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ABSTRACT
We present a Gibbs sampler for the Dempster–Shafer (DS) approach to statistical inference for categorical
distributions. The DS framework extends the Bayesian approach, allows in particular the use of partial prior
information, and yields three-valued uncertainty assessments representing probabilities “for,”“against,”and
“don’t know”about formal assertions of interest. The proposed algorithm targets the distribution of a class
of random convex polytopes which encapsulate the DS inference. The sampler relies on an equivalence
between the iterative constraints of the vertex configuration and the nonnegativity of cycles in a fully
connected directed graph. Illustrations include the testing of independence in 2 × 2 contingency tables
and parameter estimation of the linkage model.

ARTICLE HISTORY
Received June 2020
Accepted January 2021

KEYWORDS
Algorithms; Bayesian
methods; Categorical data
analysis; Simulation

1. Introduction

Consider observed counts of K possible categories, denoted by
N1, . . . ,NK and summing to N. We assume that these counts
are sums of independent draws from a categorical distribution.
The goal is to infer the associated parameters θ in the simplex
of dimension K and to forecast future observations. The setting
is most familiar to statisticians and if K is small relative to N,
and without further information about θ , the story is somewhat
simple with the maximum likelihood estimator being both very
intuitive and efficient. The plot thickens quickly if N is small or
indeterminate, if partial prior information is available, if obser-
vations are imperfect, or if additional constraints are imposed,
especially when uncertainty quantification is simultaneously
sought (Fitzpatrick and Scott 1987; Berger and Bernardo 1992;
Sison andGlaz 1995; Liu 2000; Lang 2004;Chafai andConcordet
2009; Dunson and Xing 2009). As any probability distribution
on a finite unordered set is necessarily categorical, the setting
often arises as part of more elaborate procedures. Besides, the
canonical nature of categorical distributions has made them a
common test bed for various approaches to inference (Walley
1996; Bernard 1998).

The Dempster–Shafer (DS) theory is a framework for prob-
abilistic reasoning based on observed data and modeling of
knowledge. In the DS framework, inferences on user-defined
assertions are expressed probabilistically. These assertions can
be statements concerning parameters (“the parameter belongs
to a certain set”) or concerning future observations. Contrary to
Bayesian inference, no prior distribution is strictly required, and
partial prior specification is allowed (see Section 4.2). Rather
than posterior probabilities, DS inference yields three-valued
assessments of uncertainty, namely probabilities “for,” “against,”
and “don’t know” associated with the assertion of interest, and
denoted by (p,q,r) (see Section 2.2). In his pioneering work,
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Dempster (1963, 1966, 1967, 1968) developed the idea of upper
and lower probabilities for assertions of interest. Together with
the contributions of Shafer (1976, 1979), the approach became
known as the DS theory of belief functions. The framework
has various connections to other ways of obtaining lower and
upper probabilities and to robust Bayesian inference (Wasser-
man 1990). Over the past decades, the DS theory saw various
applications in signal processing, computer vision and machine
learning (see, e.g., Bloch 1996; Vasseur et al. 1999; Denoeux
2000; Basir and Yuan 2007; Denoeux 2008; Díaz-Más et al.
2010). As outlined in Dempster (2008, 2014), the DS framework
is an ambitious tool for carrying out statistical inferences in
scientific practice. During the developments of DS, categorical
distributions were front and center due to their generality and
relevance to ubiquitous statistical objects such as contingency
tables.

The computation required by the DS approach for cate-
gorical distributions proved to be demanding. The approach
involves distributions of convex polytopes within the simplex,
some properties of which were found in Dempster (1966, 1968,
1972). Unfortunately, no closed-form joint distribution of the
vertices has been found, hindering both theoretical develop-
ments and numerical approximations. The challenge prompted
Denœux (2006) to comment that, “Dempster studied the tri-
nomial case […] However, the application of these results to
compute the marginal belief function […] has proved, so far
and to our knowledge, mathematically intractable.” Likewise,
Lawrence et al. (2009) commented: “[…] his method for the
multinomial model is seldom used, partly because of its compu-
tational complexity.” Over the past fifty years, the literature saw
a handful of alternative methods for categorical inference via
generalized fiducial inference (Hannig et al. 2016; Liu and Han-
nig 2016) the imprecise Dirichlet model (IDM) (Walley 1996),
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the Dirichlet-DSM method (Lawrence et al. 2009), the vector-
valued Poisson model (Edlefsen, Liu, and Dempster 2009), and
the Poisson-projection method for multinomial data (Gong
2018, unpublished PhD thesis). The latter three methods were
motivated in part to circumvent the computational hurdle put
forward by the original DS formulation. The present article aims
at filling that gap by proposing an algorithm that carries out the
computation proposed in Dempster (1966, 1972). The presen-
tation does not assume previous knowledge on DS inference.

Section 2 introduces the formal setup. Section 3 presents
an equivalence between constraints arising in the definition of
the problem and the existence of “negative cycles” (defined in
Section 3.2) in a certain weighted graph, that leads to a Gibbs
sampler. Various illustrations and extensions are laid out in
Section 4. Section 5 concerns applications to 2× 2 contingency
tables and the linkage model. Elements of future research are
discussed in Section 6.

