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ABSTRACT
The COVID-19 pandemic has posed grand challenges to policy
makers, raising major social conflicts between public health and
economic resilience. Policies such as closure or reopen of busi-
nesses are made based on scientific projections of infection risks
obtained from infection dynamics models. While most parameters
in infection dynamics models can be set using domain knowledge of
COVID-19, a key parameter – humanmobility – is often challenging
to estimate due to complex social contexts and limited training data
under escalating COVID-19 conditions. To address these challenges,
we formulate the problem as a spatio-temporal data generation
problem and propose COVID-GAN, a spatio-temporal Conditional
Generative Adversarial Network, to estimate mobility (e.g., changes
in POI visits) under various real-world conditions (e.g., COVID-19
severity, local policy interventions) integrated from multiple data
sources. We also introduce a domain-constraint correction layer in
the generator of COVID-GAN to reduce the difficulty of learning.
Experiments using urban mobility data derived from cell phone
records and census data show that COVID-GAN can well approxi-
mate real-world human mobility responses, and that the proposed
domain-constraint based correction can greatly improve solution
quality.

CCS CONCEPTS
• Information systems → Spatial-temporal systems; • Com-
puting methodologies→Machine learning.

KEYWORDS
Mobility estimation, Conditional Generative Adversarial Networks,
COVID-19
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1 INTRODUCTION
The COVID-19 pandemic has spread to over 200 countries in the
world, with 8,525,042 confirmed cases and 456,973 deaths as of June
20𝑡ℎ , 2020. Fig. 1 shows the latest situation report map from the
World Health Organization [3]. The rapid spread of the infectious
disease has posed grand challenges to policy makers due to the
raising social conflicts between (1) the need to reduce new infec-
tions and protect public health, and (2) the demand of reopening
to avoid breakdown of economics and support essential needs in
daily lives. As more policy makers start exploring mitigation of
this dilemma with staged reopening, a core mission is to avoid
major resurgence of infections caused by eased social distancing
policies (e.g., stay-at-home orders, limit of group gatherings, limit
on restaurant capacity).

Currently, COVID-19 related policies are often informed by sci-
entific projections of infection risks obtained from COVID-19 trans-
mission dynamics models. While many parameters in infection
dynamics models can be set using domain knowledge of COVID-19,
a key parameter – human mobility responses1 – is often challenging
to estimate due to complex and sometimes unknown social con-
texts, as well as limited training data under escalating COVID-19
conditions.
Research Goal. Responding to the urgent need by policy makers
and public health experts, we address the following human mobility
response estimation problem: Given a set of inputs on contextual (e.g.,
population, POI counts), epidemic (e.g., COVID-19 cases) and policy
(e.g., stay-at-home orders) conditions, we aim to estimate maps of
human mobility responses by learning from existing ground truth
data. Note, here the input conditions might not have been observed
in the targeted area in the historical data.
Challenges. The problem has two major challenges. First, human
mobility responses depend onmany complex social-physical factors.

1In this work, human mobility responses are measured by the number of visits to
point-of-interest (POI) such as grocery and hardware stores, restaurants, gas stations,
etc.
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Figure 1: World map of COVID-19 cases by WHO [3]

While some factors are known and have related data available
(e.g., population, POI distribution, policy), there exist many others
(e.g., people’s will or reaction over time, echo chamber effects,
random events) that may be unknown, uncertain, random or have
no data available. In addition, the contribution of many known
and unknown underlying factors to human mobility responses
may vary from place to place due to cultural differences, economic
environments, and etc. Second, the COVID-19 pandemic is a rare,
very recent and still-fast-changing event. As a result, the amount
of related data is relatively small. This increases the difficulty of
learning, especially when considering the random effects brought
by the first challenge.

Due to the urgent need of effective control over the COVID-19
pandemic, there have been many works studying the importance
of human mobility responses in COVID-19 transmission dynamics
models as well as effectiveness of early-phase social distancing mea-
sures (e.g., isolation, stay-at-home order, lock-down) on containing
the spread of the disease [5, 9, 17, 26]. There have also been studies
evaluating the feasibility of scalable contact tracing methods in
COVID-19 monitoring [7, 14]. While these studies have demon-
strated the importance of human mobility responses, they do not
address the main challenges in mobility estimation or simulation
(e.g., effects of unknown, uncertain and random factors; limited
training data). In terms of learning approaches, most regression
based estimators (e.g., linear and non-linear regression, kernelized
support-vector regressor) rely on a fixed set of features and cannot
consider unknown and uncertain factors.
Contributions. To address these challenges, we make the first at-
tempt to formulate the COVID-19 human mobility responses esti-
mation problem as a deep learning based data generation problem.
Specifically, we propose a COVID-GAN, a spatio-temporal condi-
tional Generative Adversarial Network (GAN) [10, 12], to estimate
mobility under various real-world conditions such as COVID-19
severity and local policy interventions. The use of a conditional
GAN [10] allows consideration of unknown and uncertain factors
(i.e., modeled as latent factors). In addition, we introduce a domain-
constraint based correction layer in the generator to reduce the
difficulty of learning and help mitigate the challenge of relatively
small training data.

