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increasing complexity of circuit equations. In addition, extra effort 
A novel simulation-based framework that applies classification 
with adaptive labeling thresholds (CALT ) is developed that auto- 
generates the component sizes of an analog integrated circuit. Clas- 
sifiers are applied to predict whether the target specifications are 
satisfied. To address the lack of data points with positive labels due 
to the large dimensionality of the parameter space, the labeling 
threshold is adaptively set to a certain percentile of the distribution 
of a given circuit performance metric in the dataset. Random forest 
classifiers are executed for surrogate prediction modeling that pro- 
vide a ranking of the design parameters. For each iteration of the 
simulation loop, optimization is utilized to determine new query 
points. CALT is applied to the design of a low noise amplifier (LNA) 
in a 65 nm technology. Qualified design solutions are generated 
for two sets of specifications with an average execution of 4 and 
17 iterations of the optimization loop, which require an average of 
1287 and 2190 simulation samples, and an average execution time 
of 5.4 hours and 23.2 hours, respectively. CALT is a specification- 
driven design framework to automate the sizing of the components 
(transistors, capacitors, inductors, etc.) of an analog circuit. CALT 
generates interpretable models and achieves high sample efficiency 
without requiring the use of prior circuit models. 

CCS CONCEPTS 
• Hardware Analog and mixed-signal circuit optimization; 
Methodologies for EDA; • Computing methodologies Su- 
pervised learning by classification. 
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1 INTRODUCTION & BACKGROUND 
Traditionally, the design of an analog integrated circuit is com- 
pleted by solving analytic equations that link design parameters 
with performance metrics. To automate the sizing of the compo- 
nents (transistors, capacitors, inductors, etc.) of an analog circuit, 
multi-objective optimization problems are formulated with analytic 
equations [1][2]. The generated Pareto fronts provide a means to 
analyze the tradeoffs in circuit performance. However, with tech- 
nology scaling, the knowledge-based approaches are limited by the 
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is required to tune the circuit to resolve any mismatch between 
theoretically optimized results and simulation results. 
Simulation-based approaches emerge as a substitute that ad- 

dresses the challenges associated with knowledge-based optimiza- 
tion methods. Data mining and machine learning techniques are 
utilized to extract modeling and design information from simulation 
data in a bottom-up approach. Representative techniques include 
stochastic pattern search [3], Bayesian optimization [4], and deep 
neural networks [5]. Prior work has shown that simulation-based 
methods are successful in the design of analog circuits. However, 
improvements are needed with regard to: 

Sample efficiency: Simulation-based methods rely on real- 
time sampling and optimization with simulation tools. The 
slow numerical solvers used for simulation limit the size of 
the dataset. To improve sample efficiency, a technique that 
samples from high-dimensional black-box functions with 
Duchon pseudo-cubic splines is proposed in [6]. Bayesian 
neural networks are described in [7] to approximate the 
Pareto front with a reduced number of samples. Reducing 
the number of samples required by the optimization process 
to shorten the design time remains an open challenge. 
Specification-driven design considerations: Based on the 
circuit requirements, analog design specifications are grouped 
into two categories: 1) figure of merit (FoM) constraints 
that require optimization, and 2) hard constraints that 
must only be sufficiently met. As an example, power is 
treated as an FoM constraint when a design priority is to 
minimize the power consumption. In contrast, power con- 
sumption is treated as a hard constraint, specifically a power 
budget, when other circuit metrics are more critical. 
FoM constraints are commonly optimized by regression 
models [5][7]. In practice, a limited number of circuit per- 
formance metrics are considered FoM constraints, for two 
primary reasons. First, when less important metrics are over- 
emphasized, the search space is narrowed unnecessarily, 
which results in a more difficult or even infeasible search. 
Second, when more than two metrics are concurrently con- 
sidered as FoM constraints, the Pareto fronts generated by 
multi-objective optimization algorithms such as 𝑁 𝑆𝐺𝐴 𝐼 𝐼 
[8] are hard to visualize and apply. Tradeoff curves between 
two circuit metrics are meaningful only when the remaining 
specification-based metrics are satisfied. 
In practice, specifications are often listed in the form of hard 
constraints, where the objective is to meet the set of target 
values. Applying classification to predict whether a candi- 
date design point satisfies the specifications is well suited 
for analysis with hard constraints. In [9], support vector ma- 
chines (SVMs) are introduced to classify the performance 
space of analog circuits. One-class classifiers are favored over 
two-class classifiers as the latter suffers from a large dimen- 
sionality of the parameter space. Specifically, the proportion 
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of design points that yield the desired performance param- 
eters is likely to be small in an initial randomly sampled 
dataset. The dimensionality of the design space, therefore, 
limits the application of binary classifiers. Additionally, in 
[9], classifiers are only applied for the analysis of the circuit 
performance space rather than for the design of the circuit. 
Interpretability: Ideally, techniques that automate the de- 
sign of a circuit must be interpretable and easy to use such 
that human efforts to apply the tools and algorithms are 
minimized. The black-box models and complex decision pro- 
cesses utilized by existing methods are hardly interpretable 
[5][7]. Beyond the generation of design solutions, informa- 
tion such as performance tradeoffs, design space partitioning 
information, and importance rankings (sensitivity analysis) 
of design variables provide utility. 

