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A B S T R A C T

Biodegradation is a pivotal natural process for elemental recycling and preservation of an ecosystem.
Mechanistic modeling of biodegradation has to keep track of chemical elements via stoichiometric theory,
under which we propose and analyze a spatial movement model in the absence or presence of bacterivorous
grazing. Sensitivity analysis shows that the organic matter degradation rate is most sensitive to the grazer’s
death rate when the grazer is present and most sensitive to the bacterial death rate when the grazer is absent.
Therefore, these two death rates are chosen as the primary parameters in the conditions of most mathematical
theorems. The existence, stability and persistence of solutions are proven by applying linear stability analysis,
local and global bifurcation theory, and the abstract persistence theory. Through numerical simulations, we
obtain the transient and asymptotic dynamics and explore the effects of all parameters on the organic matter
decomposition. Grazers either facilitate biodegradation or has no impact on biodegradation, which resolves
the ‘‘decomposition–facilitation paradox’’ in the spatial context.
1. Introduction

As one of the major global crises, environmental pollution has re-
ceived much attention all over the world. According to the sixth global
environment outlook report issued by the United Nations Environment
Programme during the United Nations Environment Conference in
March 2019, pollution of the earth’s environment is severe and the risk
to human health is increasing every day. A friendly way of decomposing
environmental pollutants is to use microbial decomposers, such as bac-
teria, who can degrade organic matters composed of different elements
including carbon, nitrogen, sulfur and phosphorus [1]. This process is
called biodegradation during which, certain substances are decomposed
into natural elements by microorganisms. Microbial biodegradation is
a natural recycling process and is beneficial in both environmental and
economic perspectives [2].

Bacteria are one of the most numerous and oldest living creatures on
the earth. Bacteria and their predators (e.g. protists) play indispensable
roles in the sustainability and restoration of natural ecosystems. They
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significantly impact biodegradation of organic matters. Hence, it is
useful and interesting to explore the dynamics of biodegradation using
stoichiometric modeling which provides a cutting–edge approach to
study macroscopic phenomena (organic matters from pollution and
their decomposition) via microscopic lens (bacteria, protists, carbon
and nitrogen elements) [3–5].

In [5], Wang et al. established a bacteria–grazer model of organic
matter decomposition and revealed the positive relationship between
the facilitation of organic matter decomposition by grazers and the
stoichiometric difference between bacteria and grazers by using nu-
merical simulations. They also term the ‘‘decomposition–facilitation
paradox’’ phenomenon, which points out that the rate or the extent
of organic matter decomposition often increases in the presence of
bacterivorous protists that substantially reduce bacterial abundances;
see also [6–10]. Based on the model in [5], the authors in [4] studied
the dynamics of a stoichiometric organic matter decomposition model
in chemostat under the ‘‘well stirred’’ assumption which is the case in
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many lab experiments. These well-mixed ODE models were modified
and applied to estimate methane production from oil sands industry
in Alberta province of Canada [3]. Lab experiments were designed for
the methane emission model to guarantee the rationality of the ‘‘well
stirred’’ assumption. However, in natural ecosystems, the decompo-
sition usually occurs in a spatially heterogeneous media. Therefore,
we propose a reaction–diffusion PDE model for the stoichiometric
organic matter decomposition (see Section 2) by extending the kinetic
equations in [4] to the setting of an unstirred media in this paper.

Through analyzing and simulating the reaction–diffusion PDE
model, our main conclusions include the following:

(i) If the bacterial death rate 𝜖 is greater than a threshold 𝜖∗, then the
bacteria always go extinct regardless of the grazer presence; On
the other hand, the bacteria persist when the death rate is smaller
than the threshold.

(ii) If the bacteria death rate 𝜖 is smaller than the threshold 𝜖∗ and the
grazer death rate 𝛽 is smaller than a threshold 𝛽∗, then the grazer
and bacteria both persist and they reach a coexistence steady
state.

(iii) When both of the grazer and bacteria persist, increasing the car-
bon input rate destabilizes the grazer–bacteria coexistence steady
state and a spatial–temporal oscillatory pattern emerges. Thus a
paradox of enrichment occurs as in the classical predator–prey
system, that is, increasing the food available to the prey can cause
a destabilization of the predator’s population in a predator–prey
model [11].

(iv) Sensitivity analysis of the degradation rate to the parameters
reveals that the presence of grazers facilitates the organic matter
decomposition, which explains the ‘‘decomposition–facilitation
paradox’’ in the spatially heterogeneous context. The increase of
the flow rate, although enhances the decomposition, reduces graz-
ers’ facilitation, and sufficiently large flow exchange makes the
decomposition rate same in the presence or absence of grazers.
The effects of other parameters on the grazers’ facilitation are also
studied.

The conclusions (i) and (ii) are rigorously proven using the linear
tability theory, the local and global bifurcation theory and the ab-
tract persistence theory. The conclusions (iii) and (iv) are obtained by
umerical simulations.
Our paper is organized as follows. We present our model in Section 2

nd provide some mathematical preliminaries in Section 3. In Section 4,
he dynamical behaviors of the grazer–absent system are obtained. The
ain results of the dynamical properties of the grazer-present system
re stated and proven in Section 5. Numerical simulations in Section 6
validate our mathematical results in Section 4 and Section 5, and tran-
sient and permanent oscillatory behavior are also found numerically.
Sensitivity analysis is also included in Section 6. We summarize and
discuss our outcomes in Section 7. All technical proofs of mathematical
results are given in the Appendix.

2. The model

Our model is based on the model in [4] and describes the life
cycle that bacteria decompose the organic matter, bacterivorous grazers
graze the bacteria and the organic matter recycle from dead bacteria
and grazers in an unstirred media. The spatial domain is assumed to
be a one-dimensional tubular reactor 0 < 𝑥 < 𝐿. Here, similar to the
assumptions in [5], the organic matter is the combination of organic
carbon and organic nitrogen, and organic nitrogen in organic matter
and inorganic nitrogen are combined together as the available nitrogen
pool. We use organic carbon decomposition as a proxy for organic mat-
ter decomposition and assume that bacteria and bacterivorous grazers
biomass are in terms of carbon content [12].

Our model has four state variables: the concentration of bacterial
biomass measured in carbon 𝐵(𝑥, 𝑡), the concentrations of carbon 𝐶(𝑥, 𝑡)
2

Fig. 1. A schematic diagram of relationship among variables in the model.

and nitrogen 𝑁(𝑥, 𝑡) in media, and the concentration of grazers 𝐺(𝑥, 𝑡)
redating bacteria in media, and the relations between them are shown
n Fig. 1. The reaction–diffusion PDE model for the stoichiometric
rganic matter decomposition by extending the kinetic equations in [4]
o the setting of an unstirred media can be written as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐵𝑡 = 𝑑𝐵𝐵𝑥𝑥 + 𝜇𝐵𝛷(𝑁,𝐶)𝐵 − 𝜇𝐺ℎ(𝐵)𝐺 − 𝜖𝐵, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝐶𝑡 = 𝑑𝐶𝐶𝑥𝑥 −
1
𝑟
𝜇𝐵𝛷(𝑁,𝐶)𝐵 + 𝛽𝐺 + 𝜖𝐵, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑁𝑡 = 𝑑𝑁𝑁𝑥𝑥 + 𝜃𝐺𝛽𝐺 + 𝜃𝐵𝜖𝐵 + (𝜃𝐵 − 𝜃𝐺𝛼)𝜇𝐺ℎ(𝐵)𝐺
− 𝜃𝐵𝜇𝐵𝛷(𝑁,𝐶)𝐵, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝐺𝑡 = 𝑑𝐺𝐺𝑥𝑥 + 𝛼𝜇𝐺ℎ(𝐵)𝐺 − 𝛽𝐺, 0 < 𝑥 < 𝐿, 𝑡 > 0.

(1)

The boundary conditions of system (1) are

𝑊𝑥(0, 𝑡) = 0, 𝑊𝑥(𝐿, 𝑡) + 𝑞𝑊 (𝐿, 𝑡) = 0, 𝑊 = 𝐵,𝐺,

𝐶𝑥(0, 𝑡) = −𝑞𝐶𝑖𝑛, 𝐶𝑥(𝐿, 𝑡) + 𝑞𝐶(𝐿, 𝑡) = 0,

𝑁𝑥(0, 𝑡) = −𝑞𝑁𝑖𝑛, 𝑁𝑥(𝐿, 𝑡) + 𝑞𝑁(𝐿, 𝑡) = 0,

(2)

for 𝑡 > 0 and the initial conditions are

𝜗(𝑥, 0) = 𝜗0(𝑥), 𝜗 = 𝐵,𝐶,𝑁,𝐺, 0 < 𝑥 < 𝐿. (3)

Here we assume that the decomposition occurs in a one-dimensional
space for simplicity, and we assume that bacteria, carbon, nitrogen and
grazers follow passive diffusion at diffusion coefficients 𝑑𝐵 , 𝑑𝐶 , 𝑑𝑁 , 𝑑𝐺,
respectively. The growth of bacteria is governed by 𝜇𝐵𝛷(𝑁,𝐶)𝐵, where
𝜇𝐵 is the maximum growth rate of bacteria, the gross bacterial growth
rate is

𝛷(𝑁,𝐶) = 𝑓 (𝑁)𝑔(𝐶), (4)

and 𝑓 (𝑁) and 𝑔(𝐶) are the specific bacterial growth rates as functions
of 𝑁 or 𝐶 respectively in Monod form:

𝑓 (𝑁) = 𝑁
𝑁 + 𝑘𝑓

, 𝑔(𝐶) = 𝐶
𝐶 + 𝑘𝑔

; (5)

the grazing of bacteria by the grazer is modeled by −𝜇𝐺ℎ(𝐵)𝐺, where
𝜇𝐺 is the maximum grazing rate and

ℎ(𝐵) = 𝐵
𝐵 + 𝑘ℎ

(6)

is the per capita grazing efficiency; and the death of bacteria is termed
by −𝜖𝐵. In the grazer equation, 𝛼𝜇𝐺ℎ(𝐵)𝐺 and −𝛽𝐺 describe the
growth and death of the grazers respectively, where 𝛼 is the conversion
efficiency of bacteria to grazers measured in carbon biomass. In the
carbon equation, the item 𝜇𝐵𝛷(𝑁,𝐶)𝐵∕𝑟 represents the decomposition
rate of organic substances by bacteria, which is regarded as a deputy for
organic matter decomposition, where 𝑟 is the proportionality constant
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Table 1
List of parameters with estimated values for system (1)–(3).
Parameter Definition Values Unit References

𝜇𝐵 Maximum growth rate of bacteria 0.5 1/h [13]
𝜇𝐺 Maximum grazing rate 0.25 1/h [13]
𝑘𝑓 Nitrogen-dependent H.S.C. for bacterial growth 1.21 mg/dm –
𝑘𝑔 Carbon-dependent H.S.C. for bacterial growth 8 mg/dm [13]
𝜖 Bacterial death rate 0.025 1/h [13]
𝑟 Yield constant 0.31–0.75 – [14,15]
𝜃𝐵 N:C of bacteria 0.11–0.25 – [16]
𝜃𝐺 N:C of grazers <𝜃𝐵 – [17]
𝑘ℎ H.S.C. for grazing 1 mg/dm [13]
𝛽 Grazer’s death rate 0.0075 1/h [13]
𝛼 Conversion efficiency of bacteria to grazers 0–1 – [5]
𝑑𝑖 Diffusion coefficient – dm2/h –
𝐶𝑖𝑛 Concentration of inflow carbon – mg/dm –
𝑁𝑖𝑛 Concentration of inflow nitrogen – mg/dm –
𝑞 Flow rate – 1/dm –
𝑢

𝑢
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of the bacterial growth rate to the decomposition rate. Dead bacteria
and grazers are assumed to recycle back to the organic carbon pool
instantly, which is expressed as 𝛽𝐺+𝜖𝐵. We assume that the coefficients
𝜃𝐵 and 𝜃𝐺 are the fixed𝑁 ∶ 𝐶 ratios in bacteria and grazers respectively
following the ‘‘strict homeostasis’’ assumption for heterotrophs [16,18,
19]. Then 𝜃𝐺𝛽𝐺+𝜃𝐵𝜖𝐵 in the nitrogen equation is the nitrogen recycled
back from dead bacteria and grazers. The term 𝜇𝐺ℎ(𝐵)𝐺 describes
the amount of bacteria (measured in carbon biomass) consumed by
grazers. Then the amount of consumed nitrogen is 𝜃𝐵𝜇𝐺ℎ(𝐵)𝐺, the
actual amount of nitrogen used by grazers is 𝜃𝐺𝛼𝜇𝐺ℎ(𝐵)𝐺, and their
difference 𝜃𝐵𝜇𝐺ℎ(𝐵)𝐺 − 𝜃𝐺𝛼𝜇𝐺ℎ(𝐵)𝐺 gives the exuded nitrogen back
to media. The growth of bacteria 𝜇𝐵𝐵𝛷(𝑁,𝐶) requires the amount of
nitrogen uptake 𝜃𝐵𝜇𝐵𝐵𝛷(𝑁,𝐶) with more details in [4]. In the spatially
heterogeneous scenario here, we originally model the nutrient inputs by
the boundary influx at 𝑥 = 0: −𝑞𝐶𝑖𝑛 for carbon and −𝑞𝑁𝑖𝑛 for nitrogen,
where 𝑞 is the flow rate.

The parameters in system (1)–(3) are listed in Table 1. Their values
and units are adapted from the ones in [4] and will be used in our nu-
merical simulations. The abbreviation H.S.C. represents half-saturation
constant in Table 1.

3. Basic mathematical properties

In this section, we show the existence, uniqueness and a priori
estimates of solutions of system (1)–(3) by using the theory of the
abstract ordinary differential equation in [20–22] and the strong max-
imum principle and Hopf boundary lemma [23]. In the mathematical
analysis, we assume that the diffusion coefficients of bacteria, carbon,
nitrogen and grazers are the same 𝑑𝐵 = 𝑑𝐶 = 𝑑𝑁 = 𝑑𝐺 = 𝑑 following
the approach in [24], which provides the additional conservation of
masses in Theorem 3.2. This assumption is necessary for most of our
analytical results, though some persistence results may still hold for
unequal diffusion coefficients as shown in [25] for flow reactors. Also it
is known that in practical situations [26–29], 𝑑𝐶 , 𝑑𝐵 , 𝑑𝑁 have the same
order of magnitude, while 𝑑𝐺 is much smaller. So our analytic results
for grazer-absent system with 𝐺 ≡ 0 represent realistic situations. Some
numerical simulations of (1)–(3) with unequal diffusion coefficients are
shown in Section 6.