Our main contributions in this paper are as follows:

• We gather and integrate various types of data (e.g., contextual,
epidemic and policy conditions) from multi-sources (e.g., Safe-
Graph [4], US Census Bureau [1], CDC [2], local government)
to provide a multi-view input for the estimation problem.

• We design COVID-GAN, a spatio-temporal conditional genera-
tive adversarial network tailed for COVID-19 data, to learn and
estimate human mobility responses. Specially, we introduce a
new phase in the generator of COVID-GAN, which leverages
known domain-knowledge to form low-computational-cost con-
straints to correct or mitigate spurious results during training.
This domain constraint based correction can reduce the diffi-
culty of learning and improve solution quality;

• We perform a variety of experiments on real-world COVID
data to validate the solution quality improvements achieved by
the proposed approach under different scenarios, and study the
effects of related features on the quality of results.
Experiment results show that the proposed COVID-GAN can

well mimic real-world human mobility responses in different set-
tings, and that the proposed domain constraint based correction
layer can greatly improve solution quality.

The rest of the paper is organized as follows. Section 2 defines
the problem. Section 3 details the methodology and model structure.
We present evaluation results in Section 4 and further discuss and
highlight the technical insights of the proposed solution framework
in Section 5. Related works are summarized in Section 6, and the
paper is concluded in Section 7.

2 OVERVIEW
Mobility estimation in the COVID-19 pandemic is a complex task
requiring a variety types of information such as population, COVID-
19 situation, etc. Fortunately, many organizations have opened their
data for research to help combat the pandemic. For example, Safe-
Graph [4], a leading provider of place and POI data, has started a
COVID-19 Data Consortium to provide free access to their commer-
cial data. Similarly, the Center for Disease Control and Prevention
(CDC) also provides dynamic updates of COVID-19 related public
heath statistics [2].

In the following part, we first introduce a set of basic concepts
about our data modeling and then provide a formal problem defini-
tion.

2.1 Basic Concepts
Definition 2.1 (Spatial grid model 𝐺𝑅𝐼𝐷𝑆 ). A grid-discretization

of a study area 𝑆 , i.e., the geographic region of interest in an esti-
mation task.

Definition 2.2 (Contextual conditions C𝑐 ). Relatively long-term
attributes that are not necessarily specific to COVID-19, including
population, median income, timestamp, and number of POIs (e.g.,
grocery stores, schools, gas stations, restaurants).

Definition 2.3 (Epidemic conditionsC𝑒 ). COVID-19 statistics from
COVID-19 situation reports published authoritative public health
organizations (e.g., CDC), including number of confirmed cases,
COVID-19 related deaths, etc.

Definition 2.4 (Policy conditions C𝑝 ). Social distancing orders
declared by officials during COVID-19 pandemic. Policies may play
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a key role in mobility changes. For example, strict stay-at-home or
shelter-in-place orders typically lead to a significant decrease in
mobility.

Definition 2.5 (Human mobility responses M). In this work, 𝑀
is measured by the number of visits to POIs (e.g., grocery stores,
hardware stores, restaurants, gas stations), which according to our
public health colleagues, is amajor factor in COVID-19 transmission
since individuals tend to have closer distances and interact with
each other at POIs.2 Human mobility response is target of the
estimation task.

Definition 2.6 (Generator 𝐺). A learned process used to generate
a map of human mobility responsesM𝐺 given a set of conditions.

Definition 2.7 (Discriminator 𝐷). Outputs a probability 𝑝𝑟𝑒𝑎𝑙 that
a map of human mobility responses is from real-world rather than
a generator 𝐺 .

