Mathematical Biosciences 331 (2021) 108501

journal homepage: www.elsevier.com/locate/mbs

Contents lists available at ScienceDirect

Mathematical Biosciences

Original Research Article

Spatial modeling and dynamics of organic matter biodegradation in the n

absence or presence of bacterivorous grazing™

Xiaoyuan Chang ?, Junping Shi >*, Hao Wang ¢

Check for
updates

2 Department of Mathematics, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, PR China

b Department of Mathematics, William & Mary, Williamsburg, VA, 23187-8795, USA

¢ Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada

ARTICLE INFO ABSTRACT

MSC: Biodegradation is a pivotal natural process for elemental recycling and preservation of an ecosystem.

92D25 Mechanistic modeling of biodegradation has to keep track of chemical elements via stoichiometric theory,

92€70 under which we propose and analyze a spatial movement model in the absence or presence of bacterivorous

35K57 grazing. Sensitivity analysis shows that the organic matter degradation rate is most sensitive to the grazer’s

gggii death rate when the grazer is present and most sensitive to the bacterial death rate when the grazer is absent.
Therefore, these two death rates are chosen as the primary parameters in the conditions of most mathematical
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Reaction_diffusion local and global bifurcation theory, and the abstract persistence theory. Through numerical simulations, we

Bifurcation obtain the transient and asymptotic dynamics and explore the effects of all parameters on the organic matter
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Organic matter decomposition the “decomposition—facilitation paradox” in the spatial context.
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1. Introduction

As one of the major global crises, environmental pollution has re-
ceived much attention all over the world. According to the sixth global
environment outlook report issued by the United Nations Environment
Programme during the United Nations Environment Conference in
March 2019, pollution of the earth’s environment is severe and the risk
to human health is increasing every day. A friendly way of decomposing
environmental pollutants is to use microbial decomposers, such as bac-
teria, who can degrade organic matters composed of different elements
including carbon, nitrogen, sulfur and phosphorus [1]. This process is
called biodegradation during which, certain substances are decomposed
into natural elements by microorganisms. Microbial biodegradation is
a natural recycling process and is beneficial in both environmental and
economic perspectives [2].

Bacteria are one of the most numerous and oldest living creatures on
the earth. Bacteria and their predators (e.g. protists) play indispensable
roles in the sustainability and restoration of natural ecosystems. They

significantly impact biodegradation of organic matters. Hence, it is
useful and interesting to explore the dynamics of biodegradation using
stoichiometric modeling which provides a cutting—edge approach to
study macroscopic phenomena (organic matters from pollution and
their decomposition) via microscopic lens (bacteria, protists, carbon
and nitrogen elements) [3-5].

In [5], Wang et al. established a bacteria-grazer model of organic
matter decomposition and revealed the positive relationship between
the facilitation of organic matter decomposition by grazers and the
stoichiometric difference between bacteria and grazers by using nu-
merical simulations. They also term the “decomposition—facilitation
paradox” phenomenon, which points out that the rate or the extent
of organic matter decomposition often increases in the presence of
bacterivorous protists that substantially reduce bacterial abundances;
see also [6-10]. Based on the model in [5], the authors in [4] studied
the dynamics of a stoichiometric organic matter decomposition model
in chemostat under the “well stirred” assumption which is the case in
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many lab experiments. These well-mixed ODE models were modified
and applied to estimate methane production from oil sands industry
in Alberta province of Canada [3]. Lab experiments were designed for
the methane emission model to guarantee the rationality of the “well
stirred” assumption. However, in natural ecosystems, the decompo-
sition usually occurs in a spatially heterogeneous media. Therefore,
we propose a reaction—diffusion PDE model for the stoichiometric
organic matter decomposition (see Section 2) by extending the kinetic
equations in [4] to the setting of an unstirred media in this paper.

Through analyzing and simulating the reaction-diffusion PDE
model, our main conclusions include the following:

(i) If the bacterial death rate e is greater than a threshold ¢*, then the
bacteria always go extinct regardless of the grazer presence; On
the other hand, the bacteria persist when the death rate is smaller
than the threshold.

(ii) If the bacteria death rate ¢ is smaller than the threshold ¢* and the
grazer death rate § is smaller than a threshold *, then the grazer
and bacteria both persist and they reach a coexistence steady
state.

(iii) When both of the grazer and bacteria persist, increasing the car-
bon input rate destabilizes the grazer-bacteria coexistence steady
state and a spatial-temporal oscillatory pattern emerges. Thus a
paradox of enrichment occurs as in the classical predator—prey
system, that is, increasing the food available to the prey can cause
a destabilization of the predator’s population in a predator—prey
model [11].

(iv) Sensitivity analysis of the degradation rate to the parameters
reveals that the presence of grazers facilitates the organic matter
decomposition, which explains the “decomposition-facilitation
paradox” in the spatially heterogeneous context. The increase of
the flow rate, although enhances the decomposition, reduces graz-
ers’ facilitation, and sufficiently large flow exchange makes the
decomposition rate same in the presence or absence of grazers.
The effects of other parameters on the grazers’ facilitation are also
studied.

The conclusions (i) and (ii) are rigorously proven using the linear
stability theory, the local and global bifurcation theory and the ab-
stract persistence theory. The conclusions (iii) and (iv) are obtained by
numerical simulations.

Our paper is organized as follows. We present our model in Section 2
and provide some mathematical preliminaries in Section 3. In Section 4,
the dynamical behaviors of the grazer-absent system are obtained. The
main results of the dynamical properties of the grazer-present system
are stated and proven in Section 5. Numerical simulations in Section 6
validate our mathematical results in Section 4 and Section 5, and tran-
sient and permanent oscillatory behavior are also found numerically.
Sensitivity analysis is also included in Section 6. We summarize and
discuss our outcomes in Section 7. All technical proofs of mathematical
results are given in the Appendix.

2. The model

Our model is based on the model in [4] and describes the life
cycle that bacteria decompose the organic matter, bacterivorous grazers
graze the bacteria and the organic matter recycle from dead bacteria
and grazers in an unstirred media. The spatial domain is assumed to
be a one-dimensional tubular reactor 0 < x < L. Here, similar to the
assumptions in [5], the organic matter is the combination of organic
carbon and organic nitrogen, and organic nitrogen in organic matter
and inorganic nitrogen are combined together as the available nitrogen
pool. We use organic carbon decomposition as a proxy for organic mat-
ter decomposition and assume that bacteria and bacterivorous grazers
biomass are in terms of carbon content [12].

Our model has four state variables: the concentration of bacterial
biomass measured in carbon B(x, 1), the concentrations of carbon C(x, t)
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Fig. 1. A schematic diagram of relationship among variables in the model.

and nitrogen N(x,f) in media, and the concentration of grazers G(x,1)
predating bacteria in media, and the relations between them are shown
in Fig. 1. The reaction-diffusion PDE model for the stoichiometric
organic matter decomposition by extending the kinetic equations in [4]
to the setting of an unstirred media can be written as follows:

B, =dgB, + up®N,C)B - ugh(B)G — €B,

l/4B<I>(N,C)B + pG +¢B,

P

—0g)ugh(B)G
O0<x<L,t>0,

O0<x<L,t>0,

C,=dcCy — O0<x<L,t>0,

N, =dyNy, + 058G +0zeB + (0
—Ogup®(N,C)B,

G, = dgG,, + apgh(B)G — BG, 0<x<L,t>0.

(€]
The boundary conditions of system (1) are
W,(0,0)=0, W(L,t)+qW(L,1)=0 W = B,G,
C.(0,t) = —¢qC;,, C(L,1)+4qC(L,1)=0, (2)
N,(0,t) = —gN,,, N.(L,t)+qN(L,1)=0

for ¢+ > 0 and the initial conditions are

9x,00=9%x), 9=B,C,N,G, 0<x< L. 3)

Here we assume that the decomposition occurs in a one-dimensional
space for simplicity, and we assume that bacteria, carbon, nitrogen and
grazers follow passive diffusion at diffusion coefficients dp,dq,dy. dg,
respectively. The growth of bacteria is governed by uz@(N, C)B, where
up is the maximum growth rate of bacteria, the gross bacterial growth
rate is

D(N,C) = f(N)g(C), 4

and f(N) and g(C) are the specific bacterial growth rates as functions
of N or C respectively in Monod form:

vl Ch v c_, ®)

FN) = C+k,

the grazing of bacteria by the grazer is modeled by —u;h(B)G, where
Hg is the maximum grazing rate and

