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It is proved that a map ϕ : R → S of commutative Noetherian rings that is essentially of

finite type and flat is locally complete intersection if and only if S is proxy small as a

bimodule. This means that the thick subcategory generated by S as a module over the

enveloping algebra S ⊗R S contains a perfect complex supported fully on the diagonal

ideal. This is in the spirit of the classical result that ϕ is smooth if and only if S is small

as a bimodule; that is to say, it is itself equivalent to a perfect complex. The geometric

analogue, dealing with maps between schemes, is also established. Applications include

simpler proofs of factorization theorems for locally complete intersection maps.

Introduction

This work concerns the locally complete intersection property for maps between com-

mutative Noetherian rings. While there are numerous characterizations of this property,

see [2], none are in terms purely of the structure of the derived category as a triangulated

category. Our main results, Theorems A and B, supply such characterizations. To set the

stage for the discussion, let ϕ : R → S be a homomorphism of commutative Noetherian

rings that is flat and essentially of finite type; the latter condition means that S is a

localization of a finitely generated R-algebra.
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2 B. Briggs et al.

We establish criteria for detecting when ϕ is locally complete intersection,

analogous to the following criterion for smoothness: ϕ is smooth if and only if S is

perfect when viewed as a complex over the enveloping algebra Se
R := S ⊗R S via the

multiplication map Se
R ։ S; see [14, Proposition (17.7.4)] and [22, Theorem 1]. The

condition that S is perfect is equivalent to the condition that S is isomorphic in D(Se
R),

the derived category of Se
R, to a bounded complex of finitely generated projective Se

R-

modules. We prove the following:

Theorem A. Let ϕ : R → S be a homomorphism of commutative Noetherian rings, flat

and essentially of finite type. Then ϕ is locally complete intersection if and only if the

thick subcategory of D(Se
R) generated by S contains a perfect complex whose support

equals that of S.

By the support of a complex W in D(Se
R) we mean the set of prime ideals q in

Spec(Se
R) such that H∗(W)

q
6= 0. A complex (in the derived category of some ring) is

proxy small if the thick subcategory it generates contains a perfect complex with the

same support; see Section 1. Thus, Theorem A can be rephrased as follows: ϕ is locally

complete intersection if and only if S is proxy small in D(Se
R).

There are other reformulations possible. Indeed, it follows from a result of

Hopkins [15] that if the thick category generated by S contains a perfect complex with

support equal to that of S, then it has to contain every perfect complex whose support

is contained in that of S; see 1.12. So Theorem A is equivalent to the statement ϕ is

locally complete intersection if and only if S generates the Koszul complex on a finite

generating set for the kernel of the multiplication map.

Theorem A is a consequence of Theorem 5.2 that applies to maps of finite flat

dimension, which is the natural context for the locally complete intersection property.

That result is in turn deduced from Theorem 3.2 concerning surjective homomorphisms;

the latter brings out another feature of complete intersections:

Theorem B. Let ϕ : R → S be a surjective homomorphism of finite flat dimension.

Then ϕ is locally complete intersection if and only if any S-complex that is proxy small

as an R-complex is also proxy small over S.

In other words, ϕ is complete intersection if and only if proxy smallness

ascends along ϕ. The forward implication that proxy smallness ascends for complete

intersection maps is the content of [12, Theorem 9.1], so the result above provides a
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LCI maps and the proxy small property 3

converse. For this direction, it suffices to test that ascent holds for complexes with finite

length homology. When S is local one can even specify a finite collection of S-complexes

of finite length homology whose proxy smallness detects the complete intersection

property for ϕ; see Theorem 3.12.

The notion of proxy small complexes was introduced in [11] as a tool in duality

theory. It has since become clear that this concept captures also interesting geometric

properties of maps, and that this sheds a new light on factorization theorems. For

example, in Section 4 we use Theorem B, more precisely, Theorem 3.2, to give simple

proofs of some fundamental results concerning the factorization of locally complete

intersection maps, first established by Avramov [1] as a consequence of his solution of

a conjecture of Quillen concerning cotangent complexes.

The statement of Theorem B and its proof are inspired by a result of the

4th author [21, Theorem 5.2] characterizing local rings that are complete intersection

in terms of proxy smallness of complexes, thereby settling a question raised in [12,

Question 9.10]. A key new ingredient in our proof is the use of Hochschild cohomology

and its action on derived categories. Recent work [18] of the 3rd author is also critical

for it allows us to deduce global statements from local ones. Indeed, the 3rd author [18,

Theorem 5.9] used [21, Theorem 5.2] directly to establish Theorem A when R is a field.

Theorems A and B extend to morphisms of schemes, but the appropriate notion

of proxy smallness involves tensor-generation. This is explained in Section 6. Keeping

in mind that geometrically the multiplication map is the diagonal embedding, Theorem

A readily yields the following result.

Theorem C. Let f : Y → X be a flat, essentially of finite type, separated, morphism

of Noetherian schemes, and δ : Y → Y ×X Y the diagonal embedding. Then f is locally

complete intersection if and only if the thick ⊗-ideal of D(Y ×X Y) generated by δ∗OY

contains a perfect complex whose support is the diagonal.

As with Theorem A , but this time using a result of Thomason [28, Theo-

rem 4.1], one can reformulate the theorem above to say that f is locally complete

intersection if and only if δ∗OY tensor-generates a Koszul complex whose support is

the diagonal.

The derived category of a commutative ring has been a valuable source of

inspiration for results, if not also their proofs, in other tensor triangulated categories,

like the category of spectra, or the stable category of modular representations of

finite groups, and also in triangulated categories arising in non-commutative geometry.
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4 B. Briggs et al.

Theorems A and B open the way to exploring notions of complete intersection rings and

maps in these categories; see Remark 5.4.

1 Proxy Smallness

This section is mainly a collection of definitions and observations concerning proxy

small objects in derived categories of rings and dg (= differential graded) algebras.

Although the main results involve only rings, their proofs exploit dg structures

extensively. We take [2, 5] as our basic references on this topic. By default the grading

will be lower, so differentials decrease degree.

Throughout, A will be a dg algebra concentrated in non-negative degrees. Given

a dg A-module M we view its homology H∗(M) as a graded H∗(A)-module. When we

speak of elements in a graded object only homogeneous elements are considered.

