from the previous claim. Then x — x; e-distinguishes between N, and v for

n > e+ /0%2log(1/8)/2n since
| Prfoi=1]— Pr [ = 1]| > |(5 — v/&loa(1/0)/2n) — (5 — = — v/Zlog(1/8)/2n)| = =.

xr~v $NN,”
|

Let €,8,7, n* = e+ +/0%log(1/d)/2n be fixed. The previous claim says that if the (g, §, v)-dense model
theorem over {0, 1}" with tests containing monotone projections is true, then we can apply it to the noise
distribution N, for any n < n* and in turn produce an algorithm for the (7, d, y)-coin density problem.
We'll now argue oracle access to these algorithms can be used in an AC? circuit computing majority.



2.2 Solving majority with the coin-density problem

Suppose we have an algorithm A for the (7, d,v)-coin density problem for every nn < n* for some fixed n*.
We proceed in steps:

1. Let w < 1/(2n*). We'll produce a distribution S over functions s : {0,1}*/7" — {0,1} so that
Pr[s(y) = 1] < dPr[s(z) = 1] — « for every balanced y € {0,1}"/"" and every z € {0,1}*/7" with
weight w.

2. Using an approximate majority construction, we will reduce the error of the previous algorithm.
Specifically, we’ll produce an algorithm S so that S(y) = 0 whenever y is balanced and S(z) = 1
whenever z has weight w.

3. Repeating this construction for each w < 1/(2n*) to obtain algorithms S, as above, we can see that
C(z) = Aw—Sw(z) is 1 when z is balanced and 0 when = has weight less than 1/(2n*).

4. Finally, let 2" denote x with the first ¢ bits of - set to 0. Then C'(z) = V;<1/(2,+)C(2") is 1 if there’s
an 7 so that x* is balanced, which characterizes majority: if x is low weight, then all of its restrictions
2! are also low weight. If x has high weight, then there’s a restriction z* which is balanced.

Once again, this approach is identical to Shaltiel and Viola [SV10], except for our error reduction step.
The following simple claim from [SV 10| verifies the correctness of the construction conditioned on steps 1
and 2 being correct.

Claim 14 ([SV10]). Suppose for each w < 1/(2n*), Sy : {0,1}%/7" — {0,1} has the property that
Sw(z) = 0 when y is balanced and S’(z) = 1 whenever z has weight w. Then the depth-two oracle circuit
C (with oracle access to S, for each w < 1/(2n*)) of size 1/(2n*)? with 1/(2n*) oracle calls defined by

C:xw— \/ ( /\ —|Sw(x)>

i<1/(2n*)  w<1/(2n*)
computes majority.

We’ll now proceed to establishing the first two steps. First we have a randomized reduction from the
coin-density problem to the promise problem of distinguishing between balanced and unbalanced strings.

Claim 15 (|SV10]). Let 1 < w < 1/(2n*) and suppose A solves the (1/2 — wn*,d,7)-coin density
problem (so the bias of each coin in the noisy distribution is w/n*). Then there’s a randomized test
S : {0,137 — {0,1} with the following property: Let a = Pr[S(z) =1 | z is balanced] and let
= Pr[S(z) =1 | x has weight w]. Then ao < 5 — .

Proof. Let iy, ...,1, denote independent random variables which are uniform over the co-ordinates [1/n*].
Then define S(z) = A(ay,, ..., zi,). For balanced y, vi,, ..., yi, is distributed as Ny, and for z with weight
W, Ziy, -, 24, 18 distributed as Njjg_qy«. The conclusion follows since A solves the (1/2 — wn*,d,~)-coin
problem. |

Note that since wn* < 1/2 — n* and we have solutions to the coin problem for each n < n*, the
assumption from the previous claim is satisfied for any choice of 1 < w < 1/(2n*). This step is what
restricts the input size to be 1/n*. More generally, for a fixed length ¢, we could pick any weights w so
that w/l < 1/2—n* i.e. so that difference in weights is at least n*. This approach is outlined in [Srikanth’s
coin problem paper]| by picking ¢ ~ (1/7*)? meaning that w can range up to roughly £/2 — v/¢. This can



be used to approrimate majority (that is, the correlation problem) since most strings with weight at most
¢/2 lie outside of the interval [¢/2 — /4, £/2). For applications to circuit lower bounds, this yields stronger
parameters.

