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ABSTRACT

Learning to make optimal decisions is a common yet complicated
task. While computer agents can learn to make decisions by run-
ning reinforcement learning (RL), it remains unclear how human
beings learn. In this paper, we perform the first data-driven case
study on taxi drivers to validate whether humans mimic RL to learn.
We categorize drivers into three groups based on their performance
trends and analyze the correlations between human drivers and
agents trained using RL. We discover that drivers that become more
efficient at earning over time exhibit similar learning patterns to
those of agents, whereas drivers that become less efficient tend
to do the opposite. Our study (1) provides evidence that some hu-
man drivers do adapt RL when learning, (2) enhances the deep
understanding of taxi drivers’ learning strategies, (3) offers a guide-
line for taxi drivers to improve their earnings, and (4) develops a
generic analytical framework to study and validate human learning
strategies.
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1 INTRODUCTION

Learning to make decisions is ubiquitous for human beings. For
example, a Go player learns to imitate other players to devise better
game strategies. A physician learns to determine doses of drugs
through extensive case studies and sometimes ad-hoc experimenta-
tion. A professional driver learns to cruise through repeated practice
to effectively find the next passenger. While a learning process is
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Figure 1: Diverse patterns of drivers’ per-hour income dy-
namics in Shenzhen, China.

often complex, recent advances in machine learning have enabled
computer agents to automate some learning tasks. For example,
reinforcement learning (RL) is used to train AlphaGo [44] to beat
the human champion and build systems to recommend medical
treatments [50]. Optimizing taxi operation strategies has also been
extensively studied in the literature [31, 37, 41, 59, 62]. Many recent
solutions also rely on RL techniques.

While progress was made to design RL algorithms for computer
agents to learn, it remains unclear how the human counterpart
learns. Do human learning processes exhibit similar patterns to
the one driven by RL algorithms, or they deviate from any known
learning strategies? Answering this problem is important for three
reasons: (i) many decision-making problems remain challenging
for machines and still require “human learning”, so it becomes
important to distill decision strategies from humans; (ii) effective
humans learning strategies can be used to train beginners such
as new Go players and new taxi drivers; and (iii) it also advances
cognitive and social science research by taking an algorithmic lens
at human learners’ behaviors.

This paper examines how traditional taxi drivers learn to cruise
for seeking their next passengers. Here, traditional drivers refer
to those that do not rely on mobile-based platforms such as Uber,
Lyft, or DiDi. These drivers represent a significant portion of per-
sonnel in taxi service, despite recent growth of online platforms.
Prior studies [37] on this problem assumed drivers are rational and
use inverse reinforcement learning to characterize drivers’ behav-
iors. Although these works offer useful insights, not all drivers
are rational. Some drivers learn faster than others. Some drivers’
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Figure 2: Shenzhen map data

performance even deteriorates over time. For example, Fig. 1 shows
the dynamics of per-hour incomes from four typical taxi drivers
in 2016 in Shenzhen, China. Driver 1 (dark green line) started at a
relatively low-income level, but then rapidly doubled the income
level by the end of the year. Driver 2 (light green line) started at
a similar (low) income level as Driver 1, but had a much slower
increasing trend. Driver 3 (blue line) had a stable income level over
time. Moreover, the income level of Driver 4 (red line) went down
roughly by 30% in six months.

This example suggests that different drivers use different strate-
gies to learn. Thus, our work focuses on investigating i) what learn-
ing strategies they are following, especially for those “quick learners”?;
ii) how do these strategies compare to what a computer agent would
follow in reinforcement learning?

Specifically, we investigate and validate human learning strate-
gies through a data-driven case study on taxi drivers. To the best
of our knowledge, this is the first attempt of its kind in the con-
text of taxi operations. Specifically, we extract trips of taxi drivers
from a large-scale dataset spanning 6 months with over 17,000
taxis. We categorize drivers into different groups based on their
hourly earning dynamics. For each group of drivers, we build esti-
mation procedures to construct the time series of a driver’s policy
and advantage functions and examine whether their patterns are
consistent with those of an agent in a RL algorithm. In addition,
we validate under what scenarios the drivers are following the
paradigm of RL, if not always.

Our major finding is that a taxi driver’s improvement in earn-
ing efficiency is positively correlated with how well he/she follows
the process of RL algorithm. In addition, human drivers usually
do not completely follow RL when learning. They tend to follow
RL first for those scenarios (e.g., certain urban areas) that lead to
higher earning improvement. Our contributions are summarized as
follows:

(1) We propose a three-stage analytical framework to rigor-
ously validate whether human agents (e.g., taxi drivers) follow
RL paradigms to improve their earning efficiencies.

