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1. Introduction

Spatial vegetation patterns are distinctive feature of landscapes found in many semiarid regions [7,53],
and their appearance often serves as an early-warning indicator of critical ecosystem transition such as
desertification [38,39]. Mathematical models have been established to study the generation of vegetation
pattern formation, and it has been theorized that the interplay of water source distribution and plant growth
leads to self-organization of the spatial patterns of vegetation. Mathematically theory of reaction-diffusion
system, Turing diffusion-induced instability [51] and its variants have been proposed as possible models to
generate complex spatiotemporal patterns.
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One relatively simple nonlinear partial differential equation model was proposed in Klausmeier [16] and
its nondimensionalized form is

ow
Wy =v—+a—-WB*-W,
8l‘1 (11)

B, = AB+ WB?—mB.

Here W (x,t) and B(z,t) are water and plant biomass density respectively, and @ € R™ for n = 1,2 or 3. In
this model there are three parameters: a is the water input or rainfall rate; m measures plant losses; and
v is the rate at which water flows downhill. The plant moves diffusively and the water flows down hill (so
water diffusion is ignored). The primary finding using (1.1) is the formation of banded stripe vegetation
patterns caused by the downhill water flow [16,41-46,52]. Other similar models for vegetation patterns in
semiarid ecosystems have been proposed and analyzed in, for example, [1,4-8,50,53-56].

In this paper, we consider the pattern formation in a diffusive Klausmeier model where the plants grow
on flat land instead of hill:

Wy =diAW +a—WB? - W, in Q,t>0,

B, = dyAB + WB?* —mB, in §,t>0, 12)
B 1.2

a_W:a_:(), on 09, t>0,

ov ov

W(x,0) = Wy(x) > 0,B(x,0) = Bo(z) >0, in Q.

Here € is a bounded domain in R™ with smooth boundary 92 and v denotes the unit outer normal to 0€2;
a no-flux boundary condition is imposed so that the water-plant ecosystem is closed; and dy,ds > 0 are
the water diffusion coefficient and plant diffusion coefficient, respectively. Note that the kinetic system in
(1.2) also arises from an autocatalytic chemical reaction model first proposed by Gray and Scott [9-11,32],
so system (1.2) is also called diffusive Klausmeier-Gray-Scott model [40,52]. A weakly nonlinear stability
analysis of positive equilibrium point of the model (1.2) was performed in [14], and parameter regions
corresponding to bare-soil and vegetative patterns were identified. In [32], numerical simulations reveal a
surprising variety of irregular spatiotemporal patterns for the Gray-Scott model, and some of them resemble
the steady irregular patterns observed in thin gel reactor experiments and others consist of spots that grow
until they reach a critical size. Spike layer spatial patterns in the diffusive Gray-Scott system have been
considered in [17,18,57,58]. In the studies of Gray-Scott model, the input a is often set as a constant 1. We
emphasize the effect of water input (rainfall) a on the spatial pattern formation in the current study.

In this paper, we give a theoretical analysis of the Klausmeier-Gray-Scott model (1.2) to explain the
existence of spatial vegetation patterns. Our main findings on the dynamics of system (1.2) are

1. The model (1.2) has two positive constant positive steady states Ex for any a > 2m, and the one with
low plant biomass F_ is always unstable. Moreover, there exists a function Jg(a) for a > 0 such that
(1.2) only has constant steady states when dy > da(a).

2. The high plant biomass constant positive steady state E. is linearly stable when dy > %dl and any

a > 2m, or dy < %dl and a > a*(> 2m) (a* is defined in Section 2). This indicates that the spatially
uniform high biomass steady state is most likely to be achieved in these parameter regimes.

3. The high plant biomass constant positive steady state E, could lose its stability when the rain fall is
in an intermediate rage (2m < a < a*) and the plant diffusion coefficient is small (dy < mdl), and
non-constant steady states emanate from the spatially uniform high biomass steady state £, through
a symmetry-breaking bifurcation. Numerical bifurcation diagram shows that the bifurcation branch
of these non-constant steady state extends to an extinction rainfall threshold a. < 2m, so patterned
solutions exist under a lower rainfall a < 2m which cannot support a uniform vegetation state.



X. Wang et al. / J. Math. Anal. Appl. 497 (2021) 124860 3

20
18
16} |
14
12}
SN10 I il

o N OB

Fig. 1. Parameter regimes for the existence and stability of constant steady states and the existence/nonexistence of nonconstant
steady states of (1.2). Here m = 0.45 and d; = 80.

4. Non-constant steady state solutions with spiky plant biomass profile exist even when the rainfall is very
low, so slow plant diffusion rate dy and fast water diffusion rate dy can support patterned vegetation
states with vegetation concentrating on a small area.