Let X𝑠 = 𝐶([0, 𝐿],R𝑠
+) be the positive cone of the Banach space

𝐶([0, 𝐿],R𝑠) (𝑠 ∈ N) with the usual supremum norm ‖ ⋅ ‖. Set 𝑢1 =
𝐵, 𝑢2 = 𝐶, 𝑢3 = 𝑁, 𝑢4 = 𝐺 and 𝐮 = (𝑢1, 𝑢2, 𝑢3, 𝑢4), and the initial functions
in (3) satisfying 𝐮0 = (𝑢01, 𝑢

0
2, 𝑢

0
3, 𝑢

0
4) = (𝐵0, 𝐶0, 𝑁0, 𝐺0) ∈ X4. Define the

nonlinear operators 𝑓𝑖 ∶ X4 → 𝐶([0, 𝐿],R) (𝑖 = 1, 2, 3, 4) by

𝑓1(𝐮) =𝜇𝐵𝛷(𝑢3, 𝑢2)𝑢1 − 𝜇𝐺ℎ(𝑢1)𝑢4 − 𝜖𝑢1,

𝑓2(𝐮) = − 1
𝑟
𝜇𝐵𝛷(𝑢3, 𝑢2)𝑢1 + 𝛽𝑢4 + 𝜖𝑢1,

𝑓3(𝐮) =𝜃𝐺𝛽𝑢4 + 𝜃𝐵𝜖𝑢1 + (𝜃𝐵 − 𝜃𝐺𝛼)𝜇𝐺ℎ(𝑢1)𝑢4 − 𝜃𝐵𝜇𝐵𝛷(𝑢3, 𝑢2)𝑢1,

𝑓4(𝐮) =𝛼𝜇𝐺ℎ(𝑢1)𝑢4 − 𝛽𝑢4.
 0

3

Consider the linear system with homogeneous boundary conditions

⎧

⎪

⎨

⎪

⎩

𝑣𝑡 = 𝑑𝑣𝑥𝑥, 0 < 𝑥 < 𝐿, 𝑡 > 0,
𝑣𝑥(0, 𝑡) = 0, 𝑣𝑥(𝐿, 𝑡) + 𝑞𝑣(𝐿, 𝑡) = 0, 𝑡 > 0,
𝑣(𝑥, 0) = 𝑣0(𝑥), 0 < 𝑥 < 𝐿,

(7)

and the linear system with non-homogeneous boundary conditions

⎧

⎪

⎨

⎪

⎩

𝑣𝑡 = 𝑑𝑣𝑥𝑥, 0 < 𝑥 < 𝐿, 0 ≤ 𝑠 < 𝑡,
𝑣𝑥(0, 𝑡) = −𝑞𝑊𝑖𝑛, 𝑣𝑥(𝐿, 𝑡) + 𝑞𝑣(𝐿, 𝑡) = 0, 0 ≤ 𝑠 < 𝑡, 𝑊 = 𝐵,𝐺,
𝑣(𝑥, 𝑠) = 𝑣0(𝑥), 0 < 𝑥 < 𝐿.

(8)

By the semigroup theory presented in [21,30,31], there exists a
semigroup 𝐓(𝑡) on 𝐶([0, 𝐿],R), which is positive, nonexpansive and
analytic, such that

𝑣(𝑥, 𝑡) = 𝐓(𝑡)𝑣0(𝑥), 𝑡 > 0, 0 < 𝑥 < 𝐿

is a classical solution of system (7), and a family of affine operators
𝑈𝑊 (𝑡, 𝑠) (0 ≤ 𝑠 < 𝑡) on 𝐶([0, 𝐿],R), such that

𝑣(𝑥, 𝑡) = 𝑈𝑊 (𝑡, 𝑠)𝑣0(𝑥), 0 ≤ 𝑠 < 𝑡, 0 < 𝑥 < 𝐿, 𝑊 = 𝐵,𝐺

is a solution of system (8). Clearly, it is true that 𝑈𝑊 (𝑡, 𝑠)𝐶([0, 𝐿],R+) ⊂
𝐶([0, 𝐿],R+) and 𝐓(𝑡)𝐶([0, 𝐿],R+) ⊂ 𝐶([0, 𝐿],R+) for 0 ≤ 𝑠 < 𝑡 and
𝑊 = 𝐵,𝐺. Thus, system (1)–(3) can be rewritten as

1(𝑡) = 𝑈𝐵(0, 𝑡)𝑢01 + ∫

𝑡

0
𝐓(𝑡 − 𝜏)𝑓1(𝐮(𝜏))d𝜏,

𝑢𝑖(𝑡) = 𝐓(𝑡)𝑢0𝑖 + ∫

𝑡

0
𝐓(𝑡 − 𝜏)𝑓𝑖(𝐮(𝜏))d𝜏, 𝑖 = 2, 3,

4(𝑡) = 𝑈𝐺(0, 𝑡)𝑢02 + ∫

𝑡

0
𝐓(𝑡 − 𝜏)𝑓4(𝐮(𝜏))d𝜏.

nd by the fact that 𝛷(0, 𝑢2) = 𝛷(𝑢3, 0) = 0, 𝑓𝑖(𝐮) is quasipositive, which
mplies the following conclusion is true by applying Theorem 1 and
emark 1.1 in [21]:

heorem 3.1. Assume that the initial value function 𝐮0 ∈ X4. Then system
1)–(3) has a unique mild solution 𝐮(𝑥, 𝑡,𝐮0) on (0, 𝜏𝐮0 ) with 𝐮(𝑥, 𝑡,𝐮0) = 𝐮0
nd 0 < 𝜏𝐮0 ≤ ∞. Moreover, 𝐮(⋅, 𝑡,𝐮0) ∈ X4 and 𝐮(𝑥, 𝑡,𝐮0) is a classical
olution of system (1)–(3) for all 𝑡 ∈ (0, 𝜏𝐮0 ).

Furthermore, we have the following global existence, positivity and
he ultimate boundedness of solutions of system (1)–(3).

heorem 3.2. Assume 0 < 𝑟, 𝛼 ≤ 1 and the initial value function 𝐮0 ∈ X4.
hen the solutions of system (1)–(3) are ultimately bounded, positive and
xist globally for 𝑡 ∈ (0,∞). That is, for any constant 0 < 𝛿 ≪ 1, there
xists a 𝑇0 > 0, such that for any 𝑥 ∈ [0, 𝐿] and 𝑡 ≥ 𝑇0,

< 𝑊 (𝑥, 𝑡) ≤ 𝑊̃ (𝑥) + 𝛿, 𝑊 = 𝐵,𝐶,𝑁,𝐺, (9)
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where
𝐶̃(𝑥) = 𝐶𝑖𝑛(1 + 𝑞𝐿 − 𝑞𝑥), 𝑁̃(𝑥) = 𝑁𝑖𝑛(1 + 𝑞𝐿 − 𝑞𝑥),

𝐵̃(𝑥) =min
{

𝑁̃(𝑥)
𝜃𝐵

, 𝐶̃(𝑥)
}

, 𝐺̃(𝑥) = min
{

𝑁̃(𝑥)
𝜃𝐺

, 𝐶̃(𝑥)
}

.
(10)

To analyze the stability of the steady state solution, we recall the
basic properties of the eigenvalue problem
{

𝑑𝜙′′ + 𝑝(𝑥)𝜙 = 𝜆𝜙, 0 < 𝑥 < 𝐿,
𝜙′(0) = 0, 𝜙′(𝐿) + 𝑞𝜙(𝐿) = 0,

(11)

and have the following well-known result: (e.g. [32, Proposition 3.1])

Lemma 3.3. Assume 𝑝 ∈ ∞([0, 𝐿]), 𝑑 and 𝑞 are positive constants. Then

(i) The eigenvalue problem (11) has a sequence of real-valued eigenvalues
satisfying

𝜆0(𝑝) > 𝜆1(𝑝) ≥ 𝜆2(𝑝) ≥ ⋯ ≥ 𝜆𝑛(𝑝) → −∞,

as 𝑛 → ∞, and the corresponding eigenfunction 𝜙0(𝑝) of the principal
eigenvalue 𝜆0(𝑝) is positive, whereas 𝜙𝑛(𝑝) is sign-changing for each
𝑛 ∈ N, and

𝜆0(𝑝) = − inf
𝜙∈𝐻1([0,𝐿])∕{0}

𝑑𝑞𝜙2(𝐿) + 𝑑 ∫ 𝐿
0 (𝜙′(𝑥))2𝑑𝑥 − ∫ 𝐿

0 𝑝(𝑥)𝜙2(𝑥)𝑑𝑥

∫ 𝐿
0 𝜙2(𝑥)𝑑𝑥

.

(12)

(ii) 𝜆0(𝑝) = 𝜆0(𝑝, 𝑑, 𝑞) is continuously differentiable in 𝑝, 𝑑, 𝑞, and 𝜆0(𝑝1) ≥
𝜆0(𝑝2) provided 𝑝1(𝑥) ≥ 𝑝2(𝑥) for 𝑥 ∈ [0, 𝐿].

(iii) If 𝑝(𝑥) ≤ 0 for each 𝑥 ∈ [0, 𝐿], then 𝜆0(𝑝) < 0.
(iv) If 𝑝(𝑥) = 𝑝1(𝑥) + 𝑝2, where 𝑝2 is a constant, then 𝜆0(𝑝) = 𝜆0(𝑝1) + 𝑝2.

If 𝑝(𝑥) = 𝑝 is a constant, then 𝜆0(𝑝) = 𝑝+ 𝜆0(0), where 𝜆0(0) = −𝑑𝜔2
1

and 𝜔1 ∈ (0, 𝜋∕(2𝐿)) is the smallest positive root of tan(𝜔𝐿) = 𝑞∕𝜔.

4. Asymptotic analysis of the grazer–absent system

In this section, we consider the dynamics of system (1)–(3) with
𝐺 ≡ 0, that is

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝐵𝑡 = 𝑑𝐵𝑥𝑥 + 𝜇𝐵𝛷(𝑁,𝐶)𝐵 − 𝜖𝐵, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝐶𝑡 = 𝑑𝐶𝑥𝑥 −
1
𝑟
𝜇𝐵𝛷(𝑁,𝐶)𝐵 + 𝜖𝐵, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑁𝑡 = 𝑑𝑁𝑥𝑥 + 𝜃𝐵𝜖𝐵 − 𝜃𝐵𝜇𝐵𝛷(𝑁,𝐶)𝐵, 0 < 𝑥 < 𝐿, 𝑡 > 0,
𝐵𝑥(0, 𝑡) = 0, 𝐵𝑥(𝐿, 𝑡) + 𝑞𝐵(𝐿, 𝑡) = 0, 𝑡 > 0,
𝐶𝑥(0, 𝑡) = −𝑞𝐶𝑖𝑛, 𝐶𝑥(𝐿, 𝑡) + 𝑞𝐶(𝐿, 𝑡) = 0, 𝑡 > 0,
𝑁𝑥(0, 𝑡) = −𝑞𝑁𝑖𝑛, 𝑁𝑥(𝐿, 𝑡) + 𝑞𝑁(𝐿, 𝑡) = 0, 𝑡 > 0,
𝜗(𝑥, 0) = 𝜗0(𝑥), 𝜗 = 𝐵,𝐶,𝑁, 0 < 𝑥 < 𝐿.

(13)

From the proof of Theorem 3.2, it is known that 𝑃 = 𝜃𝐵𝐵 + 𝑁
converges to 𝑁̃(𝑥) as 𝑡 → ∞. Hence, from a standard argument stated
in [24], the dynamics of grazer–absent system (13) are equivalent to
those of the limiting system:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐵𝑡 = 𝑑𝐵𝑥𝑥 + 𝜇𝐵𝛷(𝑁̃(𝑥) − 𝜃𝐵𝐵,𝐶)𝐵 − 𝜖𝐵, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝐶𝑡 = 𝑑𝐶𝑥𝑥 −
1
𝑟
𝜇𝐵𝛷(𝑁̃(𝑥) − 𝜃𝐵𝐵,𝐶)𝐵 + 𝜖𝐵, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝐵𝑥(0, 𝑡) = 0, 𝐵𝑥(𝐿, 𝑡) + 𝑞𝐵(𝐿, 𝑡) = 0, 𝑡 > 0,
𝐶𝑥(0, 𝑡) = −𝑞𝐶𝑖𝑛, 𝐶𝑥(𝐿, 𝑡) + 𝑞𝐶(𝐿, 𝑡) = 0, 𝑡 > 0,
𝐵(𝑥, 0) = 𝐵0(𝑥), 𝐶(𝑥, 0) = 𝐶0(𝑥), 0 < 𝑥 < 𝐿.

(14)

ence, we only need to study the dynamics of the limiting system (14).
Assume 𝐵(𝑥, 𝑡) ≡ 0 in the limiting system (14). Then 𝐶(𝑥, 𝑡) satisfies
diffusion equation which has a unique steady state solution 𝐶(𝑥) =

̃(𝑥). That is, (0, 𝐶̃(𝑥)) is the unique trivial steady state solution of the
imiting system (14), and (0, 𝐶̃(𝑥), 𝑁̃(𝑥)) is the unique trivial steady
tate solution of the grazer-absent system (13). The local stability of
he trivial state (0, 𝐶̃(𝑥)) is stated as follows.
4

Proposition 4.1. For the limiting system (14), the following statements
hold.

(i) If

(H1) 𝜆0(𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))) − 𝜖 < 0 (15)

is satisfied, then the trivial steady state solution (0, 𝐶̃(𝑥)) is locally
asymptotically stable with respect to (14).

(ii) If

(H2) 𝜆0(𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))) − 𝜖 > 0, (16)

then (0, 𝐶̃(𝑥)) is unstable with respect to (14).

We remark that the principal eigenvalue 𝜆0(𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))) in (H1)
or (H2) can be estimated by

− 𝑑𝜔2
1 + 𝜇𝐵𝛷𝑚𝑖𝑛 ≤ 𝜆0(𝜇𝐵𝛷(𝑁̃, 𝐶̃)) ≤ −𝑑𝜔2

1 + 𝜇𝐵𝛷𝑚𝑎𝑥, (17)

where

𝛷𝑚𝑖𝑛 ∶= 𝛷(𝑁𝑖𝑛, 𝐶𝑖𝑛) ≤ 𝛷(𝑁̃, 𝐶̃) ≤ 𝛷(𝑁𝑖𝑛(1 + 𝑞𝐿), 𝐶𝑖𝑛(1 + 𝑞𝐿)) ∶= 𝛷𝑚𝑎𝑥

from Theorem 3.2 that 𝑁𝑖𝑛 ≤ 𝑁̃ ≤ 𝑁𝑖𝑛(1 + 𝑞𝐿), 𝐶𝑖𝑛 ≤ 𝐶̃ ≤
𝐶𝑖𝑛(1 + 𝑞𝐿), and −𝑑𝜔2

1 is defined in (iv) of Lemma 3.3. Moreover if
𝜆0(𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))) > 0, then 𝜖∗ ∶= 𝜆0(𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))) is a critical
bacterial death rate at which the stability of the trivial steady state
(0, 𝐶̃(𝑥)) changes. But if 𝜆0(𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))) < 0, then (H1) holds and
(0, 𝐶̃(𝑥)) is always locally asymptotically stable.

Next we show that the local stability of the trivial steady state
(0, 𝐶̃(𝑥)) is indeed of global nature under the same condition.

Theorem 4.2. Assume (H1) holds and 0 < 𝑟 ≤ 1.

(i) If (𝐵(𝑥, 𝑡), 𝐶(𝑥, 𝑡)) is a solution of the limiting system (14). Then

lim
𝑡→∞

𝐵(𝑥, 𝑡) = 0, lim
𝑡→∞

𝐶(𝑥, 𝑡) = 𝐶̃(𝑥),

uniformly for 𝑥 ∈ [0, 𝐿].
(ii) If (𝐵(𝑥, 𝑡), 𝐶(𝑥, 𝑡), 𝑁(𝑥, 𝑡)) is a solution of the grazer-absent system

(13), then

lim
𝑡→∞

𝐵(𝑥, 𝑡) = 0, lim
𝑡→∞

𝐶(𝑥, 𝑡) = 𝐶̃(𝑥), lim
𝑡→∞

𝑁(𝑥, 𝑡) = 𝑁̃(𝑥)

uniformly for 𝑥 ∈ [0, 𝐿].

