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It is proved that a map ¢: R — S of commutative Noetherian rings that is essentially of
finite type and flat is locally complete intersection if and only if S is proxy small as a
bimodule. This means that the thick subcategory generated by S as a module over the
enveloping algebra S @z S contains a perfect complex supported fully on the diagonal
ideal. This is in the spirit of the classical result that ¢ is smooth if and only if S is small
as a bimodule; that is to say, it is itself equivalent to a perfect complex. The geometric
analogue, dealing with maps between schemes, is also established. Applications include

simpler proofs of factorization theorems for locally complete intersection maps.

Introduction

This work concerns the locally complete intersection property for maps between com-
mutative Noetherian rings. While there are numerous characterizations of this property,
see [2], none are in terms purely of the structure of the derived category as a triangulated
category. Our main results, Theorems A and B, supply such characterizations. To set the
stage for the discussion, let ¢: R — S be a homomorphism of commutative Noetherian
rings that is flat and essentially of finite type; the latter condition means that S is a

localization of a finitely generated R-algebra.
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2 B. Briggs et al.

We establish criteria for detecting when ¢ is locally complete intersection,
analogous to the following criterion for smoothness: ¢ is smooth if and only if S is
perfect when viewed as a complex over the enveloping algebra S} := S ®z S via the
multiplication map S} — S; see [14, Proposition (17.7.4)] and [22, Theorem 1]. The
condition that S is perfect is equivalent to the condition that S is isomorphic in D(S3),
the derived category of S}, to a bounded complex of finitely generated projective S%,-

modules. We prove the following:

Theorem A. Let¢: R — S be a homomorphism of commutative Noetherian rings, flat
and essentially of finite type. Then ¢ is locally complete intersection if and only if the
thick subcategory of D(S}) generated by S contains a perfect complex whose support

equals that of S.

By the support of a complex W in D(S}) we mean the set of prime ideals g in
Spec(Sg) such that H*(W)q # 0. A complex (in the derived category of some ring) is
proxy small if the thick subcategory it generates contains a perfect complex with the
same support; see Section 1. Thus, Theorem A can be rephrased as follows: ¢ is locally
complete intersection if and only if S is proxy small in D(S}).

There are other reformulations possible. Indeed, it follows from a result of
Hopkins [15] that if the thick category generated by S contains a perfect complex with
support equal to that of S, then it has to contain every perfect complex whose support
is contained in that of S; see 1.12. So Theorem A is equivalent to the statement ¢ is
locally complete intersection if and only if S generates the Koszul complex on a finite
generating set for the kernel of the multiplication map.

Theorem A is a consequence of Theorem 5.2 that applies to maps of finite flat
dimension, which is the natural context for the locally complete intersection property.
That result is in turn deduced from Theorem 3.2 concerning surjective homomorphisms;

the latter brings out another feature of complete intersections:

Theorem B. Let ¢: R — S be a surjective homomorphism of finite flat dimension.
Then ¢ is locally complete intersection if and only if any S-complex that is proxy small

as an R-complex is also proxy small over S.

In other words, ¢ is complete intersection if and only if proxy smallness
ascends along ¢. The forward implication that proxy smallness ascends for complete

intersection maps is the content of [12, Theorem 9.1], so the result above provides a
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LCI maps and the proxy small property 3

converse. For this direction, it suffices to test that ascent holds for complexes with finite
length homology. When S is local one can even specify a finite collection of S-complexes
of finite length homology whose proxy smallness detects the complete intersection
property for ¢; see Theorem 3.12.

The notion of proxy small complexes was introduced in [11] as a tool in duality
theory. It has since become clear that this concept captures also interesting geometric
properties of maps, and that this sheds a new light on factorization theorems. For
example, in Section 4 we use Theorem B, more precisely, Theorem 3.2, to give simple
proofs of some fundamental results concerning the factorization of locally complete
intersection maps, first established by Avramov [1] as a consequence of his solution of
a conjecture of Quillen concerning cotangent complexes.

The statement of Theorem B and its proof are inspired by a result of the
4th author [21, Theorem 5.2] characterizing local rings that are complete intersection
in terms of proxy smallness of complexes, thereby settling a question raised in [12,
Question 9.10]. A key new ingredient in our proof is the use of Hochschild cohomology
and its action on derived categories. Recent work [18] of the 3rd author is also critical
for it allows us to deduce global statements from local ones. Indeed, the 3rd author [18,
Theorem 5.9] used [21, Theorem 5.2] directly to establish Theorem A when R is a field.

Theorems A and B extend to morphisms of schemes, but the appropriate notion
of proxy smallness involves tensor-generation. This is explained in Section 6. Keeping
in mind that geometrically the multiplication map is the diagonal embedding, Theorem

A readily yields the following result.

Theorem C. Let f: Y — X be a flat, essentially of finite type, separated, morphism
of Noetherian schemes, and §: Y — Y xy Y the diagonal embedding. Then f is locally
complete intersection if and only if the thick ®-ideal of D(Y xx Y) generated by 6,0y

contains a perfect complex whose support is the diagonal.

As with Theorem A , but this time using a result of Thomason [28, Theo-
rem 4.1], one can reformulate the theorem above to say that f is locally complete
intersection if and only if §,0, tensor-generates a Koszul complex whose support is
the diagonal.

The derived category of a commutative ring has been a valuable source of
inspiration for results, if not also their proofs, in other tensor triangulated categories,
like the category of spectra, or the stable category of modular representations of

finite groups, and also in triangulated categories arising in non-commutative geometry.
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4 B. Briggsetal.

Theorems A and B open the way to exploring notions of complete intersection rings and

maps in these categories; see Remark 5.4.

1 Proxy Smallness

This section is mainly a collection of definitions and observations concerning proxy
small objects in derived categories of rings and dg (= differential graded) algebras.
Although the main results involve only rings, their proofs exploit dg structures
extensively. We take [2, 5] as our basic references on this topic. By default the grading
will be lower, so differentials decrease degree.

Throughout, A will be a dg algebra concentrated in non-negative degrees. Given
a dg A-module M we view its homology H,(M) as a graded H, (A)-module. When we
speak of elements in a graded object only homogeneous elements are considered.