2. Inference in Categorical Distributions

We describe inference in categorical distributions as proposed
in Dempster (1966), using the following notation. The obser-
vations are x = (xn)n∈[N], with xn ∈ [K] for all n ∈ [N],
where [m] denotes the set {1, . . . ,m} for m ≥ 1. The number
of categories is K. The K-dimensional simplex is � = {z ∈
R
K+ :

∑K
k=1 zk = 1}. The set of measurable subsets of � is

denoted byB(�). We denote the vertices of� byV1, . . . ,VK . In
barycentric coordinates, Vk is a K-vector with kth entry equal
to one and other entries equal to zero. A polytope is a set of
points z ∈ R

K satisfying linear inequalities, of the formMz ≤ c
understood component-wise, and where M is a matrix with K
columns and c is a vector. For a given x ∈ [K]N , Ik is the set
of indices {n ∈ [N] : xn = k}. The counts are Nk = |Ik| and∑

k∈[K] Nk = N. Coordinates of un ∈ � are denoted by un,k
for k ∈ [K]. The volume of a set A is denoted by Vol(A). The
uniform variable Z over S is written Z ∼ S .

2.1. SamplingMechanism and Feasible Sets

The goal is to infer the parameters θ = (θ1, . . . , θK) ∈ � of
a categorical distribution using observation x = (xn)n∈[N] ∈

[K]N . Viewing xn as a random variable, the model states P(xn =
k) = θk for all k ∈ [K], n ∈ [N]. Generating draws from
a categorical distribution can be done in different ways. In
the DS approach, the choice of sampling mechanism of the
observable data has an impact on inference of the parameters, a
feature that distinguishesDS from likelihood-based approaches,
and aligns it with fiducial (Fisher 1935; Hannig et al. 2016),
structural (Fraser 1968), and functional (Dawid and Stone 1982)
approaches. Appendix A in the supplementary materials illus-
trates this impact in a simple setting.We followDempster (1966)
and consider the following sampling mechanism for xn, which
is invariant by permutation of the labels of the categories; it is
equivalent to the “Gumbel-max trick” (Maddison, Tarlow, and
Minka 2014) as explained in Appendix B in the supplementary
materials. Given θ , for each k ∈ [K], define �k(θ) to be a
“subsimplex” obtained as the polytope with the same vertices as
� except that vertex Vk is replaced by θ . The sets (�k(θ))k∈[K]
form a partition of �, shown in Figure 1(a). It can be checked
that Vol(�k(θ)) = θk. Then, introduce un ∼ �, and define xn
as

xn =
∑
k∈[K]

k1(un ∈ �k(θ)). (1)

In other words, xn is the unique index k ∈ [K] such that un
belongs to�k(θ). Since Vol(�k(θ)) = θk, xn indeed follows the
categorical distribution with parameter θ . Lemma 2.1 recalls a
useful characterization of �k(θ).

Lemma 2.1 (Dempster 1966, Lemma 5.2). For k ∈ [K], θ ∈ �

and un ∈ �, un ∈ �k(θ) if and only if un,�/un,k ≥ θ�/θk for all
� ∈ [K].

Given fixed observations x = (xn)n∈[N], the sampling mech-
anism in (1) can be turned into constraints on the values of
u = (un)n∈[N] and θ that could have led to the observations.
A central piece of the machinery is the following set,

Rx = {
(u1, . . . , uN) ∈ �N : ∃θ ∈ � ∀n ∈ [N]

un ∈ �xn(θ)
}
. (2)

It is the set of all possible realizations of uwhich could have pro-
duced the data x for (at least) some θ , via the specified sampling

Figure 1. Partition of � into (�k(θ))k∈[K] in 1a, with K = 3. Each point un ∈ � defines, for a fixed xn ∈ [K], a set of θ ∈ � such that un ∈ �xn (θ); three such sets are
colored in 1b, for x1 = 1, x2 = 3, x3 = 2. Here, no θ ∈ � is such that un ∈ �xn (θ) for n = 1, 2, 3.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 3

Figure 2. Given u ∈ Rx (shown in (a)), drop components uIk for some k ∈ [K] (the red dots in (a)) and draw new components uIk (the red squares in (b)) from their
conditional distribution identified in Proposition 3.2 with support represented by the shaded triangle.

mechanism. Given a realization of u ∈ Rx by definition there is
a non-empty “feasible” set F(u) ⊂ � defined as

F(u) = {
θ ∈ � : ∀n ∈ [N] un ∈ �xn(θ)

}
. (3)

On the other hand if u is an arbitrary point in �N then F(u)

defined above can be empty. For example, u = (u1, u2, u3)
shown in Figure 1(b) leads to an empty F(u) for the observa-
tions x1 = 1, x2 = 3, x3 = 2. The goal of the proposedmethod is
to obtain non-empty setsF(u), as illustrated for another dataset
in Figure 2(a). We can rewrite (2) asRx = {u : F(u) 	= ∅}.

The ingredients introduced thus far specify the “source” of
a belief function (e.g., Wasserman 1990). The central object
of interest here is the distribution of the random sets F(u)

conditional on them being nonempty. We consider the uniform
distribution onRx denoted by νx, with density

∀u1, . . . , uN ∈ �N νx(u1, . . . , uN)

= Vol (Rx)
−1 1 ((u1, . . . , uN) ∈ Rx) . (4)

Ourmain contribution is an algorithm to sample u from νx. The
sets F(u) obtained when u ∼ νx constitute the class of random
convex polytopes studied in Dempster (1972) and referred to
in the title of the present article. The distribution νx is also
the result of Dempster’s rule of combination (Dempster 1967)
applied to the information provided separately by each of the N
observations.