Does this work in our case? I think we can actually employ the same idea, but we still
need to do the error reduction, whose complexity is going to be poly(1/v), and we’d still
get only an approximation of majority. Still, I think this will give us better explicit lower
bounds as the input length is significantly bigger.

Next, we perform a non-uniform error reduction to make S deterministic using two steps. First,
we reduce to the problem of distinguishing strings in {0,1}™ of weight roughly §5m from fm for an
appropriate choice of m. Second, we solve this distinguishing problem in AC® using a relative-error
approximate majority construction.

Claim 16 (Shaltiel-Viola). Let S be from Claim 12. For any A > 0, there are m = O(m) tests
51, .-, Sm with the following properties:

1. When = € {0,1}"/7" is balanced, D ieim) Si(2) < (68 —v)m(1 4+ A)

2. When = € {0,1}/7" has weight wn*, Dicpm Si(@) = Bm(1 = A).

Proof. Suppose y is balanced and z has weight wn* and consider drawing m samples Sy, ..., .Sy, from S.
By the Chernoff bound,

Pe| 3 i) 2 (69— m(1+ )| <Pr| T 5 2 am(1+.8)| <ep(-22)
1€[m] 1 1€[m]
Pr Z Si(z) < Bm(1 —A)| <exp <— &r;AQ) < exp <— an’;A2>' (2)
[m] _

both of which are bounded by 2-1/7" by taking m > O(1/(n*A%a)). The union bound therefore tells
us that the probability over our samples that every balanced string’s sum is small and every unbalanced

string’s sum is large is more than 0, meaning in particular that some choice of samples s, ..., s;,, realizes
the desired properties. |
Let © = = 256 . Doing so means that (65 —~)m(14+A) = 8m(1—A) and in

particular our we’ll dlstmgulsh Welght k= ,Bm(l A) strings from weight Jk strings, setting up the relative-
error approximate majority problem.? We will solve the relative-error approximate majority problem with
pairwise independent hashing, essentially following the construction of Stockemeyer’s theorem for counting
NP witnesses from [Sto83].

The following is a standard concentration bound for pairwise independent hash functions.

Lemma 17. Let H be a family of pairwise independent hash functions h : [m] — [r]. Then for any A > 0
and T' C [m],

\Tl] r

r N|T|

T
Pr [||h71(0)NT| — | |y > A
h~H
In particular, when |T'| > 47 /)2,

T _
th{[u—A)H <R H0)NT| < (1+A)‘ |] > 3/4.
~ r
“Note also that when ~ is exponentially small in 1/§ (taking, temporarily, ﬁ = 0O(1)), then A is exponentially small in
1/6. This means that m would need to be exponentially large, which explains why dense model theorems with small v, like
Tao-Ziegler, would require an exponentially large oracle circuit to compute majority.




Proof. Let Cp = I[h(x) = 0] and X7 = ) _ 1 C,. By pairwise independence, we can write Var[Xr] =
> Var[Cy] < |T'|, as C are boolean. The conclusion follows by applying Chebyshev’s inequality. [ |

We can apply this directly to distinguish between high weight and low weight strings by hashing and
counting the number of collisions.

Claim 18. Let r = dk/16, H a family of pairwise independent hash functions h : [m] — [r], and S C [m].
Then

1. If | S| = k, then
16 8 16 8

Pr (A~ (0)NT| € [— — —, — + —]] > 3/4,
Pr T O)NT] € [ = P )2 8
2. If |S| = dk, then
Pr T 0) N T] £ [8,24] < 1/4.
For these tests to be mutually exclusive, we require that 24 < % — % or that 0 < 4/9, excluding, for
example, the case where § = % which is known to be intractable for AC? circuits (see, e.g., Hastad’s

thesis). Note that implementing this only requires counting up to a constant, as we’re not concerned with
the behavior of the test when the input doesn’t satisfy the promise of being weight & or weight k.