B
h(B) = Bk, (6)
is the per capita grazing efficiency; and the death of bacteria is termed
by —eB. In the grazer equation, augh(B)G and —pG describe the
growth and death of the grazers respectively, where «a is the conversion
efficiency of bacteria to grazers measured in carbon biomass. In the
carbon equation, the item uz@(N, C)B/r represents the decomposition
rate of organic substances by bacteria, which is regarded as a deputy for
organic matter decomposition, where r is the proportionality constant
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Table 1
List of parameters with estimated values for system (1)-(3).
Parameter Definition Values Unit References
Hp Maximum growth rate of bacteria 0.5 1/h [13]
He Maximum grazing rate 0.25 1/h [13]
ks Nitrogen-dependent H.S.C. for bacterial growth 1.21 mg/dm -
kg Carbon-dependent H.S.C. for bacterial growth 8 mg/dm [13]
€ Bacterial death rate 0.025 1/h [13]
r Yield constant 0.31-0.75 - [14,15]
0p N:C of bacteria 0.11-0.25 - [16]
0 N:C of grazers <0p - [17]
ky, H.S.C. for grazing 1 mg/dm [13]
B Grazer’s death rate 0.0075 1/h [13]
a Conversion efficiency of bacteria to grazers 0-1 - [5]
d; Diffusion coefficient - dm?/h -
C, Concentration of inflow carbon - mg/dm -
N, Concentration of inflow nitrogen - mg/dm -
q Flow rate - 1/dm -

of the bacterial growth rate to the decomposition rate. Dead bacteria
and grazers are assumed to recycle back to the organic carbon pool
instantly, which is expressed as fG+¢B. We assume that the coefficients
0 and 6; are the fixed N : C ratios in bacteria and grazers respectively
following the “strict homeostasis” assumption for heterotrophs [16,18,
19]. Then 6;8G+6zeB in the nitrogen equation is the nitrogen recycled
back from dead bacteria and grazers. The term u;h(B)G describes
the amount of bacteria (measured in carbon biomass) consumed by
grazers. Then the amount of consumed nitrogen is Ogzuyh(B)G, the
actual amount of nitrogen used by grazers is 6;aush(B)G, and their
difference Ogzush(B)G — 0;aush(B)G gives the exuded nitrogen back
to media. The growth of bacteria upz B&(N,C) requires the amount of
nitrogen uptake 6 zuz BO(N, C) with more details in [4]. In the spatially
heterogeneous scenario here, we originally model the nutrient inputs by
the boundary influx at x = 0: —¢C;,, for carbon and —¢N;, for nitrogen,
where ¢ is the flow rate.

The parameters in system (1)—(3) are listed in Table 1. Their values
and units are adapted from the ones in [4] and will be used in our nu-
merical simulations. The abbreviation H.S.C. represents half-saturation
constant in Table 1.

3. Basic mathematical properties

In this section, we show the existence, uniqueness and a priori
estimates of solutions of system (1)-(3) by using the theory of the
abstract ordinary differential equation in [20-22] and the strong max-
imum principle and Hopf boundary lemma [23]. In the mathematical
analysis, we assume that the diffusion coefficients of bacteria, carbon,
nitrogen and grazers are the same dp = d¢o = dy = dg = d following
the approach in [24], which provides the additional conservation of
masses in Theorem 3.2. This assumption is necessary for most of our
analytical results, though some persistence results may still hold for
unequal diffusion coefficients as shown in [25] for flow reactors. Also it
is known that in practical situations [26-29], d,d,dy have the same
order of magnitude, while d; is much smaller. So our analytic results
for grazer-absent system with G = 0 represent realistic situations. Some
numerical simulations of (1)-(3) with unequal diffusion coefficients are
shown in Section 6.

Let X* = C([0, L],R}) be the positive cone of the Banach space
C([0, L],R®) (s € N) with the usual supremum norm | - ||. Set u; =
B,u, = C,u3 = N,uy, = G and u = (u}, uy, u3, uy), and the initial functions
in (3) satisfying u® = (u?,ug,ug,ug) = (B, CY% N9, G% e X*. Define the
nonlinear operators f; : X* - C([0, L],R) (i = 1,2,3,4) by

S1) =pupg®@(us, up)uy — ugh(u)uy — €euy,
1
fr(u)=— ;MBKD(u3,u2)ul + fuy + €uy,

f3(0) =0 Puy + Ogeuy + (O — Oga)pgh(uy)uy — Ogug®@(us, uy)uy,
fa() =apugh(up)u, — Puy.

Consider the linear system with homogeneous boundary conditions

v, =duv,,, O0<x<L,t>0,
0,0, =0, v, (L,t)+qu(L,H)=0, t>0, @
v(x,0) = (), 0<x<L,

and the linear system with non-homogeneous boundary conditions

0<x<L0<s<t,
W, v (L,H)+qu(L,t)=0, 0<s<t, W =B,G, ®
O0<x<L.

v, =dv,,,

0,0, =—q

v(x, s) = 10(x),

By the semigroup theory presented in [21,30,31], there exists a
semigroup T(r) on C([0, L],R), which is positive, nonexpansive and
analytic, such that

v, 1) =THOW(x), t>0, 0<x<L

is a classical solution of system (7), and a family of affine operators
Uy (t,5) (0 < s <1) on C([0, L], R), such that

v(x,0) = Up (1, s)1°(x), 0<s<r1, 0<x<L, W=B,G

is a solution of system (8). Clearly, it is true that Uy, (z, s)C([0, L], R,) C
C([0, L1, R,) and T()C([0, L], R,) c C([0,LLR,) for 0 < s < ¢ and
W = B, G. Thus, system (1)-(3) can be rewritten as

t
ur (1) = U000 + / T( - o)/, (u(2))dr,
0
w () = T + / T( - 7)f,(u())dr, i =2,3,
0

t
uy(t) = Ug 0, ) + /0 Tt - o) f4(u(z))dz.

And by the fact that @(0,u,) = @(u3,0) = 0, f;(u) is quasipositive, which
implies the following conclusion is true by applying Theorem 1 and
Remark 1.1 in [21]:

Theorem 3.1. Assume that the initial value function u’ € X*. Then system
(1)~(3) has a unique mild solution u(x, t,u’) on (0, z,0) with u(x, ?,u’) = u’
and 0 < 7, < co. Moreover, u(-,1,u’) € X* and u(x,1,u’) is a classical

solution of system (1)—(3) for all t € (0, 7,0).

Furthermore, we have the following global existence, positivity and
the ultimate boundedness of solutions of system (1)-(3).

Theorem 3.2. Assume 0 < r,a < 1 and the initial value function u® € X*.
Then the solutions of system (1)—(3) are ultimately bounded, positive and
exist globally for t € (0,0). That is, for any constant 0 < § < 1, there
exists a Ty > 0, such that for any x € [0, L] and t > T,

0<W(x,t)<W(x)+6, W =B,C,N,G, (C)]
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where

C(x)=C,(1+qL—gx), N(x)=N,,(1+qL - gx),
N _ _ Y 5 10
B(x) =min { N C(x)} . G(x)=min { Nx) C(x)} . a0
0p O

To analyze the stability of the steady state solution, we recall the
basic properties of the eigenvalue problem

d¢" +p(x)p=Ap, 0<x<L,
¢ 0)=0, ¢'(L)+qpL)=0,

and have the following well-known result: (e.g. [32, Proposition 3.1])

(€8]

Lemma 3.3. Assume p € L®([0, L]), d and q are positive constants. Then
(i) The eigenvalue problem (11) has a sequence of real-valued eigenvalues
satisfying
Ao(p) > 41(p) = Aa(p) = -+ = A,(p) > —0o,

as n — oo, and the corresponding eigenfunction ¢(p) of the principal
eigenvalue Ay(p) is positive, whereas ¢, (p) is sign-changing for each
neN, and

dq¢*(L) +d [, (@' (0)*dx — [, p(x)d2(x)dx

Ao(p) =~
0 JiF 2 0dx

1
¢eH1([0,L])/{0}
12)
@) A¢(p) = Ao(p. d, q) is continuously differentiable in p, d, q, and Ay(p,) >
Ao(py) provided p,(x) > p,(x) for x € [0, L].
(>iii) If p(x) <0 for each x € [0, L], then Ay(p) < 0.
@iv) If p(x) = p;(x) + p,, where p, is a constant, then Ay(p) = Ay(p) + ps.

If p(x) = p is a constant, then Ay(p) = p + 4y(0), where 1,(0) = —dco%
and w, € (0, z/(2L)) is the smallest positive root of tan(wL) = q/w.

4. Asymptotic analysis of the grazer-absent system

In this section, we consider the dynamics of system (1)-(3) with
G =0, that is
B, =dB,, + pug®N,C)B - ¢B,
C,=dC,, - luBzD(N,C)B +¢B,
r
N,=dN, +0pecB— 051z ®(N,C)B,

O0<x<L,t>0,
O0<x<L,t>0,

O0<x<L,t>0,

B,(0,1) =0, B.(L,0)+qB(L,1)=0, >0, a3
C,(0,1) = —qC,,, C.(L.)+qC(L,1)=0, >0,
N,(0,1)=—=gN,,, N.L.,0)+gN(L,f)=0, >0,

O0<x<L.

9(x,0) = 8%x), 9=B,C,N,

From the proof of Theorem 3.2, it is known that P = ;B + N
converges to N(x) as t — oo. Hence, from a standard argument stated
in [24], the dynamics of grazer—absent system (13) are equivalent to
those of the limiting system:

B, =dB,, + up®(N(x)—0zB,C)B —¢€B,
C,=dC,, — 1;43(1>(1\7(x) —05B,C)B +¢B,
r

O0<x<UL,t>0,

O0<x<L, t>0,

B,(0,1) =0, B (L,1)+qB(L,1) =0, t>0, 14)
C.0,0) =—qC,,, C.(L,0)+qgC(L,1)=0, t>0,
B(x,0) = B%(x), C(x,0)=C%x), 0<x<L.

Hence, we only need to study the dynamics of the limiting system (14).

Assume B(x,t) =0 in the limiting system (14). Then C(x,t) satisfies
a diffusion equation which has a unique steady state solution C(x) =
C(x). That is, (0, C(x)) is the unique trivial steady state solution of the
limiting system (14), and (0,C(x), N(x)) is the unique trivial steady
state solution of the grazer-absent system (13). The local stability of
the trivial state (0, C(x)) is stated as follows.
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Proposition 4.1.
hold.