(2) 1t is evident from the analytical results on a large-scale taxi
trajectory dataset that successful drivers are likely those who follow
the RL paradigm better. Moreover, they tend to follow RL first for
those scenarios (e.g., certain urban areas) that lead to higher earn-
ing improvement. We made our code and unique dataset publicly

available to contribute to the research community [2].

2 OVERVIEW

In this section we present our problem statement, followed by an
introduction to the dataset and our solution framework.

Menghai and Weixiao, et al.

Problem Definition: Given real trajectory data of taxi drivers 7~
in a sequence of time intervals Tp, Ty, ..., T, we aim to validate or
reject the following hypotheses: (1) Drivers that are successful
in learning passenger-seeking experiences (i.e., with increasing
earning efficiency), employ learning strategies that are closer to
reinforcement learning (RL) paradigms; (2) The RL paradigm is
followed by human drivers only at certain scenarios (e.g., locations,
times) rather than all circumstances. We also aim to identify what
these scenarios are.

Dataset: We use two data sources: (i) taxi trajectory data and (ii)
road map data, both collected in Shenzhen, China in 2016.

The taxi trajectory data contains GPS records collected from
taxis in Shenzhen, China between July 15t and December 31°% in
2016. There are in total 17, 877 taxis equipped with GPS sets. Each
GPS set generates a GPS point every 40 seconds on average. A
total of 51,485, 760 GPS records are collected on a daily basis. Each
record contains five fields, including taxi ID, time stamp, passenger
indicator, latitude, and longitude. The passenger indicator field is a
binary value, indicating if a passenger is aboard or not.

The Road map data was collected from [1]. It covers the rect-
angular area between 22.44° to 22.87° in latitude and 113.75° to
114.63° in longitude. This area includes 21, 000 road segments with
six levels, including motorway, trunk way, primary road, secondary
road, tertiary, and unclassified, as shown in Fig. 2a.

Data Preprocessing: We preprocess the datasets by map gridding

and time discretization.

(1) Map gridding. The urban road network forms a continuous
space. We use the gridding-based method to simply partition the
road map into equally sized grids [28, 29]. This method is easy to
implement and make adjustment. It allows us to adjust the size of
the grids, and examine the impact of the grid size. We let s be the
side-length of each cell. Cells adjacent to each other are considered
reachable if there is at least one road across their boundary. Fig. 2b
visualizes of our gridding results with side-length of s = 0.01° in
latitude and longitude. By removing grid cells in those unreachable
regions in the city (e.g., in the center of a part), we have a total of
n = 1,018 valid cells (highlighted in light colors in Fig. 2b) covered
by the road network.

(2) Time Discretization. We divide each day (24 hours) into
three time intervals, i.e., 00:00 — 06:00, 06:00 — 16:00, and 16:00 —
24:00, based on the common schedules of taxi drivers. In Shenzhen,
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Figure 4: Different trends of earning efficiencies in the three driver groups

each taxi is usually operated by two drivers. One driver operates in
day time and the other operates at nights. Thus, taxi trajectories in
different time intervals are considered from different drivers. Two
drivers usually switch at around 6AM and 4PM everyday. Finally,
because there are exceedingly small numbers of taxi trips between
mid-night and early morning, we focus on only two time intervals,
i.e., 06:00 - 16:00 and 16:00 - 24:00.

Solution Framework: Our proposed solution framework is out-
lined in Fig. 3, which takes two sources of urban data as inputs
and contains three analytical stages: (1) categorizing taxi drivers
in section 3, (2) modeling decision-making and learning process in
section 4, (3) learning strategy validation in section 5.

3 STAGE I: CATEGORIZING TAXI DRIVERS

This section introduces the definition of taxi drivers’ earning effi-
ciencies (Section 3.1), the earning efficiency dynamics of taxi drivers
(Section 3.2), and classification of taxi drivers based on the trends
of their earning efficiencies (Section 3.3).

3.1 Quantifying Taxi Drivers’ Earning
Efficiencies

To quantify the earning efficiencies of taxi drivers, we need to
address two issues: 1. Effective working hours. 2. Changes in earning
efficiencies. Drivers’ earning efficiencies evolve over time. Thus, we
re-estimate drivers’ earning efficiencies every week.

Let rl be the earning efficiency of driver e in week i (1 < i < 27).
We let

i

i
_Ee
re =

Ee 1)
te

where E% is his/her total income in week i and £! is the total working
hours. Here, the total working hours are the time when the driver
is seeking for passengers or serving passengers. We eliminate the
time when the driver takes a break (the taxi stays still for 30 minutes
or more).