Since we’re hashing the input co-ordinates, this test can be easily implemented in AC®. Constructions
of pairwise independent families h : {0,1}!°8™ — {0, 1}1°8" with size |H| = m - r are known by taking, e.g.
linear functions over finite fields. Specifically, we can consider m = 2° and r = 2!, and then consider the
first ¢ bits of the function hqp(z) = a -« + b, thinking of a,b,x € Fas. Since s = logm, we can perform
finite field arithmetic with an AC® circuit polynomial size in m. We then apply the hash function to each
co-ordinate 4 so that the ith input bit is 1, and count the number of co-ordinates which hash to 0.

TO-DO: specify the depth of computing A

We therefore get the following claim:

Claim 19. There’s a depth-d =?, randomized AC? circuit of size poly(m) that distinguishes between
weight 0k and weight & strings in {0, 1} with probability at least 3/4.

From here, there’s two approaches towards derandomization. The first approach is to reduce the error
our construction from 1/4 to O(1/(n*)?) from which we can get a circuit which approximates majority on
some large constant fraction of inputs. This still suffices for AC°[@®] and AC® lower bounds.

A less efficient approach can give us a perfect derandomization: since |H| being polynomial in m allows
us to derandomize the construction by an exhaustive search and then taking an additive approximate ma-
jority circuit, distinguishing between relative weights of 1/4 and 3/4 , for which efficient ACY constructions
are known (e.g. Ajtai [Ajt83] or Viola [Vio09]). This increases the depth of the construction by 3.

We could also reduce the error from 1/4 to roughly (()+ (5.)) ! = O(m™*) and then union
bound over the randomness, but then the hashing test itself seems to be hard for AC’.

Theorem 20 ([Ajt83], [Vio09]). There exists a family of polynomial-size AC® circuits of depth 3 distin-
guishing between relative weight 1/4 strings and relative weight 3/4 strings.

As explained above, we can apply such an approximate majority circuit to the output of the tests
§1, ..., Sy from Claim 14 to distinguish between weight wn* and weight 1/2n* strings in {0,1}'/7", can
then be used in steps 3. and 4. to complete the reduction.

10



We're now left with computing m. Recall that A = ﬁ, n*=e+1/ W.

(68 —)?
n*y2a

m = O( ).

Of course, a could be small (or even 0) which in our case could be problematic. We can fix this by
replacing the randomized test S with the test S’ which outputs S(z) with probability 1 — o and outputs
1 with probability o. The new acceptance probabilities o’ = o + ¢ and ' + o will continue to satisfy the
pseudo-density relation so long as

a+o<dipB+o)—r7,

or o < (08—~ —«a)/(1 —9), meaning we can assume with no loss of generality that the pseudo-density
inequality is satisfied with equality with no affect on the previous analysis. This gives us:

_ o8 =)
m_O( 77*72 )7

where 8/ = 4+ (08 —v—a)/(1=06) = (B—~—a)/(1—0) is the new acceptance probability for unbalanced
strings by setting o.

Finally, we can take 3’ to be a constant by taking the ’'OR’ of sufficiently-many independent copies of
S’

Claim 21. There’s a randomized test S” so that o’ < §3”—~ where 8” = Pr[S”(z) = 1 | 2 has weight w] =
O(1) and " > o/ = Pr[S/(x) =1 | z is balanced]. Moreover, S” is the OR of O(d/7) copies of S'.