W If
(Hy) Aoup@(N(x),C(x)) —e <0 (15)

For the limiting system (14), the following statements

is satisfied, then the trivial steady state solution (0,C(x)) is locally
asymptotically stable with respect to (14).

Gi) If
(Hy) Ao(up®@(N(x), C(x))) — € > 0, (16)
then (0, C(x)) is unstable with respect to (14).

We remark that the principal eigenvalue 4(ug@(N (x), C(x))) in (H;)
or (H,) can be estimated by

- dco% + U Dy < Ag(up@(N, C)) < —da)? + UpPpax: an
where
<Dmin = d)(N[n’Cin) < ‘D(N’C) < ¢(Nin(1 + qL)’ Cin(l + qL)) = ¢max

from Theorem 3.2 that N;,, < N < N,(1 +g4L), C;,, < C <
C;,(1 + ¢L), and —dw? is defined in (iv) of Lemma 3.3. Moreover if
Ao(up@(N(x),C(x))) > 0, then € := Ay(up@(N(x),C(x))) is a critical
bacterial death rate at which the stability of the trivial steady state
(0, C(x)) changes. But if Ay(uz®(N(x),C(x))) < 0, then (H,) holds and
(0, C(x)) is always locally asymptotically stable.

Next we show that the local stability of the trivial steady state
(0, C(x)) is indeed of global nature under the same condition.

Theorem 4.2. Assume (H,) holds and 0 < r < 1.
@) If (B(x,1),C(x,1)) is a solution of the limiting system (14). Then

lim B(x,t) =0, lim C(x,1) = C(x),
=0 11—

uniformly for x € [0, L].
@) If (B(x,1),C(x,1), N(x,1)) is a solution of the grazer-absent system
(13), then

lim B(x,t) =0, lim C(x,t) = C(x), lim N(x,t) = N(x)
=00 =0 t—00

uniformly for x € [0, L].

On the other hand, under the condition (H,) (the trivial state
is unstable), the system (14) is uniformly persistent so the bacteria
population stays positive. We first introduce some notations as follows:

(@ ¥, : X? - X? is the solution semiflow generated by the limiting
system (14), where X? is defined in Section 3;

() X2={(B’,CHeX?: B(x)£0, 0<x <L}, 0X; =X2\X%

(©) Ny={0°€oxX]: %" €0X3, t>0};

(d) w(6°) is the omega limit set of the forward orbit y*(6°) =
{0} iz0-

The persistence under the condition (H,) is as follows.

Theorem 4.3. Suppose 0 < r < 1 and the assumption (H,) holds, then the
limiting system (14) has a global attractor A, and is uniformly persistent
with respect to (X2, BX%), that is, there exists a constant w > 0 such that
li’IEiOI;If B(- ,1,0° > w for any 6° € Xg.

Next we discuss the existence of positive steady state solutions
of the limiting system (14) bifurcating from (0,C(x)) at ¢ = ¢* =
Ao(up®(N(x),C(x))) > 0. The steady state solution of the limiting
system (14) satisfies

dB" + ug®(N(x)— 05 B,C)B —eB =0,

dc” - 1MB¢(N(x) —65B,C)B+¢B =0,
r

B'(0)=0, B'(L)+¢B(L) =0,

C'(0) = —qC;,, C'(L)+qC(L)=0.

0<x<L,

0<x<L,
18)
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Denote
Xp={BeH*[0.L): B'0)=0, B'(L)+qB(L)=0},
Xe={Ce H*(0.L]) : C'(L)+qC(L)=0}, Y =L>([0,L]).
Define 7 : R, xXp X Xs > YXY xR as

F(e, B(x), C(x))
dB" (x) + up®(N(x) — 65 B(x), C(x))B(x) — ¢ B(x)
=| dC"(x) - %ﬂBQ(N(x) — 05 B(x), C(x))B(x) + ¢B(x)
C'(0) + qC;,
Clearly, F(e,0,C(x)) = 0 for each e € R,. For (¢, $,) € Xp x X,
Fisoy(e".0.C0) @8)
de! (x) + up®(N (x), C(x)); (x) — € by (x)
= | 46500~ L up@F (0, CONPy () + €y ()
#(0)

We have the following existence of positive solutions of (18) via

bifurcation theory.

Theorem 4.4. Assume that 0 < r < 1 and €* := Ay(ug@(N(x), C(x))) >
0. Then

(i) there exists a positive constant ¢ < 1, such that positive solutions
(e(s), B(s, x), C(s,x)) (s € (0,0), x € [0, L]) of system (18) bifurcating
from (0,C(x)) at € = ¢*, and they lie on a smooth curve

I"r = {(e(s), B(s,x),C(s,x)) : s€(0,0), x€[0,L]}

satisfying B(s,x) = sng(x) + sw,(s,x), C(s,x) = Cx) + s¢o(x) +
swy (s, x), €(0) = €*, and w;(0,x) = 0 for i = 1,2, where ny(x) > 0
is the principal eigenfunction of (11) with p(x) = up®(N(x), C(x)),
and

Go(x) = (=d )" (& = ELO(N (), € ) ) < 0. a9

(ii) The bifurcation at € = €* satisfies €’(0) < 0 so e(s) < €* for s € (0,0)
and bifurcating positive solutions exist for ¢ € (¢* — o,€*) for some
o > 0, and the bifurcating positive solution (e(s), B(s, x), C(s, x)) is
locally asymptotically stable with respect to the limiting system (14)
for s € (0,0).

Now we show that the local bifurcation of positive solutions of (18)
is of global nature, and the positive solutions exist for all ¢ € (0, *).
Let the set of nontrivial solutions of (18) be
Z :={(e,B,C) € (0,0) x Xp x X :

(B(x),C(x)) # (0,C(x))}.

F(e, B(x),C(x)) =0,

Also in Theorem 4.4, the branch of nontrivial solutions of (18) can be
decomposed into the following two parts:

Il = {(e(s), B(s,%),C(s,x)) : 5 €(0,0), x €[0, L]},
I = {(e(s), B(s,x),C(s,x)) : s €(-0,0), x €[0, L]}.

Then the global bifurcation of positive solutions of (18) is described
below. It is similar to the ones in [33-35].

Theorem 4.5. Assume that 0 < r < 1 and €* := Ay(ug®(N(x), C(x))) >
0. Then there exists a connected component C of the closure of = such that
the curve I'y obtained in Theorem 4.4 is contained in C. Moreover let C* be
the connected component of C/I'[ containing I’ 1* , then all solutions of (18)
on C* are positive, and the projection of C* onto e-axis Proj, C* = (0, €*).

Summarizing the results in Theorems 4.2, 4.3, 4.4 and 4.5, we have
the following complete classification of dynamical behaviors of the
grazer—absent system:
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Corollary 4.6. Assume that 0 < r < 1 and €* := Ay(ug®(N(x), C(x))) >
0.

(i) When e > €* (or equivalently (H;) holds), the grazer—absent system
(13) has no positive steady state solution, and the trivial steady state
(B, C(x), N(x)) is globally asymptotically stable.

(ii) When 0 < ¢ < €* (or equivalently (H,) holds), the grazer—-absent
system (13) is uniformly persistent and there exists at least one positive
steady state solution (B,(x),C;(x), N;(x)) with Ni(x) = N(x) —
0B, (x) and B;(x) > 0. Moreover the positive steady state is unique
and is locally asymptotically stable for ¢ € (¢* — o, €*) for some ¢ > 0.

5. Asymptotic analysis of the grazer-present system

In this section, we discuss the dynamics of the grazer—present system
(1)=(3). By Theorem 3.2 and substituting N(x) — 0pB(x,1) — 05G(x,1)
for N(x,?) in the system, we obtain the following limiting system with
equivalent asymptotic dynamics:

B, =dB,, + uz®(N(x)—0,B - 0,G,C)B
— ugh(B)G — ¢B,
C, = dC,, — L uy®(N(x) - 0,B - 0,G.C)B
r

0<x<L,t>0,

+ pG +¢€B, O0<x<L,t>0,

1G, = dG,, + augh(B)G - fG, 0<x<L,t>0,
B.(0,1)=0, B.(L,t)+4¢B(L,t)=0, t>0,
C.(0,1) = —¢C;,, C.(L,t)+qC(L,1)=0, t>0,
G.(0,)=0, G.(L,t)+4qG(L,t)=0, t>0,

B(x,0) = B%x), C(x,0)=C"x), G(x,0)=G"%x), O<x<L.

(20)

From Section 4, the limiting system (20) has a unique trivial steady
state solution, denoted as E, = (0,C(x),0). The stability of E, with
respect to the grazer-present limiting system (20) inherits from the one
for the grazer-absent limiting system (14) for any grazer’s death rate
p>0.

Theorem 5.1. Assume 0 < r,a < 1 and f > 0. For the limiting system
(20), the following statements are true:

@A) If (H)) holds, then E, is globally asymptotically stable;

(i) If (H,) holds, then E, is unstable, and there exists a semi-trivial steady
state solution E; = (B;(x),C;(x),0) with B;(x),C;(x) > 0 when
0 < ¢ < €* provided ¢* > 0. Moreover, E, is locally asymptotically
stable when ¢* — ¢ < € < €*.

Theorem 5.1 shows that when bacteria become extinct, grazers
cannot survive either no matter how small the death rate is, and the
system will settle at the extinction state E,,.