2.2 Problem Statement
The problem is formally defined as follows:

Inputs:
– A spatial grid model 𝐺𝑅𝐼𝐷𝑆 for study area 𝑆 ;
– Contextual conditions C𝑐 (e.g., population, median income,
POI counts);

– Epidemic conditions C𝑒 (COVID-19 statistics);
– Policy conditions C𝑝 (e.g., social distancing policies);
– Human mobility responses M;

Output:
– A generator 𝐺 to estimate/generate maps (on 𝐺𝑅𝐼𝐷𝑆 ) of
human mobility responses𝑀𝐺 under C𝑐 , C𝑒 and C𝑝 ;

Objective:
– Maximizing the probability 𝑝𝑟𝑒𝑎𝑙 from 𝐷 on 𝑀𝐺 so that 𝐺

approximates the underlying generation process of real data;
Constraints:
– Temporal resolution of estimation is aggregated at week-
level;

– Mobility estimation at week 𝑖 can only use COVID-19 statis-
tics achieved before week 𝑖;

– Data is aggregated and does not contain private information.
In the scope of the present study, human mobility responses are

measured by number of visits to point-of-interests (POIs), and other
related measures are currently out of scope and will be evaluated
in future work.

In addition, the current temporal resolution of our analysis is
set to week-level due to the very high variance/noise of mobil-
ity from day to day within a week. Thus, to put more confidence
on estimation results, the scope in this paper is to perform mo-
bility estimation at an aggregated week-level as defined by the
first constraint. The second constraint is added because changes in
COVID-19 statistics (e.g., cases, death) can be considered as a direct
or indirect result of mobility changes. Thus, in this problem, we
make such post-information not accessible to mobility estimation
for the same timestamp. However, this does not limit the use of

2In comparison, overlapping trajectories of private vehicles or passengers on private
vehicles may raise less concerns in the spread process.

COVID-19 statistics from previous timestamps, which may truly
affect people’s mobility responses.

3 COVID-GAN FOR MOBILITY ESTIMATION
Our approach – COVID-GAN – is inspired by the conditional Gener-
ative Neural Network (cGAN). cGAN is a natural modeling structure
for human mobility response estimation in this COVID-19 scenario
because in the problem there exist both a number of known (e.g.,
COVID-19 situation, policies) and unknown/randomunderlying fac-
tors (e.g., wills of individuals). With the cGAN structure, the known
factors can be fed in as learning conditions and unknown/random
variables can be represented by vectors of latent code.

However, the basic cGAN structure is insufficient due to com-
plexity of the phenomenon as well as relatively small training data
considering the recentness of this ongoing COVID-19 pandemic
and the potentially high spatial variability across regions (e.g., dif-
ferent social, economical and COVID-19 contexts within a country
or across many). To mitigate this challenge, we feature a new design
to advance the original cGAN structure, i.e., a new phase in the
conditional generator to constrain estimated values using domain
knowledge before the results flow into the discriminator.

In the following part, we first introduce the integration and
preprocessing of multi-sourced data in Sec. 3.1. Then, we introduce
the network design and a domain-knowledge based correction
scheme in Sec. 3.2 and followed by training step in Sec. 3.3, and
finally show estimation step for real-data in Sec. 3.4.

3.1 COVID-GAN Data Preparation
Fig. 2 shows a summary of the multi-view data we gathered from
multiple sources based on definitions in Sec. 2.1 (i.e., contextual, epi-
demic and policy conditions; human mobility responses). As we can
see, most of the data is associated with different geographic units
(e.g. census block groups, counties) due to different data sources
or privacy protection concerns. Thus, further spatio-temporal data
processing are needed before training and estimation.

First, to integrate all the data of various types and geographic
units into the same format, we adopt a commonly used space-
partitioning approach [16, 21, 39] to segment the input spatial
domain into grid cells of size 1𝑘𝑚 × 1𝑘𝑚, and all input data in Fig.
2 are then segmented based on these grid cells. Note that some
features are re-scaled during this process. For example, population
is linearly re-scaled using the corresponding area ratios between
the area of the original polygon and the grid cells.

Since the temporal resolution of mobility estimation is week-
level as discussed in problem definition (Sec. 2), we further merge
all daily information (e.g., mobility, number of cases and death
related to COVID-19) into weekly aggregations for all grid cells.

Finally, we select spatial unit windows consisting of 𝑠×𝑠 grid cells
with their corresponding features (i.e., conditions and constraints
for COVID-GAN) to train our COVID-GAN. In this work, we set
the window size to 10 × 10 grid cells.