On the other hand, under the condition (H2) (the trivial state
is unstable), the system (14) is uniformly persistent so the bacteria
population stays positive. We first introduce some notations as follows:

(a) 𝛹𝑡 ∶ X2 → X2 is the solution semiflow generated by the limiting
system (14), where X2 is defined in Section 3;

(b) X2
0 = {(𝐵0, 𝐶0) ∈ X2 ∶ 𝐵(𝑥) ≢ 0, 0 ≤ 𝑥 ≤ 𝐿}, 𝜕X2

0 = X2 ⧵ X2
0;

(c) 𝑁𝜕 = {𝜃0 ∈ 𝜕X2
0 ∶ 𝛹𝑡(𝜃0) ∈ 𝜕X2

0, 𝑡 ≥ 0};
(d) 𝜔(𝜃0) is the omega limit set of the forward orbit 𝛾+(𝜃0) =

{𝛹𝑡(𝜃0)}𝑡≥0.

The persistence under the condition (H2) is as follows.

Theorem 4.3. Suppose 0 < 𝑟 ≤ 1 and the assumption (H2) holds, then the
limiting system (14) has a global attractor 𝐴0 and is uniformly persistent
with respect to (X2

0, 𝜕X
2
0), that is, there exists a constant 𝜛 > 0 such that

lim inf
𝑡→∞

𝐵(⋅ , 𝑡, 𝜃0) ≥ 𝜛 for any 𝜃0 ∈ X2
0.

Next we discuss the existence of positive steady state solutions
of the limiting system (14) bifurcating from (0, 𝐶̃(𝑥)) at 𝜖 = 𝜖∗ =
𝜆0(𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))) > 0. The steady state solution of the limiting
system (14) satisfies

⎧

⎪

⎪

⎨

⎪

⎪

𝑑𝐵′′ + 𝜇𝐵𝛷(𝑁̃(𝑥) − 𝜃𝐵𝐵,𝐶)𝐵 − 𝜖𝐵 = 0, 0 < 𝑥 < 𝐿,

𝑑𝐶 ′′ − 1
𝑟
𝜇𝐵𝛷(𝑁̃(𝑥) − 𝜃𝐵𝐵,𝐶)𝐵 + 𝜖𝐵 = 0, 0 < 𝑥 < 𝐿,

𝐵′(0) = 0, 𝐵′(𝐿) + 𝑞𝐵(𝐿) = 0,
′ ′

(18)
⎩
𝐶 (0) = −𝑞𝐶𝑖𝑛, 𝐶 (𝐿) + 𝑞𝐶(𝐿) = 0.
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Denote

X𝐵 =
{

𝐵 ∈ 𝐻2([0, 𝐿]) ∶ 𝐵′(0) = 0, 𝐵′(𝐿) + 𝑞𝐵(𝐿) = 0
}

,

X𝐶 =
{

𝐶 ∈ 𝐻2([0, 𝐿]) ∶ 𝐶 ′(𝐿) + 𝑞𝐶(𝐿) = 0
}

, Y = 2([0, 𝐿]).

Define  ∶ R+ × X𝐵 × X𝐶 → Y × Y × R as

 (𝜖, 𝐵(𝑥), 𝐶(𝑥))

=

⎛

⎜

⎜

⎜

⎝

𝑑𝐵′′(𝑥) + 𝜇𝐵𝛷(𝑁̃(𝑥) − 𝜃𝐵𝐵(𝑥), 𝐶(𝑥))𝐵(𝑥) − 𝜖𝐵(𝑥)

𝑑𝐶 ′′(𝑥) − 1
𝑟
𝜇𝐵𝛷(𝑁̃(𝑥) − 𝜃𝐵𝐵(𝑥), 𝐶(𝑥))𝐵(𝑥) + 𝜖𝐵(𝑥)

𝐶 ′(0) + 𝑞𝐶𝑖𝑛

⎞

⎟

⎟

⎟

⎠

.

Clearly,  (𝜖, 0, 𝐶̃(𝑥)) = 0 for each 𝜖 ∈ R+. For (𝜙1, 𝜙2) ∈ X𝐵 × X𝐶 ,

(𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥))
(

𝜙1(𝑥)
𝜙2(𝑥)

)

=

⎛

⎜

⎜

⎜

⎝

𝑑𝜙′′
1 (𝑥) + 𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))𝜙1(𝑥) − 𝜖∗𝜙1(𝑥)

𝑑𝜙′′
2 (𝑥) −

1
𝑟
𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))𝜙1(𝑥) + 𝜖∗𝜙1(𝑥)

𝜙′
2(0)

⎞

⎟

⎟

⎟

⎠

.

We have the following existence of positive solutions of (18) via
bifurcation theory.

Theorem 4.4. Assume that 0 < 𝑟 ≤ 1 and 𝜖∗ ∶= 𝜆0(𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))) >
. Then

(i) there exists a positive constant 𝜎 ≪ 1, such that positive solutions
(𝜖(𝑠), 𝐵(𝑠, 𝑥), 𝐶(𝑠, 𝑥)) (𝑠 ∈ (0, 𝜎), 𝑥 ∈ [0, 𝐿]) of system (18) bifurcating
from (0, 𝐶̃(𝑥)) at 𝜖 = 𝜖∗, and they lie on a smooth curve

𝛤+
1 = {(𝜖(𝑠), 𝐵(𝑠, 𝑥), 𝐶(𝑠, 𝑥)) ∶ 𝑠 ∈ (0, 𝜎), 𝑥 ∈ [0, 𝐿]}

satisfying 𝐵(𝑠, 𝑥) = 𝑠𝜂0(𝑥) + 𝑠𝑤1(𝑠, 𝑥), 𝐶(𝑠, 𝑥) = 𝐶̃(𝑥) + 𝑠𝜁0(𝑥) +
𝑠𝑤2(𝑠, 𝑥), 𝜖(0) = 𝜖∗, and 𝑤𝑖(0, 𝑥) = 0 for 𝑖 = 1, 2, where 𝜂0(𝑥) > 0
is the principal eigenfunction of (11) with 𝑝(𝑥) = 𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥)),
and

𝜁0(𝑥) ∶= (−𝑑𝛥)−1
(

𝜖∗ −
𝜇𝐵
𝑟
𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))

)

𝜂0(𝑥) < 0. (19)

(ii) The bifurcation at 𝜖 = 𝜖∗ satisfies 𝜖′(0) < 0 so 𝜖(𝑠) < 𝜖∗ for 𝑠 ∈ (0, 𝜎)
and bifurcating positive solutions exist for 𝜖 ∈ (𝜖∗ − 𝜎, 𝜖∗) for some
𝜎 > 0, and the bifurcating positive solution (𝜖(𝑠), 𝐵(𝑠, 𝑥), 𝐶(𝑠, 𝑥)) is
locally asymptotically stable with respect to the limiting system (14)
for 𝑠 ∈ (0, 𝜎).

Now we show that the local bifurcation of positive solutions of (18)
is of global nature, and the positive solutions exist for all 𝜖 ∈ (0, 𝜖∗).
et the set of nontrivial solutions of (18) be

∶= {(𝜖, 𝐵, 𝐶) ∈ (0,∞) × X𝐵 × X𝐶 ∶  (𝜖, 𝐵(𝑥), 𝐶(𝑥)) = 0,

(𝐵(𝑥), 𝐶(𝑥)) ≠ (0, 𝐶̃(𝑥))}.

lso in Theorem 4.4, the branch of nontrivial solutions of (18) can be
decomposed into the following two parts:

𝛤+
1 = {(𝜖(𝑠), 𝐵(𝑠, 𝑥), 𝐶(𝑠, 𝑥)) ∶ 𝑠 ∈ (0, 𝜎), 𝑥 ∈ [0, 𝐿]} ,

𝛤−
1 = {(𝜖(𝑠), 𝐵(𝑠, 𝑥), 𝐶(𝑠, 𝑥)) ∶ 𝑠 ∈ (−𝜎, 0), 𝑥 ∈ [0, 𝐿]}.

Then the global bifurcation of positive solutions of (18) is described
below. It is similar to the ones in [33–35].

Theorem 4.5. Assume that 0 < 𝑟 ≤ 1 and 𝜖∗ ∶= 𝜆0(𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))) >
0. Then there exists a connected component  of the closure of 𝛯 such that
the curve 𝛤1 obtained in Theorem 4.4 is contained in . Moreover let + be
the connected component of ∕𝛤−

1 containing 𝛤+
1 , then all solutions of (18)

on + are positive, and the projection of + onto 𝜖-axis Proj𝜖 + = (0, 𝜖∗).

Summarizing the results in Theorems 4.2, 4.3, 4.4 and 4.5, we have
the following complete classification of dynamical behaviors of the
grazer–absent system:
5

Corollary 4.6. Assume that 0 < 𝑟 ≤ 1 and 𝜖∗ ∶= 𝜆0(𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))) >
0.

(i) When 𝜖 > 𝜖∗ (or equivalently (H1) holds), the grazer–absent system
(13) has no positive steady state solution, and the trivial steady state
(𝐵, 𝐶̃(𝑥), 𝑁̃(𝑥)) is globally asymptotically stable.

(ii) When 0 < 𝜖 < 𝜖∗ (or equivalently (H2) holds), the grazer–absent
system (13) is uniformly persistent and there exists at least one positive
steady state solution (𝐵1(𝑥), 𝐶1(𝑥), 𝑁1(𝑥)) with 𝑁1(𝑥) = 𝑁̃(𝑥) −
𝜃𝐵𝐵1(𝑥) and 𝐵1(𝑥) > 0. Moreover the positive steady state is unique
and is locally asymptotically stable for 𝜖 ∈ (𝜖∗−𝜎, 𝜖∗) for some 𝜎 > 0.

5. Asymptotic analysis of the grazer–present system

In this section, we discuss the dynamics of the grazer–present system
(1)–(3). By Theorem 3.2 and substituting 𝑁̃(𝑥) − 𝜃𝐵𝐵(𝑥, 𝑡) − 𝜃𝐺𝐺(𝑥, 𝑡)
for 𝑁(𝑥, 𝑡) in the system, we obtain the following limiting system with
equivalent asymptotic dynamics:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐵𝑡 = 𝑑𝐵𝑥𝑥 + 𝜇𝐵𝛷(𝑁̃(𝑥) − 𝜃𝐵𝐵 − 𝜃𝐺𝐺,𝐶)𝐵

− 𝜇𝐺ℎ(𝐵)𝐺 − 𝜖𝐵, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝐶𝑡 = 𝑑𝐶𝑥𝑥 −
1
𝑟
𝜇𝐵𝛷(𝑁̃(𝑥) − 𝜃𝐵𝐵 − 𝜃𝐺𝐺,𝐶)𝐵

+ 𝛽𝐺 + 𝜖𝐵, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝐺𝑡 = 𝑑𝐺𝑥𝑥 + 𝛼𝜇𝐺ℎ(𝐵)𝐺 − 𝛽𝐺, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝐵𝑥(0, 𝑡) = 0, 𝐵𝑥(𝐿, 𝑡) + 𝑞𝐵(𝐿, 𝑡) = 0, 𝑡 > 0,

𝐶𝑥(0, 𝑡) = −𝑞𝐶𝑖𝑛, 𝐶𝑥(𝐿, 𝑡) + 𝑞𝐶(𝐿, 𝑡) = 0, 𝑡 > 0,

𝐺𝑥(0, 𝑡) = 0, 𝐺𝑥(𝐿, 𝑡) + 𝑞𝐺(𝐿, 𝑡) = 0, 𝑡 > 0,

𝐵(𝑥, 0) = 𝐵0(𝑥), 𝐶(𝑥, 0) = 𝐶0(𝑥), 𝐺(𝑥, 0) = 𝐺0(𝑥), 0 < 𝑥 < 𝐿.

(20)

From Section 4, the limiting system (20) has a unique trivial steady
state solution, denoted as 𝐸0 = (0, 𝐶̃(𝑥), 0). The stability of 𝐸0 with
respect to the grazer-present limiting system (20) inherits from the one
or the grazer-absent limiting system (14) for any grazer’s death rate
> 0.

heorem 5.1. Assume 0 < 𝑟, 𝛼 ≤ 1 and 𝛽 > 0. For the limiting system
20), the following statements are true:

(i) If (H1) holds, then 𝐸0 is globally asymptotically stable;
(ii) If (H2) holds, then 𝐸0 is unstable, and there exists a semi-trivial steady

state solution 𝐸1 = (𝐵1(𝑥), 𝐶1(𝑥), 0) with 𝐵1(𝑥), 𝐶1(𝑥) > 0 when
0 < 𝜖 < 𝜖∗ provided 𝜖∗ > 0. Moreover, 𝐸1 is locally asymptotically
stable when 𝜖∗ − 𝜎 < 𝜖 < 𝜖∗.

Theorem 5.1 shows that when bacteria become extinct, grazers
annot survive either no matter how small the death rate is, and the
ystem will settle at the extinction state 𝐸0.
Next we show that when bacteria persist, how the persistence of

razers is determined by the death rate of grazers. More precisely the
niform persistence and the existence of positive steady state solutions
f the limiting system (20) are established under (H2) and additional
onditions. There are three types of nonnegative steady state solutions
f system (20):

(i) the trivial steady state solution 𝐸0 = (0, 𝐶̃(𝑥), 0), which always
exists;

(ii) the semi-trivial steady state solution 𝐸1 = (𝐵1(𝑥), 𝐶1(𝑥), 0) with
𝐵1(𝑥) > 0 and 𝐶1(𝑥) > 0, which exists for 𝑥 ∈ [0, 𝐿] provided
0 < 𝑟 ≤ 1 and (H2) hold;

(iii) the coexistent steady state solution 𝐸2 = (𝐵2(𝑥), 𝐶2(𝑥), 𝐺2(𝑥)) with
𝐵2(𝑥) > 0, 𝐶2(𝑥) > 0 and 𝐺2(𝑥) > 0 for all 𝑥 ∈ [0, 𝐿].

To observe that 𝐸0, 𝐸1 and 𝐸2 are all possible forms of nonnegative
steady state solutions of (20), let (𝐵(𝑥), 𝐶(𝑥), 𝐺(𝑥)) be a nonnegative
steady state solution of system (20) which is not 𝐸 . From the strong
2
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Fig. 2. The bifurcation diagram of the limiting grazer-absent system (14) with the
ifurcation parameter 𝜖 showing the transcritical bifurcation. Other parameter values
re given in 𝑃0. The horizontal axis is 𝜖 ∈ (0, 0.15), and the vertical axis is the total
iomass. The solid curves represent stable solutions and the dotted curves represent
nstable solutions.

aximum principle, each component is either zero or strictly positive.
f 𝐵(𝑥) ≡ 0, then 𝐺(𝑥) satisfies

𝑑𝐺′′ − 𝛽𝐺 = 0, 0 < 𝑥 < 𝐿,
𝐺′(0) = 0, 𝐺′(𝐿) + 𝑞𝐺(𝐿) = 0,

hich implies that 𝐺(𝑥) ≡ 0, and the solution must be 𝐸0. On the other
hand, if 𝐵(𝑥) > 0 and 𝐺(𝑥) > 0 for 𝑥 ∈ [0, 𝐿], one has 𝐸2 form, which
s a coexistence state; and if 𝐵(𝑥) > 0 and 𝐺(𝑥) ≡ 0 for 𝑥 ∈ [0, 𝐿],
ne has 𝐸1 form. Consequently, 𝐸0, 𝐸1 and 𝐸2 are all possible forms of
nonnegative steady state solutions of (20). We have shown that 𝐸0 is
unique, and 𝐸1 exists under (H2) but the uniqueness is unknown. We
prove the existence of 𝐸2 (a positive coexistence state) under (H2) and
additional conditions by using persistence theory.