To address the limitations of existing techniques, a novel batch- 
mode online optimization framework is developed to design analog 
integrated circuits through classification with adaptive labeling 
thresholds (CALT ). The primary contributions of the work include: 
1) the application of classifiers for both the modeling of the per- 
formance space and the sizing of an analog circuit, 2) the use of 
interpretable tree-based algorithms for surrogate modeling, and 3) 
a strategy to adaptively set the labeling thresholds for the training 
of the classifiers such that the lack of positively labeled data is 
resolved. 
The rest of the paper is organized as follows. In Section II, meth- 

ods utilized in CALT are analyzed. The framework and simulation 
results from the characterization of a low noise amplifier designed 
by executing CALT are presented in Section III. A discussion of the 

new instance 𝑥      𝑋 , predicts 𝑦    = ℎ    𝑥       𝑌   . A multi-output 
classification problem is, therefore, formulated. 
A possible choice for the labeling threshold is the design specifi- 

cation. However, if the dimensionality of the design space is large, 
the initial dataset is unlikely to contain sufficient data points with 
positive labels for training. Instead, for a target specification, the 
labeling threshold is set to the 𝜖𝑡ℎ percentile of the distribution 
of a given circuit performance metric in the dataset 𝑈 as a lower 
bound, and the 100 𝜖 𝑡ℎ percentile of the distribution as the 
upper bound. If the corresponding specification exceeds the per- 
centile value, the dataset contains enough positively labeled data 
points and the threshold is, therefore, set to the specification. Given 
the design specification set S   R𝑘 for s   S, the labeling threshold 
set 𝑇 R𝑘 for t T is generated as given by Algorithm 1. Binary 
labels are then assigned to each circuit performance metric based 
on whether the target set 𝑇 is met, as given by Algorithm 2. 

 

Algorithm 1: Adaptively Set the Labeling Thresholds 
 

for 𝑖 = 1 to 𝑘 do 
if 𝑠𝑖 is a lower bound for the 𝑖𝑡ℎ circuit performance 
metric 𝑦𝑖 then 

𝑡𝑖 𝜖𝑡ℎ percentile of 𝑦𝑖 in 𝑈 ; 
if 𝑡𝑖 > 𝑠𝑖 then 𝑡𝑖 𝑠𝑖 ; 

else 
𝑡𝑖 100 𝜖 𝑡ℎ percentile of 𝑦𝑖 in 𝑈 ; 
if 𝑡𝑖 < 𝑠𝑖 then 𝑡𝑖 𝑠𝑖 ; 

end end 
critical outcomes from analysis of the results is provided in Section    
IV. Some concluding remarks are provided in Section V. 

2 PROPOSED METHODOLOGY 
With CALT, the sizing of the components of an analog circuit is 
performed by the sequential completion of two tasks: 1) multi- 
output classification for performance modeling of a circuit, and 
2) optimization for the generation of the component sizes for the 
circuit. The details of the classification framework that includes the 
adaptive labeling threshold strategy are provided in Section II-A. 
An analysis of the benefits of tree ensemble algorithms is provided 
in Section II-B, where random forest algorithms are adopted for 
surrogate predictive modeling. The framework to apply design in 
the loop is described in Section II-C. A summary of the CALT design 
flow is provided in Section II-D. 
 
