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ABSTRACT

A novel simulation-based framework that applies classification
with adaptive labeling thresholds (CALT ) is developed that auto-
generates the component sizes of an analog integrated circuit. Clas-
sifiers are applied to predict whether the target specifications are
satisfied. To address the lack of data points with positive labels due
to the large dimensionality of the parameter space, the labeling
threshold is adaptively set to a certain percentile of the distribution
of a given circuit performance metric in the dataset. Random forest
classifiers are executed for surrogate prediction modeling that pro-
vide a ranking of the design parameters. For each iteration of the
simulation loop, optimization is utilized to determine new query
points. CALT is applied to the design of a low noise amplifier (LNA)
in a 65 nm technology. Qualified design solutions are generated
for two sets of specifications with an average execution of 4 and
17 iterations of the optimization loop, which require an average of
1287 and 2190 simulation samples, and an average execution time
of 5.4 hours and 23.2 hours, respectively. CALT is a specification-
driven design framework to automate the sizing of the components
(transistors, capacitors, inductors, etc.) of an analog circuit. CALT
generates interpretable models and achieves high sample efficiency
without requiring the use of prior circuit models.
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1 INTRODUCTION & BACKGROUND

Traditionally, the design of an analog integrated circuit is com-
pleted by solving analytic equations that link design parameters
with performance metrics. To automate the sizing of the compo-
nents (transistors, capacitors, inductors, etc.) of an analog circuit,
multi-objective optimization problems are formulated with analytic
equations [1][2]. The generated Pareto fronts provide a means to
analyze the tradeoffs in circuit performance. However, with tech-
nology scaling, the knowledge-based approaches are limited by the
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increasing complexity of circuit equations. In addition, extra effort
is required to tune the circuit to resolve any mismatch between
theoretically optimized results and simulation results.

Simulation-based approaches emerge as a substitute that ad-
dresses the challenges associated with knowledge-based optimiza-
tion methods. Data mining and machine learning techniques are
utilized to extract modeling and design information from simulation
data in a bottom-up approach. Representative techniques include
stochastic pattern search [3], Bayesian optimization [4], and deep
neural networks [5]. Prior work has shown that simulation-based
methods are successful in the design of analog circuits. However,
improvements are needed with regard to:

e Sample efficiency: Simulation-based methods rely on real-
time sampling and optimization with simulation tools. The
slow numerical solvers used for simulation limit the size of
the dataset. To improve sample efficiency, a technique that
samples from high-dimensional black-box functions with
Duchon pseudo-cubic splines is proposed in [6]. Bayesian
neural networks are described in [7] to approximate the
Pareto front with a reduced number of samples. Reducing
the number of samples required by the optimization process
to shorten the design time remains an open challenge.
Specification-driven design considerations: Based on the
circuit requirements, analog design specifications are grouped
into two categories: 1) figure of merit (FoM) constraints
that require optimization, and 2) hard constraints that
must only be sufficiently met. As an example, power is
treated as an FoM constraint when a design priority is to
minimize the power consumption. In contrast, power con-
sumption is treated as a hard constraint, specifically a power
budget, when other circuit metrics are more critical.

FoM constraints are commonly optimized by regression
models [5][7]. In practice, a limited number of circuit per-
formance metrics are considered FoM constraints, for two
primary reasons. First, when less important metrics are over-
emphasized, the search space is narrowed unnecessarily,
which results in a more difficult or even infeasible search.
Second, when more than two metrics are concurrently con-
sidered as FoM constraints, the Pareto fronts generated by
multi-objective optimization algorithms such as N.SGA I F
[8] are hard to visualize and apply. Tradeoff curves between
two circuit metrics are meaningful only when the remaining
specification-based metrics are satisfied.

In practice, specifications are often listed in the form of hard
constraints, where the objective is to meet the set of target
values. Applying classification to predict whether a candi-
date design point satisfies the specifications is well suited
for analysis with hard constraints. In [9], support vector ma-
chines (SVMs) are introduced to classify the performance
space of analog circuits. One-class classifiers are favored over
two-class classifiers as the latter suffers from a large dimen-
sionality of the parameter space. Specifically, the proportion
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of design points that yield the desired performance param-
eters is likely to be small in an initial randomly sampled
dataset. The dimensionality of the design space, therefore,
limits the application of binary classifiers. Additionally, in
[9], classifiers are only applied for the analysis of the circuit
performance space rather than for the design of the circuit.
Interpretability: Ideally, techniques that automate the de-
sign of a circuit must be interpretable and easy to use such
that human efforts to apply the tools and algorithms are
minimized. The black-box models and complex decision pro-
cesses utilized by existing methods are hardly interpretable
[51[7]. Beyond the generation of design solutions, informa-
tion such as performance tradeoffs, design space partitioning
information, and importance rankings (sensitivity analysis)
of design variables provide utility.