For convenience, we first introduce some notations. Setting 𝛹̃𝑡 ∶
X3 → X3 be the solution semiflow generated by the limiting system
(20). Let

X3
1 = {(𝐵,𝐺, 𝐶) ∈ X3 ∶ 𝐵(𝑥) ≢ 0, 𝐺(𝑥) ≢ 0, 0 ≤ 𝑥 ≤ 𝐿},

𝜕X3
1 = X3 ⧵ X3

1,

𝑁1
𝜕 = {𝛩0 ∈ 𝜕X3

1 ∶ 𝛹̃𝑡(𝛩0) ∈ 𝜕X3
1, 𝑡 ≥ 0},

and let 𝜔̃(𝛩0) be the omega limit set of the forward orbit 𝛾̃+(𝛩0) =
{𝛹̃𝑡(𝛩0)}𝑡≥0. Let  ∶ X2 → 𝐶([0, 1],R+) be the projection on X2, defined
by (𝐵,𝐶) = 𝐵 for (𝐵,𝐶) ∈ X2.

The following main theorem indicates that the existence of the coex-
istent steady state listed in (iii) and the proof is given in the Appendix.
6

Theorem 5.2. Assume that and 0 < 𝑟, 𝛼 ≤ 1, (H2) holds, and let 𝐴0 be the
global attractor of limiting grazer–absent system (14). In addition, assume
that

(H3) 𝜆0

(

𝛼𝜇𝐺 inf
𝐵∈(𝐴0)

ℎ(𝐵(𝑥))
)

− 𝛽 > 0 (21)

holds. Then system (20) has a global attractor 𝐴1 and is uniformly persistent
with respect to (X3

1, 𝜕X
3
1), that is, there exists a constant 𝜛1 > 0, such

that for any solution (𝐵(𝑥, 𝑡), 𝐶(𝑥, 𝑡), 𝐺(𝑥, 𝑡)) with the initial condition 𝛩0 =
(𝐵0, 𝐶0, 𝐺0) ∈ X3

1,

lim inf
𝑡→∞

𝐵(𝑥, 𝑡, 𝛩0(𝑥)) ≥ 𝜛1, lim inf
𝑡→∞

𝐺(𝑥, 𝑡, 𝛩0(𝑥)) ≥ 𝜛1, 𝑥 ∈ [0, 𝐿].

Furthermore, system (20) admits at least one positive steady state solution
𝐸2.

We remark that if 𝜆0
(

𝛼𝜇𝐺 inf
𝐵∈(𝐴0)

ℎ(𝐵(𝑥))
)

< 0, then (H3) holds

automatically for any 𝛽 > 0; and if 𝜆0
(

𝛼𝜇𝐺 inf
𝐵∈(𝐴0)

ℎ(𝐵(𝑥))
)

∶= 𝛽∗ > 0,
the assumption (H3) is equivalent to 0 < 𝛽 < 𝛽∗.

Applying Theorems 5.1 and 5.2 to the full grazer–present system
1)–(3), we obtain

orollary 5.3. Assume that 0 < 𝑟, 𝛼 ≤ 1, 𝜖∗ = 𝜆0(𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))) > 0

nd 𝛽∗ = 𝜆0

(

𝛼𝜇𝐺 inf
𝐵∈(𝐴0)

ℎ(𝐵(𝑥))
)

> 0.

(i) When 𝜖 > 𝜖∗ (or equivalently (H1) holds) and 𝛽 > 0, the grazer–
present system (1)–(3) has no positive steady state solution, and the
trivial steady state (0, 𝐶̃(𝑥), 𝑁̃(𝑥), 0) is globally asymptotically stable.

(ii) When 0 < 𝜖 < 𝜖∗ (or equivalently (H2) holds), the grazer–present
system (1)–(3) has at least one semi-trivial steady state solution
(𝐵1(𝑥), 𝐶1(𝑥), 𝑁1(𝑥), 0) with 𝑁1(𝑥) = 𝑁̃(𝑥) − 𝜃𝐵𝐵1(𝑥) and 𝐵1(𝑥) > 0.
Moreover the semi-trivial steady state is unique and locally asymptot-
ically stable when 𝜖∗ − 𝜎 < 𝜖 < 𝜖∗ for some 𝜎 > 0.

(iii) When 0 < 𝜖 < 𝜖∗ (or equivalently (H2) holds) and 0 < 𝛽 < 𝛽∗

(or equivalently (H3) holds), the grazer–present system (1)–(3) is
uniformly persistent, and there exists at least one positive steady state
solution (𝐵2(𝑥), 𝐶2(𝑥), 𝑁2(𝑥), 𝐺2(𝑥)) with 𝑁1(𝑥) = 𝑁̃(𝑥) − 𝜃𝐵𝐵2(𝑥) −
𝜃𝐺𝐺2(𝑥), 𝐵2(𝑥) > 0 and 𝐺2(𝑥) > 0.

6. Numerical simulations

In this section, we use numerical simulations of the limiting grazer-
absent system (14) and the limiting grazer-present system (20) to
illustrate our theoretical conclusions obtained in Sections 4 and 5, and
to provide some new insights on the biodegradation. In this section, the
curves in figures represent the total mass of functions (𝐿1 norm of the
functions).

The initial conditions are chosen as

𝐵0(𝑥) = 0.03 + 0.01 sin(𝜋𝑥), 𝐶0(𝑥) = 3 + 0.1 cos(𝜋𝑥),

𝐺0(𝑥) = 0.03 + 0.01 cos(𝜋𝑥), (22)

and other parameters are chosen as follows:
Fig. 3. The solutions of system (14) for different 𝜖. Left: the solution converges to a positive steady state as 𝜖 = 0.05 < 𝜖∗ = 0.105. Right: the solution converges to (0, 𝐶̃(𝑥)) as
= 0.2 > 𝜖∗ = 0.105.
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Fig. 4. The bifurcation diagrams of the limiting grazer-present system (20) showing transcritical bifurcations. Left: bifurcation parameter 𝜖; Right: bifurcation parameter 𝛽 and
𝜖 = 0.05. All other parameter values are given in 𝑃0. The horizontal axis is the bifurcation parameter, and the vertical axis is the total biomass. The solid curves represent stable
solutions and the dotted curves represent unstable solutions.
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Fig. 5. The 𝜖–𝛽 plane diagram for the limiting grazer–present system (20). Here
𝜖∗ = 0.105 and 𝛽∗ = 0.0277 when 𝜖 = 0.05, and other parameter values are given
in 𝑃0. Here the abbreviation G.A.S. represents globally asymptotically stable and L.A.S.
represents locally asymptotically stable.

𝑃0 : 𝜇𝐵 = 0.5, 𝑘𝑓 = 1.21, 𝑘𝑔 = 8, 𝑘ℎ = 1, 𝜃𝐵 = 0.25, 𝑟 = 0.4, 𝜇𝐺 =
0.25, 𝜃𝐺 = 0.1, 𝛼 = 0.95, 𝛽 = 0.01, 𝐶𝑖𝑛 = 3, 𝑁𝑖𝑛 = 7, 𝑞 = 0.05, 𝑑 = 0.3,
𝐿 = 1 and 𝜖 = 0.05.

With these parameter values, we have 𝑁̃(𝑥) = 7.35 − 0.35𝑥, 𝐶̃(𝑥) =
𝐵̃(𝑥) = 𝐺̃(𝑥) = 3.15 − 0.15𝑥, 𝜖∗ = 𝜆0(𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))) = 0.105, and
𝛽∗ = 𝜆0

(

𝛼𝜇𝐺 inf𝐵∈(𝐴0) ℎ(𝐵(𝑥))
)

= 0.0277 when 𝜖 = 0.05. Hence, (H1)
olds if 𝜖 > 0.105; (H2) holds if 𝜖 < 0.105; and (H3) holds if 0 < 𝛽 < 0.027.
Fig. 2 shows the bifurcation diagram for system (14) with the

bacterial death rate 𝜖 as the bifurcation parameter, which verifies the
conclusions of Proposition 4.1 and Theorem 4.4. Fig. 3 shows the
solution trajectories of (14) before and after the bifurcation value 𝜖∗.
When 𝜖 < 0.105, the solution of system (14) converges to a positive
steady state, and when 𝜖 > 0.105, the solution converges to the trivial
state (0, 𝐶̃(𝑥)). That is, when 𝜖 is large, organic carbon cannot be
decomposed and bacteria become extinct, and when 𝜖 is small, bacteria
survive and can partly decompose organic carbon.

Fig. 4 shows two bifurcation diagrams of the limiting system (20),
hich illustrates the conclusions in Theorems 5.1 and 5.2. When using
he bacterial death rate 𝜖 as the bifurcation parameter, the system (20)
as two thresholds, a critical bacterial death rate 𝜖∗ = 0.105 from the
ondition (H ), and 𝜖 = 0.07 from (H ) for fixed 𝛽 = 0.01, while other
1 ∗ 3

7

parameters are fixed as in 𝑃0. When 𝜖 > 𝜖∗, all solutions converge to the
trivial steady state solution 𝐸0; when 𝜖∗ < 𝜖 < 𝜖∗, the semi-trivial steady
state solution 𝐸1 exists and it appears to be unique and asymptotically
stable; and when 0 < 𝜖 < 𝜖∗, a positive steady state solution 𝐸2 exists
and attracts all solutions (see the left panel of Fig. 4). It is interesting to
observe that the bacterial biomass 𝐵2(𝑥) almost stays at the same level
or all 0 < 𝜖 < 𝜖∗, but 𝐶2(𝑥) is smaller as 𝜖 decreases so the presence of
razers does facilitate the decomposition of organic carbon.

On the other hand, fixing 𝜖 at 0.05 and using the grazer’s death
ate 𝛽 as the bifurcation parameter, system (20) has a critical grazer’s
eath rate 𝛽∗ = 0.0277 from the condition (H3), below which the system
ossesses a positive steady state 𝐸2 (see the right panel of Fig. 4). The
xistence and stability parameter regimes of steady states 𝐸0, 𝐸1 and 𝐸2
re shown in the 𝜖 − 𝛽 bifurcation diagram in Fig. 5. The region below
he curve 𝛽 = 𝛽∗ is where a coexistence state 𝐸2 exists. Fig. 6 shows
everal solution trajectories of the limiting grazer-present system (20)
ith different parameter values of 𝜖 and 𝛽. Here the solution converges
o 𝐸0 when 𝜖 = 0.2 > 𝜖∗ = 0.105 (first row); the solution converges to
1 when 𝜖 = 0.05 < 𝜖∗ = 0.105 and 𝛽 = 0.04 > 𝛽∗ = 0.0277; and
he solution converges to the positive steady state solution 𝐸2 when
= 0.05 and 𝛽 = 0.01 < 𝛽∗. It is known that [26–29], 𝑑𝐶 , 𝑑𝐵 , 𝑑𝑁 have
he same order of magnitude, while 𝑑𝐺 is much smaller. In Fig. 7 we
show the same effect of 𝜖 and 𝛽 as Fig. 6 but for the full system (1) with
𝑑𝐵 = 0.5, 𝑑𝐶 = 0.3, 𝑑𝐺 = 0.005 and 𝑑𝑁 = 1 so that the mass conservation
with equal diffusion coefficients no longer holds. The behaviors of the
solutions in this case are similar to the ones in Fig. 6.

Fig. 8 shows the bifurcation diagram with respect to the concen-
tration of inflow carbon 𝐶𝑖𝑛 as the bifurcation parameter. There are
three bifurcation values: 𝑆1 = 1.4, 𝑆2 = 2.5 and 𝑆3 = 5.5. If 𝐶𝑖𝑛 < 𝑆1,
then only 𝐸0 exists and neither bacteria nor grazers can survive; if
𝑆1 < 𝐶𝑖𝑛 < 𝑆2, then 𝐸1 is the attracting state, so bacteria persist but
their biomass is not sufficient to support the persistence of grazers;
if 𝑆2 < 𝐶𝑖𝑛 < 𝑆3, then 𝐸2 is the attracting state, and bacteria
and grazers coexist at an interior steady state; and if 𝐶𝑖𝑛 > 𝑆3, the
coexistence steady state 𝐸2 appears to become unstable, and a limit
cycle becomes the attracting state. Thus 𝑆3 is a Hopf bifurcation point
(shown numerically). For 𝐶𝑖𝑛 > 𝑆3, there are two curves representing
the maximum and minimum of periodic solutions in Fig. 5. This implies
that an increase of the carbon input 𝐶𝑖𝑛 can support bacteria, a further
increase would also support grazers, and a very large carbon input
causes temporal oscillations of the system. This appears to be a paradox
of enrichment phenomenon. Again for the intermediate carbon input
(𝑆2 < 𝐶𝑖𝑛 < 𝑆3), the bacterial steady state biomass 𝐵2(𝑥) is nearly same,
hile carbon and grazers increase in a linear fashion with respect to
.
𝑖𝑛



X. Chang, J. Shi and H. Wang Mathematical Biosciences 331 (2021) 108501

𝜖

1
g
g

Fig. 6. Effects of parameters 𝜖 and 𝛽 on solutions of the limiting grazer-present system (20). First row: 𝜖 = 0.2, 𝛽 = 0.01. Second row: 𝜖 = 0.05, 𝛽 = 0.04. Third row: 𝜖 = 0.05,
𝛽 = 0.01. Other parameter values are given in 𝑃0.
Fig. 7. Effects of parameters 𝜖 and 𝛽 on solutions of system (1) with 𝑑𝐵 = 0.5, 𝑑𝐶 = 0.3, 𝑑𝐺 = 0.005, 𝑑𝑁 = 1. First row: 𝜖 = 0.2, 𝛽 = 0.01. Second row: 𝜖 = 0.05, 𝛽 = 0.04. Third row:
= 0.05, 𝛽 = 0.01. Other parameter values are given in 𝑃0.
t
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Fig. 9 shows the solution trajectories in these four cases: when 𝐶𝑖𝑛 =
< 𝑆1 = 1.4, the solution converges to 𝐸0 and both bacteria and grazers
o extinct; when 𝑆1 < 𝐶𝑖𝑛 = 2 < 𝑆2 = 2.5, the solution converges to 𝐸1,
razers go extinct and bacteria persist; when 𝑆2 < 𝐶𝑖𝑛 = 3 < 𝑆3 = 5.5,
8

he solution converges to 𝐸2, and both bacteria and grazers persist and
ettle at an interior steady state; and when 𝐶𝑖𝑛 = 6 > 𝑆3, the solution
ppears to converge to a stable limit cycle. Fig. 10 shows the effect
f the parameter 𝐶𝑖𝑛 on solutions of the full system (1) with different
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Fig. 8. Bifurcation diagram for the limiting system (20) by taking 𝐶𝑖𝑛 as a bifurcating
parameter and keep other parameters fixed as in 𝑃0. For 𝐶𝑖𝑛 > 𝑆3, the maximum and
inimum of periodic solutions are shown so the asymptotic dynamics is oscillatory.
B

9

diffusion coefficients 𝑑𝐵 = 0.5, 𝑑𝐶 = 0.3, 𝑑𝐺 = 0.005 and 𝑑𝑁 = 1 as in
Fig. 7. Again the behaviors of the solutions in this case are similar to
the ones in Fig. 9.