3.2 Earning Efficiency Trend Analysis

We aim to detect the following patterns in drivers’ earning efficien-
cies changes:

e Monotonic increase/decrease. The increase or decrease occurs
constantly over the entire time series.

o Abrupt increase/decrease. At a certain time point, an abrupt
increase or decrease occurs, differing the statistics of time
series before and after that significantly.

When the efficiency of a driver does not exhibit any of the above
changes, we define the driver as a stabilized driver. Fig. 4(b)-(d)
show examples of different learner groups. Next, we devise two
statistical tools to detect the aforementioned patterns.

Mann-Kendall (MK) Trend Test [15] is a hypothesis test method
for monotonic trend in time series data, which indicates whether
a trend exists and whether the trend is positive or negative. The
null hypothesis Hy is no monotonic trend, while the alternative
hypothesis H; is monotonic trend is present.

The statistic of Mann-Kendall test can be calculated as follows,

S-1

m lfs > 0,
ZMK = 0 ifS=0, (2)
S if§5<0
\VVAR(S) ’
n-1 n .
S = Z Z sgn(ré - rf), 3)
k=1 j=k+1
1 if rg - rf > 0,
sgn(rﬁ - réc = 0 if ré - r(]f =0, (4)
-1 ifrl- rif <0,
1
VAR(S) = M [n(n-1)(2n+5)]. (5)

Given a confidence «, the null hypothesis is rejected if | Zyx | >
Z1-a, Where Z;_q is the (100(1 — a))*h percentile of the standard
normal distribution.

Pettitt’s Test [22] is to detect change points in time series data.
A change point in a time series r},r2,r3, ..., rL, ... r? refers to a
time index t such that {rél }+, <t and {réz }t,>¢ follow two distribu-
tions [16]. The null hypothesis Hyp is no abrupt change points
exist, while the alternative hypothesis Hj is an abrupt change
point exists.

Pettitt’s test uses a non-parametric test statistics U; defined as

U = Zt: Zn: sgn(ré - rg).

i=1 j=t+1

(6)
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Then we can calculate:

K = max U;. (7)
1<t<n
The change-point of the series is located at time K, provided
that the statistic is significant. The significance probability of K is
approximated for p < 0.5 with:

) —6K? ®)
I~ ex -
P P n3 +n?

3.3 Results on Trend Analysis

We next describe our result. Our dataset contains 2,403 taxis in the
6am to 4pm interval and 2,790 taxis in the 4pm to 12am interval.
We categorize taxi drivers into three groups: (1) Trending-up: if
at least one of the tests (MK and Pettitt) show significant increasing
trend, (2) Trending-down: if at least one of the tests show signif-
icant decreasing trend, and (3) Stabilized if none of the tests is
significant. The two tests do not produce any inconsistent conclu-
sions among drivers we examine (i.e., one test shows it trends up
whereas the other shows it trends down).

Fig. 5 presents the results. Note Week #14 and #15 are excluded
from the dataset because they have much smaller trip numbers due
to the national holiday. This is to avoid biased results.

We can see that around half of the drivers are stabilized drivers,
and the number of trending-up drivers is larger than the number of
trending-down drivers in both intervals. Fig. 4a shows the average
earning efficiencies for each group of drivers over 25 weeks. The
trends exhibit here are consistent with the test results.

4 STAGE II: MODELLING DECISION-MAKING
AND LEARNING PROCESSES

We next model the drivers’ behaviors. We need to model: (i) how
drivers make decisions (i.e., how they look for and serve passen-
gers). This is modeled by a Markov Decision Process (Sec 4.1). (ii)
how drivers learn to make decisions (i.e., how they use their past
experience to update their decision policies over time). Based on
our hypothesis, we use reinforcement learning (RL) to model this
process (Sec 4.2).

4.1 Decision-Making Process as an MDP

A taxi driver needs to determine the travel direction when the
taxi is idle and this decision impacts his/her chance to find a new

Menghai and Weixiao, et al.
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Figure 6: Illustrations of MDP and RL concepts

passenger. We model this decision-making process as a Markov
Decision Process (MDP) [4].
Review of MDP. An MDP is represented as a 5-tuple (S, A, T, y, tio, R).

e S is a finite set of states;

o A is a finite set of actions;

e T is the probabilistic transition function with T(s’|s, a) as
the probability of arriving at state s’ by executing action a
at state s;

e y € (0,1] is the discount factor!;

® 1o : S — [0,1] is the initial state distribution;

® R:S5X A — Ris the reward function.