2.2. Inference Using Random Sets

We recall briefly how random sets can be processed into “lower”
and “upper” probabilities as in Dempster (1966), or into “belief ”
and “plausibility” as in Shafer (1976, 1990) and Wasserman
(1990), or (p,q,r) probabilities as in Dempster (2008). The
user provides a measurable subset � ∈ B(�) corresponding
to an “assertion” of interest about the parameter, for instance,
� = {θ ∈ � : θ1 ≤ 1/3}, or � = {θ ∈ � : θ1/θ2 >

θ3/θ4}. The belief function assigns a value to each � ∈ B(�)

defined as Bel(�) = νx({u : F(u) ⊂ �}). This can be called
lower probability and written P(�). The upper probability or
“plausibility” P̄(�) is defined as 1 − P(�c), or equivalently

νx({u : F(u)∩� 	= ∅)}. Bayesian inference is recovered exactly
when combining the distribution ofF(u) obtained from x with
a prior distribution on θ , see Dempster (1968) and Section 4.2.
Following Dempster (2008) DS inference can be summarized
via the probability triple (p,q,r):
p(�) = P(�), q(�) = 1 − P̄(�), r(�) = P̄(�) − P(�),

(5)
with p + q + r = 1 for all �, quantifying support “for,”
“against,” and “don’t know” about the assertion �. As argued in
Dempster (2008) and Gong (2019), the triple (p,q,r) draws a
stochastic parallel to the three-valued logic, with r representing
weight of evidence in a third, indeterminate logical state. A p
or q value close to 1 is interpreted as strong evidence toward �

or �c, respectively. A large r suggests that the model and data
are structurally deficient in making precise judgment about the
assertion � or its negation.

Sampling methods enable approximations of these probabil-
ities via standard Monte Carlo arguments. A simple strategy is
to draw (un)n∈[N] from the uniform on �N until F(u) is non-
empty. However, the rejection rate would be prohibitively high
as N increases. Some properties of νx have been obtained in
Dempster (1966, 1972). For example, Equation (2.1) in Demp-
ster (1972) states that, for a fixed θ ∈ �, νx({u : θ ∈ F(u)}) is
equal to themultinomial probabilitymass function with param-
eter θ evaluated at N1, . . . ,NK . Equation (2.5) in Dempster
(1972) gives the expected volume ofF(u). Dempster (1972) also
obtained the distribution of vertices of F(u) under u ∼ νx
with smallest and largest coordinate θk for any k ∈ [K], which
are Dirichlet distributions. These enable the approximation of
(p,q,r) for certain assertions, including the sets {θ : θk ∈ [0, c]}
for arbitrary c ∈ [0, 1]. However, for general assertions the joint
distribution of all vertices ofF(u) under u ∼ νx is necessary, as
in the case of both applications in Section 5.

3. Proposed Gibbs Sampler

3.1. Strategy

The proposed algorithm is a Markov chain Monte Carlo
(MCMC) method targeting νx, thus referred to as the target
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Algorithm 1 Uniform sampling in �k(θ).
Input: k ∈ [K], θ ∈ �, and the vertices of � denoted by
(V�)�∈[K].

• Sample (w1, . . . ,wK) uniformly on �,
for example, w̃� ∼ Exponential(1) for all � ∈ [K] and w� =
w̃�/

∑K
j=1 w̃j.

• Define the point z = wkθ + ∑
�	=k w�V�,

for example, zk = wkθk and z� = wkθ� + w� for � 	= k.
• Return z, a uniformly distributed point in �k(θ).

distribution. At the initial step, we set θ(0) arbitrarily in �, for
example, a draw from a Dirichlet distribution. Given θ(0) we
can sample, for k ∈ [K] and n ∈ Ik, un ∼ �k(θ

(0)). Then
u = (un)n∈[N] is inRx because θ(0) is in F(u) by construction.
Sampling uniformly over�k(θ) can be done following equation
(5.7) in Dempster (1966), as recalled in Algorithm 1. In this
section, we assume that Nk = |Ik| ≥ 1 for all k ∈ [K], and
describe how to handle empty categories in Section 4.1.

We draw components of u from conditional distributions
given the other components under νx, namely we draw uIk =
(un)n∈Ik for k ∈ [K] from νx(duIk |u[N]\Ik). Drawing uIk
from this conditional distribution will constitute an iteration
of a Gibbs sampler, illustrated in Figure 2 for the data N1 =
2,N2 = 3,N3 = 1. Figure 2(a) shows a sample u ∈ Rx,
with each un colored according to xn ∈ [K]. Sampling from
νx(duIk |u[N]\Ik) can be understood as drawing all the points
of the same color conditional on the other points. The overall
Gibbs sampler cycles through the K categories to generate a
sequence of draws u(t) that converges to νx as t → ∞, for
example, in distribution. To each u(t) is associated a feasible set
F(u(t)) that can contribute to the approximation of (p,q,r)

triples described in Section 2.2. The next question is how to
sample from the adequate conditional distributions. Toward
this aim, we will draw on a representation of Rx connected to
the presence of “negative cycles” in a complete graph with K
vertices.

3.2. Non-emptiness of Feasible Sets

We can representRx without mention of the existence of some
θ ∈ � as in (2), but instead with explicit constraints on the
components of u. We first find an equivalent representation of
θ ∈ F(u) for a fixed u. By definition θ ∈ F(u) satisfies for all
n ∈ [N] un ∈ �xn(θ). For each k ∈ [K], using Lemma 2.1 we
write

∀n ∈ Ik ∀� ∈ [K] \ {k} un,�
un,k

≥ θ�

θk
⇔ ∀� ∈ [K] \ {k}

min
n∈Ik

un,�
un,k

≥ θ�

θk
.

This prompts the definition

∀k ∈ [K] ∀� ∈ [K] ηk→�(u) = min
n∈Ik

un,�
un,k

. (6)

Observe that the values (ηk→�(u)) depend on the observations
through the sets (Ik). At this point, θ ∈ F(u) is equivalent to

θ�/θk ≤ ηk→�(u) for �, k ∈ [K]. Next assume θ ∈ F(u) and
consider some implications. First, for all k, �

θ�

θk
≤ ηk→�(u), and

θk
θ�

≤ η�→k(u), thus

ηk→�(u)η�→k(u) ≥ 1.