Fig. 11 shows the transient oscillatory dynamics of system (20)
when 𝜖 is sufficiently small. As 𝜖 decreases, transient oscillations stay
onger. Eventually the solution always converges to the interior steady
tate whose carbon biomass is similar for different tiny 𝜖 values. This
bservation is informative to experiments in which most researchers
ssume a zero bacterial death rate. Here we show how a tiny bacterial
eath rate regulates the transient and asymptotic dynamics.
Finally we use sensitivity analysis to examine the influence of

ystem parameters on the decomposition rate, which represents the
ecomposition efficiency in the grazer-present system (1), and it can
e written as

𝑃 (𝑡) =
𝜇𝐵
𝑟 ∫

𝐿

0
𝐵(𝑥, 𝑡)𝛷(𝑁̃(𝑥) − 𝜃𝐵𝐵(𝑥, 𝑡) − 𝜃𝐺𝐺(𝑥, 𝑡), 𝐶̃(𝑥))𝑑𝑥; (23)

and in the grazer-absent system (13), it becomes

𝑅𝐴(𝑡) =
𝜇𝐵
𝑟 ∫

𝐿

0
𝐵(𝑥, 𝑡)𝛷(𝑁̃(𝑥) − 𝜃𝐵𝐵(𝑥, 𝑡), 𝐶̃(𝑥))𝑑𝑥. (24)

s the solution approaches a steady state as 𝑡 → ∞, the decomposition
ate converges as well, and we can assume that 𝑅𝑊 = lim

𝑡→∞
𝑅𝑊 (𝑡) to

e the steady state decomposition rate of the system for 𝑊 = 𝑃 or 𝐴.

y applying the normalized forward sensitivity index and the modified
Fig. 9. The effect of parameter 𝐶𝑖𝑛 on solutions of the limiting grazer-present system. First row: 𝐶𝑖𝑛 = 1; second row: 𝐶𝑖𝑛 = 2; third row: 𝐶𝑖𝑛 = 3; fourth row: 𝐶𝑖𝑛 = 6. Other
parameter values are given in 𝑃0.
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Fig. 10. The effect of parameter 𝐶𝑖𝑛 on solutions of system (1) with 𝑑𝐵 = 0.5, 𝑑𝐶 = 0.3, 𝑑𝐺 = 0.005, 𝑑𝑁 = 1. First row: 𝐶𝑖𝑛 = 1; second row: 𝐶𝑖𝑛 = 2; third row: 𝐶𝑖𝑛 = 3; fourth row:
𝐶𝑖𝑛 = 6. Other parameter values are given in 𝑃0.

Fig. 11. The transient dynamics in system (20) with small 𝜖. Here 𝜖 = 0.001, 0.01 and 0.02 in the first, second and third columns. Other parameter values are given in 𝑃0.
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Fig. 12. The sensitivity indices of the degradation rate to the parameters. Baseline
parameter values are given in 𝑃0.

Table 2
The sensitivity indices of the degradation rate to the parameters.
Parameter S.I. for grazer-present

system
S.I. for grazer-absent
system

𝜇𝐵 1.2637 7.2639
𝑘𝑓 −0.0747 −0.4328
𝑘𝑔 −0.0637 −0.3531
𝑘ℎ 0.6849 0
𝜃𝐵 −0.0015 −0.0055
𝑟 −1.4130 1.2728
𝜇𝐺 −3.0593 0
𝜃𝐺 −4.7007 × 10−4 0
𝛼 −0.7894 0
𝛽 31.9042 0
𝐶𝑖𝑛 0.2745 0.1275
𝑁𝑖𝑛 0.013 0.075
𝑑 2.4932 1.1987
𝑞 15.1759 9.244
𝜖 1.3067 −37.3386

numerical formula obtained by the central difference approximation in
[4,36], the sensitivity index can be written as

𝛶𝑝 =
𝑅𝑊 (1.01𝑝) − 𝑅𝑊 (0.99𝑝)

0.02𝑅𝑊 (𝑝)
, (25)

here 𝑅𝑊 (𝑝) is the steady state decomposition rate with a parameter
, and 𝑊 = 𝑃 or 𝐴.
We calculate the sensitivity index (SI) for each of the 15 parameters

isted in Table 1 while other parameters are fixed as in 𝑃0, using the
imiting grazer–present system (20) with 𝜖 = 0.05 (for the grazer–
present system), and with 𝜖 = 0.08 (for the grazer–absent system as
the solution converges to 𝐸1). The results are shown in Table 2 and
ig. 12. In the grazer–present system, the decomposition rate is most
ensitive to the grazer’s death rate, while in the grazer-absent system,
he decomposition rate is most sensitive to the bacterial death rate.
herefore, we choose these two death rates as the primary parameters
n most of our mathematical results.
When the sensitivity index in Table 2 is positive, the corresponding

arameter has a positive effect on the decomposition rate. In the
razer–present system, increasing the flow rate 𝑞 can increase the
ecomposition rate, and the grazer’s death rate 𝛽 also has a great
ositive effect on the decomposition rate. In the grazer–absent system,
he relationships are similar to those found in [4]. Again increasing the
low rate 𝑞 can accelerate the decomposition. On the other hand, the
 t

11
acterial death rate 𝜖 has a great negative effect on the decomposition
ate.
In Figs. 13–15, we examine the dependence of the decomposi-

ion rates in the grazer–absent/–present systems on key parameters
ver their wide ranges with all other parameters (except the bifur-
ation parameter) fixed as in 𝑃0. Fig. 13 shows that as one of the
arameters 𝑑, 𝜖, 𝜇𝐵 and 𝑞 increases, the decomposition rates 𝑅𝐴 and
𝑃 corresponding to the grazer-absent/-present systems both increase.
arge 𝑑, 𝜖 or 𝑞, or small 𝜇𝐵 inhibits the grazer’s facilitation effect
n biodegradation. On the other hand, when one of the parameters
𝑓 , 𝑘𝑔 , 𝜃𝐵 and 𝑟 increases, the decomposition rate 𝑅𝑃 corresponding
o the grazer–present system decreases, as shown in Fig. 14. However,
he decomposition rate 𝑅𝐴 corresponding to the grazer-absent system
nly decreases as 𝑟 increases, and almost irrelevant to the parameters
𝑓 , 𝑘𝑔 , 𝜃𝐵 . Furthermore, large 𝑘𝑓 , 𝑘𝑔 or 𝜃𝐵 inhibits the grazer’s facili-
ation effect on biodegradation, while 𝑟 almost has no impact on the
acilitation effect. The influences of the parameters 𝐶𝑖𝑛 and 𝑁𝑖𝑛 on the
ecomposition rates are not monotone, as shown in Fig. 15. There is
n optimal nitrogen input concentration for making the organic matter
ecomposition most efficient in the absence or presence of grazing.
ote that oscillations in 𝐶𝑖𝑛 graph are caused by the emergence of
imit cycles in large 𝐶𝑖𝑛 regime. Small 𝐶𝑖𝑛 or 𝑁𝑖𝑛 inhibits the grazer’s
acilitation effect on biodegradation.
A common feature in Figs. 13–15 is that the decomposition rate for

he grazer-present system 𝑅𝑃 is greater than or equal to the one for the
razer-absent system 𝑅𝐴, which indicates that the decomposition rate
ncreases if bacterivorous grazers are added to the decomposition pro-
ess. This resolves the ‘‘decomposition–facilitation paradox’’ [5–10,37]
n the spatial PDE context.

. Discussion

In this paper, we explore the dynamical behaviors of a stoichiomet-
ic bacteria–grazer reaction–diffusion model for organic matter decom-
osition. A one-dimensional spatial setting similar to unstirred chemo-
tat is used. The mortality rates of bacteria and grazers play important
oles in the decomposition dynamics according to our mathematical
nalysis and sensitivity analysis.
Comparing to the system in [4], we consider the system with

iffusion and discuss the influence of spatial heterogeneity on the
ynamics of the system, which is more realistic for simulating the actual
ituation. Especially, the sign of the principal eigenvalue is a significant
hreshold for distinguishing the stability of the equilibrium, which is
ncreasing as the diffusion rate increases and implies the diffusion
ate also plays an important role in the stability of the equilibrium.
he interaction of spatial heterogeneity and wave instability caused
y the Hopf bifurcation may also lead to possible behavior such as
ong-wavelength traveling waves including spiral waves.
In the absence of grazing, the bacterial death rate completely deter-
ines asymptotic dynamics: bacteria become extinct when the death
ate is large, and the bacterial density converges to a positive steady
tate when the death rate is small. On the other hand, in the presence
f grazing, three kinds of dynamical behaviors appear: (i) extinction of
oth bacteria and grazers when the bacterial death rate is large; (ii) per-
istence of bacteria and extinction of grazers when the bacterial death
ate is small and the grazer’s death rate is large; and (iii) coexistence
f bacteria and grazers when the death rates of bacteria and grazers
re both small. See Corollary 5.3 and Fig. 5 for a precise description of
arameter regimes. Moreover it is found that the coexistence of bacteria
nd grazers can be in an oscillatory fashion when the carbon input
ate is large. In this case, the concentrations of bacteria and grazers
hange periodically and cannot sustain at a positive equilibrium for all
he time, which creates a paradox of enrichment similar to the classical
redator–prey model. The analytic results for the grazer–present system
re proved under the assumption of equal diffusion coefficients, and
he more realistic situation of unequal diffusion coefficients requires
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Fig. 13. The increase of the decomposition rate with respect to the parameter 𝑑, 𝜖, 𝜇𝐵 or 𝑞. All parameter values except the bifurcation parameter are same as those in 𝑃0. The
magenta curves are for the grazer-present system and the cyan curves are for the grazer-absent system.

Fig. 14. The decrease of the decomposition rate with respect to the parameter 𝑘𝑓 , 𝑘𝑔 , 𝜃𝐵 or 𝑟. All parameter values except the bifurcation parameter are same as those in 𝑃0. The
magenta curves are for the grazer-present system and the cyan curves are for the grazer-absent system.
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Fig. 15. The relationship between the decomposition rates and the parameters 𝐶𝑖𝑛 and 𝑁𝑖𝑛. All parameter values except the bifurcation parameter are same as those in 𝑃0. The
magenta curves are for the grazer-present system and the cyan curves are for the grazer-absent system.
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further future consideration. Numerical simulations in Figs. 7 and 10
show the dynamical behaviors for the system with unequal diffusion
coefficients are similar to the one with equal diffusion coefficients.

The sensitivity of the degradation rate with respect to each parame-
ter is shown numerically. The organic matter is decomposed to a greater
extent and the decomposition rate is higher in the presence of grazers
than in the absence of grazers in a resource-limited environment under
some conditions. The relationship between the degradation rate and the
parameters clearly explains the ‘‘decomposition–facilitation paradox’’
in a spatial setting. In some parameter ranges, the grazer’s facilitation
on biodegradation is negligible.

In [4], following the Liebig’s law of minimum the non-smooth
bacterial growth rate min{𝑓 (𝑁), 𝑔(𝐶)} was considered in the chemostat
ODE system. The multiplication function used in this paper is a good
approximation and has also been widely used in literature. For the
reaction–diffusion model here, this simplification is necessary for rigor-
ous mathematical analysis using the existing mathematical techniques.
The rigorous analysis of a reaction–diffusion system with a non-smooth
growth rate is an open mathematical question. The stability of inte-
rior steady states in the full grazer–present system is mathematically
challenging and will be studied in the future.
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Appendix

Proof of Theorem 3.2. Let the total amount of nitrogen in the system
be 𝑃 = 𝜃𝐵𝐵 + 𝑁 + 𝜃𝐺𝐺 and the total amount of carbon in the system
be 𝑄 = 𝐵 + 𝐶 + 𝐺, then 𝑃 (𝑥, 𝑡) and 𝑄(𝑥, 𝑡) satisfy

⎧

⎪

⎨

⎪

𝑃𝑡 = 𝑑𝑃𝑥𝑥, 0 < 𝑥 < 𝐿, 𝑡 > 0,
𝑃𝑥(0, 𝑡) = −𝑞𝑁𝑖𝑛, 𝑃𝑥(𝐿, 𝑡) + 𝑞𝑃 (𝐿, 𝑡) = 0, 𝑡 > 0,

0 0 0

(A.1)
⎩

𝑃 (𝑥, 0) = 𝜃𝐵𝐵 (𝑥) +𝑁 (𝑥) + 𝜃𝐺𝐺 (𝑥), 0 < 𝑥 < 𝐿,

13
and

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑄𝑡 = 𝑑𝑄𝑥𝑥 +
𝜇𝐵

𝑟
(𝑟 − 1)𝛷(𝑁,𝐶)𝐵 + (𝛼 − 1)𝜇𝐺ℎ(𝐵)𝐺 ≤ 𝑑𝑄𝑥𝑥, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑄𝑥(0, 𝑡) = −𝑞𝐶𝑖𝑛, 𝑄𝑥(𝐿, 𝑡) + 𝑞𝑄(𝐿, 𝑡) = 0, 𝑡 > 0,

𝑄(𝑥, 0) = 𝐵0(𝑥) +𝑁0(𝑥) + 𝐶0(𝑥), 0 < 𝑥 < 𝐿,

(A.2)

f 0 < 𝑟, 𝛼 ≤ 1. Then 𝑃 (𝑥, 𝑡) and 𝑄(𝑥, 𝑡) satisfy

lim
𝑡→∞

𝑃 (𝑥, 𝑡) = 𝑁̃(𝑥), lim sup
𝑡→∞

𝑄(𝑥, 𝑡) ≤ 𝐶̃(𝑥), (A.3)

niformly in 𝑥 ∈ [0, 𝐿], where 𝑁̃(𝑥) and 𝐶̃(𝑥) are the unique steady
tate solutions of diffusion equations in (A.1) and (A.2) with boundary
conditions respectively. □

Proof of Proposition 4.1. The linearized equation of the limiting
system (14) at (0, 𝐶̃(𝑥)) is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐵𝑡 = 𝑑𝐵𝑥𝑥 + 𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))𝐵 − 𝜖𝐵, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝐶𝑡 = 𝑑𝐶𝑥𝑥 −
1
𝑟
𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))𝐵 + 𝜖𝐵, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝐵𝑥(0, 𝑡) = 0, 𝐵𝑥(𝐿, 𝑡) + 𝑞𝐵(𝐿, 𝑡) = 0, 𝑡 > 0,
𝐶𝑥(0, 𝑡) = −𝑞𝐶𝑖𝑛, 𝐶𝑥(𝐿, 𝑡) + 𝑞𝐶(𝐿, 𝑡) = 0, 𝑡 > 0.