2.1 Classification with Adaptive Labeling 

Thresholds 
Given the problem of sizing the components of an analog circuit, 
denote the design space as 𝑋    R𝑑 , and the performance space 
as 𝑌 R𝑘 . Initially, a dataset 𝑈 = 𝑥 1 , 𝑦 1 , ..., 𝑥 𝑛 , 𝑦 𝑛 
𝑋    𝑌 𝑛 is sampled from the design space. Latin Hypercube Sam- 
pling (LHS) [10] is applied, where LHS is a Monte Carlo method that 
provides a quasi-random sampling distribution. For a pre-specified 
sample size n, the design space is partitioned into equal regions, 
and a single point is randomly selected in each region. 
After the initial dataset is generated, binary labels are assigned 

to each data point for each circuit performance metric based on 
whether a target threshold is met. The labeled space is denoted 
as 𝑌   ⊆  {±1}𝑘 . The objective then becomes to train a classifier 
ℎ𝑘 : 𝑋  → 𝑌𝑘  for the 𝑘𝑡ℎ  circuit performance metric that, given a 

 
 

Algorithm 2: Assign Labels for Classifier Training 
 

 

for 𝑖 = 1 to 𝑛 do 
for 𝑗 = 1 to 𝑘 do 

if 𝑠 𝑗 is a lower bound for the 𝑗𝑡ℎ circuit performance 
metric 𝑦𝑗  then 
if 𝑦𝑗 (𝑖) ≥ 𝑡 𝑗 then 

𝑗 
else 

𝑦 𝑗   𝑖   =   1; 
end 

else 
if 𝑦𝑗 (𝑖) ≤ 𝑡 𝑗 then 

𝑗 
else 

𝑦 𝑗   𝑖   =   1; 
end 

end 
end 

end 
 

 

 
Precision and Recall are utilized to evaluate the performance of 

the classifiers, which are defined as 

Precision =  Number of true positives , and (1) 
Number of positive predictions 

Recall =   Number of true positives   . (2) 
Number of positive instances 

• 
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Combining Precision and Recall results in the F1-score, which is uti- 
lized as a single metric that evaluates the performance of a classifier, 
as given by (3). 

Algorithm 4: Feature Importance by Permutation 
Let M = number of bootstrap samples; 
for each predictor variable j do 

F1-score = 2 precision × recall 
precision + recall 

(3) 
for tree t, t=1 to M do 

Get OOB error 𝜃𝑡 ; 
Random permute observations of j; 

2.2 Applying Random Forest for Classification 
In [11], decision tree (DT ) algorithms [12] are applied to map from 
the circuit specifications to the circuit topology by utilizing past 
designs as reference. In this work, DT -based algorithms are utilized 
due to the following advantages: 

Tree-based models are fast to train while providing compa- 
rable prediction accuracy to other methods including neural 
networks, 
A small number of hyper-parameters require tuning, while 
data pre-processing is not necessary, 
Design space partitioning information is provided through 
the tree-structured models, and 
• Feature importance rankings are generated. 
To train a decision tree [12], the Gini index 𝐺𝑙 is applied as the 

node splitting criteria, which is defined as 

𝐺𝑙 = 1 − 𝑓 (𝑖)2, (4) 
𝑖 

where 𝑓 𝑖 is the fraction of positive instances for the 𝑖𝑡ℎ node split. 
The tree is grown by finding the largest reduction in the Gini index. 
Ensemble techniques are applied to reduce model overfitting, 

which results from using single tree models. In this work, the ran- 
dom forest algorithm [13] is utilized, which draws samples with 
replacement from the dataset for the training of a bag of deep trees 
with a subset of the features. The final prediction is obtained by 
averaging the individual predictions produced by the models, as 
given by Algorithm 3. 
 