Proof. Draw p independent tests si, ..., sp from S’. Then if z has weight wn*, then by inclusion-exclusion
we have

p
Pr [\/ si(z) =1 >pB'(1-8)
51,--,5p i=1

which is a constant when p = O(1/’). By construction of S’, we had 8’ = (v + «) /4. [ |

We can therefore estimate m = 0(77*57). To compute the total size of the circuit, we have O((1/n*)?)

calls to S” from steps 3. and 4. and O(d/v) calls to S for each call to S”. Moreover, S” is derandomized
using a depth-6, poly(m)-size AC® circuit. Putting this together yields:

Claim 22. Suppose for each 1 > n*, there’s an algorithm A, solving the (7, 6, v)-coin-density problem on
inputs of length n. Then there’s a size-s, depth-d AC? circuit using oracle access to the A,’s computing

majority on inputs of length 1/n*, where s = poly((n*‘s)iivz;) and n* =€+ 4/ 52102{%77(11/6). d="?

3 Measures whose models require thresholds

We will once again take our tests F to to be bit queries, but we’ll think of our universe as U = {—1,1}".
In this setting, it’s easy to see the following claim:

Claim 23. Let p: {—1,1}" — [—1,1] be a measure and v : {—1,1}" — [—1, 1] be an e-model of y with
respect to bit queries x — x;. Then for all i € [n],

(i) = fi(i) £ 2¢

11



Now we’ll choose p to be the extremal case of fi(7) for subsets of {0,1}" with a fixed density. Our
example Bs will be the ‘heaviest’ subset of {—1,1}" with density J. Specifically, note that, by the Chernoff
bound, threshold functions of the form Thr(z) = sign(—t\/n + ;- ;) have density 20(—#") Then we’ll
take By = Thry with t = y/nlog(1/d). We can now see that Bj is indeed the extremal case of fi(4):

Claim 24. For each i € [n],
Bs(i) = /2% 1og(1/0)/n
Proof. To-do... |

A simple Fourier-analytic argument explains that, since B := By is a linear threshold function with
integer weights, any v whose linear Fourier coefficients are close to B’s is actually close to B in distance.

Claim 25 (Birkendorf et al.). Suppose |B(i) — 9(i)| < 2¢ for all i € [n]. Then
Pr[B(z) # v(z)] < 2en

Proof. B is a threshold function and so B = sign(b) for b(xz) = —t+ > ,_; x;. Note that by definition
b(i) =1 for all i € [n] and b(S) = 0 for |S| > 1. Then on the one hand, (by Plancherel’s theorem)

E[v b =Y D(S)b(S) = 6E[b] + > (i).
=1

S

On the other hand, (again by Plancherel’s)

E[B b =Y B(S)b(S) = dE[B] + Y _ B(i) < SE[b] + > _(9(i) +¢)
S 7 7

This means that
EB-b]—E[v-b] =E[(B—v)-b <en

Now note that B(z) - b(z) = |b(x)| and |v(z) - b(z)| = |b(z)|, and so whenever B(z) # v(z), it means that
v and b have different signs and so that the contribution to E[(B — v) - b] is positive. Moreover, since
|b(x)| > 1, the contribution is always at least 27", finishing the proof. [ |

Note that this holds independent of the density of the approximation v. Using the density, we can get
a similar argument where the error now depends on §. When § is large, this is less restrictive in terms of
€.

Claim 26. Let v : {—1,1}" — {—1,1} and E[v] = E[B] = 6. Suppose |B(i) — D(i)| < 2¢ for all i € [n]

and
e< \/1271(‘[ — /621og(1/5)).

Then
Pr[B(z) # v(z)] <6

Proof. Assume towards a contradiction that dist(v, B) > §/2, where B = 1— B. If we reach a contradiction
then we can conclude the proof as follows: otherwise, dist(v, B) > 6/2. Then, since B is d-dense, v incurs
at most d/2 error on B and, since v is 6-dense, v incurs at most §/2 error on B, which gives us the desired
claim.

12



To see the contradiction, note that

4dist(v, B) = E[(v — B)Y] = Y. (2(S) — B(S))* = Y (9(i) - B())”.
S =1

and so
n

S @(i) - B(i))? < 26.

i=1

For simplicity, write 8 = B(i) = —/2621og(1/5)/n. Then by averaging, there’s some i € [n] so that

D(i) — B| < \/26/n.