(A.4)

And the corresponding eigenvalue problem is

⎧

⎪

⎨

⎪

⎩

𝑑𝜙′′
1 + 𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))𝜙1 − 𝜖𝜙1 = 𝜆𝜙1, 0 < 𝑥 < 𝐿,

𝑑𝜙′′
2 − 1

𝑟
𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))𝜙1 + 𝜖𝜙1 = 𝜆𝜙2, 0 < 𝑥 < 𝐿,

𝜙′
𝑖(0) = 0, 𝜙′

𝑖(𝐿) + 𝑞𝜙𝑖(𝐿) = 0, 𝑖 = 1, 2.

(A.5)

Let (𝜆, 𝜙1, 𝜙2) be an eigen-pair of eigenvalue problem (A.5). If
1(𝑥) ≡ 0, then problem (A.5) is reduced to the one for 𝜙2, which is
11) with 𝑝(𝑥) = 0, hence all eigenvalues are negative by Lemma 3.3.
f 𝜙1(𝑥) ≠ 0, then problem (A.5) is reduced to the one for 𝜙1, which is
11) with 𝑝(𝑥) = 𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥)) − 𝜖. From Lemma 3.3, all eigenvalues
re negative and (0, 𝐶̃(𝑥)) is locally asymptotically stable if and only if
H1) is satisfied, and (0, 𝐶̃(𝑥)) is unstable if (H2) is satisfied. □

To prove Theorem 4.2, we first prove the following auxiliary result.

emma A.1. Assume (H1) holds and 0 < 𝑟 ≤ 1. If 𝑉 (𝑥, 𝑡) is the solution
f

⎧

⎪

⎨

⎪

⎩

𝑉𝑡 = 𝑑𝑉𝑥𝑥 + 𝜇𝐵𝛷(𝑁̃(𝑥) − 𝜃𝐵𝑉 , 𝐶̃(𝑥) + 𝛿)𝑉 − 𝜖𝑉 , 0 < 𝑥 < 𝐿, 𝑡 > 0,
𝑉𝑥(0, 𝑡) = 0, 𝑉𝑥(𝐿, 𝑡) + 𝑞𝑉 (𝐿, 𝑡) = 0, 𝑡 > 0,
𝑉 (𝑥, 0) = 𝐵0(𝑥), 0 < 𝑥 < 𝐿,

(A.6)
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where 𝛿 > 0 is a sufficiently small positive constant. Then

lim
𝑡→∞

𝑉 (𝑥, 𝑡) = 0, uniformly for 𝑥 ∈ [0, 𝐿].

Proof. We construct another auxiliary function 𝑣(𝑥, 𝑡) satisfying

⎧

⎪

⎨

⎪

⎩

𝑣𝑡 = 𝑑𝑣𝑥𝑥 + 𝜇𝐵𝛷(𝑁̃(𝑥) + 𝛿, 𝐶̃(𝑥) + 𝛿)𝑣 − 𝜖𝑣, 0 < 𝑥 < 𝐿, 𝑡 > 𝑇0,
𝑣𝑥(0, 𝑡) = 0, 𝑣𝑥(𝐿, 𝑡) + 𝑞𝑣(𝐿, 𝑡) = 0, 𝑡 > 𝑇0,
𝑣(𝑥, 𝑇0) > 𝑉 (𝑥, 𝑇0), 0 < 𝑥 < 𝐿.

where 𝑇0 > 0 is defined in Theorem 3.2. Then by the comparison
principle of parabolic equation, 𝑣(𝑥, 𝑡) > 𝑉 (𝑥, 𝑡) for 𝑥 ∈ [0, 𝐿] and 𝑡 ≥ 𝑇0.

We prove that 𝑣(𝑥, 𝑡) ≤ 𝐶𝑣𝑒−𝛾(𝑡−𝑇0) for some positive constants 𝐶𝑣,
sufficiently small 𝛾 > 0 and 𝑡 ≥ 𝑇0, 0 ≤ 𝑥 ≤ 𝐿. Let 𝑣(𝑥, 𝑡) =
𝑦(𝑥, 𝑡)𝜂0(𝑥)𝑒−𝛾(𝑡−𝑇0), where 𝜂0(𝑥) > 0 is the principal eigenfunction of
(11) with 𝑝(𝑥) = 𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥)). Then 𝑦(𝑥, 𝑡) satisfies

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑦𝑡 − 𝑑𝑦𝑥𝑥 − 2𝑑
𝜂′0
𝜂0

𝑦𝑥 −
𝑦
𝜂0

𝐹 = 0, 0 < 𝑥 < 𝐿, 𝑡 > 𝑇0,

𝑦𝑥(0, 𝑡) = 0, 𝑦𝑥(𝐿, 𝑡) = 0, 𝑡 > 𝑇0,

𝑦(𝑥, 𝑇0) =
𝑣(𝑥, 𝑇0)
𝜂0(𝑥)

, 0 < 𝑥 < 𝐿,

(A.7)

where

𝐹 =𝑑𝜂0′′ + 𝜇𝐵𝛷(𝑁̃(𝑥) + 𝛿, 𝐶̃(𝑥) + 𝛿)𝜂0 + 𝛾𝜂0 − 𝜖𝜂0
=(𝜖∗ − 𝜖)𝜂0 + 𝛾𝜂0 + 𝜇𝐵(𝛷(𝑁̃(𝑥) + 𝛿, 𝐶̃(𝑥) + 𝛿) −𝛷(𝑁̃(𝑥), 𝐶̃(𝑥)))𝜂0
<0,

as 𝛾 > 0 and 𝛿 > 0 are sufficiently small. Then from (A.7) we have

𝑦𝑡 − 𝑑𝑦𝑥𝑥 − 2𝑑
𝜂′0
𝜂0

𝑦𝑥 < 0.

ombining the boundary conditions in system (A.7) and the maximum
principle, the maximum of 𝑦 on 𝑥 ∈ [0, 𝐿] and 𝑡 ≥ 𝑇0 should occur
long 𝑃1 ∶= {𝑡 ≥ 𝑇0, 𝑥 = 0} or 𝑃2 ∶= {𝑡 ≥ 𝑇0, 𝑥 = 𝐿} or 𝑃3 ∶= {𝑡 =
0, 0 < 𝑥 < 𝐿}. If 𝑦 has a nonnegative maximum 𝑦(0, 𝑡) on 𝑃1, then the
opf boundary lemma implies that 𝑦𝑥(0, 𝑡) < 0 which is in contradiction
ith 𝑦𝑥(0, 𝑡) = 0. In the similar way, 𝑦 cannot achieve a nonnegative
aximum on 𝑃2. Then the nonnegative maximum must lie on 𝑃3. That
s,

(𝑥, 𝑡) ≤ 𝑦(𝑥, 𝑇0) ≤ sup
𝑥∈[0,𝐿]

𝑣(𝑥, 𝑇0)
𝜂0(𝑥)

.

ence, any solution 𝑉 (𝑥, 𝑡) of system (A.6) satisfies

𝑉 (𝑥, 𝑡) ≤ 𝑣(𝑥, 𝑡) = 𝑦(𝑥, 𝑡)𝜂0(𝑥)𝑒−𝛾(𝑡−𝑇0) ≤ 𝐶𝑣𝑒
−𝛾(𝑡−𝑇0)

for some positive constant 𝐶𝑣 ∶= sup
𝑥∈[0,𝐿]

𝜂0(𝑥) sup
𝑥∈[0,𝐿]

(

𝑣(𝑥, 𝑇0)∕𝜂0(𝑥)
)

. This

implies that 𝑉 (𝑥, 𝑡) converges to 0 uniformly for 𝑥 ∈ [0, 𝐿] as 𝑡 → ∞,
which completes the proof. □

Now we prove Theorem 4.2.

roof of Theorem 4.2. We only prove (i) as (ii) follows automatically
rom (i) and (A.3). From Theorem 3.2, for 𝑡 ≥ 𝑇0 and 𝑥 ∈ [0, 𝐿], the
olution (𝐵(𝑥, 𝑡), 𝐶(𝑥, 𝑡)) of the limiting system (14) satisfies 𝐵(𝑥, 𝑡) ≤
𝐶̃(𝑥) + 𝛿 and 𝐶(𝑥, 𝑡) ≤ 𝐶̃(𝑥) + 𝛿. By the comparison principle, we have
the nonnegative solution 𝐵(𝑥, 𝑡) of the limiting system (14) is not larger
than the nonnegative solution 𝑉 (𝑥, 𝑡) of system (A.6), which leads to
that 𝐵(𝑥, 𝑡) → 0 uniformly for 𝑥 ∈ [0, 𝐿] as 𝑡 → ∞ by Lemma A.1. From
(A.3) we have 𝐶(𝑥, 𝑡) → 𝐶̃(𝑥) at the same time. □

Proof of Theorem 4.3. From the definitions, it is clear that X2
0

is an open subset in X2 and forward invariant under the dynamics
generated by the limiting system (14). And (0, 𝐶̃(𝑥)) ∈ 𝜕X2

0. We prove
the remaining parts in several steps:
Step 1. 𝛹𝑡 ∶ X2

0 → X2
0 has a global attractor 𝐴0.

Theorem 3.2 shows that 𝛹𝑡 is point dissipative on X2, and the
forward orbits of bounded subsets of X2 for 𝛹 are bounded. 𝛹 is
𝑡 𝑡
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asymptotically smooth because it is compact from [31]. Then 𝛹𝑡 has
a global attractor 𝐴0 by [38].
Step 2. ⋃𝜃∈𝑁𝜕

𝜔(𝜃) ⊂ {(0, 𝐶̃(𝑥))}.
For any 𝜃0 ∈ 𝑁𝜕 and 𝑡 ≥ 0, 𝛹 (𝜃0) ∈ 𝑁𝜕 by the definition of 𝑁𝜕 . Then

𝐵(𝑥, 𝑡, 𝜃0) ≡ 0 and 𝐶(𝑥, 𝑡, 𝜃0) converges to 𝐶̃(𝑥) as 𝑡 → ∞ uniformly for
𝑥 ∈ [0, 𝐿]. Hence, 𝜔(𝜃0) ∈ {(0, 𝐶̃(𝑥))}.
Step 3. {(0, 𝐶̃(𝑥))} is a uniform weak repeller, that is, there exists a
constant 𝜌 > 0, such that for any 𝜃 ∈ X2

0, lim sup
𝑡→∞

‖𝛹𝑡(𝜃) − (0, 𝐶̃(𝑥))‖ ≥ 𝜌.
On the contrary, if (0, 𝐶̃(𝑥)) is not a weak repeller. Then for any 𝜌 >

0, there exists 𝜃𝜌 = (𝐵𝜌, 𝐶𝜌) ∈ X2
0 such that lim sup

𝑡→∞
‖𝛹𝑡(𝜃𝜌) − (0, 𝐶̃(𝑥))‖ <

𝜌. Especially, choose 𝜌 > 0 such that 𝜆𝜌0 = 𝜆0(𝜇𝐵𝛷(𝑁̃(𝑥) − 𝜃𝐵𝜌, 𝐶̃(𝑥) −
𝜌) − 𝜖) > 0 is the principal eigenvalue of (11) with the corresponding
eigenfunction 𝜂𝜌0 > 0. Thus, there exists 𝑇1 > 0, such that for any 𝑡 ≥ 𝑇1,
‖𝐵(⋅, 𝑡, 𝜃𝜌)‖ < 𝜌 and ‖𝐶(⋅, 𝑡, 𝜃𝜌) − 𝐶̃(⋅)‖ < 𝜌. Therefore, for any 𝑥 ∈ [0, 𝐿]
and 𝑡 ≥ 𝑇1,

−𝜌 < 𝐵(𝑥, 𝑡, 𝜃𝜌) < 𝜌, 𝐶̃ − 𝜌 < 𝐶(𝑥, 𝑡, 𝜃𝜌) < 𝐶̃ + 𝜌.

On the other hand, from the limiting system (14),

𝐵𝑡 = 𝑑𝐵𝑥𝑥 + 𝜇𝐵𝛷(𝑁̃(𝑥) − 𝜃𝐵𝐵,𝐶)𝐵 − 𝜖𝐵

≥ 𝑑𝐵𝑥𝑥 + (𝜇𝐵𝛷(𝑁̃(𝑥) − 𝜃𝐵𝜌, 𝐶̃(𝑥) − 𝜌) − 𝜖)𝐵,

with the boundary condition 𝐵𝑥(0, 𝑡) = 𝐵𝑥(𝐿, 𝑡) + 𝑞𝐵(𝐿, 𝑡) = 0. Choose
𝜉𝜌 > 0 satisfying 𝐵(𝑥, 𝑇1) ≥ 𝜉𝜌𝜂

𝜌
0 (𝑥), then by the comparison principle,

𝐵(𝑥, 𝑡) ≥ 𝜉𝜌𝜂
𝜌
0 (𝑥)𝑒

𝜆𝜌0(𝑡−𝑇1) for any 𝑡 > 𝑇1, which implies 𝐵(𝑥, 𝑡) goes to ∞
as 𝑡 → ∞. This is in contradiction with 𝐵(𝑥, 𝑡) < 𝜌.
Step 4. Define a continuous function 𝑝 ∶ X2 → [0,∞) by 𝑝(𝜃) =
min

𝑥∈[0,𝐿]
𝐵(𝑥) for any 𝜃 = (𝐵,𝐶) ∈ X2. It is not difficult to see that

𝑝−1([0,∞)) ⊆ X2
0 and 𝑝 satisfies that if 𝑝(𝜃) > 0 or 𝜃 ∈ X2

0 with 𝑝(𝜃) = 0,
then 𝑝(𝛹𝑡(𝜃)) > 0 for 𝑡 > 0, which implies that 𝑝 is a generalized distance
function for the semiflow 𝛹𝑡 ∶ X2 → X2.

To sum up the conclusions obtained above, it is true that any
forward orbit of 𝛹𝑡 in 𝑁𝜕 converges to {(0, 𝐶̃(𝑥))}. {(0, 𝐶̃(𝑥))} is iso-
lated in X2 and the stable set 𝑊 𝑠({(0, 𝐶̃(𝑥))}) of {(0, 𝐶̃(𝑥))} satisfy-
ing 𝑊 𝑠({(0, 𝐶̃(𝑥))}) ∩ X2

0 = 𝜙. And there is no subsets of {(0, 𝐶̃(𝑥))}
forms a cycle in 𝑁𝜕 . By applying the abstract persistence theory stated
in [39–41], we have that there exists a constant 𝜛 > 0, such that
min

𝜃𝜛∈𝜔(𝜃)
𝑝(𝜃𝜛 ) > 𝜛 for any 𝜃 ∈ X2

0, which implies that for any 𝜃 ∈ X2
0,

lim inf
𝑡→∞

𝐵(⋅, 𝑡, 𝜃) ≥ 𝜛. □

Proof of Theorem 4.4. (i) We prove part (i) in four steps.
Step 1. dim ((𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥))) = 1, where ((𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥))) is the
null space of the linear operator (𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥)).

If (𝜙1(𝑥), 𝜙2(𝑥)) ∈  ((𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥))), then we have

⎧

⎪

⎨

⎪

⎩

𝑑𝜙′′
1 (𝑥) + 𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))𝜙1(𝑥) − 𝜖∗𝜙1(𝑥) = 0, 0 < 𝑥 < 𝐿,

𝑑𝜙′′
2 (𝑥) −

1
𝑟
𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))𝜙1(𝑥) + 𝜖∗𝜙1(𝑥) = 0, 0 < 𝑥 < 𝐿,

𝜙′
𝑖(0) = 0, 𝜙′

𝑖(𝐿) + 𝑞𝜙𝑖(𝐿) = 0, 𝑖 = 1, 2.