The parameter regimes for the existence and stability of constant steady states and the existence/nonex-
istence of nonconstant steady states of (1.2) on the a — ds plane are shown in Fig. 1. The positive a — ds
quadrant is divided into five subregions I, IT, ITI, IV and V defined as follows:

I={(a,ds):0<a<2m,dy >dz(a)}; I=RI\(IUIIUIVUV);
Il = {(a,dg) ta > 2m,dy > max{d}(a%dé}} ; IV= {(a,dg) ta>2m,dy > dy > d}(a)};

V= {(a,dg) 0 < a < 2m,min{Ka*/" dj} > dg} U {(a,dg) ca > 2m, min{ds(a),d}} > dg} .

Here the curves dy = dj, dy = dy(a) and dy = da(a) are defined in Propositions 3.2, 2.3 and Remark 2.6
respectively, and the constant K is defined in Theorem 3.3. In the subregion I there is only the bare-soil
state Ey = (a,0); in the subregion IIT U IV, the high plant biomass constant positive steady state F, is
linearly stable; in the subregion IV, E; and Fj are both locally asymptotically stable, and there exist other
non-constant steady states; and in the subregion V, E, is unstable and there exist other non-constant
steady states. The existence or nonexistence of non-constant steady states in the subregion II is not known.
Note that a substantial area of the subregion V satisfies a < 2m, which shows the existence of non-constant
positive steady states while there is no positive constant steady states.

Our results show that pattern formation in reaction-diffusion system such as (1.2) is not just the result
of symmetry-breaking bifurcations, as patterns exist far away from bifurcation points. We use bifurcation
theory, singular perturbation methods, and numerical simulations to show that the small amplitude patterns
generated from bifurcations when the rainfall is ample connect to highly localized patterns existing only
with low rainfall level. In between these two pattern formation regimes, the spatial pattern transits from
spots to labyrinth and to gaps. Such transition has been hypothesized and simulated in modeling effort by
[38], and here we provide a more theoretical justification for the case of Klausmeier-Gray-Scott model (1.2).

Our results also show that constant positive steady states of (1.2) only exist when a > 2m, but non-
constant positive steady states still exist for a < 2m. The case of a < 2m provides an example of “diffusion-
induced persistence” as all solutions in the system tend to the bare-soil state when diffusion is absent, but
some solutions in the system persist and converge to a non-constant positive steady state when diffusion
is present. This is different from Turing’s “diffusion-induced instability” which requires the existence of a
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constant positive steady state to perturb from. Note Turing instability can be found (see Section 2 and [14])
in Klausmeier-Gray-Scott model (1.2), but some patterned solutions found here are beyond Turing realm.

The rest of the paper is organized as follows. For the Klausmeier-Gray-Scott model (1.2), we consider
the symmetry-breaking bifurcation with parameter ¢ and the existence of non-constant steady states in
Section 2. In Section 3, by using the associated shadow system, we show the existence of non-constant
positive steady states of (1.2) when the rainfall is at a lower level in which homogeneous grassland cannot
survive and the water diffusion rate is large. Throughout this paper, Ny is the set of all nonnegative integers,
C is the set of all complex numbers, and X¢ = X @iX = {1 + iz : 21,22 € X} is the complexification of
a linear space X.

2. Bifurcations

In this section, we consider the existence of non-constant positive steady state solutions of (1.2) via
bifurcation analysis using the water input a as a bifurcation parameter.

2.1. A priori estimates and nonezistence of solutions

The non-negative steady state solutions of (1.2) satisfy the following semilinear elliptic equations:

AW +a—-WB?>-W =0, in Q,

deAB +WB?* —mB =0, in S, (2.1)
8671;[/ — % =0, on 0N.

Clearly, system (2.1) has a trivial solution (W, B) = (a,0), which means a bare-soil state. If a > 2m, system
(2.1) admits two positive constant solutions (Wi (a), By (a)) with

aF Va2 —4m? a++va? —4m?
Wi(a)= ———— Byfa) = ——. (2.2)
2 2m
In this subsection, we give some a priori estimates for the non-negative solutions and the nonexistence
of nonconstant positive solutions of system (2.1). Firstly, we recall the following maximum principle (see
Lemma 2.3 in [19] or Proposition 2.2 in [23]).

Lemma 2.1. Let Q be a bounded Lipschitz domain, and g € C(Q x R). If w € WH2(Q) is a weak solution of
the inequalities

Aw + g(xz,w) >0, in Q, g—l: >0 on 09,

and if there is a constant K such that g(z,w) <0 for w > K, then w < K a.e. in Q.
We now have the following a priori estimates for the non-negative solutions of (2.1).
Proposition 2.2. Suppose di,ds,a,m are all positive constants. Let (W, B) be any nonnegative solution

to (2.1). Then either (W, B) is the constant solution (a,0) or a positive solution satisfying

1 _
0<W(z)<a and 0<B(x)< (%4—%) a, x €. (2.3)
2
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Proof. If there exists xg € Q such that W (zg) = 0, then AW (x0) > 0 which results in a contraction from
the first equation of (2.1). If there exists o € € such that B(zg) = 0, then from the strong maximum
principle B(x) = 0 on Q. Thus, W (x) satisfies

AW +a—-W =0, in €,
8_W =0, on Of).
v
Then W(z) = a. Therefore, (W (x), B(z)) is either the constant solution (a,0) or it satisfies W (xz) > 0 and
B(z) > 0.
From Lemma 2.1, we have W(z) < a for any = € Q. Let U = d;W + dyB. Adding the two equations
in (2.1) we have

—AU=a—-W —mB, z €1, g—U:O, x € 0f.
v

Let #; € Q be a maximum point of U, then it follows from Lemma 2.1 that mB(x;) < a. Hence we have

d23<$) < U(.’l?) < U(iﬂl) = d1W(l'1) + ng(l‘l) < ad1 + CL_d27 S Q
m
This yields the upper bound of B(x) in (2.3). O

Now we show that system (2.1) admits positive non-constant solutions only if the plant diffusion rate ds
is somewhat small.