Since v(i) < 8 would already be a contradiction of the fact that v is a model for B, we get

v(i) < B+ /20/n

which is a contradiction (remember B’s bias is —f) so long as

B++/20/n < —f—2¢, ore< \/127(\/3— Vv 02log(1/4)),

Implicit in this claim is an argument that closeness in function space implies closeness of the lin-
ear Fourier coefficients. This argument has appeared before in [O’Donnell, Servedio, chow parameters
problem].

Russell mentioned another claim if we look at By and Bj for ¢’ > §, then most of v needs
to lie on the correct side of By. This appears to be the same argument: if I lied too much
on the wrong side of By, I would be too close to By so that my bias would be too small

Proof. Consider By and Bs and a d-dense e-model v of Bs. Suppose that dist(v, Bs/) > 7 for some 7.
Then

n
—~

> @) = By(i)* < 4y

=1

and so some co-ordinate has P
[v(i) — By (i) < V4v/n,
meaning that D(i) < \/4y/n + /262 1og(1/8')/n. Supposing that this is a contradiction for our choice of

g, it tells us that dist(v, By/) > =y, which we can use to compute the distance to Bs...
This doesn’t use the density of v... |

Claim 27. Dense model lower bound

Proof. Let ¢ be arbitrary and ¢ < \/%(\f — 4/621log(1/4)). Then any d-dense, e-model v of B has the
property that
Pr[v(x) # Bs(x)] < min{en,d}.

It is easy to see that the same example applies to the decomposition lemma of Trevisan, Tulsiani and
Vadhan [TTV09].
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4 Applications

4.1 Explicit circuit lower bounds

Recall the following worst-case lower bounds from circuit complexity:

Theorem 28 ([Raz87], [Smo87], [Hass6]). 1. Any depth-d AC°[@] circuit computing majority has size
2Q(n1/2(d—1)) .

2. Any depth-d AC? circuit computing majority has size 2@t/

Given the poly(%) bound on the size of an AC? circuit computing majority with oracle access to a
pseudo-density refuter, we can prove explicit circuit lower bounds on pseudo-density refuters. Suppose we
substitute the oracle for an explicit C € {AC?, AC°[®]} circuit which implements a dense-model reduction
as above. If it has size s and depth d, then we obtain a C circuit computing majority of depth d + 6 and

size O(s - %) We therefore get the following corollaries:

Additionally, we have correlation bounds on linear threshold functions for AC? circuits and ACY[@]:
Theorem 29. 1. Fo-degree bounds on linear threshold functions
2. AC%correlation bounds on linear threshold functions

Most of the references just look at majority, so let’s look at Bgs instead as a function of §. Of course,
if ¢ is very far from 1/2, then it will be easy because the function will be sparse.

4.2 Simple proofs of lower bounds for hardcore lemmas and boosting

We’ll present simple proofs that hardcore lemmas and boosting require majority by reduction from dense
model theorems. Both of these results can be deduced from [SV10], but our proofs are arguably simpler,
since they avoid having to a construct a solution to the coin problem from a hardness amplification proof.

4.2.1 Hardcore lemmas require majority

The first application we present leverages the connection between dense model theorems and hardcore
lemmas due to Impagliazzo in [lmp19].° Recall that the hardcore lemma, originally appearing in [[mp95],
is an approach to hardness amplification and can be used to, for example, prove Yao’s XOR lemma. It
states that if we have a function f which mildly hard for circuits of size s, then there’s a dense set of the
inputs on which f is extremely hard for circuits of size s’ slightly smaller than s. We’ll define a hardcore
lemma in the contrapositive: using that f is very mildly approximated by a circuit of s’ over any dense set
of the inputs, we’ll build, in a black-box fashion, a good approximation of f over the uniform distribution
by a circuit of size s slightly larger than s’.