3.2 COVID-GAN Architecture
Fig. 3 shows the adversarial structure of the proposed COVID-
GAN. COVID-GAN is composed of a conditional generator𝐺 and a
discriminator𝐷 . To help improve the estimation quality, we propose
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Figure 2: Multi-source data for COVID-GAN.
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Figure 3: COVID-GAN

a new phase in the generator to constrain the estimated values using
domain knowledge. Next, we will discuss the three key components
in our COVID-GAN, i.e., the conditional generator, discriminator
and domain-knowledge constraint.

3.2.1 Generator Phase-1: Conditions and Latent Factors.
As shown in Fig. 3, the input of conditional generator (skipping
the dimension of "batch" for simplicity of description) includes a
condition tensor C ∈ R𝑠×𝑠×𝑐0 , latent code tensor U ∈ R𝑠×𝑠×𝑢0 and
a domain knowledge tensor K ∈ R𝑠×𝑠×𝑘 , where 𝑠 is the side length
of each spatial unit window introduced in Sec. 3.1, 𝑐0 is the number
of conditions (including contextual features, COVID statistics and
policy conditions), 𝑢0 is the dimension of the latent code vector
used to model the randomness in human mobility responses and 𝑘
is the number of layers in domain constraint.

In generator, the local-feature-projection (LFP) layer is used
to map existing features in the current layer 𝐿𝑖 to those of the next
layer 𝐿𝑖+1. The local-feature-projection layer is a special case of a
convolutional layer in which the kernel size is 1×1×𝐹𝑖×𝐹𝑖+1, where
𝐹𝑖 and 𝐹𝑖+1 are the number of features/channels in layer 𝐿𝑖 and
𝐿𝑖 + 1, respectively. 3 We use local feature projection layers instead
of convolutional layers with larger kernel size mainly to reduce

3This type of layers has also been used in other networks (e.g., YOLO [25, 31]) for
feature construction.

the boundary effects on grid cells of each spatial window. This
is important in mobility estimations since the final mobility map
is typically an integration of many overlapping spatial windows
(Sec.3.4), which may lead to accumulated boundary effects and thus
reduce generation quality.

The detailed architecture of the conditional generator is shown
in Fig. 4. In generator, the input tensors C and U are concatenated
together and pass 4 local-feature-projection layers. The first three
local-feature-projection layers are activated by Rectified Linear
Unit (ReLU) and batch normalized. The last local-feature-projection
layer is activated by hyperbolic tangent function, and we get an
𝑠 × 𝑠 matrixM𝐺 , where each entry represents the estimated human
mobility of the corresponding grid cell. Then, domain-knowledge
tensorK are enforced onM𝐺 before the mobility values are fed into
the discriminator to correct generated values and improve mobility
estimation quality.

3.2.2 Generator Phase-2: Domain Knowledge Constraint.
Recently, domain knowledge assisted learning has become an emerg-
ing trend, which can help reduce the difficulty of learning and over-
fitting with a small amount of training data and shows encouraging
improvements in learning results. The domain knowledge ranges
from observations (e.g., lake temperature vs. water depth [15], mor-
phological characteristics of objects [30]) to social and physical
theories (e.g., routine activity theory [8], engine combustion mod-
els [20]).

In COVID-GAN, we add a 𝑠 × 𝑠 ×𝑘 tensor 𝐾 to represent domain
knowledge that can be potentially used to correct or improve mo-
bility estimations in phase-1. A domain constraint should satisfy
the following requirements: (1) it contains finite layers (e.g., in our
study, the layers of the domain constraint K corresponds to the
last dimension of tensor K); (2) it is related to the input conditions
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Figure 4: Network Architecture of COVID-GAN.

C so that the usability of COVID-GAN does not depend on the
constraint; and (3) for calculation simplicity, the constraint should
be enforced or applied with a low-cost operation (e.g., a simple
element-wise tensor calculation) usingM𝐺 and 𝐾 . The third con-
straint is especially important in this context of deep learning since
the constraint enforcement operation will repeat in every iteration.

In this study, we construct a constraint K with 𝑘 = 1 satisfying
all the three requirements mentioned above using a combination
of time, POI and policy (TPP constraint).

Denote 𝑚𝑥𝑦 as mobility values at cell (𝑥,𝑦) in M𝐺 . We have
𝑚𝑥𝑦 ∈ (−1, 1) as it is an output of tanh(·) in the output layer. Since
in COVID-GAN, human mobility at a grid cell is represented by
the number of visits to POIs in a certain time slot (e.g., one week),
𝑚𝑥𝑦 equals to -1 when there is no visit in a cell,𝑚𝑥𝑦 > −1 if (1)
there exists POIs in the grid cell during the current time slot; and
(2) at least one of the POIs is allowed to open. To construct the
corresponding TPP constraint K with 𝑘 = 1, we treat K as an 𝑠 × 𝑠
matrix where each entry value equals to 1 if condition (1) and (2)
mentioned above are both satisfied; otherwise, the entry value is
-1. Fig. 5 shows an illustrative example of our TPP constraint.