A dg algebra A is equipped with an augmentation map A −→ H0(A). It is a map

of dg algebras where H0(A), like any ring, is viewed as a dg algebra concentrated in

degree zero with zero differential. Through this map any dg H0(A)-module (that is to

say, a complex of H0(A)-modules) inherits a structure of a dg A-module.

We write D(A) for the derived category of left dg A-modules, with its canonical

structure as a triangulated category, equipped with suspension functor 6.

1.1

A thick subcategory of D(A) is a triangulated subcategory closed under retracts. As the

intersection of thick subcategories is again a thick subcategory, for each object M of

D(A) there exists a smallest thick subcategory, with respect to inclusion, containing

M; we denote it thick(M). See [4, §2] for a constructive description of this category.

Following [11, 12], we say that a dg module N is finitely built from M, or that M finitely

builds N, if N is in thick(M). This situation is indicated by writing M |HA N; we drop the

A from the notation if the ambient category is unambiguous.

A localizing subcategory of D(A) is a triangulated subcategory closed under

arbitrary coproducts; such a subcategory is thick. Once again mimicking [11, 12], we

write M ⊢A N to indicate that N is in the localizing subcategory generated by M, and

say M builds N, or that N is built by M.

It is straightforward to verify that the relations ⊢ and |H are transitive; this will

be used without further mention. Evidently, if M |H N then M ⊢ N; the converse does not

hold for arbitrary pairs of dg A-modules.
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LCI maps and the proxy small property 5

1.2

All objects in D(A) are built from A; in symbols: A ⊢ M for any M in D(A). This is

a restatement of the fact that every dg module has a semifree resolution; see [13,

Chapter 6]. It has long been known that the objects that are finitely built from A,

that is to say the perfect dg modules, are precisely the “small objects” of D(A); see,

for example, [16, Theorem 2.1.3]. Recall that a dg A-module M is small (or compact)

provided HomD(A)(M, −) commutes with arbitrary direct sums. When M and N are small

dg A-modules

M ⊢ N implies M |H N . (1.2.1)

For a proof see for example [20, Lemma 2.3] and also [23, Corollary 3.14].

1.3

Let ϕ : A → B be a morphism of dg algebras. If M ⊢B N or M |HB N then M ⊢A N

or M |HA N, respectively, viewing M and N as dg A-modules by restricting scalars

along ϕ.

1.4

As in [11], a dg A-module M is proxy small if there exists a small dg A-module K such

that M |H K and K ⊢ M. We say that K is a small proxy for M. Evidently small objects are

proxy small. When A is a commutative Noetherian ring, some of these conditions can be

expressed in terms of support; see 1.13.

The following definition is central to this work.

1.5

Let ϕ : A → B be a morphism of dg algebras. We say that proxy smallness ascends along

ϕ if each dg B-module that is proxy small in D(A) is proxy small in D(B). The phrase

proxy smallness descends along ϕ means that each proxy small dg B-module is also

proxy small in D(A). Often the focus will be on ascent (or descent) of proxy smallness

for dg modules in a subcategory C of D(B), and then we speak of proxy smallness of

objects in C ascending/descending along ϕ.

For example, proxy smallness ascends and descends along ϕ if it is a quasi-

isomorphism, for then the base change functor F := B ⊗L
A − : D(A) → D(B) is an exact

equivalence of categories with quasi-inverse the restriction functor.
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6 B. Briggs et al.

From the definition it is clear that whether an object in D(A) is small or not

depends only the structure of D(A) as a triangulated category. The following remark is

obvious, but also obviously useful.

1.6

Let A and B be dg algebras and F : D(A) → D(B) an exact functor preserving coproducts

and small objects. If M is proxy small in D(A) with small proxy K, then F(M) is proxy

small in D(B) with small proxy F(K). The converse holds if F is an exact equivalence.

Lemma 1.7. Let A be a dg algebra. The following statements hold.

(1) The dg A-module H0(A) builds any M in D(A) with Hi(M) = 0 for |i| ≫ 0.

(2) If Hi(A) = 0 for i ≫ 0, then H0(A) is proxy small if and only if H0(A) |H A.

Proof. Set B := H0(A) and let ε : A → B be the augmentation map.

(1) We verify this claim by an induction on the number of nonzero homology

modules in M. Set i := inf H∗(M); we may assume this is finite, else M ≃ 0. In D(A) soft

truncation yields an exact triangle

N −→ M −→ 6i Hi(M) −→,

where the induced map Hn(N) → Hn(M) is bijective for n 6= i and Hi(N) = 0. The

dg A-module structure on Hi(M) is the one induced via ε. Now B ⊢ Hi(M) in D(B)

and hence also in D(A). Since N has one fewer nonzero homology modules than M

the induction hypothesis yields that B ⊢A N. The exact triangle above then implies

that B ⊢A M.

(2) The non-trivial implication is that when B is proxy small it finitely builds

A. Suppose K is a small proxy for B; in particular, K builds B. By part (1) and the

boundedness hypothesis, B builds A, and it follows that so does K. However, K and

A are both small objects so K finitely builds A; see (1.2.1). As B |H K, transitivity implies

once again that B |H A. �

Example 1.8. The preceding result does not extend to dg algebras A with Hi(A) 6= 0

for infinitely many i. For example, if R is any commutative ring and A := R[x], viewed as

a dg algebra with |x| ≥ 1 and zero differential, then R = H0(A) is small in D(A), and so

proxy small. However, it does not build A, let alone finitely.
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LCI maps and the proxy small property 7

Proposition 1.9. Let R be a commutative Noetherian ring, A a dg R-algebra, and let

M, N be dg A-modules. Assume the R-modules H∗(A), H∗(M), and H∗(N) are finitely

generated. Then M |HA N if and only if Mp |HAp
Np for each p in Spec R.

Proof. One way to verify this is to mimic the argument for [18, Theorem 3.6] to get the

desired result. Another is to invoke the local-to-global principle [6, Theorem 5.10], for

the triangulated category consisting of dg A-modules with homology finitely generated

over R, viewed as an R-linear category. �

In this work the focus is on proxy small objects in D(R), the derived category of a

commutative Noetherian ring R. Next we recollect some results specific to this context.

We write D
fg(R) for the subcategory of D(R) consisting of R-complexes M for which the

R-module H∗(M) is finitely generated. Similarly, we write D
fl(R) for the subcategory of

R-complexes M for which H∗(M) has finite length.