Proposition 2.3. For any fized di,a, m > 0, there exists dy = d~2(d17 a,m, ) defined by

a2

~ M—|—\/M2—|—4d1mM M CL2(
m ’ p1 \2m2\/dy s

d2(d17 a,m, Q) =

+ 1), (2.4)

where 1 s the smallest positive eigenvalue of —A on Q with Neumann boundary condition such that when
dy > dy, the only nonnegative solutions to (2.1) are the constant ones (a,0) and (Wx, By).

Proof. Let (W, B) be a positive solution of (2.1). Denote the averages of W and B over ) by

- 1 — 1
W = @Q/W(x)dx, B= mg/B(z)dx

Define ¢ = W — W and ¢ = B — B. Then /(bdx = /z/)dx = 0. Adding the two equations in (2.1) and
- _Q Q
integrating over 2, we find that W + mB = a, which implies

B < (2.5)

3]s

Multiplying the equation of W in (2.1) by ¢, and using (2.5), the a priori estimates in Proposition 2.2
and the Cauchy-Schwarz inequality, we obtain that
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dy [ |Vo]2de = [ (a — WB? — W)pdx
[rwavan |

Q

- /[((a W)= (a— W) — (WB? — WB® + WB? — W B2)|éda

Q
/( 1— B?)¢*dx — /W (B + B)¢epdx < a® / |pep|da — /¢2dx
2 (2.6)
2 2 2 2
<a —) V2 da Ve | - | ¢2de
Q Q
<L (& / Vda.
Combining with the Poincaré inequality pq /1/12dx < / |V1p|2dz, we have
4
, ot di 232 / ,
< — — . .
[ Ivoiis < (G ) [ (2.7)
Q Q

Similarly multiplying the equation of B in (2.1) by %, and using similar estimates and (2.7), we obtain
that

dy | |V|*dz = [ (WB? — mB)idx
[restac- |

Q

= /[(W32 —WB?*+WB?* - WB?) —m(B — B)|jdx

/Bquz/de—i-/( (B + B) — m)y?dx < —/|qbz/)|d:c—|— (d1 +%) /dea:

da
Q
(2.8)
a? d 2
<W ( 10) da:) (/¢2dx) +a2(d—;—|—a) /w2dm
Q
1/2
a2 d1 2 2
<m2,u1 (/|v¢| da:) (/w dm) +E(d_2+E>Q/|W| dx
a? a?
- (d—2+ N — +1) /|v1/)| da.
Now (2.8) implies that when
a® /dq 2 a?
dy > E(d—g + E) (72m2 —dlul + 1); (2'9)
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we have / |Vep|?dz = 0 and thus / |Vo|?dx = 0 from (2.7). Hence, V¢ = Vi) = 0 for all z € Q. Therefore,

(W, B) must be a constant solution. Finally we can derive dy in (2.4) from (2.9), and this verifies the
assertion. O

Remark 2.4. It is noted that (2.9) implies that for fixed dy, d2, m > 0 and Q, (2.1) has non-constant solutions
only if @ > a1, where

— M, M: MZM2u? + 4pido M. 2
:\/ 1 2M1+\/ M3 puy + 4prdo 27 M, = om? 1 M, = (d1+_>.
2M, p’ d1M1 m

2.2. Stability of constant steady states

In this subsection, we consider the stability of positive constant solutions of (2.1), based on the Turing
instability mechanism. It is easy to show that the bare-soil state (a,0) is always a locally asymptotically
stable steady state of (1.2) for any parameter values. So we focus on the stability of the positive constant
steady state (W (a), B+(a)) defined in (2.2). The Jacobian matrix of the corresponding kinetic system at
a positive constant steady state (W, B) is

—1—-B? —2m
J= ( B o ) ) (2.10)

Then the corresponding characteristic equation is A> — ToA + Dy = 0, with the trace of J being Ty =

— (1 + B?), and the determinant of J being Dy = m(B? — 1). Note that B_(a) < 1 and B, (a) > 1,
which means that the positive steady state (W_(a), B_(a)) is always an unstable saddle whenever it exists.
The stability of (W, (a), By(a)) with respect to the ODE dynamics can be determined by the sign of
Ty at (Wi(a), B+(a)). Direct computations show that (W, (a), B4+ (a)) is locally asymptotically stable if
0<m<2.