The constraint can be then enforced by:

M′
𝐺 = min(M𝐺 ,K) (1)

By applying Eq. (1), the mobility values in M𝐺 remain the same
in grid cells if its corresponding TTP value is 1, or the values in
M𝐺 are corrected to -1. Thus, this constraint overall only requires
one data layer in K and can be easily enforced by a single min(·)
function. Note that the actual values (e.g., -1, 1) in the constraint
may vary for different choices of activation functions in the output
layer. Here the values are chosen for tanh(·). This type of constraint
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Figure 5: An illustrative example of the TPP constraint.

corrections can potentially help the generator focus on valid cells
and improve the generation quality.

3.2.3 Discriminator.
Fig .4 shows the detailed architecture of the discriminator. Its input
is a tensor of size 𝑠×𝑠×(𝑐0+1), where 𝑐0 is the number of conditions
(same as generator).

As shown in Fig. 4, the input tensor can be created in three
different ways:

– Conditions concatenated with generated mobility𝑀 ′
𝐺
;
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– Conditions concatenated with their corresponding real mo-
bility𝑀real;

– Conditions concatenated with mismatched real mobility
𝑀shuffle.

Among the three kinds of inputs, only the second one is labeled
with "real" whereas the other two are marked with "fake". The
input tensor is then fed into the discriminator, and the goal of the
discriminator is to learn to tell if the input is "real" or "fake".

The discriminator also contains four local-feature-projection
layers, they are activated by ReLU and followed by batch normal-
izations, the output of the last local-feature-projection layer is re-
shaped into a vector and passes a fully connected layer as well as
a Sigmoid function and outputs a final scalar, which indicates the
probability whether the input of discriminator is "real" data.

3.3 COVID-GAN Training
The training of COVID-GAN is performed via adversarial con-
frontation between the generator and discriminator. The objective
function of COVID-GAN is then formulated as an antagonizing
bi-level min-max optimization problem with binary-cross-entropy:

min
𝐺

max
𝐷

𝑓 (𝐺, 𝐷) = EM∼𝑃𝑑𝑎𝑡𝑎 [log𝐷 (M,C)]

+EU∼𝑃𝑈 [log(1 − 𝐷 (𝐺 (C,U,K),M))]
(2)

Alg. 1 presents the training process of COVID-GAN. The training
of the discriminator uses the three types of (M,C) combinations as
illustrated in Sec. 3.2.3: (M′

𝐺
,C), (Mreal,C) and (Mshuffle,C). Denote

𝜂𝐷 as the learning rate of discriminator, 𝜽𝐷 as the parameters of
discriminator, the loss function and the update rule of 𝐷 are shown
in Eq. (3) and Eq. (4), respectively.

𝑓𝐷 = − 1
𝑚

𝑚∑
𝑖=1

(
log(1 − 𝐷 ((M′

𝐺 )
𝑖 ,C𝑖 )) + log(𝐷 (M𝑖

real,C
𝑖 ))

+ log(1 − 𝐷 (M𝑖
shuffle,C

𝑖 ))
) (3)

𝜽𝐷 = 𝜽𝐷 + 𝜂𝐷∇𝑓𝐷 (𝜽𝐷 ) (4)

where𝑚 is the total number of samples in a batch, and index 𝑖 refers
to the 𝑖𝑡ℎ sample.

Similarly, denote 𝜂𝐺 as the learning rate of the generator𝐺 , and
𝜽𝐺 as the parameters in 𝐺 , we have the loss function and update
rule of 𝐺 as:

𝑓𝐺 =
1
𝑚

𝑚∑
𝑖=1

(
log(1 − 𝐷 ((M′

𝐺 )
𝑖 ,C𝑖 ))

)
=

1
𝑚

𝑚∑
𝑖=1

(
log(1 − 𝐷 (𝐺 (C𝑖 ,U𝑖 ,K𝑖 ),C𝑖 ))

) (5)

𝜽𝐺 = 𝜽𝐺 + 𝜂𝐺∇𝑓𝐺 (𝜽𝐺 ) (6)