IfK ≥ 3we canwrite θ�/θk as (θ�/θj)(θj/θk), and apply a similar
reasoning to obtain the inequalities η�→k(u)ηk→j(u)ηj→�(u) ≥
1 for all k, �, j. Overall we can write, for all K ≥ 2, with any
number L of indices j1, . . . , jL ∈ [K], the following constraints:

∀L ∈ [K] ∀j1, . . . , jL ∈ [K]
ηj1→j2(u)ηj2→j3(u) . . . ηjL→j1(u) ≥ 1. (7)

Hereafter we drop “(u)” from the notation for clarity. The case
L = 1 gives inequalities ηk→k ≥ 1 which are always satisfied
since ηk→k = 1 following (6). Furthermore, it suffices to
consider only indices j1, . . . , jL that are unique, otherwise the
associated inequality in (7) is implied by inequalities associated
with smaller values of L.

At this point, we observe a fruitful connection between (7)
and directed graphs. The indices in [K] can be viewed as vertices
of a fully connected directed graph. Directed edges are ordered
pairs (j1, j2). We associate the product ηj1→j2ηj2→j3 . . . ηjL→j1
with a sequence of edges, (j1, j2), (j2, j3), up to (jL, j1). That
sequence forms a path from vertex j1 back to vertex j1, of length
L, in other words a directed cycle of length L. Define wk→� =
log ηk→� for all k, � ∈ [K], and treat it as theweight of edge (k, �).
Then the inequality (7) is equivalent to wj1→j2 +wj2→j3 +· · ·+
wjL→j1 ≥ 0. The sum of weights along a path is called its “value.”
The inequalities in (7) are then equivalent to all cycles in the
graph having nonnegative values. See Figure 3 for an illustration
for K = 3 of the equivalent conception of constraints in (7)
as graph cycle values. Detecting whether graphs contain cycles
with negative values, called “negative cycles,” can be done with
the Bellman–Ford algorithm (Bang-Jensen and Gutin 2008).

At this point we have established that θ ∈ F(u) implies the
inequalities of (7), which can be understood as constraints on
the weights of a graph. Our next result states that the converse
also holds.

Proposition 3.1. There exists θ ∈ � satisfying θ�/θk ≤ ηk→� for
all k, � ∈ [K] if and only if the values (ηk→�) satisfy

∀L ∈ [K] ∀j1, . . . , jL ∈ [K] ηj1→j2ηj2→j3 . . . ηjL→j1 ≥ 1.
(8)

Furthermore it suffices to restrict (8) to distinct indices
j1, . . . , jL.

Proof. The proof of the reverse implication explicitly constructs
a feasible θ based on the values (ηk→�), assuming that they
satisfy (8). Introduce the fully connected graph with K vertices,
with weight log ηk→� on edge (k, �). Thanks to (ηk→�) satisfying
(8), there are no negative cycles thus one cannot decrease the
value of a path by appending a cycle to it. Since there are only
finitely many paths without cycles there is a finite minimal value
over all paths from k to �, which we denote by min(k → �). In
other words (8) implies that min(k → �) is finite.

We choose a vertex in [K] arbitrarily, for instance vertex
K. We define θ by θk = exp(min(K → k)) and then by
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Figure 3. Two views on the constraints in (7). In (a), the values ηk→� define linear constraints θ�/θk = ηk→� . In (b), the log values are weights on the edges of a complete
directed graph.

normalizing the entries so that θ ∈ �. We can write min(K →
�) ≤ min(K → k)+log ηk→�, because the right-hand side is the
value of a path fromK to � (via k), while the left-hand side is the
smallest value over all such paths. Upon taking the exponential,
the above inequality is equivalent to θ�/θk ≤ ηk→�.

3.3. Conditional Distributions

Thanks to Proposition 3.1 we can writeRx defined in (2) as the
set of u for which the values ηk→� satisfy (8), with ηk→� defined
in (6). We next provide a representation of the conditional
distribution of uIk under νx that is convenient for sampling
purposes.

Proposition 3.2. Let u = (u1, . . . , uN) ∈ Rx, and define ηk→� =
minn∈Ik un,�/un,k for all k, � ∈ [K]. Let k ∈ [K]. Define for
� ∈ [K],

θ� = exp(−min(� → k))∑
�′∈[K] exp(−min(�′ → k))

, (9)

where min(� → k) is the minimum value over all paths from �

to k, in a fully connected directed graph with weight log ηj→� on
edge (j, �). Then, νx(duIk |u[N]\Ik) is the uniform distribution
on �k(θ)Nk .

In other words, νx(duIk |u[N]\Ik) is the product measure
with each component un following the uniform distribution
on �k(θ), with θ defined in (9). The proposition is key to the
implementation of the proposed Gibbs sampler.

Proof. We consider an arbitrary k ∈ [K], and assume that u ∈
Rx. Listing the inequalities in (8) that involve the index k and
separating the terms ηk→� from the others, we obtain

∀� ∈ [K] ηk→� ≥ η−1
�→k , (10)

∀� ∈ [K] ∀L ∈ [K − 2]
∀j1, . . . , jL ∈ [K] \ {k, �} ηk→� ≥ (

η�→j1 . . . ηjL→k
)−1 .
(11)

Thus, for u to remain inRx after updating its components uIk ,
it is enough to check that the ratios un,�/un,k for � ∈ [K] and
n ∈ Ik are lower bounded as above.

The finiteness of min(� → k) results from the same reason-
ing as in the proof of Proposition 3.1. Note that min(� → k) can
be constructed without the entries uIk of u, because the shortest
path from � to k should pay no attention to any directed edges
that stem from k, and the entries uIk inform only the weights of
edges stemming from k. Thus, we can define θ as in (9).