Algorithm 3: Random Forest Algorithm 
Let M = number of bootstrap samples ; 
for i=1 to M do 
Create a bootstrap sample 𝐺𝑖 of size N; 
Train a single tree on 𝐺𝑖 with a randomly selected 
subset of features; 

Get OOB error of the permuted set 𝜃 𝑗 ; 
𝜃 𝑗𝑡 = 𝜃 𝑗 - 𝜃𝑡 ; 

end 
Let 𝜇 𝜃 𝑗𝑡 be the mean of 𝜃 𝑗𝑡 across all trees, and 𝜎 𝜃 𝑗𝑡 
be the standard deviation of 𝜃 𝑗𝑡 across all trees; 
Feature importance of j = 𝜇( 𝜃 𝑗𝑡 ) / 𝜎 𝜃 𝑗𝑡 ); 

end 
 

 

 

Figure 1: Proposed flow that applies classification with adap- 
tive labeling thresholds to the design of an analog circuit. 
 
iteration of the simulation loop to search for points such that the 
predicted probability scores of all models are simultaneously maxi- 
mized. The candidate solutions are given as 

𝑥 ∗ ∈ 𝑎𝑟𝑔 max(𝑝1 (𝑥 ), ..., 𝑝𝑘 (𝑥 )), (5) 
end 
𝑦(𝑥 ) =  1   × 

 
𝑀 
𝑖=1 

𝑦 𝑖 (𝑥 ) 
where 𝑝 𝑥 is the probability score predicted by the 𝑘𝑡ℎ classi- 
fier. The design points are then verified through SPICE simulation 
(Cadence Virtuoso in this work). 

 
The execution of the random forest algorithm provides the impor- 

tance ranking of the design variables[14]. During each iteration of 
bootstrap training, a single tree model is trained from the bootstrap 
samples and tested with the remaining samples. The comparison 
of the samples results in an out-of-Bag (OOB) error. The average of 
the OOB errors from all runs of bootstrap training is an estimate of 
the performance of the ensemble. Through random permutations 
of a feature set, the importance of a design parameter is determined 
by characterizing the impact of the changes on the OOB error, as 
described by the pseudocode provided as Algorithm 4. 

2.3 Optimization-based Active Querying 
After the classifiers for each performance metric are trained, qual- 
ified designs are determined from the intersection of the feasible 
regions of all models. A multi-objective search is executed for each 

2.4 Summary of the Design Flow of CALT 
As shown in Fig. 1, the design flow of CALT includes six primary 
steps, which are described as 

1. Initialization through the generation of random points in the 
design space with LHS. Execution of an automation script (OCEAN ) 
to evaluate the performance of the circuit for each selected point 
with SPICE simulations, 
2. Adaptively assigning a binary label to each performance metric 

of each selected point with Algorithm 1, 
3. Training a random forest classifier for each performance metric 

with the dataset, 
4. Running the multi-objective search algorithm 𝑁 𝑆𝐺𝐴  𝐼 𝐼 on 

all of the model functions to generate design points and writing 
the resulting points to a data file, 

• 

• 
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5. Automation of the reading of the design points and execution 
of the SPICE simulations to evaluate the performance of the circuit 
with the generated component sizes, and 
6. If no design point meets all of the specifications, add the 

verified data points to the dataset, and return to step 2. 

3 SIMULATION RESULTS 
CALT is applied to the design of an inductively degenerated dif- 
ferential low noise amplifier (LNA), which is shown in Fig. 2. The 
target operating frequency of the LNA is 2.4 GHz in a 65 nm tech- 
nology. 

the specifications, CALT is executed to solve for the nine design 
variables for both sets of target specifications, where 𝜖, as described 
in Section 2.1, is set to 95. Five runs of CALT are executed for each 
of the target specification sets. A summary of the results is provided 
in Table I. 

Table 1: Summary of Results for the design of the LNA with 
CALT 

 
 
 
 
 
 
 

In+ In- 

 
 
 
 
 
 
 
Figure 2: Circuit schematic of a differential low noise ampli- 
fier. 