(A.8)

ince 𝜖∗ = 𝜆0(𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))), then 𝜙1 can be chosen as 𝜂0, and 𝜙2
an be uniquely solved from the second equation of (A.8) as expressed
n (19). Hence

im ((𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥))) = 1,  ((𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥))) = span{(𝜂0, 𝜁0)}.

tep 2. codim((𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥))) = 1, where ((𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥))) is
he range of the linear operator (𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥)).
Assume (𝑢1, 𝑢2, 𝑢3) ∈ ((𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥))), then there exists (𝜑1, 𝜑2)

X𝐵 × X𝐶 such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝜑′′
1 (𝑥) + 𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))𝜑1(𝑥) − 𝜖∗𝜑1(𝑥) = 𝑢1, 0 < 𝑥 < 𝐿,

𝑑𝜑′′
2 (𝑥) −

1
𝑟
𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))𝜑1(𝑥) + 𝜖∗𝜑1(𝑥) = 𝑢2, 0 < 𝑥 < 𝐿,

𝜑′
1(0) = 0, 𝜑′

1(𝐿) + 𝑞𝜑1(𝐿) = 0,
𝜑′
2(0) = 𝑢3, 𝜑′

2(𝐿) + 𝑞𝜑2(𝐿) = 0.

(A.9)
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Multiplying 𝜑1 and 𝜙1 to the first equation of (A.8) and (A.9), respec-
tively, subtracting and integrating over [0, 𝐿], we obtain
∫ 𝐿
0 𝑢1(𝑥)𝜙1(𝑥)𝑑𝑥 = 0, and 𝜑2 is always solvable for any (𝑢2, 𝑢3), which
implies that

((𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥)))

=
{

(𝑢1, 𝑢2, 𝑢3)𝑇 ∈ Y × Y × R ∶ ∫

𝐿

0
𝑢1(𝑥)𝜂0(𝑥)𝑑𝑥 = 0

}

nd codim((𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥))) = 1.
tep 3. 𝜖(𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥))[(𝜂0, 𝜁0)] ∉ ((𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥))).
A direct calculation shows that 𝜖(𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥))[(𝜂0, 𝜁0)] =

(−𝜂0, 𝜂0, 0). Assume (−𝜂0, 𝜂0, 0)𝑇 ∈ ((𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥))). Then
∫ 𝐿
0 𝜂20 (𝑥)𝑑𝑥 = 0, which is in contradiction with 𝜂0 > 0.
Step 4. Now applying the Theorem 1.7 of [42], we have that there
exists 𝐼 = (−𝜎, 𝜎) for 0 < 𝜎 ≪ 1, and 𝜖 ∶ 𝐼 → R, 𝑤𝑖 ∶ 𝐼 → W
(𝑖 = 1, 2), where W is a complement of span{(𝜂0, 𝜁0)}, such that the
set of solutions of the limiting system (18) near (𝜖∗, 0, 𝐶̃(𝑥)) consists
precisely of the smooth curve 𝛤0 = {(𝜖, 0, 𝐶̃(𝑥)) ∶ 0 < 𝜖 < 𝜖∗} and
𝛤1 = {(𝜖(𝑠), 𝐵(𝑠, 𝑥), 𝐶(𝑠, 𝑥)) ∶ 𝑠 ∈ 𝐼∖{0}}. Restricting 𝑠 ∈ (0, 𝜎), we
obtain the branch 𝛤+

1 of positive solutions of (18) as stated in part (i).
(ii) For part (ii), we can calculate that (see [43])

𝜖′(0) = −
⟨𝜅,(𝐵,𝐶)(𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥))[(𝜂0, 𝜁0), (𝜂0, 𝜁0)]⟩

2⟨𝜅, 𝐹𝜖(𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥))[(𝜂0, 𝜁0)]⟩

= −
𝜇𝐵 ∫ 𝐿

0

(

𝜃𝐵𝛷𝑁 (𝑁̃(𝑥), 𝐶̃(𝑥))𝜂0(𝑥) −𝛷𝐶 (𝑁̃(𝑥), 𝐶̃(𝑥))𝜁0(𝑥)
)

𝜂20 (𝑥)d𝑥

∫ 𝐿
0 𝜂20 (𝑥)d𝑥

,

s
(𝐵,𝐶)(𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥))[(𝜂0, 𝜁0), (𝜂0, 𝜁0)]

=

⎛

⎜

⎜

⎜

⎝

−2𝜇𝐵𝜃𝐵𝛷𝑁 (𝑁̃(𝑥), 𝐶̃(𝑥))𝜂20 (𝑥) + 2𝜇𝐵𝛷𝐶 (𝑁̃(𝑥), 𝐶̃(𝑥))𝜂0(𝑥)𝜁0(𝑥)
2
𝜇𝐵
𝑟
𝜃𝐵𝛷𝑁 (𝑁̃(𝑥), 𝐶̃(𝑥))𝜂20 (𝑥) − 2

𝜇𝐵
𝑟
𝛷𝐶 (𝑁̃(𝑥), 𝐶̃(𝑥))𝜂0(𝑥)𝜁0(𝑥)

0

⎞

⎟

⎟

⎟

⎠

,

𝐹𝜖(𝐵,𝐶)(𝜖∗, 0, 𝐶̃(𝑥))[𝜌0] = (−𝜂0, 𝜂0, 0), 𝜅 = (𝜂0, 0, 0).

ince (𝜂0(𝑥), 𝜁0(𝑥)) is a solution of (A.8), it leads to that

0(𝑥) + 𝜁0(𝑥) = (−𝑑𝛥)−1
(𝜇𝐵

𝑟
(𝑟 − 1)𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))𝜂0(𝑥)

)

≤ 0,

ince 0 < 𝑟 ≤ 1. This implies 𝜁0(𝑥) ≤ −𝜂0(𝑥) < 0, hence 𝜖′(0) < 0 as 𝛷𝑁 >
0 and 𝛷𝐶 > 0. By applying the stability theorem of bifurcating solutions
n [42], there exists up to the second order continuous differentiable
unctions:

𝜈 ∶(𝜖∗ − 𝜎, 𝜖∗ + 𝜎) → R, (𝐵̂(𝜏), 𝐶̂(𝜏)) ∶ (𝜖∗ − 𝜎, 𝜖∗ + 𝜎) → X𝐵 × X𝐶 ,

𝜇 ∶(−𝜉, 𝜉) → R, (𝐵∗, 𝐶∗) ∶ (−𝜉, 𝜉) → X𝐵 × X𝐶 ,

such that

(𝐵,𝐶)(𝜖, 0, 𝐶̃(𝑥))[𝐵̂(𝜏), 𝐶̂(𝜏)] =𝜈(𝜏)[𝐵̂(𝜏), 𝐶̂(𝜏), 0]𝑇 ,

(𝐵,𝐶)(𝜖(𝑠), 𝐵(𝑠), 𝐶(𝑠))[𝐵∗(𝑠), 𝐶∗(𝑠)] =𝜇(𝑠)[𝐵∗(𝑠), 𝐶∗(𝑠), 0]𝑇 ,

where 𝜈(𝜖) = 𝜖∗ − 𝜖, 𝜈′(𝜖∗) = −1, and 𝜇(𝑠) has the same sign of
−𝑠𝜖′(𝑠)𝜈′(𝜖∗) when 𝑠 is small, which implies 𝜇(𝑠) < 0 and the bifurcat-
ing solution (𝜖(𝑠), 𝐵(𝑠, 𝑥), 𝐶(𝑠, 𝑥)) is locally asymptotically stable with
espect to (14). □

roof of Theorem 4.5. From Theorem 3.3 and Remark 3.4 of [33], it
s not difficult to verify that for any fixed (𝐵̄, 𝐶̄) ∈ X𝐵×X𝐶 , the operator
(𝐵,𝐶)(𝜖, 𝐵̄, 𝐶̄) ∶ X𝐵 ×X𝐶 → Y×Y×R is a Fredholm operator with index
ero. Then the existence of  follows from Theorem 4.3 of [33], and
he existence of + follows from Theorem 4.4 of [33]. Moreover from
heorem 4.4 in [33], + must satisfy one of the following alternatives:

(i) it is not compact in R+ × X𝐵 × X𝐶 ;
(ii) it contains a point (𝜖, 0, 𝐶̃(𝑥)) with 𝜖 ≠ 𝜖∗;
(iii) it contains a point (𝜖, 𝐵̄(𝑠, 𝑥), 𝐶̃(𝑥)+𝐶̄(𝑠, 𝑥)), where (𝐵̄(𝑠, 𝑥), 𝐶̄(𝑠, 𝑥))

≠ (0, 0), (𝐵̄(𝑠, 𝑥), 𝐶̄(𝑠, 𝑥)) ∈ W, and W is a complement of
span{(𝜂 , 𝜁 )} defined in the proof of Theorem 4.4.
0 0

15
o show case (ii) cannot happen, we prove that 𝜖 = 𝜖∗ is the unique
ifurcation value for the bifurcation of positive solutions of (18) from
0. We prove it by contradiction. Suppose that 𝜖 (≠ 𝜖∗) is another bi-
urcation value for the bifurcation of positive solutions of (18) from 𝛤0,
hen there exists a sequence of positive solutions {(𝜖𝑛, 𝐵𝑛(𝑥), 𝐶𝑛(𝑥))}∞𝑛=1
uch that (𝜖𝑛, 𝐵𝑛(𝑥), 𝐶𝑛(𝑥)) → (𝜖, 0, 𝐶̃(𝑥)) as 𝑛 → ∞ for some 𝜖 > 0. Let

𝑛 =
𝐵𝑛

‖𝐵𝑛‖
. Then 𝑏𝑛 satisfies

𝑑𝑏′′𝑛 + 𝜇𝐵𝛷(𝑁̃(𝑥) − 𝜃𝐵𝐵𝑛, 𝐶𝑛)𝑏𝑛 − 𝜖𝑛𝑏𝑛 = 0,

ith the same boundary condition. From standard elliptic estimates,
here exists a subsequence of

{

𝑏𝑛
}∞
𝑛=1, still denoted as itself, such that

𝑛 → 𝑏∞ ∈ X𝐵 , 𝑏∞ ≥ 0 and ‖𝑏∞‖ = 1. Moreover 𝑏∞ satisfies
{

𝑑𝑏′′∞ + 𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))𝑏∞ − 𝜖𝑏∞ = 0, 0 < 𝑥 < 𝐿,
𝑏′∞(0) = 0, 𝑏′∞(𝐿) + 𝑞𝑏∞(𝐿) = 0.

(A.10)

Hence 𝜖 = 𝜆𝑖(𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))) for some 𝑖 ≥ 0. But from Lemma 3.3,
𝜆0 is the only eigenvalue with a nonnegative eigenfunction, thus 𝜖 =
𝜆0(𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))) = 𝜖∗. That is a contradiction. So 𝜖 = 𝜖∗ is the
unique bifurcation value for positive solutions of (18) from 𝛤0. Hence
case (ii) cannot happen.

If case (iii) holds, then there exists 𝜖 ∈ (0, 𝜖∗), such that (𝐵̄(𝑠, 𝑥), 𝐶̃(𝑥)
+ 𝐶̄(𝑠, 𝑥)) is positive and satisfies  (𝜖, 𝐵̄(𝑠, 𝑥), 𝐶̃(𝑥) + 𝐶̄(𝑠, 𝑥)) = 0 and
(𝐵̄(𝑠, 𝑥), 𝐶̄(𝑠, 𝑥)) ∈ W, i.e.

∫

𝐿

0
(𝐵̄(𝑠, 𝑥)𝜂0(𝑥) + 𝐶̄(𝑠, 𝑥)𝜁0(𝑥))d𝑥 = 0, (A.11)

where 𝜂0(𝑥) > 0 and 𝜁0(𝑥) < 0 are defined in Theorem 4.4. On
the other hand, 𝐶̃(𝑥) + 𝐶̄(𝑠, 𝑥) ≤ 𝐶̃(𝑥) from the maximum principle.
hen 𝐶̄(𝑠, 𝑥) ≤ 0 and ∫ 𝐿

0 (𝐵̄(𝑠, 𝑥)𝜂0(𝑥) + 𝐶̄(𝑠, 𝑥)𝜁0(𝑥))d𝑥 > 0, which is
n contradiction with (A.11). Hence, (iii) cannot happen and (i) must
ccur. From the maximum principle, we have 𝐵(𝑥) ≤ max

𝑥∈[0,𝐿]
𝐵̃(𝑥) and

𝐶(𝑥) ≤ (1 + 𝑞𝐿)𝐶𝑖𝑛, so all solutions (𝐵,𝐶) on + are uniformly bounded,
and positive solutions of system (18) only exist when 𝜖 < 𝜖∗. Therefore
we must have Proj𝜖 + = (0, 𝜖∗). □

Proof of Theorem 5.1. The eigenvalue problem of the linearized
equation of (20) at 𝐸0 is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝜙′′
1 + 𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))𝜙1 − 𝜖𝜙1 = 𝜆𝜙1, 0 < 𝑥 < 𝐿,

𝑑𝜙′′
2 − 1

𝑟
𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))𝜙1 + 𝜖𝜙1 + 𝛽𝜙3 = 𝜆𝜙2, 0 < 𝑥 < 𝐿,

𝑑𝜙′′
3 − 𝛽𝜙3 = 𝜆𝜙3, 0 < 𝑥 < 𝐿,

𝜙′
𝑖(0) = 0, 𝜙′

𝑖(𝐿) + 𝑞𝜙𝑖(𝐿) = 0, 𝑖 = 1, 2, 3.

(A.12)

Let (𝜆, 𝜙1, 𝜙2, 𝜙3) be an eigen-pair of eigenvalue problem (A.12). If
𝜙1(𝑥) ≡ 0 and 𝜙3(𝑥) ≡ 0, then problem (A.12) is reduced to the one for
𝜙2, which is (11) with 𝑝(𝑥) = 0, hence all eigenvalues are negative by
Lemma 3.3. If 𝜙3(𝑥) ≢ 0, then problem (A.12) is reduced to the one for
3, which is (11) with 𝑝(𝑥) = −𝛽, hence all eigenvalues are negative by
emma 3.3. If 𝜙1(𝑥) ≢ 0, then problem (A.12) is reduced to the one for
1, which is (11) with 𝑝(𝑥) = 𝜇𝐵𝛷(𝑁̃(𝑥), 𝐶̃(𝑥))− 𝜖. From Lemma 3.3, all
igenvalues are negative and (0, 𝐶̃(𝑥)) is locally asymptotically stable if
nd only if (H1) is satisfied, and (0, 𝐶̃(𝑥)) is unstable if (H2) is satisfied.
Hence 𝐸0 is locally asymptotically stable if (H1) holds and is unstable if
(H2) holds. The existence of 𝐸1 under (H2) follows from Theorem 4.5.