Next we show that when bacteria persist, how the persistence of
grazers is determined by the death rate of grazers. More precisely the
uniform persistence and the existence of positive steady state solutions
of the limiting system (20) are established under (H,) and additional
conditions. There are three types of nonnegative steady state solutions
of system (20):

(i) the trivial steady state solution E, = (0,C(x),0), which always
exists;
(i) the semi-trivial steady state solution E; = (B,(x),C;(x),0) with
B(x) > 0 and C;(x) > 0, which exists for x € [0, L] provided
0 < r <1 and (H,) hold;
(iii) the coexistent steady state solution E, = (B,(x), C,(x), G,(x)) with
By(x) > 0, Cy(x) > 0 and G,(x) > 0 for all x € [0, L].

To observe that Ey, E; and E, are all possible forms of nonnegative
steady state solutions of (20), let (B(x),C(x),G(x)) be a nonnegative
steady state solution of system (20) which is not E,. From the strong
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3.5

Fig. 2. The bifurcation diagram of the limiting grazer-absent system (14) with the
bifurcation parameter ¢ showing the transcritical bifurcation. Other parameter values
are given in P,. The horizontal axis is ¢ € (0,0.15), and the vertical axis is the total
biomass. The solid curves represent stable solutions and the dotted curves represent
unstable solutions.

maximum principle, each component is either zero or strictly positive.
If B(x) =0, then G(x) satisfies

dG" -G =0, 0<x<L,
G'(0)=0, G'(L)+4G(L)=0,

which implies that G(x) = 0, and the solution must be E,,. On the other
hand, if B(x) > 0 and G(x) > 0 for x € [0, L], one has E, form, which
is a coexistence state; and if B(x) > 0 and G(x) = 0 for x € [0, L],
one has E; form. Consequently, E,, E, and E, are all possible forms of
nonnegative steady state solutions of (20). We have shown that E, is
unique, and E, exists under (H,) but the uniqueness is unknown. We
prove the existence of E, (a positive coexistence state) under (H,) and
additional conditions by using persistence theory.

For convenience, we first introduce some notations. Setting ’7’, :
X3 — X3 be the solution semiflow generated by the limiting system
(20). Let

X3 ={(B.G.C)eX’: B(x)#0, G(x)#0, 0<x <L},
3 _ w3\ ¥3
X} = X3\ X3,
Ny ={0°eox’: ¥,0° eax?, 120},
and let @(©°) be the omega limit set of the forward orbit 7+(0°) =
{?,(0%)},50. Let P : X2 > C([0, 1], R,) be the projection on X?, defined
by P(B,C) = B for (B,C) € X%
The following main theorem indicates that the existence of the coex-
istent steady state listed in (iii) and the proof is given in the Appendix.

c
ﬁ D n
5 136
134
132
o 100 200 30 400 50 600 ) 10 20 0 40 50 600

Time t Time t
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Theorem 5.2. Assume that and 0 < r,« < 1, (H,) holds, and let A be the
global attractor of limiting grazer—absent system (14). In addition, assume
that

(Hy) Jo <aﬂG S h(B(x))) —p>0 (21)

holds. Then system (20) has a global attractor A, and is uniformly persistent
with respect to (Xz’,aX?), that is, there exists a constant w, > 0, such
that for any solution (B(x, ), C(x, ), G(x, )) with the initial condition 6° =
(B°,C%, 6% ex3,

liminf B(x,1,0°(x)) 2 @y, liminf G(x,1,0°(x)) 2 @}, x €[0, L]

Furthermore, system (20) admits at least one positive steady state solution
E,.

We remark that if 4, <“l‘G 5 i7r71<f,4 )h(B(x))) < 0, then (H3) holds
E€P(Ag

automatically for any g > 0; and if A, (‘Wc R i;)l(fA )h(B(x))) =p*>0,
%]
the assumption (H;) is equivalent to 0 < § < f*.

Applying Theorems 5.1 and 5.2 to the full grazer-present system
(1)-(3), we obtain

Corollary 5.3. Assume that 0 < r,a < 1, €* = Ay(ug®(N(x), C(x))) > 0
. .
and p* = 1, (aﬂG Bel]t)l(fAO)h(B(x))> > 0.

(i) When ¢ > ¢* (or equivalently (H,) holds) and f > 0, the grazer—
present system (1)—(3) has no positive steady state solution, and the
trivial steady state (0, C(x), N(x),0) is globally asymptotically stable.

(ii) When 0 < ¢ < ¢* (or equivalently (H,) holds), the grazer-present
system (1)—(3) has at least one semi-trivial steady state solution
(B, (x),C; (x), N, (x),0) with N,(x) = N(x) — 05 B,(x) and B,(x) > 0.
Moreover the semi-trivial steady state is unique and locally asymptot-
ically stable when e* — ¢ < € < €* for some ¢ > 0.

(iii) When 0 < e < €* (or equivalently (H,) holds) and 0 < p < p*
(or equivalently (H;) holds), the grazer—present system (1)—(3) is
uniformly persistent, and there exists at least one positive steady state
solution (By(x), Cy(x), Ny(x), Go(x)) with N, (x) = N(x) — 03 B,(x) —
0:G,(x), By(x) > 0 and G,(x) > 0.

6. Numerical simulations

In this section, we use numerical simulations of the limiting grazer-
absent system (14) and the limiting grazer-present system (20) to
illustrate our theoretical conclusions obtained in Sections 4 and 5, and
to provide some new insights on the biodegradation. In this section, the
curves in figures represent the total mass of functions (L' norm of the
functions).

The initial conditions are chosen as

B(x) = 0.03 + 0.01 sin(zx), C%(x) = 3 + 0.1 cos(rx),
G%(x) = 0.03 + 0.01 cos(wx), (22)

and other parameters are chosen as follows:

B

a1

. 5 A 30
001 295

29

o 10 20 30 40 500 60 o 10 20 00 40 50 600
Time t Time t

Fig. 3. The solutions of system (14) for different e. Left: the solution converges to a positive steady state as e = 0.05 < e* = 0.105. Right: the solution converges to (0,C(x)) as

e=02>¢€*=0.105.
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Fig. 4. The bifurcation diagrams of the limiting grazer-present system (20) showing transcritical bifurcations. Left: bifurcation parameter ¢; Right: bifurcation parameter p and

€ = 0.05. All other parameter values are given in P,. The horizontal axis is the bifurcation parameter, and the vertical axis is the total biomass. The solid curves represent stable

solutions and the dotted curves represent unstable solutions.
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Fig. 5. The e-f plane diagram for the limiting grazer—present system (20). Here
e¢* = 0.105 and p* = 0.0277 when ¢ = 0.05, and other parameter values are given
in P,. Here the abbreviation G.A.S. represents globally asymptotically stable and L.A.S.
represents locally asymptotically stable.

Py:ug = 05k, = 121k, = 8k, = 1,65 = 025,r = 04,4 =
025,05 =0.1, 2 =095, = 0.01,C;, =3,N,, =7, ¢ =0.05,d = 0.3,
L=1ande=0.05.

With these parameter values, we have N(x) = 7.35 — 0.35x, C(x) =
B(x) = G(x) = 3.15 = 0.15x, €* = Ay(ug®(N(x),C(x))) = 0.105, and
g = Ay (aua inf pepca) h(B(x))) = 0.0277 when ¢ = 0.05. Hence, (H,)
holds if ¢ > 0.105; (H,) holds if ¢ < 0.105; and (H;) holds if 0 < § < 0.027.

Fig. 2 shows the bifurcation diagram for system (14) with the
bacterial death rate ¢ as the bifurcation parameter, which verifies the
conclusions of Proposition 4.1 and Theorem 4.4. Fig. 3 shows the
solution trajectories of (14) before and after the bifurcation value ¢*.
When e < 0.105, the solution of system (14) converges to a positive
steady state, and when e > 0.105, the solution converges to the trivial
state (0,C(x)). That is, when ¢ is large, organic carbon cannot be
decomposed and bacteria become extinct, and when ¢ is small, bacteria
survive and can partly decompose organic carbon.

Fig. 4 shows two bifurcation diagrams of the limiting system (20),
which illustrates the conclusions in Theorems 5.1 and 5.2. When using
the bacterial death rate ¢ as the bifurcation parameter, the system (20)
has two thresholds, a critical bacterial death rate ¢* = 0.105 from the
condition (H;), and ¢, = 0.07 from (H;) for fixed g = 0.01, while other

parameters are fixed as in By. When ¢ > ¢*, all solutions converge to the
trivial steady state solution E,; when e, < e < ¢*, the semi-trivial steady
state solution E; exists and it appears to be unique and asymptotically
stable; and when 0 < ¢ < ¢,, a positive steady state solution E, exists
and attracts all solutions (see the left panel of Fig. 4). It is interesting to
observe that the bacterial biomass B,(x) almost stays at the same level
for all 0 < € < ¢,, but C,(x) is smaller as ¢ decreases so the presence of
grazers does facilitate the decomposition of organic carbon.