A randomized, memoryless policy is a function that specifies a
probability distribution on the action to be executed in each state, de-
finedas 7 : SXA — [0,1]. Weuse t = [(sg, a0), (s1,a1), ..., (s, ar)]
to denote a trajectory generated by MDP. Here L is the length of
trajectory.

Applying MDP to model drivers. We model the decision-making
process of taxi drivers with MDP as follow:

e State: a spatial region, specified by a geographical grid cell,
created with map gridding in data preprocessing phase;

e Action: traveling from the current cell to one of the eight
neighboring cells.

Fig. 6a shows an example of taxi trajectory as an MDP: a driver
starts in state so with the taxi idle, and takes the action ag to travel
to the neighboring cell S; on the right. After two decisions, the
driver traverses S; and reaches state So, where a passenger is found
at Sy. Then, a passenger trip corresponds to a transition in the MDP
from starting state Sz to ending state Ss3. Each decision made at
a certain state would lead to a reward as the expected monetary
income of finding and serving a passenger. The policy 7 employed
by a driver is a probability distribution of choosing each action at
each state.

4.2 Learning Process as Reinforcement
Learning

Hypothesis. When one starts working as a taxi driver, he/she may

not have knowledge about where to find the next passenger, and

may choose a simple initial policy 7p. Over time, the driver learns

from his/her experience and update the policy to 71 with a goal to

IWithout loss of generality, we assume y = 1 in this study, and it is straightforward to
generalize our results to y # 1.
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Table 1: Typical methods of RL

Typical Method Update function
Value-based Q-learning Q(s,a) « Q(s,a) + a[r(s,a) + ymaxy Q(s’,a’) — Q(s, a)] [47]
Methods SARSA Q(s,a) « Q(s,a) + a[r(s,a) +yO(s’, mp(s")) — O(s, a)] [47]
Actor-Critic Actor-Critic VRy ~ ﬁ Zfl‘jzl ZZ;I(Q”" (s}, af) = V7 (s;))Vlog pg(af|s;) [25]
Methods Advantage Actor-Critic(A2C) VRy ~ % ij:l Zthl(rf + V7O (st ) — V70 (s]'))V log pg(al|s}) [25]
Policy-based Methods Policy gradient 0 «— 0+ aVRy, VRy ~ ﬁ 227:1 ZtTZl(ZtT,":t yt/_tr?, — b)Vlog pg(a}|s;') [48]

increase his/her income. The driver repeats this process so his/her
policy evolves continuously (see also [41, 59, 62]).

Types of reinforcement learning. Reinforcement learning (RL)
algorithms can be classified into three major categories including
value-based RL [47], policy-based RL [48], Actor-Critic based ap-
proach [25]. We briefly outline the key ideas of the three types of
RL algorithms below. A key similarity of all these algorithms is that
they optimize the policy functions by “taking the gradient” with
respect to the advantage function, which is defined as the additional
reward gained from the current policy comparing to the one in the
previous iteration.

® Value-based RL [47] does not learn the optimal policy directly. It
learns the so-called Q value (or V value) instead, which is defined
on each state-action pair (s, a), namely, Q(s, a) (or on each state
s, namely, V (s)). Specifically, Q(s, a) refers to the expected future
reward, after taking an action a at a state s, while V(s) refers to
the expected reward after leaving a state s. Once Q-functions are
well learned, the optimal policy 7* can be recovered from the op-
timal value function of each state-action pair (e.g., Q(s, a)). The
Q-learning [47] and State-Action-Reward-State-Action (SARSA)
methods [47] are the state-of-the-art value-based RL algorithms.

e Policy-based RL [48] learns an optimal policy directly. Usually,
policy 7 is represented by a (deep) neural network with parameter
set 6. A well known policy-based method is policy gradient [48].
The objective of policy gradient is to maximize the expected future
reward over trajectories:

max Ry = max{E(Ry)} = mS‘X{Z R(7)py(7)}. )

Where R(7) is the accumulated reward in trajectory r and py(7)
denotes the probability of generating trajectory r under the policy
with parameter 0. Then, we can apply gradient ascent to find the
optimal . The gradient of the objective function with respect to 0