We next show that the support of νx(duIk |u[N]\Ik) is exactly
�k(θ)Nk . Let uIk ∈ �k(θ)Nk . By Lemma 2.1 and the definition
of θ , we have

∀� ∈ [K] min
n∈Ik

un,�
un,k

≥ exp(−min(� → k)).

But exp(−min(� → k)) = (exp(min(� → k)))−1 is greater
than (η�→j1 . . . ηjL→k)

−1 for any path � → j1 . . . jL → k.
Thus, with ηk→� = minn∈Ik un,�/un,k, inequalities (10) and (11)
are satisfied. Proposition 3.1 guarantees that u is in Rx, thus
�k(θ)Nk is contained in the support of νx(duIk |u[N]\Ik).

Let us show the reverse inclusion by considering uIk /∈
�k(θ)Nk . There, for some n ∈ Ik and some � ∈ [K], we
have un,�/un,k < exp(−min(� → k)). Denote by � →
j1 . . . jL → k the path attaining the value min(� → k). We
obtain ηk→� ≤ un,�/un,k < (η�→j1 . . . ηjL→k)

−1, and thus
ηk→�η�→j1 . . . ηjL→k < 1, in other words some inequalities in
(8) are not satisfied and thus, by Proposition 3.1, u is not in
Rx.

Proposition 3.2 provides a strategy to sample from the con-
ditional distributions of interest, provided that we can obtain
θ ∈ � in (9), which involves min(� → k) for all �. These can be
obtained from shortest path algorithms such as Bellman–Ford
implemented in igraph (Csardi and Nepusz 2006). Alterna-
tively we can view θ in (9) as the solution of the linear program,

max
{
θk : θ ∈ � ∀j 	= k ∀i 	= j

θi
θj

≤ ηj→i

}
. (12)

This has a simple interpretation: θ in (9) is precisely the ver-
tex of F(u) with the largest kth component. The equivalence
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Figure 4. Elapsed time in seconds for 100 iterations of the sampler. In (a), elapsed time as a function ofN, for different K . In (b), elapsed time as a function of K , for differentN.

Algorithm 2 Gibbs sampler for categorical inference in the
Dempster–Shafer framework. Input: observations x ∈ [K]N ,
defining index sets Ik = {n ∈ [N] : xn = k} for k ∈
[K]. Output: sequence (u(t))t≥0 converging to νx, the uniform
distribution onRx.
1. Set θ(0) in �, and for all k ∈ [K], all n ∈ Ik, sample u(0)

n ∼
�k(θ

(0)) (Algorithm 1).
2. Compute η

(0)
k→�

= minn∈Ik u
(0)
n,�/u

(0)
n,k for all k, � ∈ [K].

3. At iteration t ≥ 1,

(a) Set η(t)
k→�

← η
(t−1)
k→�

for all k, � ∈ [K].
(b) For category k ∈ [K],

i. Compute θ ∈ � from the values (η
(t)
j→�) according to

(9),
either by computing shortest paths or by solving a
linear program (12).

ii. For each n ∈ Ik, sample u(t)
n ∼ �k(θ) (Algorithm 1).

iii. Set η(t)
k→�

← minn∈Ik u
(t)
n,�/u

(t)
n,k, for all � 	= k.

between shortest path problems and linear programs is well
known. Implementations are provided in lpsolve (Berkelaar,
Eikland, and Notebaert 2004; Konis 2014).

The Gibbs sampler is described in Algorithm 2. Its outputs
include u(t) converging to νx in distribution as t → ∞, as well
as the associated values of (η(t)

k→�
) fromwhich we can obtain the

sets F(u(t)) as {θ ∈ � : θ�/θk ≤ η
(t)
k→�

∀k, � ∈ [K]}. Such
sets can be stored in “half-space representation” or as a list of
vertices in�, obtained by vertex enumeration (Avis and Fukuda
1992). Convenient functions to store and manipulate polytopes
can be found in rcdd (Fukuda 1997; Geyer andMeeden 2008).
We run 100 iterations of the sampler and record elapsed seconds
for different values ofN andK.Medians over 50 experiments are
reported in Figure 4, for counts set to �N/K� in each category.

3.4. Convergence to Stationarity

A common question to all MCMC algorithms is the rate of
convergence to stationary (Jerrum 1998; Roberts and Rosenthal
2004), which here might depend on K and the observed counts
N1, . . . ,NK . In the simplest case where K = 2, with counts
N1 ≥ 1,N2 ≥ 1, we obtain an upper bound on the mixing time
of the chain in the 1-Wasserstein metric (e.g., Gibbs 2004) as

detailed in Appendix C in the supplementary materials. We find
that the upper bound increases at most linearly with the total
count N = N1 + N2. The extension of this theoretical result to
arbitrary K ≥ 3 is left as an open question.

For arbitrary K we use the empirical approach of Biswas,
Jacob, andVanetti (2019), that provides estimated upper bounds
on the total variation distance (TV) between u(t) at iteration t
and νx. These upper bounds are obtained as empirical averages
over independent runs of coupledMarkov chains; see Appendix
D in the supplementary materials for a brief description of
the approach. For K = 4, 8, 12, 16, we construct synthetic
datasets with 10 observations in each category and estimate
upper bounds for a range of t shown in Figure 5(a). The number
of iterations required for convergence seems to be stable in K.
Next, we set K = 5 and consider 10, 20, 30, 40 counts in each
category, leading to N varying between 50 and 200. Figure 5(b)
shows the associated upper bounds, that increase with N.