The design set consists of nine variables: the sizes of the inductors 
𝐿𝑔1, 𝐿𝑑1, and 𝐿𝑠1, the widths of transistors 𝑀1, 𝑀3, and 𝑀5, the 
size of capacitor 𝐶𝑔1, and the biasing voltages 𝑉𝑏1 and 𝑉𝑏3. Due to 
the symmetry of the differential structure, the remaining variables 
are set to the same values as the corresponding counterparts. The 
transistor length is set to the minimum of 65 nm. The performance 
set includes the power gain, noise figure (NF ), third-order intercept 
point (IP3), and power consumption. The target design variables are 
constrained as 

60 𝑛𝑚 ≤ 𝑡𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑜𝑟 𝑤𝑖𝑑𝑡ℎ𝑠  ≤ 900 𝜇𝑚, 
 

 

As indicated by the results listed in Table I, qualified solutions are 
returned by CALT for both sets of target specifications. The Pareto 
fronts from the verified design points are provided in Fig. 3, where 
the tradeoff between the gain and NF of the LNA is shown. Since the 
power budget for Specification Set 2 is set to be 10 mW greater than 
that for Specification Set 1, the Pareto front for Specification Set 2 
is closer to the upper-left corner of Fig. 3. In addition, an average 
of 17 iterations are needed to determine the design variables for 
Specification Set 2, as compared to four iterations required for 
Specification Set 1, as listed in Table I. Both specification sets are 
distinct since one targets lower power consumption, while the other 
targets a lower NF and higher gain by allowing for a higher power 
budget. 

0.01 𝑛𝐻 𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟 𝑠𝑖𝑧𝑒𝑠 12 𝑛𝐻, 
30 𝑓 𝐹 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 𝑠𝑖𝑧𝑒𝑠 20 𝑝𝐹 , and 
0 𝑉 ≤ 𝑏𝑖𝑎𝑠𝑖𝑛𝑔 𝑣𝑜𝑙𝑡𝑎𝑔𝑒𝑠 ≤ 1.2 𝑉 . 

(6) 
The total execution time for CALT consists of the time for initial sampling, offline model training and optimization, and verification 

through online simulation. As listed in Table I, the execution time 
of CALT is in the range of 4.2 to 6.5 hours for Specification Set Two different sets of design specifications are targeted, the first 

given as Specification Set 1: 
Gain ≥ 10 𝑑𝐵, 

 

 

1, and 12.3 to 41.1 hours for Specification Set 2, which indicates a 
large variation in the convergence speed of the stochastic CALT 
design framework, especially for the more stringent parameter 
requirements of Specification Set 2. 

NF 3 𝑑𝐵, 
IP3 5 𝑑𝐵𝑚, and 
Power ≤ 10 𝑚𝑊 , 

and the second as Specification Set 2: 
Gain ≥ 14 𝑑𝐵, 
NF ≤ 2.8 𝑑𝐵, 

Power ≤ 20 𝑚𝑊 . 

(7) 
 
 
 
 
(8) 

The data plotted in Figs. 4 and 5 is from the run of the CALT algorithm with the fastest execution time. The changes in the la- 
beling thresholds of the gain and NF for each executed iteration of 
the algorithm are shown in Fig. 4. The 95𝑡ℎ percentile of the gain 
distribution exceeds 10 dB after completion of the second iteration 
of the CALT algorithm when solving for Specification Set 1, and 
exceeds 14 dB after completion of the fourth iteration of the CALT 
algorithm for Specification Set 2. Thereafter, the labeling thresholds 
are maintained at 10 dB and 14 dB, respectively. In comparison, the 
95𝑡ℎ percentile of the IP3 distribution and the 5𝑡ℎ percentile of the An initial dataset of 1000 points is sampled with LHS. After 

verifying that the dataset contains no points that satisfy all of 
power distribution exceed the corresponding target specifications 
beginning with the initial dataset, which indicates that the dataset 

≤ ≤ 

≤ 

Parameters Specification Set 1 Specification Set 2 
𝑀1=𝑀2 
𝑀3=𝑀4 

𝑀5 
𝐿𝑔1=𝐿𝑔2 
𝐿𝑑1=𝐿𝑑2 
𝐿𝑠1=𝐿𝑠2 
𝐶𝑔1=𝐶𝑔2 
𝑉𝑏1 = 𝑉𝑏2 

𝑉𝑏3 

363.1 µm 
165.9 µm 
109.4 µm 
8.39 nH 
5.23 nH 
1.03 nH 
0.468 pF 
0.661 V 
0.883 V 