1S:
N T, T,

VR~ 1 >0 (O T~ ) Vlogpg(aflsh), (10
n=1t=1 t'=t

where N is the number of trajectories, T, is the length of trajectory
n, t and t’ are the time steps. b is the baseline, i.e., average reward
received.
o Actor-Critic based RL [25] combines both value-based and policy
based methods, ZtT,":t yt/_tr;’, is evaluated using Q™0 (s}, a}), and
we can use V7 to be the baseline b. Moreover, Q™ (s}, a}) — V™ is
denoted by A% (s, ay) which is called the advantage function. If the
expected reward after taking a state-action pair is higher than the
average expected reward after exiting the state, i.e., the advantage is

positive, the agent will increase the probability of taking this action
in this state. The advantage function is used to update the gradient,
which in turn updates the parameter of the policy network.
Similarities of three RL paradigms. The gradient update func-
tions of the three typical methods of RL are listed in Table 1. They
all try to maximize the expected accumulated reward in each state
or state-action pair, which is related to Q(s, a) and V (s). In other
words, all these RL algorithms are equivalent, in a sense that a larger
advantage of an state-action pair results in a increased probability
of choosing such pair in the future policy.

Empirical estimates. Our main goal is to validate whether the
real-world learning process of the drivers is consistent with the pol-

icy gradient method. Here, we describe how the key variables/functions

are estimated through data.

o Estimation of advantage functions. Recall that the advantage func-
tion captures the additional reward gained from the change of one’s
policy. We estimate the advantage function value of each state-
action pair for each driver. In time span T, the advantage of a
driver in each state-action pair can be estimated by the empirical Q
value and empirical V value. The empirical Q value is the average
earning efficiency of the driver within a certain range of time after
exiting each state via each action, whereas the empirical V value is
the average earning efficiency of the driver with a certain range of
time after exiting each state. The difference between Q value and V'
value is that V value characterizes the expected reward after leaving
each state s, while Q value characterizes the expected reward after
taking each state-action pair (s, a) As shown in Fig. 6b, V(Sp) is
calculated using all red trajectories and blue trajectories, which are
the service trips exiting So, whereas Q(Sp, Ao) is calculated using
only the blue trajectories, which are the service trips exiting So
through action Ay.

A(s,a) = Q(s,a) = V(s). (11)

e Estimation of policy functions and their differences. We also need

to estimate the difference of policies between two consecutive time

spans, Ty and Tj. The empirical policy 7(s, a) of each state-action

pair in each time span can be estimated via the visitation frequen-

cies,

D(s,a)
D(s)

(s, a) = (12)
where D(s, a) and D(s) denote the visitation frequency of the state-
action pair (s, a) and state (s) respectively. Validating if taxi drivers
follow RL is equivalent to examine if there exists significant corre-
lation between the difference of policy Az (s, a) and the advantage
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Figure 7: Heatmap of a driver’s D(s)

A(s, a). Next section continues the discussion of the validation
process.

5 STAGE III: LEARNING STRATEGY
VALIDATION

This section describes our validation process. This consists of (i)
identifying the correlation between the policy difference and the
advantage, and (ii) correcting spatial bias of the empirical policy dif-
ference and the advantage by analyzing the spatial auto-correlation.

5.1 Advantage Correlation

To validate if there exists a correlation between the policy difference
A (s, a) and the advantage A(s, a), a correlation coefficient should
be used. A common one is Pearson’s correlation coefficient[5], but
it has the assumption of independent and identical distribution of
data. The Spearman’s rank correlation coefficient [6] works for non-
parametric data measuring a statistical relationship between two
variables, which is more applicable in our ordinal data. Therefore,
we employ Spearman’s rank correlation coefficient in addition
to the Pearson’s correlation coefficient to evaluate the correlation
coefficient and test its significance. The statistic of Spearman’s rank
correlation coefficient can be calculated by the formula below:

™, (rank(A;) - rank(A))(rank(Am;) — rank(Ar))

\/Zln:l(rank(Ai) —rank(A))? X1 (rank(Am;) — rank(Am))?

(13)

where A; is the advantage of the i — th sample, and Ar; is the policy

difference of the i — th sample. rank denotes the ordinary rank of
the corresponding value, and n is the sample size.

p ranges from —1 to 1, and the sign of p indicates the direction
of the association between the advantage and the policy difference,
e.g., if the sign is positive, the policy difference tends to decrease
with the increase of the advantage.

We can also determine the significance of the p. We calculate
the t value according to the formula below:

n—-2
7 (14)

Then we check the p value by calculating the t value according to
the Student’s ¢ distribution.

Figure 8: Heatmap of a driver’s V(s)

Figure 9: Weight matrix

5.2 Incorporating Spatial Auto-Correlation

Intuitively, nearby grids may cover the same urban functional zone
in a city and share similar demand patterns. This can be observed
from the real world data. Fig. 7 & 8 show the heatmaps of the D(s)
and V(s) of a driver in July 2016, where we can observe that similar
values are clustered. Therefore, it’s reasonable to incorporate spatial
auto-correlation when estimating D(s) and V (s).
(1) Quantifying spatial auto-correlation in D(s) and V (s).