A dg algebra A is equipped with an augmentation map A — H(4). It is a map
of dg algebras where H,(A), like any ring, is viewed as a dg algebra concentrated in
degree zero with zero differential. Through this map any dg H,(A)-module (that is to
say, a complex of Hy(A)-modules) inherits a structure of a dg A-module.

We write D(A) for the derived category of left dg A-modules, with its canonical

structure as a triangulated category, equipped with suspension functor X.

1.1

A thick subcategory of D(A) is a triangulated subcategory closed under retracts. As the
intersection of thick subcategories is again a thick subcategory, for each object M of
D(A) there exists a smallest thick subcategory, with respect to inclusion, containing
M; we denote it thick(M). See [4, §2] for a constructive description of this category.
Following [11, 12], we say that a dg module N is finitely built from M, or that M finitely
builds N, if N is in thick(M). This situation is indicated by writing M =, N; we drop the
A from the notation if the ambient category is unambiguous.

A localizing subcategory of D(A) is a triangulated subcategory closed under
arbitrary coproducts; such a subcategory is thick. Once again mimicking [11, 12], we
write M , N to indicate that N is in the localizing subcategory generated by M, and
say M builds N, or that N is built by M.

It is straightforward to verify that the relations - and = are transitive; this will
be used without further mention. Evidently, if M = N then M + N; the converse does not
hold for arbitrary pairs of dg A-modules.

1202 Iudy 9z uo 1sanb Aq 680529/L YOGRUI/UIWIEBOL 0 L/I0P/S[OILE-SOUBAPE/UIWI/WOY"ANO"OILISPEDE//:SARY WO, PAPEOIUMOC



LCI maps and the proxy small property 5
1.2

All objects in D(A) are built from A; in symbols: A - M for any M in D(A). This is
a restatement of the fact that every dg module has a semifree resolution; see [13,
Chapter 6]. It has long been known that the objects that are finitely built from A,
that is to say the perfect dg modules, are precisely the “small objects” of D(A); see,
for example, [16, Theorem 2.1.3]. Recall that a dg A-module M is small (or compact)
provided Homp 4, (M, —) commutes with arbitrary direct sums. When M and N are small

dg A-modules

MFN implies MEN. (1.2.1)
For a proof see for example [20, Lemma 2.3] and also [23, Corollary 3.14].

1.3

Let ¢: A — B be a morphism of dg algebras. If M 3 N or M =5 N then M -, N
or M =, N, respectively, viewing M and N as dg A-modules by restricting scalars

along ¢.

1.4

As in [11], a dg A-module M is proxy small if there exists a small dg A-module K such
that M = K and K - M. We say that K is a small proxy for M. Evidently small objects are
proxy small. When A is a commutative Noetherian ring, some of these conditions can be
expressed in terms of support; see 1.13.

The following definition is central to this work.

1.5

Let ¢: A — B be a morphism of dg algebras. We say that proxy smallness ascends along
¢ if each dg B-module that is proxy small in D(4) is proxy small in D(B). The phrase
proxy smallness descends along ¢ means that each proxy small dg B-module is also
proxy small in D(A). Often the focus will be on ascent (or descent) of proxy smallness
for dg modules in a subcategory C of D(B), and then we speak of proxy smallness of
objects in C ascending/descending along ¢.

For example, proxy smallness ascends and descends along ¢ if it is a quasi-
isomorphism, for then the base change functor F := B ®f“ —: D) — D(B) is an exact

equivalence of categories with quasi-inverse the restriction functor.
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6 B. Briggs et al.

From the definition it is clear that whether an object in D(A) is small or not
depends only the structure of D(A) as a triangulated category. The following remark is

obvious, but also obviously useful.

1.6

Let A and B be dg algebras and F: D(A) — D(B) an exact functor preserving coproducts
and small objects. If M is proxy small in D(A) with small proxy K, then F(M) is proxy

small in D(B) with small proxy F(K). The converse holds if F is an exact equivalence.

Lemma 1.7. Let A be a dg algebra. The following statements hold.

(1) The dg A-module Hy(A) builds any M in D(4) with H;(M) = 0 for |i| > 0.
(2) IfH;(A) =0fori>» 0, then Hy(A) is proxy small if and only if Hy(4) = A.

Proof. SetB:=H,(A) and let s: A — B be the augmentation map.
(1) We verify this claim by an induction on the number of nonzero homology
modules in M. Set i := inf H,_(M); we may assume this is finite, else M ~ 0. In D(A) soft

truncation yields an exact triangle

N — M — TH;(M) —,

where the induced map H,,(N) — H, (M) is bijective for n # i and H;(N) = 0. The
dg A-module structure on H;(]M) is the one induced via ¢. Now B + H;() in D(B)
and hence also in D(4). Since N has one fewer nonzero homology modules than M
the induction hypothesis yields that B -, N. The exact triangle above then implies
that B+, M.

(2) The non-trivial implication is that when B is proxy small it finitely builds
A. Suppose K is a small proxy for B; in particular, K builds B. By part (1) and the
boundedness hypothesis, B builds A, and it follows that so does K. However, K and
A are both small objects so K finitely builds A; see (1.2.1). As B = K, transitivity implies
once again that B = A. |

Example 1.8. The preceding result does not extend to dg algebras A with H;(4) # 0
for infinitely many i. For example, if R is any commutative ring and A := R[x], viewed as
a dg algebra with |x| > 1 and zero differential, then R = Hy(A) is small in D(4), and so

proxy small. However, it does not build A, let alone finitely.
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LCI maps and the proxy small property 7

Proposition 1.9. Let R be a commutative Noetherian ring, A a dg R-algebra, and let
M,N be dg A-modules. Assume the R-modules H, (A), H (M), and H, (V) are finitely
generated. Then M =, N if and only if M, Fa, Ny for each p in SpecR.