On the other hand, fixing ¢ at 0.05 and using the grazer’s death
rate f as the bifurcation parameter, system (20) has a critical grazer’s
death rate g* = 0.0277 from the condition (H;), below which the system
possesses a positive steady state E, (see the right panel of Fig. 4). The
existence and stability parameter regimes of steady states E, E; and E,
are shown in the ¢ — g bifurcation diagram in Fig. 5. The region below
the curve f = p* is where a coexistence state E, exists. Fig. 6 shows
several solution trajectories of the limiting grazer-present system (20)
with different parameter values of ¢ and f. Here the solution converges
to E, when ¢ = 0.2 > ¢* = 0.105 (first row); the solution converges to
E; when ¢ = 0.05 < ¢* = 0.105 and g = 0.04 > p* = 0.0277; and
the solution converges to the positive steady state solution E, when
e = 0.05 and g = 0.01 < g*. It is known that [26-29], d¢,dp,d, have
the same order of magnitude, while d,; is much smaller. In Fig. 7 we
show the same effect of e and g as Fig. 6 but for the full system (1) with
dg =0.5,d- =0.3,d; =0.005 and dy = 1 so that the mass conservation
with equal diffusion coefficients no longer holds. The behaviors of the
solutions in this case are similar to the ones in Fig. 6.

Fig. 8 shows the bifurcation diagram with respect to the concen-
tration of inflow carbon C;, as the bifurcation parameter. There are
three bifurcation values: S; = 1.4, S, =25 and S; =55. If C;,, < S|,
then only E, exists and neither bacteria nor grazers can survive; if
S, < C;, < 8,, then E, is the attracting state, so bacteria persist but
their biomass is not sufficient to support the persistence of grazers;
if S, < C;, < S; then E, is the attracting state, and bacteria
and grazers coexist at an interior steady state; and if C;, > Ss, the
coexistence steady state E, appears to become unstable, and a limit
cycle becomes the attracting state. Thus S5 is a Hopf bifurcation point
(shown numerically). For C;, > 3, there are two curves representing
the maximum and minimum of periodic solutions in Fig. 5. This implies
that an increase of the carbon input C;, can support bacteria, a further
increase would also support grazers, and a very large carbon input
causes temporal oscillations of the system. This appears to be a paradox
of enrichment phenomenon. Again for the intermediate carbon input
(S, < C;, < S3), the bacterial steady state biomass B,(x) is nearly same,
while carbon and grazers increase in a linear fashion with respect to
C

in*
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Fig. 9 shows the solution trajectories in these four cases: when C;, = the solution converges to E,, and both bacteria and grazers persist and
1 < S| = 1.4, the solution converges to E, and both bacteria and grazers settle at an interior steady state; and when C;, = 6 > S;, the solution
go extinct; when S| < C;, =2 < S, = 2.5, the solution converges to E,, appears to converge to a stable limit cycle. Fig. 10 shows the effect
grazers go extinct and bacteria persist; when S, < C;, =3 < §; = 5.5, of the parameter C;, on solutions of the full system (1) with different
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diffusion coefficients dp = 0.5, d- = 0.3, d; = 0.005 and dyy = 1 as in
Fig. 7. Again the behaviors of the solutions in this case are similar to
the ones in Fig. 9.

Fig. 11 shows the transient oscillatory dynamics of system (20)
when ¢ is sufficiently small. As ¢ decreases, transient oscillations stay
longer. Eventually the solution always converges to the interior steady
state whose carbon biomass is similar for different tiny ¢ values. This
observation is informative to experiments in which most researchers
assume a zero bacterial death rate. Here we show how a tiny bacterial
death rate regulates the transient and asymptotic dynamics.

Finally we use sensitivity analysis to examine the influence of
system parameters on the decomposition rate, which represents the
decomposition efficiency in the grazer-present system (1), and it can
be written as

L
RP(n) = ”TB / B(x,N®(N(x) — 05 B(x,1) — 05G(x, 1), C(x))dx; (23)
0
and in the grazer-absent system (13), it becomes
L
R = ”TB / B(x,)®(N (x) — 05 B(x,1), C(x))dx. 29
0

As the solution approaches a steady state as t - oo, the decomposition
rate converges as well, and we can assume that RY = tl_i)m RY () to
be the steady state decomposition rate of the system for W= P or A.
By applying the normalized forward sensitivity index and the modified
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Fig. 12. The sensitivity indices of the degradation rate to the parameters. Baseline
parameter values are given in P.

Table 2
The sensitivity indices of the degradation rate to the parameters.

Parameter S.I. for grazer-present S.I. for grazer-absent
system system

Up 1.2637 7.2639

ky —-0.0747 —-0.4328

ky —0.0637 —0.3531

ky, 0.6849 0

0p —-0.0015 —-0.0055

r -1.4130 1.2728

He —-3.0593 0

0 —4.7007 x 107* 0

a —-0.7894 0

p 31.9042 0

C,, 0.2745 0.1275

N, 0.013 0.075

d 2.4932 1.1987

q 15.1759 9.244

€ 1.3067 —37.3386

numerical formula obtained by the central difference approximation in
[4,36], the sensitivity index can be written as

y - RY(1.01p) — RY (0.99p)

’ 0.02RY (p) ’ (25)

where RY (p) is the steady state decomposition rate with a parameter
p,and W = P or A.

We calculate the sensitivity index (SI) for each of the 15 parameters
listed in Table 1 while other parameters are fixed as in P,, using the
limiting grazer—present system (20) with ¢ = 0.05 (for the grazer-
present system), and with ¢ = 0.08 (for the grazer-absent system as
the solution converges to E;). The results are shown in Table 2 and
Fig. 12. In the grazer—present system, the decomposition rate is most
sensitive to the grazer’s death rate, while in the grazer-absent system,
the decomposition rate is most sensitive to the bacterial death rate.
Therefore, we choose these two death rates as the primary parameters
in most of our mathematical results.

When the sensitivity index in Table 2 is positive, the corresponding
parameter has a positive effect on the decomposition rate. In the
grazer—present system, increasing the flow rate g can increase the
decomposition rate, and the grazer’s death rate g also has a great
positive effect on the decomposition rate. In the grazer—absent system,
the relationships are similar to those found in [4]. Again increasing the
flow rate g can accelerate the decomposition. On the other hand, the
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bacterial death rate e has a great negative effect on the decomposition
rate.

In Figs. 13-15, we examine the dependence of the decomposi-
tion rates in the grazer-absent/—present systems on key parameters
over their wide ranges with all other parameters (except the bifur-
cation parameter) fixed as in P,. Fig. 13 shows that as one of the
parameters d, e, up and g increases, the decomposition rates R4 and
R? corresponding to the grazer-absent/-present systems both increase.
Large d, ¢ or g, or small pup inhibits the grazer’s facilitation effect
on biodegradation. On the other hand, when one of the parameters
ks k,,0p and r increases, the decomposition rate R? corresponding
to the grazer-present system decreases, as shown in Fig. 14. However,
the decomposition rate R* corresponding to the grazer-absent system
only decreases as r increases, and almost irrelevant to the parameters
kg kg, 0p. Furthermore, large k 1> kg o1 Op inhibits the grazer’s facili-
tation effect on biodegradation, while r almost has no impact on the
facilitation effect. The influences of the parameters C;, and N,, on the
decomposition rates are not monotone, as shown in Fig. 15. There is
an optimal nitrogen input concentration for making the organic matter
decomposition most efficient in the absence or presence of grazing.
Note that oscillations in C;, graph are caused by the emergence of
limit cycles in large C;, regime. Small C;, or N;, inhibits the grazer’s
facilitation effect on biodegradation.

A common feature in Figs. 13-15 is that the decomposition rate for
the grazer-present system R? is greater than or equal to the one for the
grazer-absent system R4, which indicates that the decomposition rate
increases if bacterivorous grazers are added to the decomposition pro-
cess. This resolves the “decomposition—facilitation paradox” [5-10,37]
in the spatial PDE context.

7. Discussion

In this paper, we explore the dynamical behaviors of a stoichiomet-
ric bacteria—grazer reaction—diffusion model for organic matter decom-
position. A one-dimensional spatial setting similar to unstirred chemo-
stat is used. The mortality rates of bacteria and grazers play important
roles in the decomposition dynamics according to our mathematical
analysis and sensitivity analysis.

Comparing to the system in [4], we consider the system with
diffusion and discuss the influence of spatial heterogeneity on the
dynamics of the system, which is more realistic for simulating the actual
situation. Especially, the sign of the principal eigenvalue is a significant
threshold for distinguishing the stability of the equilibrium, which is
increasing as the diffusion rate increases and implies the diffusion
rate also plays an important role in the stability of the equilibrium.
The interaction of spatial heterogeneity and wave instability caused
by the Hopf bifurcation may also lead to possible behavior such as
long-wavelength traveling waves including spiral waves.

In the absence of grazing, the bacterial death rate completely deter-
mines asymptotic dynamics: bacteria become extinct when the death
rate is large, and the bacterial density converges to a positive steady
state when the death rate is small. On the other hand, in the presence
of grazing, three kinds of dynamical behaviors appear: (i) extinction of
both bacteria and grazers when the bacterial death rate is large; (ii) per-
sistence of bacteria and extinction of grazers when the bacterial death
rate is small and the grazer’s death rate is large; and (iii) coexistence
of bacteria and grazers when the death rates of bacteria and grazers
are both small. See Corollary 5.3 and Fig. 5 for a precise description of
parameter regimes. Moreover it is found that the coexistence of bacteria
and grazers can be in an oscillatory fashion when the carbon input
rate is large. In this case, the concentrations of bacteria and grazers
change periodically and cannot sustain at a positive equilibrium for all
the time, which creates a paradox of enrichment similar to the classical
predator—prey model. The analytic results for the grazer—present system
are proved under the assumption of equal diffusion coefficients, and
the more realistic situation of unequal diffusion coefficients requires
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further future consideration. Numerical simulations in Figs. 7 and 10
show the dynamical behaviors for the system with unequal diffusion
coefficients are similar to the one with equal diffusion coefficients.