Given a grid cell, we consider the eight neighboring grid cells
as its spatial neighbors (i.e., the Queen neighborhood). A weight
matrix is used to define the strength of correlation between pairs of
locations, based on the inverse Manhattan distance between each
pair of grid cells, i.e., the original weight w;; between grid i and
grid j (i # j)is:

if neighbor(i, j) = True,

1
wij = Manh_dist (i,j)+1 (15)
0 if neighbor(i, j) = False,

where Manh_dist(i, j) returns the Manhattan distance between
grid i and grid j, and neighbor (i, j) returns True if grid i and j are
neighboring and vise versa. Then the weights for each grid are
normalized among its neighbors. Fig. 9 shows an example of the
weights between the neighboring grids and the red grid.

Moran’s I [13] is a measure of spatial auto-correlation. The statis-
tic of Moran’s I test can be calculated in Eq. 16
N 2 2 wij(xi = X)(xj = X)

w 2i(xi = X)? ’
where x is the value of interest in each location, N is the number of
spatial units, i, j are the indexes of two spatial locations, wj; is the
weight between location i and location j, W is the sum of all w;;.
Value of I ranges from —1 to 1, and values significantly below N__—ll
indicate negative spatial autocorrelation and values significantly
above N__—ll indicate positive spatial autocorrelation [13].

To verify if there is a significant spatial auto-correlation in the
data, a hypothesis test is conducted, the null hypothesis Hj is the
values are spatially independent and assigned at random among
the regions, while the alternative hypothesis H; is the values are
spatially correlated. The null hypothesis is rejected if the statistical
significance (p-value) of a Moran’s I score is below a given threshold.
It can be calculated through estimating the distribution of z-score
of I.

The average I score of V(s) and D(s) among the drivers is 0.5241
and 0.5551. Given the confidence level 0.95 (p < 0.05), for V(s), the

I

(16)
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Figure 10: Policy difference VS. Advantage

values from 99.25% drivers reject the null hypothesis, which means
V(s) has spatial correlation; and for D(s), the values from 99.07%
drivers reject the null hypothesis, which indicates D(s) also has
strong spatial correlation.
(2) Integrating spatial auto-correlation in advantage corre-
lation analysis. From the results above, it is safe to conclude
that both D(s) and V(s) exhibit spatial auto-correlations under
the weight matrix designed. Thus we should take the spatial auto-
correlation into account to reduce the bias. The spatial normalized
value SN (x) can be calculated by Eq. 17

SN (x;) =axi+(1—zx)2w,~jxj, (17)
J#

where x is either D(s) or V(s). SN(x;) is a convex combination
of x; and weighted sum of that from its neighboring cells, with
combination parameter a € [0, 1]. In this study, we employ « = 0.5.

6 EVALUATION

In this section, we apply the proposed analysis on the aforemen-
tioned real world taxi trajectory data from Shenzhen, China, to
validate the established hypotheses of this paper. We quantitatively
evaluate the correlations between the advantage and the policy
difference among the different groups of drivers and present a case
study to show that how typical drivers learn experiences in a par-
adigm which is similar to reinforcement learning (RL). We have
released the code and data for reproducibility [2].

6.1 Experiment Settings

Following the steps discussed in Section 2 and extracting trips of
taxi drivers, we use 6 months trajectory data in 2016, i.e., 07/2016-
12/2016, with an average of around 600k trips per day. We conduct
the experiments in two different time intervals respectively: 6am-
4pm (day-time driver working hours) and 4pm-12am (night-time
driver working hours). After eliminating those taxis whose records
are not complete during these 6 months, there are 2, 760 valid taxis
found in 6am-4pm time interval, while 2, 403 found in 4pm-12am
time interval.

We apply Pearson’s correlation coefficient and Spearman’s rank
correlation coefficient for the correlation analysis between policy

difference and the advantage, and evaluate the statistical signifi-
cance of the correlations to test our hypotheses.

Table 2: Results of correlation analysis

Trending-up drivers | Trending-down drivers | Stabilized Drivers
Pearson’s Corr 0.26 -0.21 0.023
Pearson’s p-value 6.5%¢712 2.30e725 0.11
Spearman’s Rank Corr 0.39 -0.32 0.029
Spearman’s p-value 1.17¢7%0 6.85¢7%% 0.05

6.2 Correlation analysis

In this section, we present the correlation results between the pol-
icy difference and the advantage for each of the three groups of
taxi drivers. To reduce bias in the analysis, we only consider grids
(i.e., states) with sufficient visits in the data. Here we set 20 as the
minimum visit count threshold, and exclude grids with fewer visits.
As discussed in Section 5 for each driver we calculate the advantage
over each state-action pair in a time slot Ty and the policy differ-
ence of the same state-action pair in the next time slot T; over Ty
to understand how they adjust their strategies based on historical
experiences. Here we use 3 weeks as the length of each time slot
since it may take certain time for the adjustments to be observed.