Proof. One way to verify this is to mimic the argument for [18, Theorem 3.6] to get the
desired result. Another is to invoke the local-to-global principle [6, Theorem 5.10], for
the triangulated category consisting of dg A-modules with homology finitely generated

over R, viewed as an R-linear category. |

In this work the focus is on proxy small objects in D(R), the derived category of a
commutative Noetherian ring R. Next we recollect some results specific to this context.
We write D8(R) for the subcategory of D(R) consisting of R-complexes M for which the
R-module H, (M) is finitely generated. Similarly, we write Dfl(R) for the subcategory of
R-complexes M for which H, (M) has finite length.

1.10
Let R be a commutative Noetherian ring. The support of an object M in D(R) is the subset
of Spec R given by
suppg M := {p € SpecR | k(p) ®1L;M #* 0},
where k(p) is the residue field R, /pR, at p. For M € D8(R) one has

suppgr M = {p € SpecR | H, (M), # 0} = V(anng(H,(M)))

and hence it is a closed subset of Spec R. For example, if K is the Koszul complex on a
finite generating set for an ideal I, then suppg K = V(I).

For any subset U of SpecR, the set of R-complexes M with suppgsM < U is a
localizing subcategory of D(R). In particular, if M + [RIN, then suppy M 2 suppgypN. It
follows that if M is proxy small, then suppy M is a closed subset of SpecR.

The observation above relating supports to building has a converse, established
by Neeman [19, Theorem 2.8].

1.11

If M, N are objects in D(R) with suppgz M 2 suppgy N, then M + [RIN.
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8 B. Briggs et al.

Using this result and (1.2.1) Neeman deduces the result below concerning finite

building, first proved by Hopkins [15] using different techniques.

1.12

If M, N are small objects in D(R) with suppg M 2 suppg NV, then M = [RIN.
The preceding results imply the following characterization of proxy small

objects.

Corollary 1.13. Let R be a commutative Noetherian ring and M an R-complex. Then

the following are equivalent:

(1) M is proxy small;
(2) M finitely builds a small object with support equal to suppg M;
(3) supprM is a closed subset of SpecR and M finitely builds the Koszul

complex on a finite subset x of R for which V(x) = suppy M.

2 Hochschild Cohomology

In this section we discuss the (derived) enveloping algebras and Hochschild cohomology
of dg R-algebras; [5] is a suitable reference for this material. We are going to be
interested in two aspects: One is Hochschild cohomology as a source of operators on
the derived category of A. The other is the smallness and proxy smallness of A as a
module over A%. In what follows dg algebras will be assumed to be graded-commutative:
a-b=(-14blp.qfora,bin A.

2.1

Given morphisms of dg R-algebras 8: B — A and ¢: C — A, a morphism ¢: B — C is
over A if ¢¢ = B. We say that B and C are quasi-isomorphic over A to mean that there
is a zig-zag of quasi-isomorphisms over A linking B to C. Given the discussion in 1.5 in
this situation it is easy to see that A is small, respectively proxy small, in D(B) if and

only if it is small, respectively proxy small, in D(C).

2.2

Let A be a dg R-algebra and

A% :=AQRA,
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LCI maps and the proxy small property 9

its derived enveloping algebra. When the graded R-module underlying A is flat the
canonical map A$, 5A ®pg A is a quasi-isomorphism.

A dg R-algebra A’ is homotopically flat if tensoring with A’ over R preserves
quasi-isomorphisms. If ¢: A’ - A is a homotopically flat dg R-algebra resolution of
A then A}, is represented by A’ ®z A’. Different homotopically flat resolutions yield dg
algebras that are quasi-isomorphic over A: If ¢”: A” — A is another homotopically flat
resolution, then A’ ®z A’ and A” @z A” are quasi-isomorphic over A. For this reason we

write u: A} — A to denote a representative of the map

A/®RA/ &' ®¢ A®RA a®b+>ab A

From 2.1 it follows that the property that A is small, or proxy small, in D(A}) is
independent of the choice of a homotopically flat resolution of A. In fact, this condition
is equivalent to A being small, respectively, proxy small, as a dg B-module for any dg

R-algebra B quasi-isomorphic to A% over A.

2.3

The Hochschild, or Shukla, cohomology of a dg R-algebra A with coefficients in a dg
A-module M is

HH"(A/R; M) := Ext). (A, M) ,

where A is viewed as a dg Aj-module via . We abbreviate HH*(A/R; A) to RA. This is a
graded-commutative R-algebra. In what follows we exploit the fact that it acts on D(4),
in the sense of [17]. This action comes about as follows: For any class & in HH*(A/R) and
M a dg A-module, let

Xy(e): M — sl

be the morphism in D(A) defined by the commutative diagram

L
At M L& sleig gl m

=] 1~

M XM4(“)> slelpr.
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10 B. Briggs et al.

Thus, we get a homomorphism of graded R-algebras
xy: HH*(A/R) — Ext} (M, M),

called the characteristic map of M. We denote this Xzﬁ when the dg algebra A needs to
be specified. This map has the property that for N in D(A) and element ¢ € Ext} (M, N)

one has

an@¢ = (=D Mlexp(0) .
In particular, yx,,(«) lies in the graded-center of Ext} (M, M); see [17] for details.

24

Fix an o in HH*(A/R) and an M in D(A). We write M /o for Cone(xy,(«)), so there is an

exact triangle

M2 sl s Mo —>

in D(A). The result below is one of the main reasons for our interest for the action of
Hochschild cohomology on D(A). We do not know if such a statement holds when « is

an arbitrary element in the center of D(A).

Lemma 2.5. If M (finitely) builds N, then M/« (finitely) builds N /«. In particular, if M

is proxy small then so is M J«.

Proof. The key point is that the action of « on D(A) is induced by a tensor product:
Mja =M% Aja.

Hence, it commutes with exact triangles, retracts, and (possibly infinite) direct sums. It

also preserves small objects. Then 1.6 implies the desired result. |

2.6

Given an ideal a of HH*(A/R), an HH*(A/R)-module is a-power torsion if each of its

elements is annihilated by a power of a. When the ideal a can be generated by finitely
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LCI maps and the proxy small property 11

many elements, say a,,...,a,, and a module is a-power torsion if and only if it is (q;)-

power torsion for each i.

Lemma 2.7. Let N be a dg A-module and a € HH*(A/R) an ideal. If a dg A-module W
is such that the HH*(A/R)-module Ext}, (W, N) is a-power torsion, then so is Ext} (M, N)
for any M finitely built from W.