In this section, we always assume a > 2m and 0 < m < 2 so the positive constant steady states exist.
Define the real-valued Sobolev spaces

X = {(W,B) € W29(Q) x W29(Q) : %—VVV = aa—lj =0 on aQ},

Y = L9(Q) x L9(9),

where ¢ > n, and a nonlinear mapping G by

(2.11)

dyAB + WB? —mB

di AW -WB?2-W
G(a,VV,B)::( ! T )

Then G : RT x X — Y is Fréchet differentiable, and at the constant steady state (W, (a), By (a)), the
linearized operator is

L(a) :=

<_1_B?r(a)+d1A —2m> (2.12)

B2 (a) m + da A

with the domain D(L(a)) = X¢.
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The eigenvalue problem

—Ap =pup in §, Z_SD =0 on 092 (2.13)
v

has eigenvalues py satisfying 0 = pg < p1 < pg < -+ < g < -+ — 400 with corresponding eigenfunctions

¢x(z) for k € Ny. Let
o\ ~ [ N
<¢>—§<Bk>wk<>

be an eigenfunction of £(a) corresponding to an eigenvalue A(a), i.e. L(a)(¢,¥)T = X(a)(¢,%)T. Then
from the Fourier theory, there exists k € Ny and (au, Br) € R2\{(0,0)}, such that Ly(a)(ay, Br)T =
)\(a)(akvﬁk)Tv where

1-B2 —dyu,  —2m
Ly(a) == * . 2.14
k( ) ( Bi m — d2,U/k; ( )
Then the characteristic equation of Ly (a) is
A — Ty(a)\ + Dy(a) =0, (2.15)
and the eigenvalues A\(a) of L (a) are given by
Ma) = Ty (a) £ \/T?(a) — 4Dk(a)7
2
where
Tk(a):—(dl +d2)uk—|—m—1—Bi(a), (2 16)

Dia) =dydapi} + [do(1 + B2 (a)) — dymlpss + m(B2 (a) — 1).

For the diffusion-induced instability (Turing instability) to occur at (W, (a), By (a)), the constant steady
state (Wi (a), By (a)) is stable with respect to the kinetic ordinary differentiate equation system while is
unstable with respect to the reaction-diffusion system (1.2). We show the following stability /instability
result to identify the parameter regime where the Turing instability occurs.

Theorem 2.5. Assume dy,ds,a, m are positive constants and 0 < m < 2. Then

d 2
(i) If d_l < —, then (W4(a), By(a)) is locally asymptotically stable for any a > 2m;
2 m

d 2 d
(i) If d_l > —, then there exists a unique a* := a* (d—l) such that (Wi (a), By (a)) is locally asymptotically
m

2
stable for a > a*, and it is possibly unstable when 2m < a < a*.

Proof. Since 0 < m < 2 and a > 2m, the constant steady state (W, (a), By (a)) is locally asymptotically
stable with respect to the kinetic ordinary differentiate equation system. Hence Tp(a) < 0 and Dgy(a) > 0.
It is clear that Tjy(a) = —(d1 + d2)ur + To(a) < 0 for any k € N. So for the Turing instability to occur,
it is necessary that Dy(a) < 0 for some k£ € N [13,60]. Then a necessary condition for the instability of
(W4 (a), By (a)) with respect to system (1.2) is
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{d2(1 + B3 (a) — dim <0, (2.17)

[dg(l + Bi(a)) — dlmP - 4d1d2m(33(a) - ].) > 0,

which is equivalent to

d 3B%(a) —1+2By(a)y/2(B%(a) — 1)

dy m

= Go(B4(a)), (2.18)

where

2 _ 2 _
Go(B) = 221 ”fév 28D B (2.19)

0 9Go(B+(a))

Th
¢ da

= G{(B4)B! (a). It is easy to calculate that

6BvVB2 —1+2V2(2B%2 -1
Gl (B) = ;sz )0, B>1,
m —

a+va? —4m? -
2mv/a? — 4m?

B! (a) = 0, a>2m.

9Go(B+(a))

Thus,

we have

> 0 for all @ > 2m, which implies that Go(B4(a)) is strictly increasing in a. Therefore

L uin_ GolBa(a)) = Ga(B4(2m) = - (2:20)

d 2
From (2.18) and (2.20), we conclude that when d—l < (2.17) cannot hold, thus (W, (a), By (a)) is locally

2
asymptotically stable for any a > 2m. This proves part (i).

To prove (ii), from (2.16), we define a function
D(a,p) := didop® + [d2(1 + B3 (a)) — dim]p + m(B(a) - 1). (2.21)

1
~—K(a,p) where

Then D(a,p) = 5
m

K(a,p) := 2dydom?p* — [2m3d; — da(a® 4 av/a? — 4m?)]p + m(a® — 4m? + av/a® — 4m?2).