4. Adding Categories, Observations, and Priors

4.1. Adding Empty Categories

We describe how to add and remove empty categories based on
the output of the Gibbs sampler. Suppose that we have draws u
distributed according to the target νx associated with a dataset
x ∈ [K]N with K non-empty categories. We add a category
K + 1 with IK+1 = ∅, NK+1 = 0, and consider how to
obtain samples u′ from the corresponding target νx′ . Recall that
a variable (u1, . . . , uK) following Dirichlet(1, . . . , 1) is equal in
distribution to the vector with �th entry w�/

∑
j∈[K] wj for � ∈

[K], where (w�)�∈[K] are independent Exponential(1). Given
(u1, . . . , uK) ∼ � consider the following procedure. First, draw
s ∼ Gamma(K, 1), define w� = s × u� for � ∈ [K], and draw
wK+1 ∼ Exponential(1). Then define u′

� = w�/
∑

j∈[K+1] wj
for � ∈ [K + 1]. The resulting vector u′ = (u′

1, . . . , u′
K+1) is

uniformly distributed on the probability simplex with K + 1
vertices denoted by �′. Since u′

�/u
′
k = u�/uk for all k, � ∈ [K],

if (u1, . . . , uK) satisfies certain constraints on ratios u�/uk, the
same constraints are satisfied for (u′

1, . . . , u′
K+1). Thus, u′ ∼ νx′ .

We can also remove empty categories. Assume that category
K + 1 is empty and that we have draws u′ ∼ νx′ . For each u′

n,
drop the (K + 1)th component u′

n,K+1, and define un by nor-
malizing the remaining K components. The resulting u follows
νx. Importantly, inferences obtained from νx are not necessarily
identical to those obtained from νx′ . This is illustrated with
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Figure 5. Upper bounds on the TV distance between u(t) and νx against t. (a) Varying K with 10 counts in each category. (b) Varying Nwith K = 5 and N/K counts in each
category.

Figure 6. Inference on θ1 (a) and on log(θ1/θ2) (b) using counts (4, 3) (K = 2) and (4, 3, 0) (K = 3). Including an empty third category modifies the inference on θ1 but
not on θ1/θ2.

Figure 6, showing the (p,q,r) probabilities associated with the
sets {θ : θ1 ∈ [0, c)} and {θ : log θ1/θ2 ∈ (−∞, c)}, for the
counts (4, 3) and (4, 3, 0).

4.2. Adding Partial Prior Information

In the DS framework, multiple sources of information can be
merged using Dempster’s rule of combination (Dempster 1967,
sec. 5;Wasserman 1990, sec. 2). If two sources yield random sets
F and G the combination is obtained by intersections F ∩ G,
under an independent coupling of F and G conditional on F ∩
G 	= ∅. The rule of combination can be used to incorporate prior
knowledge. If the prior is encoded as a probability distribution
on θ ∈ �, we can view each prior draw as a singleton G, thus
intersections F ∩ G are either singletons or empty. It can be
checked that the non-emptyF ∩G are equivalent to draws from
the posterior by noting that, for a given θ ∈ �,

νx ({u : θ ∈ F(u)})

= uniform
({(u1, . . . , uN) ∈ �N : θ ∈ F(u)})

uniform
({(u1, . . . , uN) ∈ �N : F(u) 	= ∅})

∝ θ
N1
1 . . . θ

NK
K ,

which is proportional to the multinomial likelihood associated
with θ and (N1, . . . ,NK) (Dempster 1972). This justifies whyDS
can be seen as a generalization of Bayesian inference. In (p,q,r)

for an assertion � ∈ B(�) this leads to p = P(θ ∈ �|x), the
posterior mass of �, q = 1 − p and r = 0.

TheDS framework allows the inclusion of partial prior infor-
mation. We follow the above reasoning except that the prior is

formulated as random sets that are not necessarily singletons.
For example, we can specify a prior on some components of θ

and extend these into random subsets of � by “up-projection”
(Dempster 2008) or “minimal extension” (Wasserman 1990, sec.
2.5). Concretely suppose that we observe counts (N1,N2) of two
categories. We specify a Dirichlet prior on (θ1, θ2) and obtain
a Dirichlet posterior. Next we are told that there exists in fact
a third category, which we could not observe before. This is
different than being told that there is a new category with zero
counts, N3 = 0, which we could handle as in Section 4.1. Up-
projection of each posterior draw (θ1, θ2) onto the 3-simplex �

goes as follows. We compute η1→2 = θ2/θ1 and η2→1 = θ1/θ2,
and set η3→k = ηk→3 = +∞ for k = 1, 2. Denote by F the
resulting feasible sets {θ ∈ � : θ�/θk ≤ ηk→� ∀k, �}. These
setsF correspond to a “minimal extension” in that inference on
θ1/θ2 is unchanged, while inference on θ3 is vacuous. Vacuous
means that for any assertion � = {θ ∈ � : θ3 ∈ A} with
A ⊂ [0, 1], the sets F result in p = 0,q = 0,r = 1.
Using the rule of combination we can subsequently intersect
such sets F with independent random sets corresponding to
new observations of the three categories. Visuals are provided in
Figure 7, with Figure 7(b) showing random sets corresponding
to counts of three categories using a partial Dirichlet(2,2) prior
on (θ1, θ2).

4.3. Adding Observations

We consider the addition of new observations to existing cate-
gories. Denote by xN+1 the original data xN augmented with an
observation xN+1, which we assume equal to k ∈ [K].
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Figure7. Up-projectionof posterior samples (θ1, θ2), obtained from (N1 = 8,N2 = 4) andaDirichlet(2,2) prior (segments in (a)), and feasible sets obtained independently
for counts (2, 1, 3) (polygons in (a)). The rule of combination retains nonempty intersections of these sets (b).