Proof. The subcategory of D(A) with objects L for which the HH*(S/R)-module

Ext} (L, N) is a-power torsion is thick. This implies the desired result. |

Next we record a computation of Hochschild cohomology that will be often used;

for example, see Lemma 3.5 and especially its proof.

Lemma 2.8. Let ¢: R — S be a surjective homomorphism of commutative rings with

kernel I. For each S-module M there is an isomorphism of S-modules

~

8%(M): Homg(I/I?, M) —> HH?(S/R; M),

functorial in M. Moreover, given surjective homomorphisms of rings R % 34 s with

¢@ = ¢, for T = Ker(®) the following diagram is commutative

Homg(I/1%, M) <—— Homg(I/I%, M)

Sa(M)J{ J{B‘”(M)

HH%(S/R; M) +—— HH?(S/R; M) (2.8.1)

Here the S-module M is viewed as an S-module by restriction of scalars along ¢.

Proof. The map §Y(M) is part of a family induced by the universal Atiyah class of ¢
and involves the cotangent complex; see [9, Section 5]. We only need §¥ (M) which can be

defined quite simply: The multiplication map u: S; — S embeds in an exact triangle

J— S5-1558 —
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12 B. Briggs et al.

in D(SR). For any S-module M viewed as an S;-module via yu, the exact triangle above

induces isomorphisms

Extye (J, M) = ExtgtRl(s, M) fori>1.

We claim that Extl (J,M) = Homg(I/I?, M); with this identification §(M) is the
R
isomorphism above for i = 1. The stated functoriality is easily verified.
As to the claim, as ¢ is surjective the natural map Hy(Sj) = S®z S — Sis an

isomorphism, so from the exact triangle above we obtain

fori<O0
Torf(S,S) fori>1.

It is a standard computation that Torlf(S, S) = I/I? therefore truncation yields the 1st

isomorphism below
Ext} (J, M) = Extd, (I/I%, M) = Homg(I/I*, M) .
The 2nd one holds as the action of S} on I/I? and M factors through S. ]

3 Surjective Maps

In this section we prove Theorem B from the introduction. Throughout, R will be a

commutative Noetherian ring.

3.1

A surjective homomorphism ¢: R — S is complete intersection if Ker(¢) can be generated
by a regular sequence; it is locally complete intersection if for each prime q € Spec S, the
map ¢, is complete intersection. There is no distinction between the conditions when R
is local. It was proved in [12, Theorem 9.1] that proxy smallness ascends and descends,
in the sense of 1.5, along complete intersection maps. We prove the converse as part of

the result below:

Theorem 3.2. Let¢: R — S be a surjective homomorphism of commutative Noetherian

rings. The following conditions on ¢ are equivalent:

(1) ¢ is locally complete intersection;
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LCI maps and the proxy small property 13

(2) S = [SRISR:
(3) Sis proxy small in D(S}) and Tor? (S,S)=0foralli> 0;
(4) projdimg S is finite and proxy smallness ascends along ¢;

(6) projdimg S is finite and proxy smallness of objects in Dfl(S) ascends along

@.

The condition that projdimg S is finite is equivalent to S being small in D(R),
so condition (4) involves only the structure of the appropriate derived categories as
abstract triangulated categories.

The proof of Theorem 3.2 takes some preparation and is given in 3.9. It builds

on ideas from [21] and extends that results therein, as is explained in 3.13.

3.3

Let ¢: (R,m, k) — S be a surjective map of local rings, and let €: S — k be the canonical
surjection. It induces a morphism of dg S-algebras S§ — S ®% k. Recall the standard

diagonal isomorphism
(M ®g N) ®gg,5S — Mg N.

A derived version of this isomorphism yields quasi-isomorphisms of dg algebras
(S®Rk) ®f S=S@5k~k.

This map and adjunction yield the isomorphism in the definition of the following

homomorphism of S-modules
¥S: HH*(S/R; k) = Ext api (ki B) — Extg(k, k).

The map heading right is induced by restriction along the morphism of dg algebras
S—S ®11i’ k, and its compatibility with the augmentations to k.
It is not hard to verify that the composition of the maps

HH*(S/R;e)
_—

HH*(S/R) HH* (S/R; k)~ Extg(k, k)

is nothing but the characteristic map y; described in 2.3.

The next results concern the following scenario.
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14 B. Briggs et al.
3.4

Let ¢: R — S be a surjective local homomorphism admitting a factorization
(R,m, k)—>35-%s

such that for I := Ker $ and I := Ker ¢ the induced map I/mI — I/ml is injective.
For any element s in HH?(S/R), we write k/s for the mapping cone of the element

XE (s) in Ext%(k, k). Restriction induces a functor
¢,: D(S) - D(S),
of triangulated categories.

Lemma 3.5. With notation and hypotheses as in 3.4 the induced maps

xt2 S

2 e o N
Ext?(k, k) ——— Ext2(k, k) <~ HH2(S/R)

one has an inclusion Im(Extg (k, k) D Im(XE).
Proof. The essence of the proof is a commutative diagram of k-vector spaces

Homg(I/I1?, k) — Homg(I/I? k) +—— Homgz(I/I?,5)

5<f’<k>lz aa(k)l% a%)l%
HH?%(S/R; k) —» HH2(S/R; k) +—— HH2(S/R)

wsl wgl 4

2 2

with surjective maps and isomorphisms as indicated. The § maps are from Lemma 2.8.
Given this the desired inclusion can be verified by chasing around the diagram.

As to the commutativity of the diagram: The squares in the top row are
commutative by the functoriality of §?(—) with respect to the ring argument and the
module argument. The vertical maps ° and wg are from 3.3, and the commutativity
of that square is by functoriality of the construction, which is readily verified. The

commutativity of the triangle has been commented on already in 3.3.
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LCI maps and the proxy small property 15

It remains to verify the surjectivity of the map in the top left square: Since the
map of k-vector spaces I/mI — I/mI is injective, it is split-injective. Therefore, applying

Homy (—, k) yields surjectivity of the map below
Homy,(I/mI, k) — Hom, (I/mI, k).