To address the limitations of existing techniques, a novel batch-
mode online optimization framework is developed to design analog
integrated circuits through classification with adaptive labeling
thresholds (CALT). The primary contributions of the work include:
1) the application of classifiers for both the modeling of the per-
formance space and the sizing of an analog circuit, 2) the use of
interpretable tree-based algorithms for surrogate modeling, and 3)
a strategy to adaptively set the labeling thresholds for the training
of the classifiers such that the lack of positively labeled data is
resolved.

The rest of the paper is organized as follows. In Section II, meth-
ods utilized in CALT are analyzed. The framework and simulation
results from the characterization of a low noise amplifier designed
by executing CALT are presented in Section III. A discussion of the
critical outcomes from analysis of the results is provided in Section
IV. Some concluding remarks are provided in Section V.

2 PROPOSED METHODOLOGY

With CALT, the sizing of the components of an analog circuit is
performed by the sequential completion of two tasks: 1) multi-
output classification for performance modeling of a circuit, and
2) optimization for the generation of the component sizes for the
circuit. The details of the classification framework that includes the
adaptive labeling threshold strategy are provided in Section II-A.
An analysis of the benefits of tree ensemble algorithms is provided
in Section II-B, where random forest algorithms are adopted for
surrogate predictive modeling. The framework to apply design in
the loop is described in Section II-C. A summary of the CALT design
flow is provided in Section II-D.

2.1 Classification with Adaptive Labeling
Thresholds

Given the problem of sizing the components of an analog circuit,
denote the design space as X ¢ R?, and the performance space

as Y B*. Initially, a dataset U = x 1((y(1 )...()0h ,y () ( ))) €
(X )Y " is sampled from the design space. Latin Hypercube Sam-
pling (LHS) [10] is applied, where LHS is a Monte Carlo method that
provides a quasi-random sampling distribution. For a pre-specified
sample size n, the design space is partitioned into equal regions,
and a single point is randomly selected in each region.

After the initial dataset is generated, binary labels are assigned
to each data point for each circuit performance metric based on
whether a target threshold is met. The labeled space is denoted

as ¥ ¢ {il}k. The objective then becomes to train a classifier
h: X — Yk for the k' circuit performance metric that, given a
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new instance x ¢ X, predicts = h (*) g Y? . A multi-output
classification problem is, therefore, formulated.

A possible choice for the labeling threshold is the design specifi-
cation. However, if the dimensionality of the design space is large,
the initial dataset is unlikely to contain sufficient data points with
positive labels for training. Instead, for a target specification, the
labeling threshold is set to the € percentile of the distribution
of a given circuit performance metric in the dataset U as a lower
bound, and the(100 - )’h percentile of the distribution as the
upper bound. If the corresponding specification exceeds the per-
centile value, the dataset contains enough positively labeled data
points and the threshold is, therefore, set to the specification. Given
the design specification set Sc R¥ for s ¢S, the labeling threshold
set TR* for ¢ Eis generated as given by Algorithm 1. Binary
labels are then assigned to each circuit performance metric based
on whether the target set T is met, as given by Algorithm 2.

Algorithm 1: Adaptively Set the Labeling Thresholds

fori =1tk do
if 51 is a lower bound for the i'™ circuit performance
metric y; then
ti < € percentile of y; inU;
if t; > s; thent; <« si;
else
ti < (100 = '} percentile of y; inU;
ift; <s; thent; <« si;
engend

Algorithm 2: Assign Labels for Classifier Training

fori =1 tondo
for j =1tok do
if s is a lower bound for the " circuit performance
metric y; then
if y; (i) 2 7, then

Yy (i) =+1;
else
$ii)=-1;
end
else
if y; (i) <t; then
y) () =+1;
else
Pi(i) =-1,
end
end
end

end

Precision and Recall are utilized to evaluate the performance of
the classifiers, which are defined as

. Number of true positives
Precision = . — ,and (1)
Number of positive predictions

Number of true positives
Recall = of irite po . )
Number of positive instances
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Combining Precision and Recall results in the F'I-score, which is uti-
lized as a single metric that evaluates the performance of a classifier,
as given by (3).

precision X recall
precision + recall

Fl-score=2x

3)

2.2 Applying Random Forest for Classification

n [11], decision tree (DT ) algorithms [12] are applied to map from
the circuit specifications to the circuit topology by utilizing past
designs as reference. In this work, DT -based algorithms are utilized
due to the following advantages:

« Tree-based models are fast to train while providing compa-
rable prediction accuracy to other methods including neural
networks,

< A small number of hyper-parameters require tuning, while
data pre-processing is not necessary,

« Design space partitioning information is provided through
the tree-structured models, and

» Feature importance rankings are generated.