166.4 µm 
247.8 µm 
329.9 µm 
9.61 nH 
4.10 nH 
0.836 nH 
0.375 pF 
0.633 V 
0.892 V 

gain 
NF 
IP3 
power 

10.75 dB 
2.88 dB 
-4.75dBm 
8.96 mW 

14.02 dB 
2.79 dB 
-4.63 dBm 
15.79 mW 

min (max) Num. of iterations 
avg Num. of iterations 

min (max) Num. of samples 
avg Num. of samples 

min (max) execution time 
avg execution time 

3 (5) 
4 

1217 (1357) 
1287 

4.2 hr (6.5 hr) 
5.4 hr 

9 (30) 
17 

1630 (3100) 
2190 

12.3 hr (41.1 hr) 
23.2 hr 
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Figure 3: Generated pareto front between gain and NF when 
power and IP3 constraints remain satisfied. 
 
contains sufficient points with positive labels for the two circuit 
metrics. Therefore, the labeling thresholds for IP3 and power are 
set to the corresponding specifications from the start of execution 
of the CALT design flow. 
The F1-scores of the classifiers for each of the four performance 

metrics when solving for Specification Set 2 are shown in Fig. 5. 
The performance of the gain and NF classifiers is poor initially and 
improves as the number of iterations increases. In contrast, the 
performance of the power and IP3 classifiers is relatively constant 
for all iterations. The difference in the performance of the classifiers 
is due to the change in the labeling thresholds when training the 
models for gain and NF. The results indicate that the convergence 
to qualified design solutions is shown to be correlated with the 
performance of the surrogate prediction models. 
After sizing the components of the LNA with CALT, importance 

rankings of the design variables are extracted from the random 
forest models, as shown in Fig. 6. The size of inductor 𝐿𝑠1 (𝐿𝑠2) 
results in the greatest impact on all metrics except for the power 
consumption, as 𝐿𝑠 is critical for input matching. The rankings also 
reveal the significant impact of the two biasing voltages 𝑉𝑏1 (𝑉𝑏2) 
and 𝑉𝑏3 on IP3 and power consumption, which are large-signal cir- 
cuit performance metrics. The automatically extracted importance 
rankings allow for the narrowing of the input search space to a 
small set of critical design variables. In comparison, for manual 
custom design, both analytic formulae and design expertise are 
needed to identify the critical design variables best suited for the 
optimization of a performance metric. 
As a final step, decision trees are trained with the final dataset. A 

tree for NF prediction trained with the final dataset generated from 
completion of the CALT sizing methodology on Specification Set 2 
is shown in Fig. 7. The design space is partitioned by the tree model, 
and decision paths are shown that serve as criteria on whether a 
design point is expected to satisfy the specified NF. 

4 DISCUSSION 
If the topology and technology node are fixed, the design space of 
an analog circuit is also fixed. The necessary partitioning details 
of the design space are, therefore, learned by CALT from simula- 
tion data. With the binary classifiers, decision boundaries between 
feasible and infeasible regions are identified for a given specifi- 
cation. The optimizations are used to search for design points in 
the common feasible regions of all models. As new design points 

 
(a) 

 

 
(b) 

Figure 4: Change in a) the 95𝑡ℎ percentile of the gain distri- 
bution and b) the 5𝑡ℎ percentile of the NF distribution with 
each iteration of the CALT algorithm. The results are used 
to determine the labeling threshold of the gain and NF. 
 
are actively queried, more information on both the design space 
and the performance space is gathered. The performance of the 
classifiers, therefore, improves, which results in the convergence 
to a design solution. 
Fine-tuning of the surrogate models is performed with the pro- 

posed closed-loop learning system. The dataset determined during 
the final iteration of the sizing flow is considered as the minimum re- 
quired for convergence to a design solution. The CALT framework 
is driven by the circuit specifications, which allows for customized 
designs of analog circuits, where the specifications are adjusted 
based on the design needs. 

5 CONCLUSIONS 
A simulation-based framework for classification with adaptive la- 
beling thresholds (CALT ) is proposed to automatically size the 
components of an analog circuit. Classifiers are applied to check 
whether the target specifications are satisfied. The binary labeling 
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Figure 5: Cross-validated F1-scores of the random forest clas- 
sifiers for the gain, NF, IP3, and power, when targeting Spec- 
ification Set 2. 

 
 
Figure 7: A decision tree for NF prediction trained with the 
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final dataset after the completion of the component sizing 
flow targeting Specification Set 2. 
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