This identifies with the surjection in the top left square via the adjunction isomorphism
Homgy(N,k) = Homy(N/mN, k). This completes the proof of the claims about the

commutative diagram above, and hence that of the result. [ |
The result below is a crucial input in the proof that (5)=(1) in Theorem 3.2.

Lemma 3.6. With hypotheses as in 3.4, given an element s in HH2(S/R) there exists
an element ¢ in Extg(k, k) such that ¢, (k/t) = k/s in D(S). Moreover, for any such ¢, the
element s? annihilates Exti (@, (k/t), ).

Proof. By Lemma 3.5, there exists an element t in Extg(k, k) whose image under

Exté(k, k) equals Xg(s). This means that in D(S) there is a commutative diagram

s
X (8
k4> sz

~ ~

k

k @x(t) Ezk
As ¢, is exact, the 1st part of the statement follows. The 2nd part is clear. |

In the proof of Theorem 3.2 we also need a criterion for detecting small

complexes through the action of Hochschild cohomology.

3.5

Let ¢: (R,m,k) — S be a surjective local complete intersection map with kernel I.
Set N := HomS(I/Iz,S), this is the normal module of ¢. The Hochschild cohomology
algebra HH*(S/R) is graded-commutative so the map §¢(S): N' — HH?(S/R) described in

Lemma 2.8 induces a homomorphism of S-algebras

Symg(\N) — HH*(S/R).
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16 B. Briggs et al.

Since ¢ is complete intersection the S-module N is free of rank the codimension of S in R
and the map above is bijective; see [3, Proposition 2.6]. In particular, the ring HH*(S/R)
is Noetherian. From op. cit. one also gets that for any S-module M the natural map is an

isomorphism:

HH*(S/R) ®5 M —> HH*(S/R; M) . (3.7.1)

Later on we will use the fact that this isomorphism is functorial in M.

Lemma 3.8. Let ¢ be as in 3.5 and M an S-complex. If M is small in D(R) and for some
generating set s;,...,s, for the S-module HH?(S/R) the HH*(S/R)-module Ext(M, k) is

(s;)-power torsion for each i, then M is small in S.

Proof. Since M is small in D(R), the HH*(S/R)-module Ext5(M, k) is finitely generated;
see, for example, [3, Corollary 6.2]. Since HH?(S/R) generates HH*(S/R) as an S-
algebra, the hypothesis implies that Ext3(M, k) is HH>!(S/R)-power torsion, and hence
Extg(M, k) =0 fori > 0. Thus, M is small in S. [ |

3.9

Proof. of Theorem 3.2 (1)=-(3) As ¢ is locally complete intersection its flat dimension
is finite so the R-module H_(S}) = Torf(S, S) is finitely generated; in particular
Torf(S, S) = 0 for i > 0. It remains to check that S is proxy small in D(S}). When R
is a local ring Ker(yp) is generated by a regular sequence and then the desired result
is contained in the proof of [12, Theorem 9.1]. The hypothesis that ¢ is complete
intersection is local on Spec S, meaning that ¢ is complete intersection if and only if the
map of local rings ¢ is complete intersection for each q in SpecS. This is by definition.
We claim that the conclusions that S is proxy small in D(S}) is also local on SpecS.

Indeed the R-module TorZ(S, S) is finitely generated so Proposition 1.9 applies
to the dg S-algebra A := S} and M := S to yield that S is proxy small in D(S}) if and only
if S, is proxy small in D((Sg)q). It remains to observe that (S%)q =~ (Sq);m.

(2)¢(3) Since R — S is surjective, Hy(S}) = S. Thus, Lemma 1.7 part (2) yields the
desired equivalences.

(2)=(4) The assumption that S |= [S;IS} implies that proxy smallness ascends
along ¢; see [12, Theorem 8.3]. It remains to verify that S is small in D(R). Since S =
[S%1S%, for any S-module M applying (—) ®% M yields M = [RI(S ®% M), hence H, (S ®% M)
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LCI maps and the proxy small property 17

is bounded whenever H, (M) is bounded. Since H, (S ®I§ M) = Tor®(S, M) it follows that
flatdimg S < oo, and as ¢ is surjective we can conclude that S is small over R.

(4)=(5) This is a tautology.

(5)=>(1) The desired conclusion can be checked locally at the maximal ideals of
S, and the hypothesis is easily seen to descend to localization at any such ideal. Thus,
we may assume ¢: (R, m, k) — (S, n, k) is a surjective local homomorphism.

Choose a maximal regular sequence x in Ker(¢) \ m Ker(¢) and set S:=R/(x). The

map ¢ factors as

R-—Y%3y5 %5,
(]

where ¢ is complete intersection and Ker(¢) contains only zero-divisors; the latter
condition implies that either S = S or S is not small in D(S); see [10, Corollary 1.4.7].
We shall prove that under the hypothesis S is small in D(S) yielding that ¢ = ¢ and
hence that ¢ is a complete intersection, as desired.

The argument involves a series of reductions. We are now in context of 3.4, and
we keep the notation from there. The desired conclusion is that ¢,(S) is small. Let K
be the Koszul complex on a set of generators for the maximal ideal of S. By a standard
reduction recalled in [12, Remark 5.6] it suffices to verify that the S-complex ¢, (K) is
small. We do so by checking that the hypotheses of Lemma 3.8 hold for the complete
intersection ¢ and M := ¢, (K).

As ¢,(S) is small in D(R), by assumption, so is ¢, (K) for it is finitely built out of
¢,(S). Next, fix an element s in HH?(S/R) and let ¢ be the element in Ext(k, k) provided

by Lemma 3.6. Thus, there is an isomorphism
¢, (kjt) =Zk/Js in D(S).

Since k is proxy small in D(S) so is k/s; this uses the fact s comes from HH*(§/R); see
Lemma 2.5. Thus, ¢,(k/t) is proxy small in D(S). Since R — S is complete intersection,

this implies that the R-complex

9. (k1) = ¢,(p. (k1))

is proxy small in D(R) by [12, Theorem 9.1].