To train a decision tree [12], the Gini index G is applied as the
node splitting criteria, which is defined as

G=1- [0

1

wherg ¥ i is the fraction of positive instances for the i"" node split.
The tree is grown by finding the largest reduction in the Gini index.

Ensemble techniques are applied to reduce model overfitting,
which results from using single tree models. In this work, the ran-
dom forest algorithm [13] is utilized, which draws samples with
replacement from the dataset for the training of a bag of deep trees
with a subset of the features. The final prediction is obtained by
averaging the individual predictions produced by the models, as
given by Algorithm 3.

“)

Algorithm 3: Random Forest Algorithm

Let M = number of bootstrap samples ;
for i=1to M do
Create a bootstrap sample G; of size N;
Train a single tree on G; with a randomly selected
subset of features;

M)

The execution of the random forest algorithm provides the impor-
tance ranking of the design variables[14]. During each iteration of
bootstrap training, a single tree model is trained from the bootstrap
samples and tested with the remaining samples. The comparison
of the samples results in an out-of-Bag (OOB) error. The average of
the OOB errors from all runs of bootstrap training is an estimate of
the performance of the ensemble. Through random permutations
of a feature set, the importance of a design parameter is determined
by characterizing the impact of the changes on the OOB error, as
described by the pseudocode provided as Algorithm 4.

2.3 Optimization-based Active Querying

After the classifiers for each performance metric are trained, qual-
ified designs are determined from the intersection of the feasible
regions of all models. A multi-objective search is executed for each
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Algorithm 4: Feature Importance by Permutation

Let M = number of bootstrap samples;
for each predictor variable j do
for tree t, t=1 to M do
Get OOB error 6;;
Random permute observations of j;
Get OOB error of the permuted set 6 ;;
0jt=0;-6:;
end
Let (8 j: Yoe the mean of 6 j; across all trees,and o 0 )
be the standard deviation of @ j; across all trees;
Feature importance of j = (81 ) / o 0();
end

Initial Sampling with LHS

//:> [Assign binary labels adaptively]

Train classifiers

@ECZ

Specifications met?
ﬂ No
E Add new data to dataset

Figure 1: Proposed flow that applies classification with adap-
tive labeling thresholds to the design of an analog circuit.

iteration of the simulation loop to search for points such that the
predicted probability scores of all models are simultaneously maxi-
mized. The candidate solutions are given as

x* € arg max(pi1 (x), ..., px (x)), (©)

where p(x is the probability score predicted by the k™ classi-

fier. The design points are then verified through SPICE simulation
(Cadence Virtuoso in this work).

2.4 Summary of the Design Flow of CALT

As shown in Fig. 1, the design flow of CALT includes six primary
steps, which are described as

1. Initialization through the generation of random points in the
design space with LHS. Execution of an automation script (OCEAN )
to evaluate the performance of the circuit for each selected point
with SPICE simulations,

2. Adaptively assigning a binary label to each performance metric
of each selected point with Algorithm 1,

3. Training a random forest classifier for each performance metric
with the dataset,

4. Running the multi-objective search algorithm N SGA - I on
all of the model functions to generate design points and writing
the resulting points to a data file,
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5. Automation of the reading of the design points and execution
of the SPICE simulations to evaluate the performance of the circuit
with the generated component sizes, and

6. If no design point meets all of the specifications, add the
verified data points to the dataset, and return to step 2.

3 SIMULATION RESULTS

CALT is applied to the design of an inductively degenerated dif-
ferential low noise amplifier (LNA), which is shown in Fig. 2. The
target operating frequency of the LNA is 2.4 GHz in a 65 nm tech-

nology.
Ld,
Out+ —| l— Out-
M1f |_J :TMz
Lta: M3 M4 Lg:
In+ In-
Vb, Vb,
Cgy Cg»
Lsy Ls.

M.

Figure 2: Circuit schematic of a differential low noise ampli-
fier.