Analysis Results. Fig. 10 shows the results of the three groups
drivers, respectively. Each point in the plot represents the policy
difference and advantage of a state-action pair of one driver. The
x-axis is the advantage in the first time span Ty, and the y-axis is
the preference difference between Ty and T;. The blue line is the
linear regression line of the points.

Fig. 10a shows the results for the trending-up drivers. There
is a positive correlation between the policy difference and the ad-
vantage, which imply the state-action pairs with larger advantages
tend to have larger policy difference. In other words, the drivers are
leaning towards increasing the relative visitation frequency of an
state-action pair if she found that the advantage of the state-action
pair was large in the previous time slot, and vise versa.

Fig. 10b shows the results of the trending-down drivers. The
linear regression line of the points (blue) has a negative slope. It
shows that the trending-down drivers have a negative correlation
between the policy difference and the advantage, which states these
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drivers increase the relative visitation frequency of those state-
action with smaller advantages, and vise versa, which is a counter-
act with the learning process of policy-gradient RL.

Fig. 10c shows the results of the stabilized drivers. The slope of
the linear regression line is close to 0. The stabilized drivers reflect
little correlation between the policy difference and the advantage.
We consider that these drivers have finished the learning process
and reached a stable status.

Table 2 provides the quantitative results of three groups of taxi
drivers. For trending-up drivers, the Spearman’s rank correlation
coefficient is 0.39 with a p-value of 1.17¢72°, which means that
the correlation between the policy difference and the advantage is
significantly positive. A similar conclusion is drawn based on the re-
sult of the Pearson’s correlation coefficient. Although the Pearson’s
correlation coefficient is smaller, it still suggests a significant posi-
tive correlation. For the trending-down drivers, the Spearman’s
rank correlation coefficient is —0.32 with a p-value of 6.85¢%. It
implies that the correlation between the policy difference and the
advantage is significantly negative. The Pearson’s correlation anal-
ysis results suggest the same conclusion. Stabilized drivers have
little correlation between the policy difference and the advantage
with the Spearman’s rank correlation coefficient of 0.029 and a
p-value of 0.05.

Correlation Analysis Summary: The trending-up drivers who
improved earning efficiencies over time show a similar learning
process as that of the agent in an policy gradient RL algorithm,
while the trending-down drivers who worsened earning efficien-
cies show an opposite learning process to the learning process of
the agent in a policy gradient RL algorithm. This in turn proves
that (1) the trending-up taxi drivers are following the paradigm of
RL effectively when learning strategies, and (2) drivers tend to be
more successful in terms of their increasing earning efficiency if
they better follow the learning process of RL.

The result of stabilized drivers implies that these taxi drivers may
have found strategies that they believe to be “optimal”. They are
loyal to the strategies and not temporally affected by the advantages.
They are similar as agents in RL that have already reached the
optimal status.

advantages in July

tween July and August

Figure 12: The learning process of Jacob

6.3 Case Study

In this section, we provide two concrete examples from two real
drivers to help illustrate our findings in details.

(1) A trending-up driver. We select a driver, Mike, from the group
of trending-up. Mike’s earning efficiency shows a monotonic in-
creasing trend from the first week in 07/16 to the last week in 12/16.
We extracted the top 5 grids with the highest visitation frequency
of Mike during July and August, as shown in Fig. 11a. We can see
that Mike likes working near the Airport. We calculated the ad-
vantage of the state-action pairs of these 5 grids. The state-action
pair with the highest advantage value among the state-action pairs
of each state is marked with a blue arrow in Fig. 11a. These blue
arrows show that the driver tends to get closer to the airport to
get better earnings. Then, we extract the policy difference of these
state-action pairs from July to August, and the state-action pair
with the largest policy difference among the state-action pairs in
each state are marked with black arrows in Fig. 11b. Comparing
Fig. 11b with Fig. 11a, we can find that from July to August Mike
increased the probability of taking those exact actions which he
learned to have the highest advantage based on experiences from
July. Mike maintained a similar strategy as the agent in RL, which
helped him improve his earning efficiency from July to August.