Solving K (a,p) = 0, we have

a2(p) = m?2(2m + mdyp — dydap?)?
P T = &y (dp + 1)

which implies p < p* := dﬁ Then when p < p* we have
2

a(p) = m(2m + mdip — dydap?)
V(m? = d3p?)(dip+1)

(2.22)

and
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’I’I’Lp(dldgp2 + 2mdydop + m(2d2 — mdl))(dldgp + 2dy — mdl)

/
a =
®) 2¢/(m2 — d3p?)3(dip + 1)3
d 2
When d—l > —, define
—md1 + del (md1 - dg) md1 — 2d2
p1i= , P2im .
dldg d1d2

Then 0 < p; < p2 < p*, a(0) = a(p2) = 2m, a/(p) > 0 when 0 < p < p1, a/(p) < 0 when p; < p < py and
a'(p1) = d/(p2) = 0. This implies that n[1ax | a(p) = a(p1). Define
p€[0,p2

* * d
a*=a(p1) :=a (d_;>’ (2.23)
where a*(r) is defined by, for r > 2/m,

a*( m2r(4 — dmr + 31/ 2mr(mr — 1))

\/ 2mr(mr — 1) 2mr—\/2m7"mr—1 \/ermr—l —|—1—m7")

Indeed the function a*(r) is the inverse function of H(B) defined in (2.19), and direct computation shows
that (a*)’(r) > 0 when r > 2/m and a*(2/m) = 2m. Note that the inequality (2.18) is equivalent to
2m < a < a*(dy/dz). This implies (W (a), By (a)) is linearly stable (and locally asymptotically stable) for
a > a*(dy/ds), and it is possibly unstable when 2m < a < a*(dy/ds). O

Remark 2.6. For fixed dy,m > 0 and a > 2m, (2.18) also implies that (W, (a), By (a)) is linearly stable (and
locally asymptotically stable) when dy > dAg(dl, a,m), and it is unstable when 0 < dy < dAg(dl7 a,m), where

dy

da(dy,a,m) = Go(By(a))’

(2.24)

Go(B) and By (a) are defined in (2.19) and (2.2).
2.3. Global steady state bifurcation

From the last subsection, (W, (a), B4+(a)) may be unstable if dy/dy > 2/m and 2m < a < a*. In
this subsection, by applying the well-known Crandall-Rabinowitz bifurcation theorem [3] and its global
bifurcation version [49], we obtain a global bifurcation diagram for the steady state solutions of model (1.2)
when dy/dy > 2/m and 2m < a < a*.

Define the sets

I ={(a,W,B) € R" x X : (a, W, B) satisfies (2.1), W > 0, B > 0, W # const, B # const},
ZO Z{(VV,B) c X: W+W+ > O,B+B+ >O}
Then we have the following result on the global bifurcation for the steady state solutions of model (1.2).

2
Theorem 2.7. Assume da > 0,0 < m < 2 and di > —ds. Let p; be an eigenvalue of (2.13) with the
m

corresponding eigenfunction ¢; such that

(i) pj is a simple eigenvalue;
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Let a(p) and a* be defined as in (2.22) and (2.23) respectively. Define a5 := a(u;). Then

1. a=as

5 1s a bifurcation point for system (2.1) where a steady state bifurcation occurs from the curve of
trivial steady states T'y = {(a, Wy (a), By (a)) : a > 2m};

2. There exists a connect component I'; of the closure of T' such that near (a, W, B) = (af, W (a; ) +(aj %),
I can be parameterized as T'; = {(a;(s), W;(s),B;(s)) : s € (0,¢)}, with a;(0) = a ,Wi(s ) =
W (a5)+s(dopj—m)pj+spr;(s), Bj(s) = By(af)+sB3 (a5 )pj+sp2,i(5),01,(0) = ¢2,5(0) = 0, ¢1,4(s)
and ¢2,;(s) are differentiable functions defined as 1,2, : [0,€) — Z1, where Z; = {(W,B) € X :
Jol(dap; —m)W + B3 (a5 ) Blpjdx = 0} is a subspace of X complement to Span{(dap; —m, B (af))e;};

3. FEither I'; is unbounded and its projection onto a-awis is (aJS,oo) or I'; is bounded and it contains
another point (ay, W4 (a3), By (ay)) with k # j or (2m,a/2,a/(2m)).

Proof. Setting W =W — Wi, B=B- B and neglecting the tildes, we can rewrite system (2.1) as

A AW +a—(W4+W)(B+By)2—(W+W,)=0, in Q

doAB + (W + W, )(B+ B;y)> —m(B + By) =0, in Q, (2.25)
ow 0B
W = % = U, on 89,

and the positive constant solution (W, B4 ) of model (2.1) is translated to (0,0) solution of (2.25). Define
a nonlinear mapping F : RT x Zy5 — Y by

(2.26)

F(a,W,B) := <d1AW+CL—(W+W+)(B+B+)2_(W+W+)>.

doAB+ (W + W, )(B + B1)> —m(B + By)

Then the nonlinear map F is infinitely differential in W, B, and F'(a,0,0) = 0 for all @ > 2m. At a bifurcation
point (a, W, B) = (ag,0,0),

(2.27)

diA¢ — (1+ B2 -2
Fuow,By(ao,0,0)[¢, 9] :( 1A¢ — (14 Bi(a0))o mw>.