The sensitivity of the degradation rate with respect to each parame-
ter is shown numerically. The organic matter is decomposed to a greater
extent and the decomposition rate is higher in the presence of grazers
than in the absence of grazers in a resource-limited environment under
some conditions. The relationship between the degradation rate and the
parameters clearly explains the “decomposition—facilitation paradox”
in a spatial setting. In some parameter ranges, the grazer’s facilitation
on biodegradation is negligible.

In [4], following the Liebig’s law of minimum the non-smooth
bacterial growth rate min{ f(N), g(C)} was considered in the chemostat
ODE system. The multiplication function used in this paper is a good
approximation and has also been widely used in literature. For the
reaction-diffusion model here, this simplification is necessary for rigor-
ous mathematical analysis using the existing mathematical techniques.
The rigorous analysis of a reaction-diffusion system with a non-smooth
growth rate is an open mathematical question. The stability of inte-
rior steady states in the full grazer-present system is mathematically
challenging and will be studied in the future.
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Appendix
Proof of Theorem 3.2. Let the total amount of nitrogen in the system

be P = 0gB + N + 605G and the total amount of carbon in the system
be O = B+ C + G, then P(x,t) and Q(x,t) satisfy

P,=dP,,, 0O<x<L, t>0,
P.(0,t) =—qN,;,, P(L,t)+qP(L,t)=0, t>0, (A1)
P(x,0) = 05 BO(x) + NO(x) + 05G°(x), 0<x<L,
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and

0,=d0,, + B~ )O(N,C)B + (a - Dugh(B)G <dQ,.. 0<x<L, t>0,
r

0,00, =-qC;,, Q.(L,1)+qQ(L,1) =0, t>0,
0(x,0) = B(x) + N°(x) + C°(x), 0<x<L,
(A.2)
if 0 <r,a < 1. Then P(x,t) and Q(x, 1) satisfy
lim P(x.1) = N(x), 11?1 sup O(x,1) < C(x), (A.3)

uniformly in x € [0, L], where N(x) and C(x) are the unique steady
state solutions of diffusion equations in (A.1) and (A.2) with boundary
conditions respectively. []

Proof of Proposition 4.1. The linearized equation of the limiting

system (14) at (0, C(x)) is

B, =dB,, + ug®N(x),C(x))B — ¢B,
C,=dCy, — 1 up®(N(x),C(x))B + €B,
r

O0<x<L,t>0,
O0<x<L,t>0,

(A9
B.(0,1) =0, B.(L,0)+gqB(L,1) =0, 1> 0,
C,(0,1) = —qC;,,,  Cy(L, 1)+ qC(L,7) =0, t>0.
And the corresponding eigenvalue problem is
d¢!! + ug®(N(x), C()p; — epy = Agpy, 0<x<L,
dgl] — % ug®@N(x), C(xX)py + ey = Ay, O0<x<L, (A.5)
$/(0) =0, (L) +q¢;(L) =0, i=12.

Let (4,¢,,¢,) be an eigen-pair of eigenvalue problem (A.5). If
¢,(x) = 0, then problem (A.5) is reduced to the one for ¢,, which is
(11) with p(x) = 0, hence all eigenvalues are negative by Lemma 3.3.
If ¢,(x) # 0, then problem (A.5) is reduced to the one for ¢, which is
(11) with p(x) = up®@(N(x), C(x)) — e. From Lemma 3.3, all eigenvalues
are negative and (0, C(x)) is locally asymptotically stable if and only if
(H,) is satisfied, and (0, C(x)) is unstable if (H,) is satisfied. []

To prove Theorem 4.2, we first prove the following auxiliary result.

Lemma A.1. Assume (H)) holds and 0 < r < 1. If V(x,1) is the solution
of
V, =dV,, + pp®@(N(x) — 05V, C(x) + 6V — eV, 0<x<L, t>0,
V,(0,1) =0, V.(L,t)+qV(L,1) =0, >0,
V(x,0) = B%(x), 0<x<L,

(A.6)
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where § > 0 is a sufficiently small positive constant. Then

rlim V(x,t) =0, uniformly for x € [0, L].

Proof. We construct another auxiliary function v(x, 1) satisfying
U, = dvgy + pp®(N(x) + 6, C(x) + 8)v — ev,
v.(0,1) =0, v (L,1) + qu(L,1) =0,
v(x, Ty) > V(x,Ty),

O0<x<L, t>T,,
t> Ty,
O0<x<L.

where T, > 0 is defined in Theorem 3.2. Then by the comparison
principle of parabolic equation, v(x, ) > V(x,t) for x € [0, L] and ¢ > Tj,.
We prove that v(x,f) < C,e 7"~T0) for some positive constants C,,,
sufficiently small y > 0O and t > T;,, 0 < x < L. Let v(x,t) =
y(x, Dnp(x)e 7T where ny(x) > 0 is the principal eigenfunction of
(11) with p(x) = ug®(N(x), C(x)). Then y(x,1) satisfies
’

My Y
y,—dyxx—2dn—yx——F—O, O0<x<L, t>T,
o

Mo
y,(0,0 =0, y.(L,1)=0, t> Ty, (A7)
v(x, Ty)
¥x,Ty) = ———, 0<x<1L,
1o(x)
where

F =dny" + ug®@(N(x) + 8, C(x) + 8)ng + vy — €ng
=(* — &) + yrp + up(@N (x) + 5, C(x) + 8) —
<0,

D(N(x), C(x)))ng

as y > 0 and 6 > 0 are sufficiently small. Then from (A.7) we have
o

Vi — dyxx - 2d_yx <0.

Mo
Combining the boundary conditions in system (A.7) and the maximum
principle, the maximum of y on x € [0,L] and ¢ > T, should occur
along P, :={t>T,, x=0}or P, :={t>Ty, x=L}or P; :={t=
Ty, 0 < x < L}. If y has a nonnegative maximum y(0,¢) on P;, then the
Hopf boundary lemma implies that y,.(0,7) < 0 which is in contradiction
with y,(0,£) = 0. In the similar way, y cannot achieve a nonnegative
maximum on P,. Then the nonnegative maximum must lie on P;. That
is,

v(x, Ty)
y(x, 1) < y(x,Tp) < sup .
xe[0,0] Mo(x)

Hence, any solution V(x,1) of system (A.6) satisfies
V(x,1) < v(x, 1) = y(x, Dp(x)e 70710 < € e77=T0)

for some positive constant C,, := sup #o(x) sup (v(x, Ty) /no(x)). This
x€[0,L]
implies that V(x,t) converges to 0 uruformly for x € [0,L] ast — oo,

which completes the proof. []

Now we prove Theorem 4.2.

Proof of Theorem 4.2. We only prove (i) as (ii) follows automatically
from (i) and (A.3). From Theorem 3.2, for t > T,, and x € [0, L], the
solution (B(x,1),C(x,?)) of the limiting system (14) satisfies B(x,7) <
C(x) + 6 and C(x,t) < C(x) + 6. By the comparison principle, we have
the nonnegative solution B(x, ) of the limiting system (14) is not larger
than the nonnegative solution V(x,r) of system (A.6), which leads to
that B(x,?) — 0 uniformly for x € [0, L] as t - co by Lemma A.1. From
(A.3) we have C(x,t) — C(x) at the same time. []

Proof of Theorem 4.3. From the definitions, it is clear that Xé
is an open subset in X? and forward invariant under the dynamics
generated by the limiting system (14). And (0, C(x)) € 9X7. We prove
the remaining parts in several steps:
Step 1. 7, : Xg - Xg has a global attractor A,.

Theorem 3.2 shows that ¥, is point dissipative on X2, and the
forward orbits of bounded subsets of X for ¥, are bounded. ¥, is

14

Mathematical Biosciences 331 (2021) 108501

asymptotically smooth because it is compact from [31]. Then ¥, has
a global attractor A, by [38].
Step 2. Jyen, @(0) C {(0.C(x))}.

For any 6, € N, and r > 0, ¥ () € N, by the definition of N,. Then
B(x,t,60,) = 0 and C(x,1,6,) converges to C(x) as t » oo uniformly for
x € [0, L]. Hence, w(8,) € {(0,C(x))}.

Step 3. {(0,C(x))} is a uniform weak repeller, that is, there exists a
constant p > 0, such that for any 6 € X2 hm nsup 1#,(8) — (0, C(x))|| > p.

On the contrary, if (0, C(x)) is not a weak repeller Then for any p >
0, there exists §” = (B?,C?) € X(Z) such that limsup [|%,(6”) — (0, C(x))|| <
[se]

p. Especially, choose p > 0 such that ) = /{;(/4345(1\7():) —0pp, C(x) —
p) —€) > 0 is the principal eigenvalue of (11) with the corresponding
eigenfunction ;1(’)’ > 0. Thus, there exists T} > 0, such that for any r > T,
[|B(-,2,67)|| < p and ||C(:,t,0?) — C(-)|| < p. Therefore, for any x € [0, L]
and t > Ty,

—p < B(x,1,6°) < p, C—p<C(x,1,0°) < C +p.