Before stating the lemma, we’ll fix some notation. A function f ~-approximates a function g over a
distribution D if Pr,p[f(z) = g(z)] > ~. We'll informally refer to a strong approximation as something
like a y-approximation when v = 1 — ¢, thinking of § as small. Similarly, a weak approximation will refer
to a (1/2 + e)-approximation, again thinking of £ as small. A function f is y-hard over D for a class of
tests T if Prpp[T(z) = f(z)] <1—~forany T € T.

®The connection had been observed before — see, for example, [TTV09], [Rei+08] — but [Impl9] presents an explicit
reduction.

14



Definition 30 (Black-box hardcore lemma). A (g, 9, k)-black-box hardcore lemma reduction over the
universe U with respect to tests 7 is a map from a function f : U — {0,1} to an oracle circuit HC(f) :
U — {0, 1} so that the following holds: if for every 2d-dense measure p over U, there’s a function t € T
that (1/2+¢)-approximates f over u, then there exist k functions 71, ..., T}, so that computing HC(f) with
oracle access to ti,...,t; is a (1 — d)-approximation of f over the uniform distribution.

We have the luxury of choosing 20 as the density parameter, which is optimal, due to the more re-
fined boosting-type argument of Holenstein [Hol05] in which Holenstein presents and explicit (e, 4, O(é))
hardcore lemma reduction.

Theorem 31 ([limpl9], informal). If there’s a (e, d, k)-black-box hardcore lemma reduction over {0,1}"
for tests 7, then there’s a (&, ¢, €0, k)-black-box dense model reduction over {0, 1}" for tests T .

In order to state our results more explicitly, we’ll need a slightly refined notion of black-box hardcore
lemma. Namely, fix a ground distribution p over U. Define the density of a measure p: U — [0, 1] relative
to p as the weighted sum d,(u) = Ep~,[p(x)]. Similarly, the distribution induced by p over the ground

distribution p is given by the mass function p(z) = %.

p is then a black-box translation from (1/2 4 )-approximations of f for any p with d,(u) > 26 into a
(1 — §)-approximation of f over p.

Consider a set D : U — [0, 1] which is distinguishable by 7 from every dense measure over U. We
want to exhibit find a function that refutes D’s pseudo-density.

The most obvious approach is to use D’s characteristic function, which could be a somewhat easy
function for T, as T distinguishes D. Applying this directly, could be a problem: suppose p is a set of size
d|U| and D is a subset of size |u|/3. Then the characteristic function of u distinguishes between D and
p with advantage 2/3. But since D is small inside of y, the probability that 1, = D with inputs drawn
from p is 1/3.

To fix this, we want to build a new universe U’ out of U that contains a blown-up copy of D, so as to
build a function f which encodes D that is relatively unbiased. Specifically, consider a new universe

U'={(z,1):x e D}U{(z,—-1) :x € U}.

A black-box hardcore lemma relative to

The p-mizture distribution on U’ is defined as follows: with probability p, sample z from D and output
(x,1) and with probability 1 — p, sample = from U and output (z, —1). For a class T of tests over U, we'll
extended each T' € T to a function over U’ as T'(x,b) = T'(x). Now we can explicitly state the theorem:

Theorem 32. Let T be a class of tests over U containing the constants and closed under negation and
suppose HC is an (g,d — \)-hardcore lemma over the p-mixture distribution on U’ with respect to T
(extending 7 to U’ as above). Then there’s a (¢, 0’, v)-dense model theorem over 7 with &' = O(e + \/9),
§' =125, and v = % whenever § < 2e\ + \/§ — 2eA2/6.

For completeneess, we’ll reproduce the proof from [Impl9] in the Appendix. This reduction allows us
to readily conclude the following:

Corollary 33. Any (g,0)-black-box hardcore set lemma reduction HC requires majority. Specifically, if
HC is an (g, §— \)-black-box hardcore setlemma reduction, then there’s an AC? circuit of size poly(nfﬁ) and

oracle access to HC computing majority on 1/n bits where §' = ﬁ, v = % and n =€+ %’ + 1;%7(11_/‘15;).