do A + B3 (ag)¢ + my

Recall that py, is the k-th eigenvalue of (2.13) with the corresponding eigenfunction ¢. Then Fyy, gy(ao,0,0)[¢, 1] =
0 has a nontrivial solution if and only if

Dy (ag) = didapij, + [d2(1 + B3 (ag)) — dim]u, +m(B3 (ag) — 1) = 0, (2.28)

for some k € N. Follow the proof of Theorem 2.5, define a(p) and a* as in (2.22) and (2.23) respectively,
then the function a(p) : [0, p2] — [2m,a*] is monotone increasing on the interval [0, p1], and is monotone
decreasing on the interval [py, pa]. On the other hand, we can also solve p from (2.21) to obtain

[dim — dy(1 + B2 ()] £ \/dlm dy(1+ B2 (a))]2 — 4mdyda (B2 (a) — 1)

p+(a) = Sdids . (2.29)

Then py(a) are well defined for 2m < a < a*, and the function p_(a) (p4(a)) is monotone increasing
(decreasing) on the interval [2m,a*], and p_(a*) = py(a*) = p1.

Since p; satisfies (i) and (ii), from the proof of Theorem 2.5, Fy, g)(a,0,0)[¢, 9] = 0 has a nontrivial solu-
tion when a = af = a(p;). Furthermore, direct calculations show that the null space N (Fiyy, B)(a 0, 0))

Span{(¢o, o)}, where (¢o,%0) = (dap; — m, BQ( 2))¢;j. This implies that dlnL/\/(F(WB)(a 0,0)) =
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Next we show that codlmR(F(WB)(a 0,0)) = 1 where R(F(WB)(a 0,0)) is the range space. Suppose
there exists a (¢, 1) € Zy such that

diA¢ — (14 B2 (a$))¢p — 2ma o
Faw,py(af,0,0)[¢,9] := ( L = , (2.30)
d2A'¢+B+(aj )¢ +my T
where y; := (0,7) € Y. Note that the conjugate operator of Fiyy, p) (af, 0,0)
diA¢ — (14 B2 (a?))¢ + B2 (a?
Fiwp)(a$.,0,0)p,¢] = | ¢ Haf)o+ Brla)v ) (0 (2.31)
do At — 2me + map 0
has a nontrivial solution y» := (m — dapu;,2m)e;. Then according to the Fredholm alternative, problem

(2.30) has a solution (¢, ) if and only if (y1,%2) = 0, where (-, -) is the complex-valued L? inner product on
the Hilbert space L?(€2) x L*(R), which is defined as (®1, ®2) = [, (102 + P1¢2)d, with &; = (¢;,¢;) €
L?(Q) x L?(Q2), i = 1,2. Then we have R(F(WB)(CL 0,0)) = {(o,7) € Y : l(0,7) = 0}, where [ : Y — R
is a linear function in Y* defined by I(o,7) = [,[(m — dap;j)o + 2m7]p;dz. Therefore, Fy, B)(a 0,0)is a
Fredholm operator with index 0, and dimN (F, B)(a 0,0)) = codimR(Fy, B)(a 0,0)) =

Finally we prove the transversality condition: F, w,p) (af,(), 0)[p, 1] ¢ R(Fw, B)(a 0 0)), where

(¢,) € N(Faw,p)(a3,0,0)) and (¢,) # (0,0). Note that

2By (a7)B. (a7)9

Fq aj,0,0)[p,y] := , 2.32

( WB)( Vo, Y] <QB+(J»)BSF(]»)¢> (2.32)
a? + ,/(a$)? — 4m?

and B, (a5) = - d > 0. Then
2m (af)2—4m2
(Fa,w,5)(a3,0,0)[¢o,%0]) = 2B (af) B! (a) [ (dapj — m)p;oda
(2.33)

= 2B, (a; B, (a; N [ (dapj — m)?*@idz >0,

:a\ SR

as jij < m/dy. Therefore, Fi,, WB)(a 0,0)[p, ] ¢ R(F(WB)(a 0,0)).

Now from the local bifurcation theorem in [3], near the bifurcation point (a;g ,0,0) the set of posi-
tive solutions of (2.25) can be parameterized as I'; = {(a;(s), W;(s), B;(s)) : s € (0,¢)}, with a;(0) =
af,Wj(s) = s(dapy — m)e; + sp1;(s), Bj(s) = sB3(a5)e; + sp2,5(s), 1,5(0) = 92;(0) = 0, ¢1,5(s)
and o ;(s) are differentiable functions defined by 1,2, : [0,6) — Z1, where Z1 = {(W,B) € Z :
Jol(dapy —m)W + Bi(af)B]gojdz = 0} is a subspace of Zy complement to Span{(¢o,1o)}.

Moreover from the global bifurcation theorem in [49, Theorem 4.3], there exists a connect component T';
of T’ containing [, such that (af ,0,0) € T'; and two possibilities may occur:

(i) T'; is not compact in RT x Z;
(ii) there exists another bifurcation point (aj,0,0) € I'; with k # j.