1.10

Let R be a commutative Noetherian ring. The support of an object M in D(R) is the subset

of Spec R given by

suppR M := {p ∈ Spec R | k(p)⊗L
R M 6≃ 0},

where k(p) is the residue field Rp/pRp at p. For M ∈ D
fg(R) one has

suppR M = {p ∈ Spec R | H∗(M)
p

6= 0} = V(annR(H∗(M)))

and hence it is a closed subset of Spec R. For example, if K is the Koszul complex on a

finite generating set for an ideal I, then suppR K = V(I).

For any subset U of Spec R, the set of R-complexes M with suppR M ⊆ U is a

localizing subcategory of D(R). In particular, if M ⊢ [R]N, then suppR M ⊇ suppR N. It

follows that if M is proxy small, then suppR M is a closed subset of Spec R.

The observation above relating supports to building has a converse, established

by Neeman [19, Theorem 2.8].

1.11

If M, N are objects in D(R) with suppR M ⊇ suppR N, then M ⊢ [R]N.
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8 B. Briggs et al.

Using this result and (1.2.1) Neeman deduces the result below concerning finite

building, first proved by Hopkins [15] using different techniques.

1.12

If M, N are small objects in D(R) with suppR M ⊇ suppR N, then M |H [R]N.

The preceding results imply the following characterization of proxy small

objects.

Corollary 1.13. Let R be a commutative Noetherian ring and M an R-complex. Then

the following are equivalent:

(1) M is proxy small;

(2) M finitely builds a small object with support equal to suppR M;

(3) suppR M is a closed subset of Spec R and M finitely builds the Koszul

complex on a finite subset x of R for which V(x) = suppR M.

2 Hochschild Cohomology

In this section we discuss the (derived) enveloping algebras and Hochschild cohomology

of dg R-algebras; [5] is a suitable reference for this material. We are going to be

interested in two aspects: One is Hochschild cohomology as a source of operators on

the derived category of A. The other is the smallness and proxy smallness of A as a

module over Ae
R. In what follows dg algebras will be assumed to be graded-commutative:

a · b = (−1)|a||b|b · a for a, b in A.

2.1

Given morphisms of dg R-algebras β : B → A and ζ : C → A, a morphism φ : B → C is

over A if ζφ = β. We say that B and C are quasi-isomorphic over A to mean that there

is a zig-zag of quasi-isomorphisms over A linking B to C. Given the discussion in 1.5 in

this situation it is easy to see that A is small, respectively proxy small, in D(B) if and

only if it is small, respectively proxy small, in D(C).

2.2

Let A be a dg R-algebra and

Ae
R := A ⊗L

R A ,
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LCI maps and the proxy small property 9

its derived enveloping algebra. When the graded R-module underlying A is flat the

canonical map Ae
R

∼
−→ A ⊗R A is a quasi-isomorphism.

A dg R-algebra A′ is homotopically flat if tensoring with A′ over R preserves

quasi-isomorphisms. If ε′ : A′
։ A is a homotopically flat dg R-algebra resolution of

A then Ae
R is represented by A′ ⊗R A′. Different homotopically flat resolutions yield dg

algebras that are quasi-isomorphic over A: If ε′′ : A′′
։ A is another homotopically flat

resolution, then A′ ⊗R A′ and A′′ ⊗R A′′ are quasi-isomorphic over A. For this reason we

write µ : Ae
R → A to denote a representative of the map

From 2.1 it follows that the property that A is small, or proxy small, in D(Ae
R) is

independent of the choice of a homotopically flat resolution of A. In fact, this condition

is equivalent to A being small, respectively, proxy small, as a dg B-module for any dg

R-algebra B quasi-isomorphic to Ae
R over A.

2.3

The Hochschild, or Shukla, cohomology of a dg R-algebra A with coefficients in a dg

A-module M is

HH∗(A/R; M) := Ext∗
Ae

R
(A, M) ,

where A is viewed as a dg Ae
R-module via µ. We abbreviate HH∗(A/R; A) to RA. This is a

graded-commutative R-algebra. In what follows we exploit the fact that it acts on D(A),

in the sense of [17]. This action comes about as follows: For any class α in HH∗(A/R) and

M a dg A-module, let

χM(α) : M → 6|α|M

be the morphism in D(A) defined by the commutative diagram
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10 B. Briggs et al.

Thus, we get a homomorphism of graded R-algebras

χM : HH∗(A/R) −→ Ext∗
A(M, M) ,

called the characteristic map of M. We denote this χA
M when the dg algebra A needs to

be specified. This map has the property that for N in D(A) and element ζ ∈ Ext∗
A(M, N)

one has

χN(α)ζ = (−1)|α||ζ |ζχM(α) .

In particular, χM(α) lies in the graded-center of Ext∗
A(M, M); see [17] for details.

2.4

Fix an α in HH∗(A/R) and an M in D(A). We write M//α for Cone(χM(α)), so there is an

exact triangle

in D(A). The result below is one of the main reasons for our interest for the action of

Hochschild cohomology on D(A). We do not know if such a statement holds when α is

an arbitrary element in the center of D(A).

Lemma 2.5. If M (finitely) builds N, then M//α (finitely) builds N//α. In particular, if M

is proxy small then so is M//α.

Proof. The key point is that the action of α on D(A) is induced by a tensor product:

M//α = M ⊗L
A A//α .

Hence, it commutes with exact triangles, retracts, and (possibly infinite) direct sums. It

also preserves small objects. Then 1.6 implies the desired result. �

2.6

Given an ideal a of HH∗(A/R), an HH∗(A/R)-module is a-power torsion if each of its

elements is annihilated by a power of a. When the ideal a can be generated by finitely
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LCI maps and the proxy small property 11

many elements, say a1, . . . , an, and a module is a-power torsion if and only if it is (ai)-

power torsion for each i.

Lemma 2.7. Let N be a dg A-module and a ⊆ HH∗(A/R) an ideal. If a dg A-module W

is such that the HH∗(A/R)-module Ext∗
A(W, N) is a-power torsion, then so is Ext∗

A(M, N)

for any M finitely built from W.

Proof. The subcategory of D(A) with objects L for which the HH∗(S/R)-module

Ext∗
A(L, N) is a-power torsion is thick. This implies the desired result. �

Next we record a computation of Hochschild cohomology that will be often used;

for example, see Lemma 3.5 and especially its proof.