Evidently the S-complex k/t is in D!(S) hence the hypothesis of Theorem 3.2(5)
yields that k/t is proxy small in D(S). So k/t finitely builds K in D(S); this is by Corollary
1.13. It follows that ¢, (k/t) finitely builds ¢,(K). We can now apply the 2nd part of
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18 B. Briggs et al.

Lemma 3.6 and Lemma 2.7 to deduce that the HH*(E/R)—module Ext%(gb*(K),k) is (s)-
power torsion. Then Lemma 3.8 yields that ¢, (K) is small.
This wraps up the proof that (5)=(1) and thereby that of Theorem 3.2. |

3.10

In Theorem 3.2, it seems plausible one can relax the hypothesis in (4) to: projdimg S is
finite and any M in ng(S) that is small in D(R) is proxy small in D(S). This condition
already implies ¢ is quasi-Gorenstein, that is to say: RHomg(S, R) >~ X¢S in D(S), where
c¢=dimR — dimS; see [12, Theorem 6.7].

A shortcoming in the statement of Theorem 3.2(5) is that it involves all of
Dfl(S). When R is local a careful reading of the proof shows that one needs to check
the hypothesis on finitely many complexes. In fact, these complexes can specified in

advance. This is clarified in the discussion below.

3.11

Let (R, m, k) be a local ring and let 7(R) denote its homotopy Lie algebra; see [2, Chapter
10]. This is a naturally constructed graded subspace of the graded k-vector space
Exty(k, k), so an element ¢ € 7" (R) represents a morphism k — X"k in D(R). For what
follows we care only about 72(R), and that can be made explicit.

Let p: Q — R be a minimal Cohen presentation of R; that is to say, Q is a regular
local ring with dim Q equal to the embedding dimension of R. Such a presentation exists
when, for example, R is m-adically complete; this is part of Cohen’s structure theorem
[10, Theorem A.21]. With J := Ker(p) the image of the composition

Homp (7772, k) 2% HE2(R/0; k) V> Ext(k, k)
is precisely 72(R), and the composite map is a bijection onto its image; see [2, Example
10.2.2] or [25].

For any surjective local homomorphism ¢: R — S one gets a map
7%(): 7%(S) — 7*(R),

of k-vector spaces, making 72%(—) into a functor on the category of local rings and

surjective local homomorphisms. Moreover, the image of the map
¥S: HH?*(S/R; k) — Ext2(k, k)

is Ker(w2(¢)). This observation is a key ingredient in the proof of the next result.
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Theorem 3.12. Let ¢: (R, m, k) — S be a surjective homomorphism of local rings with

projdimg S finite. The following conditions are equivalent:

(1) ¢ is complete intersection;
(2) For each t € Ker(7?%(p)) the S-complex k/t is proxy small.
(3) For some generating set t,...,t; for the k-vector space Ker(mw%(¢)), the S-

complexes k/t; are proxy small.
Proof. (1)=(2) This follows from Lemma 2.5 and the fact that the natural maps
S
HH?(S/R) —> HH2(S/R; k) —— Ker(r2(¢))

are surjective. The surjectivity of the map on the left is a consequence (3.7.1) that holds
because ¢ is complete intersection. The surjectivity of the map on the right has been
commented on earlier.

(2)=(3) This is a tautology.

(3)=(1) The proof for this implication follows that of (5)=(1) in Theorem 3.2. We

keep the notation from there. Recall the factorization of ¢:

with ¢ defined by a maximal regular sequence in Ker(¢) \ mKer(p). Let K be the Koszul
complex on a finite set generating set for the maximal ideal of S. As before the strategy
is to prove that ¢, (K) is small in D(S). The main point is to verify that the HH* (E/R)—
module Ext%(gb(K), k) is (s)-power torsion for all s from a generating set for the S-module
HH? (§/R), for then we can invoke Lemma 3.8.

The new observation here is that since ¢, (K) is induced from D(S) we need only

worry about a subset of a generating for the S-module HH2(S/R). Indeed, consider maps

xtf} (k,

S
Ext2(k, k) ——— ExtZ(k, k) < HH2(S/R).

Since the action of HH2(§/R) on Extg(¢,(K), k) factors through Ext%(k, k) it suffices to

verify the following statement.

Claim. There exist elements s;,...,s4in HH? (§/R) such that

(a) XE(SQ, cely X,‘S(Sd) span the image of le as a k-vector space;
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20 B. Briggs et al.

(b) XE(SZ') is the image of ¢; under the map Exté(k, k), for all i.

Once we verify this claim, arguing as in the proof of Theorem 3.2 leads to the
desired conclusion.
|

As to verifying the claim, the functoriality of 7?(—) gives a commutative diagram

2, 2~
72(s) 9N 23 9 2py,

72(p)

Thus, one gets an induced map 72(¢) in the following diagram of k-vector spaces:

HH2(S/R; k) —» HH2(S/R; k) «— HH%(S/R)

wsl wgi /ng

Ker(2(¢)) =2 Ker(z2(3)).

The commutative square is from Lemma 3.5. The surjectivity of the map pointing

left is from (3.7.1) applied to ¢. It remains to take s;,...,s; to be any preimages of
72(@)(ty),. .., w2(§)(tg) under xi.
3.13

A local ring (S,n) is complete intersection if for some (equivalently, any) Cohen
presentation ¢: R — S of the n-adic completion of S, the map ¢ is complete intersection;
see [10, Section 2.3]. A commutative Noetherian ring S is locally complete intersection if
it is complete intersection at each prime ideal of S. Theorem 3.2 applied locally to Cohen
presentations recovers a characterization of complete intersections established in [21,
Theorem 5.2] and [18, Corollary 5.6].

Corollary 3.14. Let S be a commutative Noetherian ring. The following conditions are
equivalent:

(1) Sislocally complete intersection;

(2) Each object in D'8(S) is proxy small;

(3) Each object in Dl(s) is proxy small.
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A natural question is whether the locally complete intersection property is
detected by proxy smallness of modules, that is to say, S-complexes with homology

concentrated in a single degree; see [8] for some positive results.