On the other hand, from the limiting system (14),
B,=dB, + up®N(x) - 03B,C)B —cB
> dB,, + (up®(N(x) — 0p,C(x) — p) — €)B,

with the boundary condition B,(0,1) = B,(L,1) + ¢B(L,t) = 0. Choose
¢, > 0 satisfying B(x,T}) > .fpng (x), then by the comparison principle,
B(x,1) > prr/”(x)e AoU=T1) for any 7 > T}, which implies B(x,7) goes to oo
as t — oo. This is in contradiction with B(x,1) < p.

Step 4. Define a continuous function p X2 = [0,00) by p(d) =

II[l(l)n B(x) for any § = (B,C) € X2 It is not difficult to see that
XE

‘1([0 0)) C X2 and p satisfies that if p(9) > 0 or 0 € Xg with p(9) = 0,
then p(¥,(0)) > 0 for t > 0, which implies that p is a generalized distance
function for the semiflow ¥, : X? - X2.

To sum up the conclusions obtained above, it is true that any
forward orbit of ¥, in N, converges to {(0,C(x))}. {(0,C(x))} is iso-
lated in X?> and the stable set W*({(0,C(x))}) of {(0,C(x))} satisfy-
ing W*({(0,C(x)}) n Xg = ¢. And there is no subsets of {(0,C(x))}
forms a cycle in N,. By applying the abstract persistence theory stated
in [39-41], we have that there exists a constant w > 0, such that
ew“éL,"(g) p(0”) > w for any 6 € X7, which implies that for any 6 € X3,

hrmmf B(-,t,0) > w. [

Proof of Theorem 4.4. (i) We prove part (i) in four steps.
Step 1. dim N (Fp ¢ (e*, 0, C(x))) = 1, where N (F(p ¢)(c*,0, C(x))) is the
null space of the linear operator Fg ¢)(¢*,0, C(x)).

If () (x), $p(x)) € N (F(p,c(€*,0,C(x))), then we have

dgl'(x) + ;434>(N<x) CONg () — €y (x) = 0<x<L,
d¢ (x) — —;43<D(N(x) C(x))¢1(x) + e (x) = 0<x<L, (A.8)
#0)=0, (L) +q¢;(L) = i=1,2.

Since ¢* = AO(deb(N(x),C‘(x))), then ¢, can be chosen as 7y, and ¢,
can be uniquely solved from the second equation of (A.8) as expressed
in (19). Hence

dim N(P(B,c)(e*a 0.Cx)) =1, N(F(B,c)(e*a 0,C(x)) = span{(r, &) }-

Step 2. codim R(F(p ¢)(€*,0,C(x))) = 1, where R(F(p¢)(€*,0,C(x))) is
the range of the linear operator Fp.cy(€*,0, C(x)).

Assume (uy, uy, u3) € R(Fp cy(€*,0, C(x))), then there exists (¢}, ¢,)
€ Xp x X such that

@) () + up®(N (x), Cx)e (x) = €*py (x) = uy,
del) (x) - %MB¢(N(X)’C(X))¢](X) et (x) =uy,

@(0)=0, @\(L)+qp(L)=0,
P,0) = us,  @h(L)+qp(L) =

O0<x<L,

O0<x<L,

(A.9)
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Multiplying ¢, and ¢, to the first equation of (A.8) and (A.9), respec-
tively, subtracting and integrating over [0,L], we obtain
fOL u; ()¢, (x)dx = 0, and ¢, is always solvable for any (u,,u3), which
implies that

R(Fpc)(€”,0, C(x))
L
- {(ul,uz,u3)T EYXYXR: / u; (e (x)dx = 0}
0

and codim R(Fp ¢(¢*,0, C(x))) = 1.
Step 3. Fp,cy(€*,0, CEl(no. &) & R(F(g,c)(€*,0, C(x)).

A direct calculation shows that F,pc(€*,0, CON(no, &)1 =
(=#g>1p,0). Assume (—nO,nO,O) S R(T’(B,C)(e 0,C(x))). Then
/OL r]é(x)dx =0, which is in contradiction with 7, > 0.

Step 4. Now applying the Theorem 1.7 of [42], we have that there

exists I = (-o,0) for0 < o < l,ande : I » R, w; : I - W

(i = 1,2), where W is a complement of span{(r,¢;)}, such that the

set of solutions of the limiting system (18) near (e*,0,C(x)) consists

precisely of the smooth curve I, = {(6,0,C(x)) : 0 < ¢ < €*} and
= {(e(s), B(s,x),C(s,x)) : s € I\{O}}. Restricting s € (0,0), we

obtain the branch I 1* of positive solutions of (18) as stated in part (i).
(ii) For part (ii), we can calculate that (see [43])

(x, 7:'(B C)(B, c)(e* 0, é(x))[(no &o)s (’707%)])

€'0)=-
2k, F, (B, c)(e* 0, C(x))[(ﬂ() )]
_mp o (05PN (NG CENM() = (N (). CNG () n0<x>dx
/E) no(x)dx
as

Fes.oys.c) (€0, CN s Co)- (g )]
“2p0p® (N (x), COOMMX) + 2up®(N (x), CCy(x)Ep (x)
=| 222050 (N (). Cm (o) =222 e (N (0. CCpmy()o(x) |-
0

FE(B,C)(S*’Oa é(x))[ﬂo] = (=119, 79, 0), & = (19,0, 0).
Since (#7y(x), {y(x)) is a solution of (A.8), it leads to that

M) + &) = (=d )™ (Z2¢r = DOV (), C()) <0

since 0 < r < 1. This implies {,(x) < —ny(x) < 0, hence €'(0) < 0 as @, >
0 and @, > 0. By applying the stability theorem of bifurcating solutions
in [42], there exists up to the second order continuous differentiable
functions:

(B(0),C(@)) : (¢ —0,6* +0) = X x X,
(B*,C") 1 (=£,8) » Xp xXc,

vi(e* -0, +0) =R,
HCNIE:
such that

Fp.c)(€,0, C()IB(r), C(0)] =v(0)[B(7), C(7), 01",
F,c)(€(s), B(s), C(s)[B*(s), C*(5)] =u(s)[B*(s), C*(s), 01",

where v(e) = €* — ¢, V/(¢*) = -1, and u(s) has the same sign of
—se’(s)V'(e*) when s is small, which implies u(s) < 0 and the bifurcat-
ing solution (e(s), B(s, x), C(s, x)) is locally asymptotically stable with
respect to (14). [

Proof of Theorem 4.5. From Theorem 3.3 and Remark 3.4 of [33], it
is not difficult to verify that for any fixed (B, C) € XpxX, the operator
Fa.coye. B.C) : XpxX¢e - YXY xR is a Fredholm operator with index
zero. Then the existence of C follows from Theorem 4.3 of [33], and
the existence of C* follows from Theorem 4.4 of [33]. Moreover from
Theorem 4.4 in [33], C* must satisfy one of the following alternatives:

(i) it is not compact in R, x X X X(;
(ii) it contains a point (¢,0, C(x)) with & # ¢*;
(iii) it contains a point (e, B(s, x), C(x)+C(s, x)), where (B(s, x), C(s, x))
# (0,0), (B(s,x),C(s,x)) € W, and W is a complement of
span{(ny, {,)} defined in the proof of Theorem 4.4.
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To show case (ii) cannot happen, we prove that ¢ = ¢* is the unique
bifurcation value for the bifurcation of positive solutions of (18) from
Iy. We prove it by contradiction. Suppose that é (# €*) is another bi-
furcation value for the bifurcation of positive solutions of (18) from I3,
then there exists a sequence of positive solutions {(¢,, B,(x), C, 0},
such that (e,, B,(x), C,(x)) = (¢,0,C(x)) as n — o for some é > 0. Let

b, = . Then b, satisfies

IIB I

db)! + up®(N(x) - 03 B,,C,)b, — €,b, =0,

with the same boundary condition. From standard elliptic estimates,
there exists a subsequence of {b } |» still denoted as itself, such that
b, = by, € Xp, b, >0 and ||b || = 1. Moreover b, satisfies

db" + pup®(N(x), C(x)bg, — €by, =0,
b, (0) = Bl (L) + gbe(L) = 0

O0<x<L,
X (A.10)

Hence é = A,(ug®(N(x),C(x))) for some i > 0. But from Lemma 3.3,
Ao is the only eigenvalue with a nonnegative eigenfunction, thus é =
Ao(up®@(N(x),C(x))) = e*. That is a contradiction. So ¢ = ¢* is the
unique bifurcation value for positive solutions of (18) from I,. Hence
case (ii) cannot happen.

If case (iii) holds, then there exists é € (0, ¢*), such that (B(s, x), C(x)
+ C(s,x)) is positive and satisfies F (¢, B(s, x), C(x) + C(s,x)) = 0 and
(B(s,x),C(s,x)) € W, i.e.

L
/ (B(s, x)n9(x) + C(s5, x)¢H(x))dx = 0, (A.11)
0

where 7y(x) > 0 and {y(x) < 0 are defined in Theorem 4.4. On
the other hand, C(x) + C‘(s x) < C(x) from the maximum principle.
Then C(s,x) < 0 and /0 (B(s, x)ny(x) + C(s,x){y(x))dx > 0, which is
in contradiction with (A.11). Hence, (iii) cannot happen and (i) must
occur. From the maximum principle, we have B(x) < rr;gx B(x) and

C(x) < (1+4L)C;,, so all solutions (B,C) on C* are unlformly bounded,
and positive solutions of system (18) only exist when e < ¢*. Therefore
we must have Proj, Ct = (0,¢*). [

Proof of Theorem 5.1.
equation of (20) at E; is

The eigenvalue problem of the linearized

dg) + up®(N(x), C(x))p; — ey = Ay, O<x<L,
del — %;4305(]\7(x),c~‘(x))¢1 + ey + fds = Ay, O0<x<L,
d¢g’—ﬂ¢3=i¢3, O0<x<L,
$/(0) = (L) +qd(L) = i=123.