Lemma 2.8. Let ϕ : R → S be a surjective homomorphism of commutative rings with

kernel I. For each S-module M there is an isomorphism of S-modules

functorial in M. Moreover, given surjective homomorphisms of rings R
ϕ̃
−→ S̃

ϕ̇
−→ S with

ϕ̇ϕ̃ = ϕ, for Ĩ = Ker(ϕ̃) the following diagram is commutative

(2.8.1)

Here the S-module M is viewed as an S̃-module by restriction of scalars along ϕ̇.

Proof. The map δϕ(M) is part of a family induced by the universal Atiyah class of ϕ

and involves the cotangent complex; see [9, Section 5]. We only need δϕ(M) which can be

defined quite simply: The multiplication map µ : Se
R → S embeds in an exact triangle

J −→ Se
R

µ
−→S −→
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12 B. Briggs et al.

in D(Se
R). For any S-module M viewed as an Se

R-module via µ, the exact triangle above

induces isomorphisms

Exti
Se

R
(J, M) ∼= Exti+1

Se
R
(S, M) for i ≥ 1.

We claim that Ext1
Se

R
(J, M) ∼= HomS(I/I

2, M); with this identification δϕ(M) is the

isomorphism above for i = 1. The stated functoriality is easily verified.

As to the claim, as ϕ is surjective the natural map H0(S
e
R) = S ⊗R S → S is an

isomorphism, so from the exact triangle above we obtain

Hi(J) =





0 for i ≤ 0

TorR
i (S, S) for i ≥ 1 .

It is a standard computation that TorR
1 (S, S) ∼= I/I2 therefore truncation yields the 1st

isomorphism below

Ext1
Se

R
(J, M) ∼= Ext0

Se
R
(I/I2, M) ∼= HomS(I/I

2, M) .

The 2nd one holds as the action of Se
R on I/I2 and M factors through S. �

3 Surjective Maps

In this section we prove Theorem B from the introduction. Throughout, R will be a

commutative Noetherian ring.

3.1

A surjective homomorphism ϕ : R → S is complete intersection if Ker(ϕ) can be generated

by a regular sequence; it is locally complete intersection if for each prime q ∈ Spec S, the

map ϕq is complete intersection. There is no distinction between the conditions when R

is local. It was proved in [12, Theorem 9.1] that proxy smallness ascends and descends,

in the sense of 1.5, along complete intersection maps. We prove the converse as part of

the result below:

Theorem 3.2. Let ϕ : R → S be a surjective homomorphism of commutative Noetherian

rings. The following conditions on ϕ are equivalent:

(1) ϕ is locally complete intersection;
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LCI maps and the proxy small property 13

(2) S |H [Se
R]Se

R;

(3) S is proxy small in D(Se
R) and TorR

i (S, S) = 0 for all i ≫ 0;

(4) proj dimR S is finite and proxy smallness ascends along ϕ;

(5) proj dimR S is finite and proxy smallness of objects in D
fl(S) ascends along

ϕ.

The condition that proj dimR S is finite is equivalent to S being small in D(R),

so condition (4) involves only the structure of the appropriate derived categories as

abstract triangulated categories.

The proof of Theorem 3.2 takes some preparation and is given in 3.9. It builds

on ideas from [21] and extends that results therein, as is explained in 3.13.

3.3

Let ϕ : (R,m, k) → S be a surjective map of local rings, and let ǫ : S → k be the canonical

surjection. It induces a morphism of dg S-algebras Se
R → S ⊗L

R k. Recall the standard

diagonal isomorphism

(M ⊗R N)⊗S⊗RS S
∼=
−→ M ⊗S N .

A derived version of this isomorphism yields quasi-isomorphisms of dg algebras

(S ⊗L
R k)⊗L

Se
R

S ≃ S ⊗L
S k ≃ k .

This map and adjunction yield the isomorphism in the definition of the following

homomorphism of S-modules

ψS : HH∗(S/R; k) ∼= Ext
S⊗L

Rk
(k, k) −→ ExtS(k, k) .

The map heading right is induced by restriction along the morphism of dg algebras

S → S ⊗L
R k, and its compatibility with the augmentations to k.

It is not hard to verify that the composition of the maps

is nothing but the characteristic map χk described in 2.3.

The next results concern the following scenario.
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14 B. Briggs et al.

3.4

Let ϕ : R → S be a surjective local homomorphism admitting a factorization

(R, m, k)
ϕ̃

−→S̃
ϕ̇

−→S

such that for Ĩ := Ker ϕ̃ and I := Kerϕ the induced map Ĩ/m̃I → I/mI is injective.

For any element s in HH2(̃S/R), we write k//s for the mapping cone of the element

χ S̃
k (s) in Ext2

S̃
(k, k). Restriction induces a functor

ϕ̇∗ : D(S) → D(̃S) ,

of triangulated categories.

Lemma 3.5. With notation and hypotheses as in 3.4 the induced maps

one has an inclusion Im(Ext2
ϕ̇(k, k)) ⊇ Im(χ S̃

k ).

Proof. The essence of the proof is a commutative diagram of k-vector spaces

with surjective maps and isomorphisms as indicated. The δ maps are from Lemma 2.8.

Given this the desired inclusion can be verified by chasing around the diagram.

As to the commutativity of the diagram: The squares in the top row are

commutative by the functoriality of δϕ̃(−) with respect to the ring argument and the

module argument. The vertical maps ψS and ψ S̃ are from 3.3, and the commutativity

of that square is by functoriality of the construction, which is readily verified. The

commutativity of the triangle has been commented on already in 3.3.
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LCI maps and the proxy small property 15

It remains to verify the surjectivity of the map in the top left square: Since the

map of k-vector spaces Ĩ/m̃I → I/mI is injective, it is split-injective. Therefore, applying

Homk(−, k) yields surjectivity of the map below

Homk(I/mI, k)։ Homk(̃I/m̃I, k) .

This identifies with the surjection in the top left square via the adjunction isomorphism

HomS(N, k) ∼= Homk(N/mN, k). This completes the proof of the claims about the

commutative diagram above, and hence that of the result. �

The result below is a crucial input in the proof that (5)⇒(1) in Theorem 3.2.

Lemma 3.6. With hypotheses as in 3.4, given an element s in HH2(̃S/R) there exists

an element t in Ext2
S(k, k) such that ϕ̇∗(k//t)

∼= k//s in D(̃S). Moreover, for any such t, the

element s2 annihilates Ext∗
S̃
(ϕ̇∗(k//t), −).