3.4 COVID-GAN Estimation
The goal of this step is to generate the mobility map of the entire
study area (e.g., a city or county) from the estimations of 𝑠×𝑠 spatial
unit windows. Since COVID-GAN would generate the mobility
maps of spatial unit windows in different time slots and areas,

Algorithm 1: COVID-GAN Training

Require:
• List of conditions C
• List of domain constraints K
• List of real mobilityMreal
• Number of epochs 𝑒𝑝𝑜𝑐ℎ

1: G = initG()
2: D = initD()
3: for 𝑒 = 1 to 𝑒𝑝𝑜𝑐ℎ do
4: for 𝑏𝑎𝑡𝑐ℎ in {C,K,Mreal} do
5: M′

𝐺
= G(batch.C, 𝑟𝑎𝑛𝑑(𝑃U), batch.K)

6: {# for discriminator:}
7: 𝑏𝑎𝑡𝑐ℎ𝑚𝑖𝑠 = mismatchShuffle(𝑏𝑎𝑡𝑐ℎ)
8: Update D using Eqs. (3) and (4)
9: {# for generator:}
10: Update G using Eqs. (5) and (6)
11: end for
12: end for

we present two schemes to generate the final map of mobility
estimation.

Single-draw based sliding window: In this scheme, we move a
𝑠 × 𝑠 sliding window across the whole target area to prepare all
conditions and constraints for the generator𝐺 . Then, using these
well-prepared data, we train the COVID-GAN and generate a single
𝑠 × 𝑠 mobility estimation result for each unit window (i.e., a single
draw from the distribution with latent factors), and build the whole
map with all the generated results for unit sliding windows. Since
each grid cell in the target area may have multiple generated results
due to overlaps among the sliding unit windows, the final mobility
value in a grid cell is the average of the generated results.

Multiple-draw based sliding window: This scheme takes𝑤 draws
of the same window from the generator 𝐺 instead of a single draw.
The results of the multiple draws are averaged before being inte-
grated into the estimation of the original study area.

In our experiments we use the multiple-draw version to reduce
random effects in comparison. The single-draw version is better
suited for scenarios when a decision maker would like to explore
potential variations in human mobility responses.

4 EVALUATION
The overall evaluation framework is shown in Fig. 6. Our experi-
ments aim to answer the following questions:

– How does COVID-GAN performs compared to the baseline
in terms of solution quality?

– What is the effect of training on spatially-seen vs. spatially-
unseen samples?

– What is the effect of training on temporally-seen vs. temporally-
unseen samples?

– What are the effects of features in COVID-GAN on the per-
formance?

The second question aims to compare the quality of generated
mobility responses between spatial regions that are seen and unseen
in the training data (either temporally seen or not). Similarly, the
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third questions aims to evaluate the same effect along the temporal
dimension.

4.1 Boston Dataset
The study area used in the experiments is shown in Fig. 7, where Fig.
7 (a) visualizes the geographic context of the area around Boston,
MA, and Fig. 7 (b) shows the grid partitioning of the space. The
dimension of the study area is 37𝑘𝑚 × 48𝑘𝑚 and each grid cell
has a size of 1𝑘𝑚 × 1𝑘𝑚. An example of a 10 × 10 unit window
(Sec. 3.1) is illustrated by the blue box in Fig. 7(b). The duration of
data is from 03/02 to 05/24, covering 12 weeks in total. The study
area has over 2 million population in total and 26054 POIs. During
the 12 weeks, the total number of POI visits is over 6 million. A
"closure-of-public-venues" policy was implemented starting from
03/23 and lasted till the end of the 12-week period.

4.2 Estimation Quality Evaluation
Here we aim to answer the first three questions summarized at the
beginning of Sec. 4. Fig. 9 and 10 shows a comparison of results of
different models. Specifically, the first column (i.e., (a1) and (a2))
in both figures shows the ground truth, and the second and third
columns show the results of the proposed COVID-GAN as well as
the baseline approach (i.e., a conditional GAN [10, 39] without do-
main constraint based correction). In Fig. 9, we highlight the results
of the candidate methods for a sub-region in the study area (the
same region is used for both temporally seen and unseen data). The
results for the full Boston study area is shown in Fig. 8. The colors
used in map symbologies are classified using quantiles extracted

from the ground truth (i.e., 0𝑡ℎ , 25𝑡ℎ , 50𝑡ℎ , 75𝑡ℎ and 100𝑡ℎ), a typical
approach for enhanced map visualization. To reduce random effects
in the comparison, all the results are based on multiple-draw based
approach (10 repetitive runs) described in 3.4.