If case (i) occurs, T'; is either unbounded in R x Zy, or T'; contains a boundary point of Rt x Z,. We prove
the latter cannot occur. From Remark 2.4, I'; does not contain a point such that a = 0. Suppose I'; contains
a point (a, W, B) € Rt x9Zy. Then there exists 7o €  such that W (x¢)+ W, (a) = 0 or B(xg)+ By (a) = 0.
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If W(zg) 4+ Wi(a) =0 and ¢ € €, then z¢ is a local minimum of W, but diAW (zy) = —a < 0 which
is a contradiction. If W(xg) + Wi(a) = 0 and xg € 09, again we reach a contradiction by using the
Hopf boundary lemma. Thus we must have B(xo) + By (a) = 0. By applying maximum principle and Hopf
boundary lemma again, we conclude that B(x) 4+ B (a) = 0 for z € Q. Hence (a, W, B) is the bare-soil
state. But at the constant steady state (a, W, B) = (a,—W,.(a), —B4(a)), the linearized operator is

Fow,my(a,~ W (a), — By (a)) = (dlAO L Ao_m> . (2.34)
Then it is easy to see that all eigenvalues of F(y,g)(a, =Wy (a),—B;(a)) are negative, so it cannot be a
bifurcation point such that (a, —W4.(a), —B4(a)) € I';. Therefore I'; does not contain a boundary point of
R* x Zy. Hence I'; is unbounded in Rt x Zj. From Proposition 2.2 and standard elliptic estimates, T'; is
bounded in Z; for any bounded a-interval. From Remark 2.4, the projection of I'; onto a-axis is contained
in (a1,00). Thus the projection of I'; onto a-axis must contain (af, 00).
If (ii) occurs, we note that the branch of trivial solutions (a, 0,0) is only defined for a > 2m not all a > 0.
Hence in case (ii), I'; may contain another bifurcation point (ay, W, (ay), By (ay)) with k # j, but it is also
possible it contains the end point (2m,a/2,a/(2m)) at a = 2m. This completes the proof. O

We make some further remarks on the set of nonconstant solutions of (2.1).

Remark 2.8.

1. Since the bifurcation point af = a(u;) satisfies 0 < p; < m/dy, the number of bifurcation points
is finite so the number of connected components I'; emanating from the branch of constant solutions
Iy = {(a, W4 (a), By(a) : a > 2m} is also finite. It is possible that I'; = Ty for some j # k as they can
connect to each other through secondary bifurcations not occurring on I‘ar .

2. Theorem 2.7 shows that the branch I'; of nonconstant steady state solutions of (1.2) could be bounded
and it may connect back to the branch of constant solutions. This kind of bounded bifurcating branches
is called “loops” or “mushroom” [22,28,33].

3. The branch I'; of nonconstant steady state solutions of (1.2) may connect to the other branch of constant
solutions I'y = {(a, W_(a), B_(a) : @ > 2m} and not I'{ directly. In that case, I'; connects to I'y, then
I'; connects to I'j at the saddle-node bifurcation point (a, W, B) = (2m,a/2,a/(2m)), which is the
second alternative in Theorem 2.7 (iii).

4. The bifurcation direction of I'; at a = af (a}(0) and af(0)) can be calculated following the calculation
in [13,47]. We include that in Appendix A, and a numerical example is given below.

We demonstrate our theoretical results to the Klausmeier-Gray-Scott model (1.2) with m = 0.45,d; =
80,ds = 1. Then we can calculate that p; = 0.1775, po = 0.4250, p* = 0.45, a* = 1.3313 and the graphs of
D(a,p) = 0 and bifurcation points are shown in Fig. 2.

For the one-dimensional domain Q = (0, 107), the eigenvalues of (2.13) are A\, = k?/100 for k € N, and

5

the steady state bifurcation points a = a7 marked in Fig. 2 left panel are

a7 =0.9334 < af = 1.0661 < a5 = 1.0836 < aj = 1.2446
< af =1.2860 < af = 1.3283.

The steady state bifurcations for Q; = (0,107) are always pitchfork bifurcation, i.e. a}(0) = 0; and the

bifurcation is supercritical one if a”(0) > 0 and subcritical one if a”(0) < 0. By using Maple and the
algorithm in Appendix A, we find that a/f(0) = —2527.1042 < 0 at a = aj . This implies that the bifurcation
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Fig. 2. Graph of D(a, p) = 0. Parameters: m = 0.45,d; = 80,d> = 1. (Left) 2 = (0, 107); (Right) © = (0, 107) x (0, 107).

at the most unstable mode, i.e. the pitchfork bifurcation at (af, W, (af), By (af)), is subcritical and the
bifurcating non-constant steady state solutions are linearly stable. For the two-dimensional domain Qy =
(0,107) x (0,107), the eigenvalues of (2.13) are A, x, = (k% + k3)/100 for ki, ke € N, then only valid
bifurcation points corresponding to simple eigenvalues are (marked by stars in Fig. 2 right panel):

af; =0.9858 < aj , = 1.1660 < a5 , = 1.2208 < aj 3 = 1.3312.