Ld,

The design set consists of nine variables: the sizes of the inductors
Lg1, Lg1, and Ly, the widths of transistors M1, M3, and M5, the
size of capacitor Cg1, and the biasing voltages V3 and V3. Due to
the symmetry of the differential structure, the remaining variables
are set to the same values as the corresponding counterparts. The
transistor length is set to the minimum of 65 nm. The performance
set includes the power gain, noise figure (NF), third-order intercept
point (IP3), and power consumption. The target design variables are
constrained as

160 nm < transistor widths < 900 um,

<

901 nH  inductor sizes
0 f F < capacitor sizes <

F0Vs biasing voltages < 1.2 V.
Two different sets of design specifications are targeted, the first
given as Specification Set 1:
OGain 2 10 dB,
0=

(6)

<
2 nH,
26 p}l17, and

F 3B @)
IP3>=5dBm, and

:jPower <10 mW,
and the second as Specification Set 2:

1Gain 2 14 dB,

HNF £ 2.8dB,

SIP3 2 —=5dBm, ad

TPower < 20 mW .

An initial dataset of 1000 points is sampled with LHS. After
verifying that the dataset contains no points that satisfy all of

@®)
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the specifications, CALT is executed to solve for the nine design
variables for both sets of target specifications, where €, as described
in Section 2.1, is set to 95. Five runs of CALT are executed for each
of'the target specification sets. A summary of the results is provided
in Table I.

Table 1: Summary of Results for the design of the LNA with
CALT

Parameters Specification Set 1| Specification Set 2
Mi=M 363.1 ym 166.4 uym
M3=My 165.9 ym 247.8 ym
M5 109.4 ym 329.9 ym
Lgi=Lg 8.39 nH 9.61 nH
La=La 5.23 nH 4.10 nH
Ls=Ly 1.03 nH 0.836 nH
Cg1=Cy 0.468 pF 0.375 pF
Vi1 = Vi 0.661 V 0.633V
Vi3 0.883 V 0.892 V
gain 10.75dB 14.02dB
NF 2.88dB 2.79dB
IP3 -4.75dBm -4.63 dBm
power 8.96 mW 15.79 mW
min (max) Num. of iterations 3(9) 9(30)
avg Num. of iterations 4 17
min (max) Num. of samples 1217 (1357) 1630 (3100)
avg Num. of samples 1287 2190
min (max) execution time 4.2 hr (6.5 hr) 12.3 hr (41.1 hr)
avg execution time 5.4 hr 232 hr

As indicated by the results listed in Table I, qualified solutions are
returned by CALT for both sets of target specifications. The Pareto
fronts from the verified design points are provided in Fig. 3, where
the tradeoff between the gain and NF of the LNA is shown. Since the
power budget for Specification Set 2 is set to be 10 mW greater than
that for Specification Set 1, the Pareto front for Specification Set 2
is closer to the upper-left corner of Fig. 3. In addition, an average
of 17 iterations are needed to determine the design variables for
Specification Set 2, as compared to four iterations required for
Specification Set 1, as listed in Table 1. Both specification sets are
distinct since one targets lower power consumption, while the other
targets a lower NF and higher gain by allowing for a higher power
budget.

sanipRAGLY FKREHSRLI e fanG dhd smsirsaebihatimefondaitii
through online simulation. As listed in Table I, the execution time
of dnd % 35iah OGS RrSpeafeachapsiior wpseritiondel
large variation in the convergence speed of the stochastic CALT
design framework, especially for the more stringent parameter
requirements of Specification Set 2.

algb PRI R AR ek alitlon e e @ Edg irdhd-

beling thresholds of the gain and NF for each executed iteration of
the algorithm are shown in Fig. 4. The 95" percentile of the gain
distribution exceeds 10 dB after completion of the second iteration
of the CALT algorithm when solving for Specification Set 1, and
exceeds 14 dB after completion of the fourth iteration of the CALT
algorithm for Specification Set 2. Thereafter, the labeling thresholds
are maintained at 10 dB and 14 dB, respectively. In comparison, the
th : et th :
Powd BRI EE Airbuton and he oo BELeRtte of S
beginning with the initial dataset, which indicates that the dataset
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10mW power budget
#— 20mW power budget

Gain /dB

265 27 275 28
Noise Figure /dB

285 29

Figure 3: Generated pareto front between gain and NF when
power and IP3 constraints remain satisfied.

contains sufficient points with positive labels for the two circuit
metrics. Therefore, the labeling thresholds for /P3 and power are
set to the corresponding specifications from the start of execution
of the CALT design flow.

The F'I-scores of the classifiers for each of the four performance
metrics when solving for Specification Set 2 are shown in Fig. 5.
The performance of the gain and NF classifiers is poor initially and
improves as the number of iterations increases. In contrast, the
performance of the power and IP3 classifiers is relatively constant
for all iterations. The difference in the performance of the classifiers
is due to the change in the labeling thresholds when training the
models for gain and NF. The results indicate that the convergence
to qualified design solutions is shown to be correlated with the
performance of the surrogate prediction models.