Full-map comparison: Fig. 8 (a), (b) and (c) show the ground
truth and results of candidate methods for the full Boston study
area for the final week in the data (not used in training). As we
can see, mobility distribution generated by the COVID-GAN can
capture the details in the distribution of human mobility responses
much better than the baseline method. Fig. 8(d) shows the total
estimated mobility (i.e., total number of POI visits) for the full map
computed using the ground truth, COVID-GAN and the baseline.
The total mobility (number of visits) of the ground truth, COVID-
GAN and baseline are 422,223, 402,471 and 364,284, respectively. The
differences (Fig. 8(e)) between the ground truth and the methods are
19,752 and 57,939 for COVID-GAN and the baseline, respectively.
We can see that the overall estimation of COVID-GAN is much
closer to that of the ground truth. To evaluate the distribution-
closeness between the mobility values estimated by the ground
truth and the methods, we further compute the Kullback–Leibler
divergence [18] and the results are shown in Fig. 8(f). The X-axis
are the number of equal-size bins used to discretize the mobility
estimations, which is needed for the computation. As we can see,
COVID-GAN achieves much lower KL-divergence values compared
to the baseline consistently for different numbers of bins.

COVID-GAN vs. baseline: As we can see in Fig. 9 and Fig. 10,
results of COVID-GAN and in (b1), (b2) are able to better approxi-
mate the mobility distributions in the ground truth compared to
the results of the baseline method in (c1) and (c2), where a large
number of cells contain a spurious mobility value, ranging from low
to high. In addition, the trend remains the same for both temporally
seen and unseen data in Fig. 9 as well as spatially seen and unseen
data in Fig. 10.

Temporally-seen vs. temporally-unseen: In this comparison,
temporally-seen refers to the time periods (i.e., weeks) that exist in
the training data and have been seen by COVID-GAN. In contrast,
temporally unseen refers to data of weeks that are outside the
training data. To make the test more realistic, here the timestamp of
unseen data must also be strictly after all timestamps in the training
data so that the model does not try to estimate the past based on the
future. In this experiment, we use the first 11 weeks of data to train
the candidate models and leave the 12𝑡ℎ week out as "temporally
unseen" data. According to the results in Fig. 9, we can see that
COVID-GAN is able to maintain a high solution quality when being
used to estimate human mobility responses for the unseen week,
which is especially important in assisting policy-making during the
ongoing pandemic.

Spatially-seen vs. spatially-unseen: To generate spatially un-
seen regions, we crop a 20𝑘𝑚 × 20𝑚𝑘 sub-region (i.e., a 20×20
sub-grid) off the total geographic space shown in Fig. 7, and data
in this sub-region are not seen by COVID-GAN during training.
This eliminates about one third of the total amount of training sam-
ples (overlaps with the sub-grid are not allowed). Fig. 10 shows the
comparison of results by COVID-GAN and the baseline approach.
Comparing results in the two rows, COVID-GAN achieves a better
estimation for the first row when the data is spatially seen, and the
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Figure 9: Detailed mobility estimation results in a sub-
region of the study area for both temporally seen and un-
seen data.

results of the baseline cannot well approximate the details in the
mobility distribution.

4.3 Effect of Features
Here we evaluate the effect of two features, i.e., COVID-19 related
deaths and policy, on the estimation results. Specifically, for each of
two features, we trained a separate instance that does not contain
it as a condition in C. Fig. 11 shows the results of COVID-GAN in
(b) and the versions trained without COVID-19 related deaths and

(a1) Ground truth (b1) COVID-GAN (c1) Baseline
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Figure 10: Mobility estimation results in spatially seen (first
row) and unseen regions (second row) of the study area.

policy in (c) and (d), respectively. An example of the differences is
highlighted by the yellow circle.

First, we can see the full feature based version can well approxi-
mate the mobility distribution in the ground truth. For the model
trained without the condition on COVID-19 related deaths, we can
see that it tends to over-estimate the mobility values in all three
circles. The reason may be that COVID-19 related deaths has a
discouraging effect on people’s will to get out and visit POIs such
as restaurants. As a result, removal of this feature may potentially
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Figure 11: Effect of features on mobility estimation.

lead to less suppressing force on the value and an increase in the
estimation.

A similar trend can be seen for the model trained without the pol-
icy condition. For example, in the highlighted circle, the "no-policy"
results are over-estimations compared to the ground truth and the
full-feature version. This result also conforms to our expectation
since social distancing policies in our data are restricting factors
on human mobility responses [22], and its absence may potentially
increase the chance of over-estimation.