(A.12)

Let (4, ¢;, ¢, ¢3) be an eigen-pair of eigenvalue problem (A.12). If
¢,(x) =0 and ¢3(x) = 0, then problem (A.12) is reduced to the one for
¢,, which is (11) with p(x) = 0, hence all eigenvalues are negative by
Lemma 3.3. If ¢3(x) £ 0, then problem (A.12) is reduced to the one for
¢3, which is (11) with p(x) = —p, hence all eigenvalues are negative by
Lemma 3.3. If ¢;(x) £ 0, then problem (A.12) is reduced to the one for
¢y, which is (11) with p(x) = up®(N(x), C(x)) — . From Lemma 3.3, all
eigenvalues are negative and (0, C(x)) is locally asymptotically stable if
and only if (H,) is satisfied, and (0, C(x)) is unstable if (H,) is satisfied.
Hence E, is locally asymptotically stable if (H;) holds and is unstable if
(H,) holds. The existence of E, under (H,) follows from Theorem 4.5.

Next we prove that when (H;) holds, if (B(x,?), C(x,1),G(x,1)) is a
nonnegative solution of the limiting system (20), then

,1im(B(x, 1), C(x,1), G(x,1)) = (0, C(x),0), uniformly for x € [0, L].

From Theorem 3.2, for any constant 0 < § < 1, there exists a 7} > 0,
such that

B, =dB,, + ug®N(x) -
< dex + ﬂBCD(N(x) -

0B —05G,C)B — ugh(B)G — eB
05B,C(x)+6)B — ¢B,
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for any x € [0, L] and ¢t > T;. Thus, by the comparison principle and
Lemma A.1, if 0 < r < 1 and (H,) hold, then rl_i)m B(x,t) = 0 uniformly
for x € [0, L]. Hence there exists T, > 0 such the;g for t > T,, B(x,t) < 6
for all x € [0,L]. From the third equation of system (20), we have
G, < dG,, + (augh(s) — p)G for t > T,. Choosing 6 small enough so
that augh(é) — p < —p/2, we have G, < dG,, — pG/2, which implies
zliTo G(x,t) = 0 uniformly for x € [0,L]. As (B(x,1),G(x,1)) goes to
(0,0) when t — o0, C(x,t) converges to C(x) at the same time by the
continuity of solution map, which proves the convergence to E,,.

Finally we prove that E; is locally asymptotically stable when
€ — 06 < e < €. Let (4, ¢, ¢y, ¢3) be an eigen-pair of the following
eigenvalue problem corresponding to the linearized equation of (20) at
E;:

dd”ll — ey — uplp®y(E)B, ¢, — Heh(By)p; + up®(E),
+up@c(E))B ¢y — upbp®y(E))B 5 = Ay, 0<x<L,
» . Me0s 5 HB o 7

dgy + ——=Pn(E)B b, + ey — —=D(E), + s

Hp o HpOp o
—=2@c(E)Biy + =@y (E))Bi$; = iy, 0<x<L,
dely + (augh(By) - p)ds = i3, 0<x<L,

#/(0)=0, (L) +q¢,(L) =0, i=123,

(A13)

where E; = (N(x) — 05 B, (x), C{(x)). If ¢5(x) # 0, then problem (A.13)
is reduced to the one for ¢, which is (11) with p(x) = augh(B;(x)) - B,
hence all eigenvalues are negative provided Ay(apgh(B;(x))) — f < 0.
Since lim — (%)™ Ag(apugh(B;(x))) = 4¢(0) < 0, we can choose ¢ > 0
small e1€10ugh so that Ay(augh(B(x))) — f < 0 holds for positive g > 0
and ¢* — 6 < e < ¢*. If ¢3(x) = 0, then problem (A.13) is reduced to
the one for ¢; and ¢,. From the proof of Theorem 4.4, all eigenvalues
are negative when ¢* — ¢ < ¢ < ¢*. Hence, we obtain that E, is locally
asymptotically stable when ¢* — ¢ < ¢ < ¢* and Ay(apgh(B;(x))) — f <
0. O

To prove Theorem 5.2, we first prove several lemmas.

Lemma A.2. The function m(x) = aug R i;)l(fA )(h(B(x)) is continuous on
€P(Ag
[0, L].

Proof. We prove it by using the definition of continuous functions.
That is, for any ¢ > 0, there exists § > 0, such that for any x, y € [0, L]
satisfying |x —y| < &, we have |m(x) —m(y)| < &, or equivalently,
m(y) — e < m(x) < m(y) + €.

From the mean-value theorem, we have

|A(B(x)) = h(BO)| = |A'(Blox + (1 = o))| - |x =yl < kilx -l
h

where ¢ € (0,1). Then for any ¢ > 0, there exist § = ¢k, /Qaug) > 0,
such that for any (x, B),(y, B) € [0,1] X P(A,) satisfying |x — y| < 6,
|A(B(x)) — M(B(y))| < £/(2aug). That is,

h(B(x)) = =—— < h(B(y)) < h(B(x)) + s——.
2aug 2aug
From the definition of m(x), we have that
m(x) = apg Belg(fAO) MB(x)), m(y)=aug 5 elg(on) h(B(»)).

Then there exist B, B € P(A,), such that m(x) + /2 > augh(B*(x))
and m(y) + /2 > augh(B’(y)). Thus,

m(x) + § > augh(B*(x) > augh(B () - g > m(y) - %
and
m(y) + § > apgh(BY(y) > apugh(B*(x)) — g > m(x) - g

Hence, m(x) is uniformly continuous on [0, L], which completes the
proof. [J
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Lemma A.3. Assume (H,) holds and 0 < r,a < 1. If (H3) holds, then
M, ={E,} and M, = A, x {0} are uniform weak repellers with respect to
(X3,0X3), that is, there exists a constant j > 0, such that for any @° € X3,

limsup dist(#,(@°), M,) > 5, i=0,1.
=00

Proof. It is proved by contradiction. Suppose, in contrary, M, and M,
are not weak repellers. Then there exists % = (B%,C™,G") € X?,
such that

lim sup dist(#,(©7), M) < o,

t—oco

lim sup dist(%,(@7), M,) < .
=00
Hence there exists T3 > 0, such that for any ¢ > Tj,

IG(. 1, G| < 7, (A.14)

which implies that —z; < G(-,t, G™) < 1.
On the other hand, from system (20), we have

G, =dG,, + (augh(B) - P)G > dG, + (m(x) — p)G.

Let #g'(x) > 0 be the principal eigenfunction corresponding to the
principal eigenvalue A,(m(x) — §). Then by the comparison principle,
G(x,1,G) 2 &,ni(x)eto™=PU=T3) for all x € [0,L] and a constant
&, > 0. Thus, as t — o0, G(x,1, G™) goes to oo, which is in contradiction
with (A.14). [

Lemma A.4. Assume (H,) holds and 0 < r,a < 1. Then for any @° € N,
@(0°% c Myu M,.

Proof. For any 0° € N;, we have ¥,(0%) e aX? and #,0°) e N;.
Then for any ¢ > 0 and x € [0, L], B(x,t,0°) = 0 or G(x,1,0°) = 0. If
B(x,1,0%) =0, then G(x,t,0%) =0, and C(x,t,0") converges to C(x, 8°)
uniformly as 7 goes to co. Hence, rliglo ET’,(@O) = E, and &(0°) C M,.

Assume G(x,t,0°) =0 for all t > 0 and x € [0, L]. Substituting it into
system (20), (B(x, 1, 0%), C(x,t, O%)) satisfies the limiting system (14). By
Theorem 4.3, A, is a global attractor of ¥,, then (B(x,t, 8°), C(x,t,0°))
will eventually enter A, C Int(X2). Thus, ¥,(6°) will eventually enter
the global attractor M, and &(0°) c M,. []

Now, we are in position to prove Theorem 5.2.

Proof of Theorem 5.2. It is easy to see that if the initial condition
(B%,CY,G% e X3, then we have B(x,7, B(x)) > 0 and G(x,,G'(x)) > 0
for all x € [0,L] and ¢ > 0, which implies that @,(X?) c X*? for all
t > 0. The semiflow %, : X3 — X3 has a global attractor in X* from
Theorem 3.2 and [38]. The sets M, and M, are isolated in X?, and no
subset of M, and M, forms a cycle in aXf by Lemmas A.3 and A.4.
Also, the stable set W*(M;) of M, satisfies WS(M,-)an =¢fori=0,1.
Define a continuous function D : X3 — [0, o) as

(N . 0 . 0 0_ p0 ~0 ~0 3
D(© )—mln{xg[l(l)}’lL]B (x), Xg[l(l)}’lL]G (x)}, 0" =(B",C",G") eX|.

Then D is a generalized distance function for ¥, and there exists a
constant w; > 0, such that mingzg0, D(©) > @, for O° € Xf, and the
uniform persistence is Valid.lSy [38], it shows that f’, : X? - X? has a
global attractor A; and that ¥, has a steady state (B,,C,,G,) € A;. [
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