[LT'W11] had previously observed an exponential ACO[@] lower bound on HC by observing that HC can
be used to approximate majority. This result is slightly different, as it gives an AC? Turing reduction from
majority to any proof of the hard-core lemma (which in turn implies exponential AC°[®] lower bounds,
see below). Since the hardcore lemma can be used to prove a hardness amplification result, it can also be
deduced as a corollary of the Shaltiel-Viola lower bound [SV10].
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4.2.2 Boosting requires majority

As originally observed by Klivans and Servedio in [[XS03], hardcore set lemma reductions are essentially
‘boosting’ algorithms, developed in the machine learning community (Freund and Schapire [FS97]). Recall
that a boosting algorithm is a generic procedure for taking a family of weak learners and producing a single
strong learner.

Definition 34 (Black-box boosting algorithm). For parameters 0 < ¢,§ and set A C R?" of distributions
over {0,1}", an (g, d)-black-box boosting algorithm with weak learners in T consists of a family of weak
learners WL : F,, x R?" — T, a distribution-generating mechanism Mech : F,, x T — R?" and a k-query
combiner Boost € F,, which is an oracle circuit. The tuple (WL, Mech, Boost) is a k-query, (n,~y)-boosting
algorithm for A if the following stipulations hold for any f € F:

1. For any distribution p € A, Mech(f, WL(f, 1)) € A.

2. If for any distribution p € A, WL(f, ) is an (1/2 4 ¢)-approximation of f on p, then there is a
distribution pg € I' so that Boost(x) is a (1 — §)-approximation of f over the uniform distribution
when computed with oracle access to the weak learners hg = WL(f, uo), h1 = WL(f, Mech(f, h;)),
ey hge = WL(f, Mech(f, hx_1)).

A k-query combiner Boost is (g,0)-correct for A if for any family of weak learners WL, there’s some
distribution-generating mechanism Mech so that (WL, Mech, Boost) is a k-query (g, §)-boosting algorithm
for A. When a k-query combiner Boost which is correct for the distributions As induced by d-dense
measures, we say that Boost is k-smooth.

That such algorithms do indeed exist is due to Freund and Schapire. Specifically, they take Mech to be
the familiar multiplicative weights update procedure and take Boost = MAJ. Once a proof of correctness
for boosting is established, it’s relatively straightforward to see the following

Theorem 35. Let (WL, Mech, Boost) be a 24-smooth, (e, )-boosting algorithm with weak learners in T
and Boost a k-ary combiner. Then there’s a (e, §, k)-hardcore set lemma reduction for 7.

The translation is essentially immediate: the reduction HL simply implements the boosting algorithm
on input f. If f has weak approximations over 26-dense distributions, then the hypothesis of the second
component in the definition of (WL, Mech, Boost) is satisfied, meaning that Boost with oracle access to the
corresponding weak learners actually computes a strong approximation of f over the uniform distribution.

Corollary 36. Let Boost be a combiner for an (g, §)-boosting algorithm. Then there’s an ACY circuit of
size poly(ng—;Q) and oracle access to Boost computing majority on 1/n bits, where ¢, n and ~ are set as in
Corollary 24.
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A Deducing the dense model theorem from the hardcore lemma

Theorem 37. Let T be a class of tests over U containing the constants and closed under negation and
suppose HC is an (g,0 — A)-hardcore lemma over the p-mixture distribution on U’ with respect to T
(extending 7 to U’ as above). Then there’s a (&', 0’, v)-dense model theorem over 7 with &' = O(e + \/9),
&' = 125, and v = 125 whenever § < 2eX + A/ — 2eA2/6.

Define the function f : U x {-1,1} — {—1,1} to be ‘indicator’ function of D: f(x,b) = b. The
following claim establishes the basic correspondence between hardness of f in U’ versus pseudodensity of
DinU.