5 DISCUSSION
In this section, we discuss a few data and technical aspects of
COVID-GAN in a more holistic manner.

Generation vs. prediction: As a conditional generative neural
network, COVID-GAN is more of a generator than predictor by
definition since the generation process involves randomly sampled
latent factors to model unknown or uncertain factors in human
mobility responses. In other words, the generated mobility results
may not necessarily remain the same under the same condition
(results in our experiments are averaged from multiple simulations).
This allows policy makers or epidemiologists to evaluate different
possibilities of human mobility responses during decision-making
(e.g., change of policy). In contrast, a prediction model typically
produces the same result for the same data once trained, and it
is better suited when all or most of factors of human mobility
responses are well-understood, stable and available in data.

Spatial variability: While our experiment results show that
COVID-GAN performed reasonably well for a spatially-unseen
region, that region is relatively small and is still adjacent to the
spatially-seen data. Thus, more research is needed to examine
COVID-GAN’s performance for regions that are more distant to
each other (e.g., different states, different countries). Given the typ-
ical social and physical differences in different geographic areas,
new approaches may be needed to explicitly handle the spatial
variability at larger geographic scales [13].

Data quality: In this work we did not investigate the effect
of data quality (e.g., missing data, inaccuracy, anomaly) of input
conditions, which may have bigger impacts in rural areas where
the total volume of data tend to be smaller. This needs to be further
investigated in future research to improve the generality of COVID-
GAN.

6 RELATEDWORK
COVID-19. There have beenmany studies [5, 6, 9, 17, 26] exploring
the interplay between human mobility responses, social distancing
policies, and transmission dynamics in response to the COVID-19
pandemic. For example, it was shown by [17] that strict implemen-
tation of social distancing policies can reduce mobility and sub-
stantially mitigate the spread of COVID-19. A US mobility change
map was created in [9] to increase risk awareness of the public and
visualize dynamic changes in mobility as COVID-19 situation and
policy evolves. Studies [7, 14] have also explored the feasibility of
utilizing contact tracing to control the spread of the disease through
simulated synthetic data and real-world smartphone trajectories.
These studies are timely in showing the important role played by
mobility in the spread of COVID-19, but they do not address the
challenges in real-world mobility estimation/simulation (e.g., effects
of unknown, uncertain and random factors) and have not explored
the potential use of deep learning based generative models to assist
the estimation.
Deep Learning for Spatio-Temporal Prediction. There have
been many deep learning based techniques developed for spatiotem-
poral data, including traffic accident prediction [36], flow prediction
[23, 37], geospatial object mapping [30–32, 35], taxi driver behavior
imitation [38], taxi demand [11, 28, 34], travel time estimation [29],
dispersal event forecasting [27], etc. Most of these spatio-temporal
deep learning techniques typically are stationary predictors (i.e.,
same result from two runs on same data) rather than generative
models, or do not leverage domain knowledge based constraints
to assist learning (e.g., cGAN [10, 12, 39]). In addition, generative
neural networks have not been explored to assist human mobility
response estimation at fine scale in this COVID-19 pandemic.

7 CONCLUSIONS AND FUTUREWORK
We proposed a conditional COVID-GAN to estimate/generate real-
world human mobility responses to assist policy making during
staged reopening in face of the COVID-19 pandemic. COVID-GAN
integrated a variety of features including contextual features, COVID-
19 statistics and policies from multi-sources such as SafeGraph,
American Community Survey, Center for Disease Control and Pre-
vention, news, etc. In addition, the generator incorporated a domain-
constraint correction layer to efficiently reduce spurious results as
well as the difficulty of learning. Experiment results showed that
COVID-GAN can well mimic real-world human mobility responses
and the domain-constraint based correction can greatly improve
solution quality.

In future work, we aim to first explore statistically robust formu-
lations (e.g., [8, 19, 33]) to improve the confidence of the estimation.
We also plan to explore spatial variability aware formulations of
COVID-GAN as well as other measures of humanmobility response
and efficiently enforceable domain constraints with epidemiologists.
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Furthermore, the current work limits on single city. We will include
more cities to improve the model capacity in transferring between
different places, and consider distributed frameworks [24] for better
scalability during data integration and model training. Finally, we
will add more baselines (e.g., more traditional learning models) as
well as metrics for model evaluation (e.g., RMSE, summary statistics
across bins).
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