(2)A trending-down driver. We select another driver from the
group of trending-down, namely, "Jacob". Jacob’s earning efficiency
shows a monotonic decreasing trend from the first week in 07/16
to the last week in 12/16. We extracted the top 5 grids with the
highest visitation frequency of Jacob during July and August, as
shown in Fig. 12a. Jacob likes working near the downtown area.
Similarly, we calculate the advantages and the policy difference
for each state-action pair in these grids. The results are marked
in Fig. 12a & 12b. Comparing the results in these two figures, we
can find that from July to August Jacob increased the probability of
taking those actions that didn’t give him high advantages in July. It
is the opposite to what an agent in RL would do. Thus, the earning
efficiency of Jacob was lowered from July to August.

6.4 Takeaways and Discussions

Based on our study upon a large real-world taxi trajectory dataset,
we acquired promising findings about whether a taxi driver follows
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the learning process of RL and why different groups of taxi drivers
have different earning efficiency trends over time. The takeaways
are summarized:

(1) Taxi drivers, especially the ones with improving earning
efficiencies, indeed follow the learning process of RL. Drivers with
the different trends of earning efficiency result from the different
extents to follow the paradigm of RL.

(2) Even the best drivers cannot completely follow the RL par-
adigm in all the scenarios. The possible reasons are that human
drivers have limited memories and they do not precisely calculate
the advantage over all the state-action pairs. Trending-up drivers
tend to better follow the RL paradigm for those state-action pairs
with low-to-medium expected rewards. The reason could be that
their strategies are already (near) optimal for those high-reward
state-action pairs. The improvement primarily comes from the low-
to-medium reward scenarios.

Our findings establish the foundation for future research related
to behavior analysis of taxi drivers. It can be used for strategy
recommendations. For example, for slow-growing drivers, one can
focus on helping them keep better track of their advantages so that
they better follow RL and their earning efficiencies grow faster.
Also, one can expect drivers to learn the best strategies in the most
profitable areas quickly. Learning is efficient if drivers focus more
on improving their decisions in low-to-medium reward areas.

7 RELATED WORK

Taxi operating strategies (e.g., dispatching, passenger seeking), and
driver behavior analysis have been extensively studied in recent
years due to the emergence of the ride-sharing business model and
urban intelligence. The related works are summarized below.
Urban Computing integrates urban sensing, data management,
and data analytic as a unified process to explore, analyze, and solve
problems related to people’s everyday life [7, 10-12, 28, 30, 33, 34,
38, 53, 56, 58, 60]. In particular, a group of works have studied the
topic of taxi operation [8, 9, 21, 32, 35, 42, 46, 51], such as vehicle
dispatching with reinforcement learning [17, 18, 23, 24, 27, 39, 43, 46,
49, 61], and passenger-seeking strategies [14, 19, 36, 54, 55, 57]. They
aim to find optimal solutions to improve the revenue of individual
taxi drivers as well as the entire fleet. For instance, [41] solved the
passenger-seeking problem by giving direction recommendations
to drivers. However, few studies investigate the relation between
the machine learned strategies and human drivers’ strategies. Some
studies directly assume that human drivers follow reinforcement
learning [37, 52, 62] without validation through real cases. To the
best of our knowledge, our study makes the first attempt to validate
if taxi drivers follow the paradigm of reinforcement learning when
earning their driving experiences.

Human Learning is a process of interacting between a person and
the external environment, which leads human to change capacity
permanently not due to biological maturation [20]. To character-
ize how the process works, research in Cognitive Neuroscience,
Psychological Sciences, and Behavioural Sciences has studied over
five decades [26]. [3] investigated the role of brain’s modular struc-
tures and found that flexibility measured by the allegiance of nodes
to modules in a past session could predict the relative amount of
learning in a future session. [45] contended the essential factors
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that can lead to progress in learning mathematics from the perspec-
tive of psychology. [40] introduced a structured learning tool and
teaching process to translate the learning principles into practice
for learning clinical skills regarding behavioral sciences. Compared
with previous works, we deliver an innovative insight of leveraging
the understanding of human learning to engineer the learning process
through machine learning.

8 CONCLUSION

Previous works make an assumption that human learners follow the
paradigm of reinforcement learning (RL) to change their strategies.
We propose a novel framework, including trending analysis, learn-
ing modeling, and strategy validation, to validate this assumption.
Our experiments on a large-scale real-world taxi trajectory data
prove that the taxi drivers’ strategy change follows the learning
process of RL and the drivers with different trends of earning effi-
ciency have the different extents to follow RL. Our framework and
findings provide an important sight in the fields of human behavior
learning and taxi operation management.
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