Proof. By Lemma 3.5, there exists an element t in Ext2
S(k, k) whose image under

Ext2
ϕ̇(k, k) equals χ S̃

k (s). This means that in D(̃S) there is a commutative diagram

As ϕ̇∗ is exact, the 1st part of the statement follows. The 2nd part is clear. �

In the proof of Theorem 3.2 we also need a criterion for detecting small

complexes through the action of Hochschild cohomology.

3.5

Let ϕ : (R,m, k) → S be a surjective local complete intersection map with kernel I.

Set N := HomS(I/I
2, S), this is the normal module of ϕ. The Hochschild cohomology

algebra HH∗(S/R) is graded-commutative so the map δϕ(S) : N → HH2(S/R) described in

Lemma 2.8 induces a homomorphism of S-algebras

SymS(N ) −→ HH∗(S/R) .

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
b
0
4
1
/6

2
5
0
8
7
9
 b

y
 g

u
e
s
t o

n
 2

6
 A

p
ril 2

0
2
1



16 B. Briggs et al.

Since ϕ is complete intersection the S-module N is free of rank the codimension of S in R

and the map above is bijective; see [3, Proposition 2.6]. In particular, the ring HH∗(S/R)

is Noetherian. From op. cit. one also gets that for any S-module M the natural map is an

isomorphism:

(3.7.1)

Later on we will use the fact that this isomorphism is functorial in M.

Lemma 3.8. Let ϕ be as in 3.5 and M an S-complex. If M is small in D(R) and for some

generating set s1, . . . , sc for the S-module HH2(S/R) the HH∗(S/R)-module Ext∗
S(M, k) is

(si)-power torsion for each i, then M is small in S.

Proof. Since M is small in D(R), the HH∗(S/R)-module Ext∗
S(M, k) is finitely generated;

see, for example, [3, Corollary 6.2]. Since HH2(S/R) generates HH∗(S/R) as an S-

algebra, the hypothesis implies that Ext∗
S(M, k) is HH>1(S/R)-power torsion, and hence

Exti
S(M, k) = 0 for i ≫ 0. Thus, M is small in S. �

3.9

Proof. of Theorem 3.2 (1)⇒(3) As ϕ is locally complete intersection its flat dimension

is finite so the R-module H∗(S
e
R) = TorR

∗ (S, S) is finitely generated; in particular

TorR
i (S, S) = 0 for i ≫ 0. It remains to check that S is proxy small in D(Se

R). When R

is a local ring Ker(ϕ) is generated by a regular sequence and then the desired result

is contained in the proof of [12, Theorem 9.1]. The hypothesis that ϕ is complete

intersection is local on Spec S, meaning that ϕ is complete intersection if and only if the

map of local rings ϕq is complete intersection for each q in Spec S. This is by definition.

We claim that the conclusions that S is proxy small in D(Se
R) is also local on Spec S.

Indeed the R-module TorR
∗ (S, S) is finitely generated so Proposition 1.9 applies

to the dg S-algebra A := Se
R and M := S to yield that S is proxy small in D(Se

R) if and only

if Sq is proxy small in D((Se
R)q). It remains to observe that (Se

R)q
∼= (Sq)

e
Rq∩R

.

(2)⇔(3) Since R → S is surjective, H0(S
e
R) = S. Thus, Lemma 1.7 part (2) yields the

desired equivalences.

(2)⇒(4) The assumption that S |H [Se
R]Se

R implies that proxy smallness ascends

along ϕ; see [12, Theorem 8.3]. It remains to verify that S is small in D(R). Since S |H

[Se
R]Se

R, for any S-module M applying (−)⊗L
S M yields M |H [R](S ⊗L

R M), hence H∗(S ⊗L
R M)
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LCI maps and the proxy small property 17

is bounded whenever H∗(M) is bounded. Since H∗(S ⊗L
R M) = TorR

∗ (S, M) it follows that

flat dimR S < ∞, and as ϕ is surjective we can conclude that S is small over R.

(4)⇒(5) This is a tautology.

(5)⇒(1) The desired conclusion can be checked locally at the maximal ideals of

S, and the hypothesis is easily seen to descend to localization at any such ideal. Thus,

we may assume ϕ : (R,m, k) → (S, n, k) is a surjective local homomorphism.

Choose a maximal regular sequence x in Ker(ϕ)\mKer(ϕ) and set S̃ := R/(x). The

map ϕ factors as

where ϕ̃ is complete intersection and Ker(ϕ̇) contains only zero-divisors; the latter

condition implies that either S̃ = S or S is not small in D(̃S); see [10, Corollary 1.4.7].

We shall prove that under the hypothesis S is small in D(̃S) yielding that ϕ = ϕ̃ and

hence that ϕ is a complete intersection, as desired.

The argument involves a series of reductions. We are now in context of 3.4, and

we keep the notation from there. The desired conclusion is that ϕ̇∗(S) is small. Let K

be the Koszul complex on a set of generators for the maximal ideal of S. By a standard

reduction recalled in [12, Remark 5.6] it suffices to verify that the S̃-complex ϕ̇∗(K) is

small. We do so by checking that the hypotheses of Lemma 3.8 hold for the complete

intersection ϕ̃ and M := ϕ̇∗(K).

As ϕ∗(S) is small in D(R), by assumption, so is ϕ∗(K) for it is finitely built out of

ϕ∗(S). Next, fix an element s in HH2(̃S/R) and let t be the element in Ext2
S(k, k) provided

by Lemma 3.6. Thus, there is an isomorphism

ϕ̇∗(k//t)
∼= k//s in D(̃S).

Since k is proxy small in D(̃S) so is k//s; this uses the fact s comes from HH∗(̃S/R); see

Lemma 2.5. Thus, ϕ̇∗(k//t) is proxy small in D(̃S). Since R → S̃ is complete intersection,

this implies that the R-complex

ϕ∗(k//t)
∼= ϕ̃∗(ϕ̇∗(k//t))

is proxy small in D(R) by [12, Theorem 9.1].

Evidently the S-complex k//t is in D
fl(S) hence the hypothesis of Theorem 3.2(5)

yields that k//t is proxy small in D(S). So k//t finitely builds K in D(S); this is by Corollary

1.13. It follows that ϕ̇∗(k//t) finitely builds ϕ̇∗(K). We can now apply the 2nd part of
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18 B. Briggs et al.