4 Factorization of Locally Complete Intersection Maps

In this section we demonstrate the strength of Theorem 3.2 by deducing some fun-
damental results on complete intersection rings and maps. We restrict ourselves to
treating surjective local maps for reasons laid out in Remark 5.4. As a warm up we
recover a well-known result tracking the complete intersection property along maps of

finite projective dimension.

Corollary 4.1. Let ¢: R — S be a surjective local map with projdimg S finite. Then
the ring S is complete intersection if and only if the ring R and the map ¢ are complete

intersection.

Proof. Assume S is complete intersection. By Corollary 3.14 objects in DY(S) are
proxy small so the condition in Theorem 3.2(5) holds trivially and hence ¢ is complete
intersection. To verify that R is complete intersection it suffices to verify that any
nonzero M in DYY(R) finitely builds a nonzero small object; this is where the hypothesis
that H, (M) has finite length is used. Since R | S, by hypothesis, one gets that
M = [RIS ®% M. View S ®% M as an object in D(S). Since projdimg S is finite, the length
of the S-module H,(S ®1% M) is finite; it is also nonzero by Nakayama's lemma. Since S is
complete intersection, S ®}q M builds a nonzero small object in D(S), and that object is
also small in R, since projdimg S is finite. This is the desired conclusion.

Suppose R and ¢ are complete intersection. The hypothesis on R implies that
any M € D8(S) is proxy small in D(R), by Corollary 3.14, and then the hypothesis on
¢ implies that M is also proxy small in D(S), by Theorem 3.2. Another application of
Corollary 3.14 yields that S is complete intersection. |

The forward implication in the result below is easy to prove directly from the
definitions; it is equally simple to deduce it from Theorem 3.2. The converse statement
is due to Avramov [1, 5.7]. The proof in op. cit. is complicated and involves nontrivial
properties of André—Quillen homology. The proof presented below is more elementary

and natural from the perspective of ascent of proxy smallness.

Corollary 4.2. LetR s 3, T be surjective local homomorphisms.
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If the maps ¢ and ¢ are complete intersection, then so is ¥ ¢. The converse holds

if, in addition, projdimg T is finite.

Proof. We make repeated use of Theorem 3.2 without specific reference.

Suppose ¢ and y are complete intersection. Since R = [R]S and S = [SIT and
hence S = [RIT, it follows that R |= [RIT, that is to say, projdimg T is finite. Moreover,
given an M € D(T), if M is proxy small in D(R), then it is proxy small in D(S), since ¢ is
complete intersection, and hence in D(T), since v is complete intersection. Thus, proxy
smallness ascends along ¢ and hence it is a complete intersection.

Now suppose ¢ is complete intersection and proj dimg T is finite, that is to say,
S = [SIT. The 1st condition implies R = [RIT and then the 2nd one implies R = [R]S, by
[12, Remark 5.6]. It follows that ¥ is complete intersection: Any T-complex that is proxy
small in D(S) is proxy small in D(R), since R = [R]S, and hence is proxy small in D(T),
since Y ¢ is complete intersection.

Now ¢ and ¢ are both complete intersection; we prove that so is ¢. Fix M in
D(S) with nonzero finite length homology such that M is proxy small in D(R). It suffices
to prove that M finitely builds a small object in D(S) with nonzero homology; this is
where we need to use the assumption that H, (M) has finite length.

Since S = [SIT one gets that M = [SIT ®% M. Let x be a finite set of elements
in R whose images in S form a minimal generating set for the ideal Ker(y), and let K
be the Koszul complex on x, with coefficients in R. Since v is complete intersection,
the S-complex K ®@p S is a resolution of T over S. This justifies the 2nd of the following

isomorphisms in D(R):
K@gM~(K®zS)®M~TQR:M.

The 1st one is by associativity of tensor products. As M proxy small in R it follows that
so is T ®% M. However, as T ®: M is in D(T), the complete intersection property of ¢
implies that T ®% M is proxy small in D(T) and hence in D(S). Thus, T ®% M, and hence

also M, finitely builds a small S-complex with nonzero homology. ]

Remark 4.3. In Corollary 4.2 one cannot weaken the hypothesis in the converse that
projdimg T is finite to ¥ is proxy small. Indeed, let R be a regular local ring with residue
field k and consider surjective local homomorphisms R %s LA k. Then ¢ is complete
intersection, and ¥ is proxy small, but ¢ is complete intersection if and only if S is, and

that need not be the case.

However, Corollary 4.1 yields the following result.
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Corollary 4.4. LetR %s Y, T be surjective local homomorphisms such that S and the
map ¢ are complete intersection. Then the rings R and T, and the map ¢, are complete

intersection.

Proof. As y¢ is complete intersection projdimg T is finite. Since T is proxy small in
D(S), by Corollary 3.14, from [12, Theorem 5.5] one gets that projdimg S is finite. Then
as S is complete intersection it follows that R and ¢ are complete intersection as well,
by Corollary 4.1. Another application of Corollary 4.1, now to the map ¥ ¢, yields that

T is complete intersection. |

5 Essentially of Finite-type Maps
5.1

A morphism ¢: R — S of commutative rings is essentially of finite type if it is
obtained as the localization of a finitely generated R-algebra; that it to say, ¢ admits

a factorization
R R % s (5.1.1)

where R = U~ 1R[x], where x := Xy,...,X, are indeterminates, U is a multiplicatively
closed subset in R[x], and ¢ is surjective. Such a map is smooth if ¢ is flat, and for each
map of rings R — [ with [ a field, the ring I ®y S is regular; that is to say, the fibers of ¢
are geometrically regular; see [14]. For example, the map ¢ in the factorization above is
smooth.

The map ¢ is locally complete intersection if the surjection ¢: R — S is
locally complete intersection in the sense of 3.1. This condition is independent of the
factorization of ¢; this fact is also implicit in the proof of Theorem 5.2 below. When ¢
is flat, it is locally complete intersection if and only if all its fibers are locally complete
intersection rings. For details, see [14].

The result below is analogous to a classical characterization of smooth maps,
recalled in the introduction, namely: ¢ is smooth if and only if it is flat and S is small
in D(S%); see [14, Proposition (17.7.4)] and [22, Theorem 1]. A crucial difference: We do
not have to assume ¢ is flat, only that Torf(S, S) is bounded. This comes with a caveat:

In the statement SY, is the derived enveloping algebra.