Claim 38. Let 0 < 8 < a < 1 and 0 < p < 1 be arbitrary. f is A-hard for a class T of tests (over U,

extended to U’ as above) over the p-mixture distribution iff. D is (i\f_’p’, = 5)-pseudodense for 7.

Proof. Fix some T' € T so that Prgpr[T(x) = f(z,b)] > 1 — A. By definition of the p-mixture
distribution on U’, we have

(x’giU,[T(x) = f(x,b)] = szLb[T(x) =1+ (1-p) xlzlzj[T(ac) = —1]
= p Pr[T@) = 1] + (1~ p)(1 — Pr [T(x) = 1)
>1-A
Rearranging gives us
p A=p
—— Pr[T(z)=1]+—— > Pr[T(z) =1].
1_pwng[ (z) ]+1_p 2 Pt [T'(z) =1]
The other direction is similar. |

Now suppose we have an (g, d, k)-hardcore lemma reduction HC. By the above, it suffices to prove that
f is not 0-hard over the p-mixture distribution for an appropriate p. We’ll do so by contradiction: suppose
that f is d-hard for the class of functions of the form HC(71,...,T;) where T7,...,T € T and HC is our
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hardcore lemma reduction. By definition of the hardcore reduction, this implies that the hypothesis fails:
that is, it implies the existence of a 2d-dense distribution p’ on which f is (1/2 — €)-hard for 7. Then we
make the following claim.

Claim 39. Let u/ be a 2(§ — X)-dense measure on the p-mixture of U’ which is (1/2 — ¢)-hard for 7 and
let u(xz) = p/(x,1) denote a measure on U. Then

1. pis ‘SfT)‘(l — 2¢)-dense, and

2. By picking p = 4, the distribution induced by p is statistically indistinguishable from D with
advantage at most 2e + \/d — 2e\/0.

Proof. Since T contains the constant functions and for any 7' € T, Pr(,pu[T(z) = b] < 1/2 + ¢, it
follows that the probability that b = 1 when drawn from g’ is at least 1/2 — ¢ (otherwise, the function
T(x) = —1 would approximate f). On the other hand, we can compute the probability that b =1 as

Pr [b=1]= ,
(aab)w’[ | Pa()

since the distribution induced by the measure p’ has probability mass function p((z,b)) = p& (;EZ}I))). Thus

pd(p) > (1/2 = e)d(p') = (1/2 = €)2(5 = A)

d(p) = (1 —2¢) ;

For the second claim, note that u is supported on D and the uniform distribution on D has density 1. H

The theorem then follows: since we’re assuming that D is computationally distinguishable (a stronger
assumption than statistical distinguishability, as the distinguishing test is encoded by function in 7°) from
dense distributions, we can conclude conclude that f is not d-hard. This implies that the approximation
of f is indeed a refuter of D’s pseudodensity.

To move from a dense model theorem over sets to a dense model theorem over measures, fix a measure
D : U — [0,1] which is distinguishable from every ¢’-dense measure over U. We will sample from the
distribution over U induced by D to obtain a set and then apply the dense model theorem for sets to obtain
a refuter of the pseudo-density. By concentration bounds, such a refuter will also refute the pseudo-density
of D (with high probability).

Lemma 40. Let S C U be a set of m samples from (the distribution induced by) D and suppose that

Pr[T(2) =1 <& Pr[T(z)=1] - .

Then with probability at least 1 — exp(—O(m¢?)) over our choice of S, T also refutes the (&', — )-
pseudodensity of D.

Proof. Let X1, ..., X;, ~ D denote our random variables for members of S. Then

m

Es|{T(z)=1:2 € S}|] = A XFNrD[T(Xi) =1]=m- Xfer[T(X) =1].

=1

as Xi,..., X, are i.i.d. By the Chernoff-Hoeffding bound, the probability over S that Pr,.s[T(z) =
1] = Pryop[T(x) = 1] > ¢ is bounded from above exp(—O(m:?)). [
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