Lemma 3.6 and Lemma 2.7 to deduce that the HH∗(̃S/R)-module Ext∗
S̃
(ϕ̇∗(K), k) is (s)-

power torsion. Then Lemma 3.8 yields that ϕ̇∗(K) is small.

This wraps up the proof that (5)⇒(1) and thereby that of Theorem 3.2. �

3.10

In Theorem 3.2, it seems plausible one can relax the hypothesis in (4) to: proj dimR S is

finite and any M in D
fg(S) that is small in D(R) is proxy small in D(S). This condition

already implies ϕ is quasi-Gorenstein, that is to say: RHomR(S, R) ≃ 6cS in D(S), where

c = dim R − dim S; see [12, Theorem 6.7].

A shortcoming in the statement of Theorem 3.2(5) is that it involves all of

D
fl(S). When R is local a careful reading of the proof shows that one needs to check

the hypothesis on finitely many complexes. In fact, these complexes can specified in

advance. This is clarified in the discussion below.

3.11

Let (R,m, k) be a local ring and let π(R) denote its homotopy Lie algebra; see [2, Chapter

10]. This is a naturally constructed graded subspace of the graded k-vector space

Ext∗
R(k, k), so an element ζ ∈ πn(R) represents a morphism k → 6nk in D(R). For what

follows we care only about π2(R), and that can be made explicit.

Let ρ : Q → R be a minimal Cohen presentation of R; that is to say, Q is a regular

local ring with dim Q equal to the embedding dimension of R. Such a presentation exists

when, for example, R is m-adically complete; this is part of Cohen’s structure theorem

[10, Theorem A.21]. With J := Ker(ρ) the image of the composition

is precisely π2(R), and the composite map is a bijection onto its image; see [2, Example

10.2.2] or [25].

For any surjective local homomorphism ϕ : R → S one gets a map

π2(ϕ) : π2(S) −→ π2(R) ,

of k-vector spaces, making π2(−) into a functor on the category of local rings and

surjective local homomorphisms. Moreover, the image of the map

ψS : HH2(S/R; k) → Ext2
S(k, k)

is Ker(π2(ϕ)). This observation is a key ingredient in the proof of the next result.
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LCI maps and the proxy small property 19

Theorem 3.12. Let ϕ : (R,m, k) → S be a surjective homomorphism of local rings with

proj dimR S finite. The following conditions are equivalent:

(1) ϕ is complete intersection;

(2) For each t ∈ Ker(π2(ϕ)) the S-complex k//t is proxy small.

(3) For some generating set t1, . . . , td for the k-vector space Ker(π2(ϕ)), the S-

complexes k//ti are proxy small.

Proof. (1)⇒(2) This follows from Lemma 2.5 and the fact that the natural maps

are surjective. The surjectivity of the map on the left is a consequence (3.7.1) that holds

because ϕ is complete intersection. The surjectivity of the map on the right has been

commented on earlier.

(2)⇒(3) This is a tautology.

(3)⇒(1) The proof for this implication follows that of (5)⇒(1) in Theorem 3.2. We

keep the notation from there. Recall the factorization of ϕ:

R
ϕ̃

−→S̃
ϕ̇

−→S

with ϕ̃ defined by a maximal regular sequence in Ker(ϕ) \ mKer(ϕ). Let K be the Koszul

complex on a finite set generating set for the maximal ideal of S̃. As before the strategy

is to prove that ϕ̇∗(K) is small in D(̃S). The main point is to verify that the HH∗(̃S/R)-

module Ext∗
S̃
(ϕ̇(K), k) is (s)-power torsion for all s from a generating set for the S̃-module

HH2(̃S/R), for then we can invoke Lemma 3.8.

The new observation here is that since ϕ̇∗(K) is induced from D(S) we need only

worry about a subset of a generating for the S̃-module HH2(̃S/R). Indeed, consider maps

Since the action of HH2(̃S/R) on Ext∗
S(ϕ̇∗(K), k) factors through Ext2

S̃
(k, k) it suffices to

verify the following statement.

Claim. There exist elements s1, . . . , sd in HH2(̃S/R) such that

(a) χ S̃
k (s1), . . . ,χ

S̃
k (sd) span the image of χ S̃

k as a k-vector space;
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20 B. Briggs et al.

(b) χ S̃
k (si) is the image of ti under the map Ext2

ϕ̇(k, k), for all i.

Once we verify this claim, arguing as in the proof of Theorem 3.2 leads to the

desired conclusion.

�

As to verifying the claim, the functoriality of π2(−) gives a commutative diagram

Thus, one gets an induced map π2(ϕ̇) in the following diagram of k-vector spaces:

The commutative square is from Lemma 3.5. The surjectivity of the map pointing

left is from (3.7.1) applied to ϕ̃. It remains to take s1, . . . , sd to be any preimages of

π2(ϕ̇)(t1), . . . ,π
2(ϕ̇)(td) under χ S̃

k .

3.13

A local ring (S, n) is complete intersection if for some (equivalently, any) Cohen

presentation ϕ : R → Ŝ of the n-adic completion of S, the map ϕ is complete intersection;

see [10, Section 2.3]. A commutative Noetherian ring S is locally complete intersection if

it is complete intersection at each prime ideal of S. Theorem 3.2 applied locally to Cohen

presentations recovers a characterization of complete intersections established in [21,

Theorem 5.2] and [18, Corollary 5.6].

Corollary 3.14. Let S be a commutative Noetherian ring. The following conditions are

equivalent:

(1) S is locally complete intersection;

(2) Each object in D
fg(S) is proxy small;

(3) Each object in D
fl(S) is proxy small.
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LCI maps and the proxy small property 21

A natural question is whether the locally complete intersection property is

detected by proxy smallness of modules, that is to say, S-complexes with homology

concentrated in a single degree; see [8] for some positive results.

4 Factorization of Locally Complete Intersection Maps

In this section we demonstrate the strength of Theorem 3.2 by deducing some fun-

damental results on complete intersection rings and maps. We restrict ourselves to

treating surjective local maps for reasons laid out in Remark 5.4. As a warm up we

recover a well-known result tracking the complete intersection property along maps of

finite projective dimension.

Corollary 4.1. Let ϕ : R → S be a surjective local map with proj dimR S finite. Then

the ring S is complete intersection if and only if the ring R and the map ϕ are complete

intersection.