Figure 8. Two surfaces in the 4-simplex. (a) The independence surface θ1θ4 = θ2θ3 (Fienberg and Gilbert 1970). (b) The linkage constraint of (13) for φ ∈ (0, 1) as a
dashed segment.

Any u1:N+1 ∈ RxN+1 is such that u1:N ∈ RxN and uN+1 ∈
�k(θ), with θ ∈ � constructed from u1:N as in Proposition 3.2.
Indeed if u1:N+1 = (u1, . . . , uN+1) ∈ RxN+1 , there exists θ ′ ∈ �

such that, for all n ∈ [N + 1], un,�/un,k ≥ θ ′
�/θ

′
k. Thus, u1:N ∈

RxN .We can check thatuN+1 is in�k(θ). Sinceu1:N+1 ∈ RxN+1 ,
then (un)n∈Ik belongs to the support of νxN+1(duIk |u[N+1]\Ik),
which is �k(θ)Nk by Proposition 3.2. Here we have redefined
Ik = {n ∈ [N + 1] : xn = k}. Conversely, if u1:N ∈ RxN and
uN+1 ∈ �k(θ) then u1:N+1 ∈ RxN+1 ; again because �k(θ) is
precisely the support of νxN+1(duN+1|u[N+1]\Ik).

This motivates an importance sampling strategy. For u1:N ∼
νxN , generate uN+1 ∼ �k(θ), with θ ∈ � as above. Denote
this distribution by qN+1(duN+1|u1:N). The density uN+1 �→
qN+1(uN+1|u1:N) equals (θk)

−1 for uN+1 ∈ �k(θ), since the
volume of �k(θ) is θk. We can correct for the discrepancy
between proposal and target by computing weights

wN+1(u1:N+1) = νxN+1(u1:N+1)

νxN (u1:N)qN+1(uN+1|u1:N)

= ZN
ZN+1

Vol(�k(θ)),

where ZN is the volume of RxN . We can thus implement
self-normalized importance sampling. The reasoning can
be extended to assimilate observations recursively with a
sequential Monte Carlo sampler (Del Moral, Doucet, and Jasra
2006), alternating importance sampling and Gibbs moves. This
strategy will be employed in Section 5.1.

5. Applications

We present two applications. In both examples, the (p,q,r)

probabilities require distributional information about the entire
random polytopes, and not only the extreme vertices elicited in
Dempster (1972). Both examples involve K = 4 categories and
curves in the simplex shown in Figure 8. Our main objective
is to illustrate the output of the algorithm. We briefly recall
from Section 2 that the inferred p and q probabilities can be
understood as the degree of evidential support “for” or “against”
the hypothesis of interest based on available observations and
the model specification. The r probability, which is a distinctive
feature of DS compared to standard Bayes, indicates a degree of
epistemological indeterminacy, with a larger value encouraging
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Figure 9. Support for the hypothesis of positive association H+ : θ1θ4 ≥ θ2θ3 as observations in {1, 2, 3, 4} are incorporated one by one. The dark ribbon delineates the
probability p for H+ , and oneminus the support against it, respectively, as its lower and upper rims. The width of the ribbon represents the amount of “don’t know”about
the hypothesis.

the analyst to suspend judgment about the assertion of interest.
Ther probability can be useful tomake decisions or to postpone
them, as with other types of imprecise probabilities and robust
Bayesian analysis (Berger et al. 1994). Theway that decisions can
be informed by DS uncertainties has received some attention,
for example, see Section 12 of Shafer (1990), and also Yager
(1992) and Bauer (1997).

5.1. Testing Independence

In the case of K = 4, count data may be arranged in a 2 × 2
table with proportions (θ1, θ2, θ3, θ4) as cell probabilities, row by
row.Wemay be interested in testing independence,H0 : θ1θ4 =
θ2θ3, see Wasserman (2013, chap. 15). Classic tests include the
Pearson’s chi-squared test with χ2 = ∑

i,j (xij − eij)2/eij, where
eij is the expected number of counts in cell “ij” under H0. The
Pearson test statistic is asymptotically χ2

1 . The likelihood ratio
test with statistic G2 = 2

∑
i,j xij log(xij/eij), is asymptotically

equivalent; see Diaconis and Efron (1985) for further interpre-
tations.

Evaluating the posterior probability ofH0 raises the issue that
the set {θ ∈ � : θ1θ4 = θ2θ3}, a surface in the 4-simplex as
depicted in Figure 8(a), might be of zero measure under the
posterior. As a remedy one can employ Bayes factors (e.g., Albert
and Gupta 1983), or we can consider the evidence toward either
positive or negative association, that is, H+ : θ1θ4 ≥ θ2θ3 or
H− : θ1θ4 ≤ θ2θ3, and interpret such evidence as being against
independence.

We consider the dataset presented in Rosenbaum (2002, p.
191) regarding the effect of drainage pits on incident survival
in the London underground. Some stations are equipped with
drainage pits below the tracks. Passengers who accidentally fall
off the platformmay seek refuge in the pit to avoid an incoming
train. For stations without a pit, only 5 lived out of 21 recorded
incidents. In the presence of a pit, 18 out of 32 lived. Ding and
Miratrix (2019) reanalyzed the data to assess the difference in
mortality rates. Their analysis suggests that the existence of a
pit significantly increases the chance of survival. The data can
be summarized as counts (16, 5, 14, 18). Pearson’s chi-squared
test statistic is χ2 = 5.43 with a p-value of 0.02, while the
likelihood ratio test yields a p-value of 0.017. The Bayesian
analysis shows strong evidence for positive association, with
posterior probabilities P(H+ | x) = 0.99 and P(H− | x) = 0.01.