After sizing the components of the LNA with CALT, importance
rankings of the design variables are extracted from the random
forest models, as shown in Fig. 6. The size of inductor Ls1 (Ls2)
results in the greatest impact on all metrics except for the power
consumption, as Ly is critical for input matching. The rankings also
reveal the significant impact of the two biasing voltages Vp1 (Vi2)
and Vj3 on IP3 and power consumption, which are large-signal cir-
cuit performance metrics. The automatically extracted importance
rankings allow for the narrowing of the input search space to a
small set of critical design variables. In comparison, for manual
custom design, both analytic formulae and design expertise are
needed to identify the critical design variables best suited for the
optimization of a performance metric.

As a final step, decision trees are trained with the final dataset. A
tree for NF prediction trained with the final dataset generated from
completion of the CALT sizing methodology on Specification Set 2
is shown in Fig. 7. The design space is partitioned by the tree model,
and decision paths are shown that serve as criteria on whether a
design point is expected to satisfy the specified NF.

4 DISCUSSION

If the topology and technology node are fixed, the design space of
an analog circuit is also fixed. The necessary partitioning details
of the design space are, therefore, learned by CALT from simula-
tion data. With the binary classifiers, decision boundaries between
feasible and infeasible regions are identified for a given specifi-
cation. The optimizations are used to search for design points in
the common feasible regions of all models. As new design points
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Figure 4: Change in a) the 95" percentile of the gain distri-

bution and b) the 5" percentile of the NF distribution with
each iteration of the CALT algorithm. The results are used
to determine the labeling threshold of the gain and NF.

are actively queried, more information on both the design space
and the performance space is gathered. The performance of the
classifiers, therefore, improves, which results in the convergence
to a design solution.

Fine-tuning of the surrogate models is performed with the pro-
posed closed-loop learning system. The dataset determined during
the final iteration of the sizing flow is considered as the minimum re-
quired for convergence to a design solution. The CALT framework
is driven by the circuit specifications, which allows for customized
designs of analog circuits, where the specifications are adjusted
based on the design needs.

5 CONCLUSIONS

A simulation-based framework for classification with adaptive la-
beling thresholds (CALT ) is proposed to automatically size the
components of an analog circuit. Classifiers are applied to check
whether the target specifications are satisfied. The binary labeling
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Figure 5: Cross-validated F1-scores of the random forest clas-
sifiers for the gain, NF, IP3, and power, when targeting Spec-
ification Set 2.

Outol-Bag Feature Importance

Outol-Bag Feature Importance

MiM3 M5 Lgl L4l Lsi Cgi Vbl Ve Mi M3 M5 Lgl Ld1 Lsi Cgi Vbl Ve

(2) (b)

Outol-Bag Feature Importance

Outol-Bag Feature Importance

Mi M3 M5 Lgt L4 Lsi Cgl Vbl Ve Mi M3 M5 Lgt L4 Lsi Cgl Vbl Ve

(©) (d)

Figure 6: Variable importance rankings extracted for a) gain,
b) NF, ¢) IP3, and d) power for target Specification Set 2 after
completion of the CALT circuit sizing flow.

thresholds are adaptively adjusted based on a target percentile of a
circuit performance metric characterized by the dataset. Random
forest classifiers are executed for surrogate modeling that offer a
feature importance ranking of the design variables. CALT is applied
to the design of an LNA for two sets of target specifications. Qual-
ified design solutions are generated for two sets of specifications
with an average execution of 4 and 17 iterations of the optimiza-
tion loop, which require an average of 1287 and 2190 simulation
samples, and an average execution time of 5.4 hours and 23.2 hours,
respectively. CALT is a specification-guided analog sizing flow that
offers interpretable models and achieves high sample efficiency
without requiring the use of prior circuit models.
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M3(um) <= 347165

samples = 100.0%
value = [0.728, 0.272]
class =nf>2.8dB

Lg1(nH) <= 7.251
62.3%

3%
[0.57, 0.43]
nf>28dB

Vb3(V) <= 0.509
48.1%

[0.419, 0.581]
nf<2.8dB

M3(um) <= 319.539 Ls1(nH) <= 3.626
2.3% 41.2%

[0.349, 0.651]
nf<2.8 db

[0.833, 0.167]
nf>2.8 dB

20% ) 0.3% 35.4%
[0.903, 0.097] [0.4,0.6] [0.243, 0.757]
‘nf>28dB nf<2.8dB nf<28dB

Figure 7: A decision tree for NF prediction trained with the
final dataset after the completion of the component sizing
flow targeting Specification Set 2.
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