Proof. Assume S is complete intersection. By Corollary 3.14 objects in D
fl(S) are

proxy small so the condition in Theorem 3.2(5) holds trivially and hence ϕ is complete

intersection. To verify that R is complete intersection it suffices to verify that any

nonzero M in D
fl(R) finitely builds a nonzero small object; this is where the hypothesis

that H∗(M) has finite length is used. Since R |H S, by hypothesis, one gets that

M |H [R]S ⊗L
R M. View S ⊗L

R M as an object in D(S). Since proj dimR S is finite, the length

of the S-module H∗(S ⊗L
R M) is finite; it is also nonzero by Nakayama’s lemma. Since S is

complete intersection, S ⊗L
R M builds a nonzero small object in D(S), and that object is

also small in R, since proj dimR S is finite. This is the desired conclusion.

Suppose R and ϕ are complete intersection. The hypothesis on R implies that

any M ∈ D
fg(S) is proxy small in D(R), by Corollary 3.14, and then the hypothesis on

ϕ implies that M is also proxy small in D(S), by Theorem 3.2. Another application of

Corollary 3.14 yields that S is complete intersection. �

The forward implication in the result below is easy to prove directly from the

definitions; it is equally simple to deduce it from Theorem 3.2. The converse statement

is due to Avramov [1, 5.7]. The proof in op. cit. is complicated and involves nontrivial

properties of André–Quillen homology. The proof presented below is more elementary

and natural from the perspective of ascent of proxy smallness.

Corollary 4.2. Let R
ϕ
−→ S

ψ
−→ T be surjective local homomorphisms.
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22 B. Briggs et al.

If the maps ϕ and ψ are complete intersection, then so is ψϕ. The converse holds

if, in addition, proj dimS T is finite.

Proof. We make repeated use of Theorem 3.2 without specific reference.

Suppose ϕ and ψ are complete intersection. Since R |H [R]S and S |H [S]T and

hence S |H [R]T, it follows that R |H [R]T, that is to say, proj dimR T is finite. Moreover,

given an M ∈ D(T), if M is proxy small in D(R), then it is proxy small in D(S), since ϕ is

complete intersection, and hence in D(T), since ψ is complete intersection. Thus, proxy

smallness ascends along ψϕ and hence it is a complete intersection.

Now suppose ψϕ is complete intersection and proj dimS T is finite, that is to say,

S |H [S]T. The 1st condition implies R |H [R]T and then the 2nd one implies R |H [R]S, by

[12, Remark 5.6]. It follows that ψ is complete intersection: Any T-complex that is proxy

small in D(S) is proxy small in D(R), since R |H [R]S, and hence is proxy small in D(T),

since ψϕ is complete intersection.

Now ψϕ and ψ are both complete intersection; we prove that so is ϕ. Fix M in

D(S) with nonzero finite length homology such that M is proxy small in D(R). It suffices

to prove that M finitely builds a small object in D(S) with nonzero homology; this is

where we need to use the assumption that H∗(M) has finite length.

Since S |H [S]T one gets that M |H [S]T ⊗L
S M. Let x be a finite set of elements

in R whose images in S form a minimal generating set for the ideal Ker(ψ), and let K

be the Koszul complex on x, with coefficients in R. Since ψ is complete intersection,

the S-complex K ⊗R S is a resolution of T over S. This justifies the 2nd of the following

isomorphisms in D(R):

K ⊗R M ≃ (K ⊗R S)⊗S M ≃ T ⊗L
S M .

The 1st one is by associativity of tensor products. As M proxy small in R it follows that

so is T ⊗L
S M. However, as T ⊗L

S M is in D(T), the complete intersection property of ψϕ

implies that T ⊗L
S M is proxy small in D(T) and hence in D(S). Thus, T ⊗L

S M, and hence

also M, finitely builds a small S-complex with nonzero homology. �

Remark 4.3. In Corollary 4.2 one cannot weaken the hypothesis in the converse that

proj dimS T is finite to ψ is proxy small. Indeed, let R be a regular local ring with residue

field k and consider surjective local homomorphisms R
ϕ
−→ S

ψ
−→ k. Then ψϕ is complete

intersection, and ψ is proxy small, but ϕ is complete intersection if and only if S is, and

that need not be the case.

However, Corollary 4.1 yields the following result.
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LCI maps and the proxy small property 23

Corollary 4.4. Let R
ϕ
−→ S

ψ
−→ T be surjective local homomorphisms such that S and the

map ψϕ are complete intersection. Then the rings R and T, and the map ϕ, are complete

intersection.

Proof. As ψϕ is complete intersection proj dimR T is finite. Since T is proxy small in

D(S), by Corollary 3.14, from [12, Theorem 5.5] one gets that proj dimR S is finite. Then

as S is complete intersection it follows that R and ϕ are complete intersection as well,

by Corollary 4.1. Another application of Corollary 4.1, now to the map ψϕ, yields that

T is complete intersection. �

5 Essentially of Finite-type Maps

5.1

A morphism ϕ : R → S of commutative rings is essentially of finite type if it is

obtained as the localization of a finitely generated R-algebra; that it to say, ϕ admits

a factorization

R
ϕ̃

−→R̃
ϕ̇

−→S (5.1.1)

where R̃ = U−1R[x], where x := x1, . . . , xn are indeterminates, U is a multiplicatively

closed subset in R[x], and ϕ̇ is surjective. Such a map is smooth if ϕ is flat, and for each

map of rings R → l with l a field, the ring l ⊗R S is regular; that is to say, the fibers of ϕ

are geometrically regular; see [14]. For example, the map ϕ̃ in the factorization above is

smooth.

The map ϕ is locally complete intersection if the surjection ϕ̇ : R̃ → S is

locally complete intersection in the sense of 3.1. This condition is independent of the

factorization of ϕ; this fact is also implicit in the proof of Theorem 5.2 below. When ϕ

is flat, it is locally complete intersection if and only if all its fibers are locally complete

intersection rings. For details, see [14].

The result below is analogous to a classical characterization of smooth maps,

recalled in the introduction, namely: ϕ is smooth if and only if it is flat and S is small

in D(Se
R); see [14, Proposition (17.7.4)] and [22, Theorem 1]. A crucial difference: We do

not have to assume ϕ is flat, only that TorR
∗ (S, S) is bounded. This comes with a caveat:

In the statement Se
R is the derived enveloping algebra.

Theorem 5.2. Let R be a commutative Noetherian ring and ϕ : R → S a morphism

essentially of finite type. The following conditions are equivalent:
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24 B. Briggs et al.