The DS approach applied sequentially yields the results
shown in Figure 9. The horizontal axis shows the observations,

in an arbitrary order. The dark ribbon tracks p(H+) and
(1 − q(H+)) by its lower and upper rims, respectively.
The “don’t know” probability r(H+), represented by the
width of the ribbon, can be seen to progressively shrink, but
not systematically. The support for H+ increases with each
observation in {1, 4} and decreases with each observation in
{2, 3} (as highlighted with background shades). Figure 9 is
inspired by Figure 4 of Walley, Gurrin, and Burton (1996). In
DS inference, the width of the ribbon is part of the inference
and could be used, for example, to inform decisions about the
collection of additional data.

5.2. LinkageModel

The linkage model from Rao (1973, pp. 368–369) was con-
sidered by Lawrence et al. (2009), as an example illustrating
inference with an additional constraint. They compare the IDM
of Walley (1996) and their method termed Dirichlet DSM (for
Dempster–Shafer model). The data consist of N = 197 counts
over K = 4 categories, with probabilities satisfying

θ(φ) =
(
1
2

+ φ

4
,
1 − φ

4
,
1 − φ

4
,
φ

4

)
, (13)

for some φ ∈ (0, 1). In other words, θ(φ) = Aφ + b for
appropriately defined 4 × 1 matrices A and b, as shown in
Figure 8(b). The original observations were (125, 18, 20, 34), but
Lawrence et al. (2009) considered the counts (25, 3, 4, 7), which
results in a more visible amount of “don’t know” probability.

We briefly introduce Dirichlet DSM and focus on the com-
parison between the approaches. They differ by the choice of
samplingmechanism: instead of using themechanismdescribed
in Dempster (1966), Lawrence et al. (2009) introduced another
mechanism to make inference simpler computationally. For
a vector of counts (N1, . . . ,NK), the Dirichlet DSM model
expresses its posterior inference for the proportion vector θ

via the random feasible set {θ ∈ � : θ1 ≥ z1, . . . , θK ≥ zK},
where z = (z0, z1, . . . , zK) ∼ DirichletK+1(1,N1, . . . ,NK).
Incorporating the parameter constraint θ = Aφ+b, the feasible
set for φ is [φmin(z),φmax(z)] with

φmin(z) ≡ max (4z1 − 2, 4z4)
≤ φmax(z) ≡ min (1 − 4z2, 1 − 4z3) . (14)

For the approach of Dempster (1966), termed “simplex-
DSM” in Lawrence et al. (2009), we first run the proposed Gibbs
sampler without taking into account the linear constraint (13).
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Figure 10. “Dirichlet-DSM” approach of Lawrence et al. (2009) and the original approach of Dempster (1966), for the linkage model with data (25, 3, 4, 7), the latter
implemented with the proposed Gibbs sampler. Here (a) shows the lower and upper probabilities for assertions of the form {φ < c} for increasing c ∈ [0, 1], while
(b) depicts the difference between these upper and lower probabilities, or equivalently the r values.

Among the generated feasible sets, only those that intersect
with the linear constraint are retained, and an interval [φ,φ] is
obtained for each such set, where

φ = argminφ {θ (φ) ∈ F (u)} ,
φ = argmaxφ {θ (φ) ∈ F (u)} .

For the data considered here, this retains 5% of the iterations,
and is therefore a practical solution. However, the approach
would become impractical if the counts were much less “com-
patible” with the linkage constraint, in which case novel com-
putational methods would be necessary. We estimate (p,q,r)

for sets {φ ∈ [0, c)} for c ∈ (0, 1), that is, lower and upper
cumulative distribution functions, under both approaches and
represent them in Figure 10(a). The plot shows the overall agree-
ment between the two approaches. Figure 10(b) highlights the
difference in r values, and illustrates that multiple approaches
within the DS framework lead to different results.

6. Discussion

The discipline of statistics does not have a single framework for
parameter inference. The setting of count data is rich enough
to contrast various approaches. Before any other considerations,
for a framework to be useful to scientists and decision-makers,
the ability to perform the associated computation is essential,
and allows for grounded discussions and concrete comparisons.
Our work helps with the computation in the DS framework for
categorical distributions, which will hopefully motivate further
theoretical investigations of its statistical features.

One of the appeals of the DS framework is its flexibility to
incorporate types of partial information which are difficult to
express in the Bayesian framework. This includes vacuous or
partial priors, coarse data which arise from imprecise measure-
ment devices and imperfect surveys. These elements can be
represented as random sets (Nguyen 2006; Plass et al. 2015) in
the DS framework while circumventing assumptions about the
coarsening mechanism (e.g., Heitjan and Rubin 1991).

Whether a perfect sampler could be devised as an alternative
to the proposed Gibbs sampler is an open question. Generic
algorithms for uniform sampling on polytopes (Vempala 2005;
Narayanan 2016; Chen et al. 2018) could also provide com-
petitive results. The proposed Gibbs sampler could itself be

accelerated, for instance, by using warm starts in the linear
program solvers over subsequent iterations.

The typical challenge of DS computations is the generation
of nonempty intersections of random sets. The proposed Gibbs
sampler can be seen as a way of avoiding inefficient rejection
samplers in the setting of inference in categorical distributions.
It remains to see whether similar ideas can be used to deploy the
DS framework in other models, for example, to avoid rejection
sampling in the linkage model, or in hidden Markov models
andmodelswithmoment constraints (Chamberlain and Imbens
2003; Bornn, Shephard, and Solgi 2019), which are natural
extensions of the categorical distribution.

Supplementary Materials

The supplementary materials describe the choice of sampling mechanism,
its effect on statistical inference and its relation with the Gumbel-max trick.
They also describe the convergence rate of the algorithm in a simple case
and provide reminders on empirical convergence analysis using coupled
Markov chains.
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