Theorem 5.2. Let R be a commutative Noetherian ring and ¢: R — S a morphism

essentially of finite type. The following conditions are equivalent:
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(1) ¢ is locally complete intersection;
(2) Sis proxy small in D(S}) and Tor? (S,S) =0foralli>» 0.

This result specializes to Theorem A from the Introduction.

Proof. Fix afactorization (5.1.1) of ¢. As noted before ¢ is locally complete intersection
if and only if ¢ is locally complete intersection. When this property holds projdimg S is
finite and hence so is projdimg S; in particular Torf(S, S) = 0 for i >» 0. Thus, in the
remainder of the proof we assume that Torf (S,S) is bounded.

Next we reduce to the case where ¢ is surjective. To that end consider the

morphism of dg algebras
0: 5% — S%

induced by ¢. The following claim implies that condition (2) holds for ¢ if and only if it
holds for ¢.

Claim. Torf?(S, S) is bounded and proxy smallness ascends and descends along 6.

The crucial point is that 6 can be obtained by base change of a locally complete
intersection map, so it is only a definition away from being itself locally complete
intersection; see [24, Definition 2.4]. Here are the details.

Consider the natural multiplication map u: ﬁ% — R. The diagonal isomorphism

yields a quasi-isomorphism of dg algebras
Rl g — Rk L ~ Lco_ ce
R®§;SR —R®§; (S®RS)_S®§S—S§

Thus, 6 is the base change of u along the morphism INQ% — S§, that is to say, there is a

cofiber square
e n o3
R, —“— R

¢®};¢l J{

(5] (<]
S —— S%.

Recall that R is a localization of a polynomial ring R[x] where x := Xy,...,X, are
indeterminates. Thus, ﬁ% may be taken to be the ordinary tensor product R ®r R and
the kernel of the multiplication map ﬁ% — R is generated by the regular sequence

X®1-1®x,...,%,®1—1Qx,. The Koszul complex on this sequence is a dg algebra
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resolution of R over ﬁ%, so we deduce that map 0 can also be realized as an extension
by a Koszul complex. The 1st part of the desired claim is now a standard verification.
For the ascent and descent of proxy smallness along 6 see [12, Remark 9.2].

|

Thus we can replace ¢ by R — S and assume that ¢ is surjective. At this point

we can apply Theorem 3.2.

Remark 5.3. In the context of Theorem 5.2, if TorF(S,S) = 0 for i > 1, for example
when ¢ is flat, we take S} to be the usual tensor product S ®z S. Then 1.12 yields that
S is proxy small in D(S},) if and only if it finitely builds the Koszul complex on a finite

generating set for the kernel of the multiplication map S®z S — S.

Remark 5.4. Theorem 5.2 is missing a characterization in terms of the exact functor
D(S) — D(R), akin to the one in Theorem 3.2(4). It is not reasonable to expect ascent and
descent of the proxy small property along maps that are not finite. There is a notion
of proxy smallness with respect to a map, via the surjective part of the smooth-by-
surjective factorizations in (5.1.1), but this is not entirely satisfactory, partly because
being essentially of finite type is not a condition that can be characterized purely in
terms of categorical properties of derived categories.

These questions are of interest if one wishes to import the ideas of this paper
into stable homotopy theory, where the requiring that a map of commutative ring
spectra to be surjective, or essentially of finite type, is not sensible. There are many
rich examples of complete intersection like behavior in that context [7], and it would be

interesting to develop a notion of ascent of proxy smallness that captures them.
6 Morphisms of Schemes

Let X be a Noetherian separated scheme, D(X) its derived category of quasi-coherent
sheaves, and DP(coh X) the bounded derived category of coherent sheaves. We write
Perf(X) for its full subcategory of perfect complexes. As in the affine case, these are
precisely the small objects in D(X); see [27, Proposition 1.1]. The derived tensor product
induces an action of Perf(X) on D(X), as well as on Db(coh X).

6.1

A thick ®-ideal C of D(X) is thick subcategory that is closed under the action of Perf(X),
that is to say, when F is in C so is P ®@" F for any perfect complex P. The notion of a

localizing ®-ideal is the obvious one.
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Given objects F,G in D(X), we say that F finitely ®-builds G if the latter is in
every thick ®-ideal containing the former and F ®-builds G is each localizing ®-ideal
containing F also contains G. For a commutative Noetherian ring R and the associated
scheme X := Spec(R), ®-building coincides with the notion of building discussed earlier,
for every thick subcategory of D(X) is thick ®-ideal.

This leads to the notion of ®-proxy smallness in D(X). Since this is the only
flavor of proxy smallness considered here, we drop the qualifier “®-" and speak of proxy
smallness of objects in D(X).

The following result, implicit in the proof of [26, Lemma 4.1] often reduces

questions of proxy smallness over schemes to the affine case.

Lemma 6.2. Let X = U ,U; be a finite Zariski open cover. Then F in D(X) is proxy

small if and only if its restriction F|y is proxy small in D(U;) for each i.

6.3

A quasi-compact scheme X is locally complete intersection if there exists a finite open
cover X = U  U;, such that U; is isomorphic to Spec(R;) where R; is a locally complete
intersection ring, in the sense of 3.13.

Given the definition of locally complete intersection schemes and Lemma 6.2,

the following result is an immediate consequence of Corollary 3.14.

Theorem 6.4. Let X be a Noetherian separated scheme. Then the following conditions

are equivalent:

(1) X islocally complete intersection;

(2) Each object in D®(coh X) is proxy small.

In the same vein, Theorem 5.2 readily implies the following global statement.

Theorem 6.5. Let f: Y — X be a flat, essentially of finite type, separated
morphism of Noetherian schemes, and §: ¥ — Y xyx Y the diagonal embed-
ding. Then f is locally complete intersection if and only if §,0y is proxy small
in D(Y x4 V).

It seems likely that using the machinery of derived algebraic geometry one can
extend the preceding result to maps of finite flat dimension, with the fiber product

replaced by the derived fiber product.
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