(1) ϕ is locally complete intersection;

(2) S is proxy small in D(Se
R) and TorR

i (S, S) = 0 for all i ≫ 0.

This result specializes to Theorem A from the Introduction.

Proof. Fix a factorization (5.1.1) of ϕ. As noted before ϕ is locally complete intersection

if and only if ϕ̇ is locally complete intersection. When this property holds proj dimR̃ S is

finite and hence so is proj dimR S; in particular TorR
i (S, S) = 0 for i ≫ 0. Thus, in the

remainder of the proof we assume that TorR
∗ (S, S) is bounded.

Next we reduce to the case where ϕ is surjective. To that end consider the

morphism of dg algebras

θ : Se
R −→ Se

R̃

induced by ϕ̃. The following claim implies that condition (2) holds for ϕ if and only if it

holds for ϕ̇.

Claim. TorR̃
∗ (S, S) is bounded and proxy smallness ascends and descends along θ .

The crucial point is that θ can be obtained by base change of a locally complete

intersection map, so it is only a definition away from being itself locally complete

intersection; see [24, Definition 2.4]. Here are the details.

Consider the natural multiplication map µ : R̃e
R → R̃. The diagonal isomorphism

yields a quasi-isomorphism of dg algebras

R̃ ⊗L
R̃e

R
Se

R = R̃ ⊗L
R̃e

R
(S ⊗L

R S) ≃ S ⊗L
R̃

S = Se
R̃

.

Thus, θ is the base change of µ along the morphism R̃e
R → Se

R, that is to say, there is a

cofiber square

Recall that R̃ is a localization of a polynomial ring R[x] where x := x1, . . . , xn are

indeterminates. Thus, R̃e
R may be taken to be the ordinary tensor product R̃ ⊗R R̃ and

the kernel of the multiplication map R̃e
R → R̃ is generated by the regular sequence

x1 ⊗ 1 − 1 ⊗ x1, . . . , xn ⊗ 1 − 1 ⊗ xn. The Koszul complex on this sequence is a dg algebra
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LCI maps and the proxy small property 25

resolution of R̃ over R̃e
R, so we deduce that map θ can also be realized as an extension

by a Koszul complex. The 1st part of the desired claim is now a standard verification.

For the ascent and descent of proxy smallness along θ see [12, Remark 9.2].

�

Thus we can replace ϕ by R̃ → S and assume that ϕ is surjective. At this point

we can apply Theorem 3.2.

Remark 5.3. In the context of Theorem 5.2, if TorR
i (S, S) = 0 for i ≥ 1, for example

when ϕ is flat, we take Se
R to be the usual tensor product S ⊗R S. Then 1.12 yields that

S is proxy small in D(Se
R) if and only if it finitely builds the Koszul complex on a finite

generating set for the kernel of the multiplication map S ⊗R S → S.

Remark 5.4. Theorem 5.2 is missing a characterization in terms of the exact functor

D(S) → D(R), akin to the one in Theorem 3.2(4). It is not reasonable to expect ascent and

descent of the proxy small property along maps that are not finite. There is a notion

of proxy smallness with respect to a map, via the surjective part of the smooth-by-

surjective factorizations in (5.1.1), but this is not entirely satisfactory, partly because

being essentially of finite type is not a condition that can be characterized purely in

terms of categorical properties of derived categories.

These questions are of interest if one wishes to import the ideas of this paper

into stable homotopy theory, where the requiring that a map of commutative ring

spectra to be surjective, or essentially of finite type, is not sensible. There are many

rich examples of complete intersection like behavior in that context [7], and it would be

interesting to develop a notion of ascent of proxy smallness that captures them.

6 Morphisms of Schemes

Let X be a Noetherian separated scheme, D(X) its derived category of quasi-coherent

sheaves, and D
b(coh X) the bounded derived category of coherent sheaves. We write

Perf(X) for its full subcategory of perfect complexes. As in the affine case, these are

precisely the small objects in D(X); see [27, Proposition 1.1]. The derived tensor product

induces an action of Perf(X) on D(X), as well as on D
b(coh X).

6.1

A thick ⊗-ideal C of D(X) is thick subcategory that is closed under the action of Perf(X),

that is to say, when F is in C so is P ⊗L F for any perfect complex P. The notion of a

localizing ⊗-ideal is the obvious one.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
b
0
4
1
/6

2
5
0
8
7
9
 b

y
 g

u
e
s
t o

n
 2

6
 A

p
ril 2

0
2
1



26 B. Briggs et al.

Given objects F ,G in D(X), we say that F finitely ⊗-builds G if the latter is in

every thick ⊗-ideal containing the former and F ⊗-builds G is each localizing ⊗-ideal

containing F also contains G. For a commutative Noetherian ring R and the associated

scheme X := Spec(R), ⊗-building coincides with the notion of building discussed earlier,

for every thick subcategory of D(X) is thick ⊗-ideal.

This leads to the notion of ⊗-proxy smallness in D(X). Since this is the only

flavor of proxy smallness considered here, we drop the qualifier “⊗-” and speak of proxy

smallness of objects in D(X).

The following result, implicit in the proof of [26, Lemma 4.1] often reduces

questions of proxy smallness over schemes to the affine case.

Lemma 6.2. Let X = ∪n
i=1Ui be a finite Zariski open cover. Then F in D(X) is proxy

small if and only if its restriction F |Ui
is proxy small in D(Ui) for each i.

6.3

A quasi-compact scheme X is locally complete intersection if there exists a finite open

cover X = ∪n
i=1Ui, such that Ui is isomorphic to Spec(Ri) where Ri is a locally complete

intersection ring, in the sense of 3.13.

Given the definition of locally complete intersection schemes and Lemma 6.2,

the following result is an immediate consequence of Corollary 3.14.

Theorem 6.4. Let X be a Noetherian separated scheme. Then the following conditions

are equivalent:

(1) X is locally complete intersection;

(2) Each object in D
b(coh X) is proxy small.

In the same vein, Theorem 5.2 readily implies the following global statement.

Theorem 6.5. Let f : Y → X be a flat, essentially of finite type, separated

morphism of Noetherian schemes, and δ : Y → Y ×X Y the diagonal embed-

ding. Then f is locally complete intersection if and only if δ∗OY is proxy small

in D(Y ×X Y).

It seems likely that using the machinery of derived algebraic geometry one can

extend the preceding result to maps of finite flat dimension, with the fiber product

replaced by the derived fiber product.
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