Next we prove that when (H1) holds, if (𝐵(𝑥, 𝑡), 𝐶(𝑥, 𝑡), 𝐺(𝑥, 𝑡)) is a
onnegative solution of the limiting system (20), then

lim
→∞

(𝐵(𝑥, 𝑡), 𝐶(𝑥, 𝑡), 𝐺(𝑥, 𝑡)) = (0, 𝐶̃(𝑥), 0), uniformly for 𝑥 ∈ [0, 𝐿].

rom Theorem 3.2, for any constant 0 < 𝛿 ≪ 1, there exists a 𝑇1 > 0,
uch that

𝑡 = 𝑑𝐵𝑥𝑥 + 𝜇𝐵𝛷(𝑁̃(𝑥) − 𝜃𝐵𝐵 − 𝜃𝐺𝐺,𝐶)𝐵 − 𝜇𝐺ℎ(𝐵)𝐺 − 𝜖𝐵

≤ 𝑑𝐵 + 𝜇 𝛷(𝑁̃(𝑥) − 𝜃 𝐵, 𝐶̃(𝑥) + 𝛿)𝐵 − 𝜖𝐵,
𝑥𝑥 𝐵 𝐵
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ℎ
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𝑚

for any 𝑥 ∈ [0, 𝐿] and 𝑡 ≥ 𝑇1. Thus, by the comparison principle and
Lemma A.1, if 0 < 𝑟 ≤ 1 and (H1) hold, then lim

𝑡→∞
𝐵(𝑥, 𝑡) = 0 uniformly

for 𝑥 ∈ [0, 𝐿]. Hence there exists 𝑇2 > 0 such that for 𝑡 > 𝑇2, 𝐵(𝑥, 𝑡) ≤ 𝛿
for all 𝑥 ∈ [0, 𝐿]. From the third equation of system (20), we have
𝐺𝑡 ≤ 𝑑𝐺𝑥𝑥 + (𝛼𝜇𝐺ℎ(𝛿) − 𝛽)𝐺 for 𝑡 > 𝑇2. Choosing 𝛿 small enough so
that 𝛼𝜇𝐺ℎ(𝛿) − 𝛽 < −𝛽∕2, we have 𝐺𝑡 < 𝑑𝐺𝑥𝑥 − 𝛽𝐺∕2, which implies
lim
𝑡→∞

𝐺(𝑥, 𝑡) = 0 uniformly for 𝑥 ∈ [0, 𝐿]. As (𝐵(𝑥, 𝑡), 𝐺(𝑥, 𝑡)) goes to
(0, 0) when 𝑡 → ∞, 𝐶(𝑥, 𝑡) converges to 𝐶̃(𝑥) at the same time by the
continuity of solution map, which proves the convergence to 𝐸0.

Finally we prove that 𝐸1 is locally asymptotically stable when
𝜖∗ − 𝜎 < 𝜖 < 𝜖∗. Let (𝜆, 𝜙1, 𝜙2, 𝜙3) be an eigen-pair of the following
eigenvalue problem corresponding to the linearized equation of (20) at
𝐸1:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑑𝜙′′
1 − 𝜖𝜙1 − 𝜇𝐵𝜃𝐵𝛷𝑁 (𝐸̃1)𝐵1𝜙1 − 𝜇𝐺ℎ(𝐵1)𝜙3 + 𝜇𝐵𝛷(𝐸̃1)𝜙1

+𝜇𝐵𝛷𝐶 (𝐸1)𝐵1𝜙2 − 𝜇𝐵𝜃𝐵𝛷𝑁 (𝐸1)𝐵1𝜙3 = 𝜆𝜙1, 0 < 𝑥 < 𝐿,

𝑑𝜙′′
2 +

𝜇𝐵𝜃𝐵
𝑟

𝛷𝑁 (𝐸1)𝐵1𝜙1 + 𝜖𝜙1 −
𝜇𝐵

𝑟
𝛷(𝐸1)𝜙1 + 𝛽𝜙3

−
𝜇𝐵

𝑟
𝛷𝐶 (𝐸1)𝐵1𝜙2 +

𝜇𝐵𝜃𝐵
𝑟

𝛷𝑁 (𝐸1)𝐵1𝜙3 = 𝜆𝜙2, 0 < 𝑥 < 𝐿,

𝑑𝜙′′
3 + (𝛼𝜇𝐺ℎ(𝐵1) − 𝛽)𝜙3 = 𝜆𝜙3, 0 < 𝑥 < 𝐿,

𝜙′
𝑖(0) = 0, 𝜙′

𝑖(𝐿) + 𝑞𝜙𝑖(𝐿) = 0, 𝑖 = 1, 2, 3,

(A.13)

where 𝐸̃1 = (𝑁̃(𝑥) − 𝜃𝐵𝐵1(𝑥), 𝐶1(𝑥)). If 𝜙3(𝑥) ≢ 0, then problem (A.13)
is reduced to the one for 𝜙3, which is (11) with 𝑝(𝑥) = 𝛼𝜇𝐺ℎ(𝐵1(𝑥)) − 𝛽,
hence all eigenvalues are negative provided 𝜆0(𝛼𝜇𝐺ℎ(𝐵1(𝑥))) − 𝛽 < 0.
Since lim

𝜖
→ (𝜀∗)−𝜆0(𝛼𝜇𝐺ℎ(𝐵1(𝑥))) = 𝜆0(0) < 0, we can choose 𝜎 > 0

small enough so that 𝜆0(𝛼𝜇𝐺ℎ(𝐵1(𝑥))) − 𝛽 < 0 holds for positive 𝛽 > 0
and 𝜖∗ − 𝜎 < 𝜖 < 𝜖∗. If 𝜙3(𝑥) ≡ 0, then problem (A.13) is reduced to
the one for 𝜙1 and 𝜙2. From the proof of Theorem 4.4, all eigenvalues
are negative when 𝜖∗ − 𝜎 < 𝜖 < 𝜖∗. Hence, we obtain that 𝐸1 is locally
asymptotically stable when 𝜖∗ − 𝜎 < 𝜖 < 𝜖∗ and 𝜆0(𝛼𝜇𝐺ℎ(𝐵1(𝑥))) − 𝛽 <
0. □

To prove Theorem 5.2, we first prove several lemmas.

Lemma A.2. The function 𝑚(𝑥) = 𝛼𝜇𝐺 inf
𝐵∈(𝐴0)

(ℎ(𝐵(𝑥)) is continuous on
[0, 𝐿].

Proof. We prove it by using the definition of continuous functions.
That is, for any 𝜀 > 0, there exists 𝛿 > 0, such that for any 𝑥, 𝑦 ∈ [0, 𝐿]
satisfying |𝑥 − 𝑦| < 𝛿, we have |𝑚(𝑥) − 𝑚(𝑦)| < 𝜀, or equivalently,
𝑚(𝑦) − 𝜀 < 𝑚(𝑥) < 𝑚(𝑦) + 𝜀.

From the mean-value theorem, we have

|ℎ(𝐵(𝑥)) − ℎ(𝐵(𝑦))| = |ℎ′(𝐵(𝜎𝑥 + (1 − 𝜎)𝑦))| ⋅ |𝑥 − 𝑦| ≤ 1
𝑘ℎ

|𝑥 − 𝑦|,

where 𝜎 ∈ (0, 1). Then for any 𝜀 > 0, there exist 𝛿 = 𝜀𝑘ℎ∕(2𝛼𝜇𝐺) > 0,
such that for any (𝑥, 𝐵), (𝑦, 𝐵) ∈ [0, 1] × (𝐴0) satisfying |𝑥 − 𝑦| < 𝛿,
ℎ(𝐵(𝑥)) − ℎ(𝐵(𝑦))| < 𝜀∕(2𝛼𝜇𝐺). That is,

(𝐵(𝑥)) − 𝜀
2𝛼𝜇𝐺

≤ ℎ(𝐵(𝑦)) ≤ ℎ(𝐵(𝑥)) + 𝜀
2𝛼𝜇𝐺

.

From the definition of 𝑚(𝑥), we have that

𝑚(𝑥) = 𝛼𝜇𝐺 inf
𝐵∈(𝐴0)

ℎ(𝐵(𝑥)), 𝑚(𝑦) = 𝛼𝜇𝐺 inf
𝐵∈(𝐴0)

ℎ(𝐵(𝑦)).

Then there exist 𝐵𝑥, 𝐵𝑦 ∈ (𝐴0), such that 𝑚(𝑥) + 𝜀∕2 > 𝛼𝜇𝐺ℎ(𝐵𝑥(𝑥))
and 𝑚(𝑦) + 𝜀∕2 > 𝛼𝜇𝐺ℎ(𝐵𝑦(𝑦)). Thus,

𝑚(𝑥) + 𝜀
2
> 𝛼𝜇𝐺ℎ(𝐵𝑥(𝑥)) > 𝛼𝜇𝐺ℎ(𝐵𝑥(𝑦)) − 𝜀

2
≥ 𝑚(𝑦) − 𝜀

2
,

nd

(𝑦) + 𝜀
2
> 𝛼𝜇𝐺ℎ(𝐵𝑦(𝑦)) > 𝛼𝜇𝐺ℎ(𝐵𝑦(𝑥)) − 𝜀

2
≥ 𝑚(𝑥) − 𝜀

2
.

Hence, 𝑚(𝑥) is uniformly continuous on [0, 𝐿], which completes the
proof. □
16
Lemma A.3. Assume (H2) holds and 0 < 𝑟, 𝛼 ≤ 1. If (H3) holds, then
𝑀0 = {𝐸0} and 𝑀1 = 𝐴0 × {0} are uniform weak repellers with respect to
(X3

1, 𝜕X
3
1), that is, there exists a constant 𝜌̃ > 0, such that for any 𝛩0 ∈ X3

1,

lim sup
𝑡→∞

dist(𝛹̃𝑡(𝛩0),𝑀𝑖) ≥ 𝜌̃, 𝑖 = 0, 1.

Proof. It is proved by contradiction. Suppose, in contrary, 𝑀0 and 𝑀1
are not weak repellers. Then there exists 𝛩𝜏0 = (𝐵𝜏0 , 𝐶𝜏0 , 𝐺𝜏0 ) ∈ X3

1,
such that

lim sup
𝑡→∞

dist(𝛹̃𝑡(𝛩𝜏0 ),𝑀0) < 𝜏0, lim sup
𝑡→∞

dist(𝛹̃𝑡(𝛩𝜏0 ),𝑀1) < 𝜏0.

Hence there exists 𝑇3 > 0, such that for any 𝑡 > 𝑇3,

‖𝐺(⋅, 𝑡, 𝐺𝜏0 )‖ < 𝜏0, (A.14)

which implies that −𝜏0 < 𝐺(⋅, 𝑡, 𝐺𝜏0 ) < 𝜏0.
On the other hand, from system (20), we have

𝐺𝑡 = 𝑑𝐺𝑥𝑥 + (𝛼𝜇𝐺ℎ(𝐵) − 𝛽)𝐺 ≥ 𝑑𝐺𝑥𝑥 + (𝑚(𝑥) − 𝛽)𝐺.

Let 𝜂𝑚0 (𝑥) > 0 be the principal eigenfunction corresponding to the
principal eigenvalue 𝜆0(𝑚(𝑥) − 𝛽). Then by the comparison principle,
𝐺(𝑥, 𝑡, 𝐺𝜏0 ) ≥ 𝜉𝑚𝜂𝑚0 (𝑥)𝑒

𝜆0(𝑚(𝑥)−𝛽)(𝑡−𝑇3) for all 𝑥 ∈ [0, 𝐿] and a constant
𝜉𝑚 > 0. Thus, as 𝑡 → ∞, 𝐺(𝑥, 𝑡, 𝐺𝜏0 ) goes to ∞, which is in contradiction
with (A.14). □

Lemma A.4. Assume (H2) holds and 0 < 𝑟, 𝛼 ≤ 1. Then for any 𝛩0 ∈ 𝑁1
𝜕 ,

𝜔̃(𝛩0) ⊂ 𝑀0 ∪𝑀1.

Proof. For any 𝛩0 ∈ 𝑁1
𝜕 , we have 𝛹̃𝑡(𝛩0) ∈ 𝜕X3

1 and 𝛹̃𝑡(𝛩0) ∈ 𝑁1
𝜕 .

Then for any 𝑡 ≥ 0 and 𝑥 ∈ [0, 𝐿], 𝐵(𝑥, 𝑡, 𝛩0) ≡ 0 or 𝐺(𝑥, 𝑡, 𝛩0) ≡ 0. If
𝐵(𝑥, 𝑡, 𝛩0) ≡ 0, then 𝐺(𝑥, 𝑡, 𝛩0) ≡ 0, and 𝐶(𝑥, 𝑡, 𝛩0) converges to 𝐶̃(𝑥,𝛩0)
uniformly as 𝑡 goes to ∞. Hence, lim

𝑡→∞
𝛹̃𝑡(𝛩0) = 𝐸0 and 𝜔̃(𝛩0) ⊂ 𝑀0.

Assume 𝐺(𝑥, 𝑡, 𝛩0) ≡ 0 for all 𝑡 ≥ 0 and 𝑥 ∈ [0, 𝐿]. Substituting it into
system (20), (𝐵(𝑥, 𝑡, 𝛩0), 𝐶(𝑥, 𝑡, 𝛩0)) satisfies the limiting system (14). By
Theorem 4.3, 𝐴0 is a global attractor of 𝛹𝑡, then (𝐵(𝑥, 𝑡, 𝛩0), 𝐶(𝑥, 𝑡, 𝛩0))
will eventually enter 𝐴0 ⊂ Int(X2). Thus, 𝛹̃𝑡(𝛩0) will eventually enter
the global attractor 𝑀1 and 𝜔̃(𝛩0) ⊂ 𝑀1. □

Now, we are in position to prove Theorem 5.2.

Proof of Theorem 5.2. It is easy to see that if the initial condition
(𝐵0, 𝐶0, 𝐺0) ∈ X3

1, then we have 𝐵(𝑥, 𝑡, 𝐵0(𝑥)) > 0 and 𝐺(𝑥, 𝑡, 𝐺0(𝑥)) > 0
for all 𝑥 ∈ [0, 𝐿] and 𝑡 > 0, which implies that 𝛹̃𝑡(X3

1) ⊂ X3
1 for all

𝑡 > 0. The semiflow 𝛹̃𝑡 ∶ X3 → X3 has a global attractor in X3 from
Theorem 3.2 and [38]. The sets 𝑀0 and 𝑀1 are isolated in X3, and no
subset of 𝑀0 and 𝑀1 forms a cycle in 𝜕X3

1 by Lemmas A.3 and A.4.
Also, the stable set 𝑊 𝑠(𝑀𝑖) of 𝑀𝑖 satisfies 𝑊 𝑠(𝑀𝑖) ∩X3

1 = 𝜙 for 𝑖 = 0, 1.
Define a continuous function 𝐷 ∶ X3 → [0,∞) as

𝐷(𝛩0) = min
{

min
𝑥∈[0,𝐿]

𝐵0(𝑥), min
𝑥∈[0,𝐿]

𝐺0(𝑥)
}

, 𝛩0 = (𝐵0, 𝐶0, 𝐺0) ∈ X3
1.

Then 𝐷 is a generalized distance function for 𝛹̃𝑡, and there exists a
constant 𝜛1 > 0, such that min𝛩∈𝜔̃(𝛩0) 𝐷(𝛩) > 𝜛1 for 𝛩0 ∈ X3

1, and the
uniform persistence is valid. By [38], it shows that 𝛹̃𝑡 ∶ X3

1 → X3
1 has a

global attractor 𝐴1 and that 𝛹̃𝑡 has a steady state (𝐵2, 𝐶2, 𝐺2) ∈ 𝐴1. □
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