For s, there are many other non-simple eigenvalues where bifurcations can also happen, but agg 3 indeed is
the largest one among all bifurcation points. In Fig. 3, numerical bifurcation diagrams of (1.2) from aj for
Q1 and af 4 for Q are shown.

3. Existence of patterns with small rain fall
In this section, we show the existence of non-constant solutions of (2.1) for large d; and small rain fall a.
3.1. The shadow system

To show the existence of non-constant solutions of (2.1) for large dy, we introduce the shadow system of
(1.2). The shadow system of (1.2) is obtained by formally letting d; — oo (see [12,15,31]). From the first
equation of (1.2) and the Neumann boundary condition we obtain

Q|at/Wd |Q/a—WB2 W)dx (3.1)

If dy — 400, then W(z,t) — £(t) in the first equation of (1.2) because of the boundary condition, so that
(3.1) is written as

=a— %/Bgdx— (3.2)

Q

Hence the shadow system of model (1.2) is in form
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By =dyAB+¢B?> —mB, in Q,t>0,

_ _i/ 2 —
& =a |Q\Qde &, t >0, (3.3)
aiB:(), on 09, t>0.

ov

It is easy to see that if u = ug, () is a solution of the scalar equation

doAu —mu+u® =0, in Q, (5.0
0 3.4
au _ 0, on 0N,

ov

then the shadow system (3.3) has two positive steady state solutions (BF (z),£F) for any a > 2||u||2/|Q|"/2,
where |Q] is the Lebesgue measure of €2,

a® /a2 — & [, u2(z)dx ulz
oY S Bilo) =2 (35)

So we have the following results regarding the set S of positive steady state solutions of the shadow
system (3.3) with parameter a.

Proposition 3.1.

(i) For any positive solution u(x) of (3.4), there is a subset Sy of S (the set of positive steady state solutions

of (3.3)) in form of
Su={(a, BF, &) a > 2ljull2/|Q"?}y U {(a, By &) s a > 2l[ull2/|Q]"/?}.
(ii) For any positive solution u(x) of (3.4), ||ulla < m|Q|Y2, and the equality holds only when u(x) = m for
x € Q. In particular, the projection of S, onto a-awis contains [2m,c0), and the projection is precisely

[2m, 00) only for the branch of positive constant steady states of (3.3).

Proof. Part (i) is clear from the definition in (3.5). Part (ii) follows from integrating (3.4) and Cauchy-
Schwarz inequality:

Apparently the equality holds only when u is a constant. 0O

We recall some existence and multiplicity results for the non-constant solutions of the nonlinear
Schrodinger equation (3.4).

Proposition 3.2. Suppose da, m are positive constants, @ C R™ (1 <n < 5) is a bounded domain with smooth
boundary 09, and p; (j > 1) are the positive eigenvalues of (2.13). Then

(i) There exist d3* > d5 > 0 such that when 0 < dy < d5, (3.4) has a non-constant positive least energy
solution u(x,ds) satisfying
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% / wlde < J(u) < Codi'?, (3.6)
Q

where Cy > 0 depends only on 2 and m, and the energy function is defined by

d 1
70 = [ (BT + G0t = 3ot o, for v e WHH0), (3.7)
Q

where vy := max{v,0}; On the other hand (3.4) has no positive non-constant solution for ds > d5*.

(ii) Let d} =m/p; for j > 1. Then each (da,u) = (d},m) is a bifurcation point where non-constant positive
solutions of (3.4) bifurcate from the constant solution uw = m. If in addition, p; is an eigenvalue with
odd algebraic multiplicity, then there is a continuum %; of positive non-constant solutions of (3.4) such
that (dg, m) € X, and either the projection of ¥; onto day-axis contains (0, dg), or X; contains another
bifurcation point (d5, m) with k # j.

(iii) If n = 1 and Q = (0,ln), then d% = ml?/j2, each %; is a curve with only one degenerate point at
(do,u) = (d}, m) and the projection of ¥; onto ds-awzis is (0,d}]. In particular, (3.4) has ezactly 2j
non-constant positive solutions if déJFl <ds < dg and all of them are unstable, and each solution (da,u)
on X; satisfies that u(x) —m changes sign exactly j times. Moreover the bifurcation from (dy, m) is a
supercritical pitchfork one, and each solution on ¥ is non-degenerate with Morse index is two. Here
the Morse index is the number of the strictly positive eigenvalues.

Proof. (i) The existence of a non-constant positive solution u(z, dy) for small ds satisfying the energy bound
follows from Theorem 2 in [20]. Here the exponent p = 2 < (n+2)/(n — 2) for 3 < n < 5 and there is no

restriction on the exponent when n = 1,2. By integrating (3.4), we have /(fdg|Vu|2 —mu? +u¥)dr =0

Q
which implies that

1 n
/u2dx < J(u) = G /(dQ|vu|2 + mu?)dz < Cod/?. (3.8)
Q Q

Moreover this solution can be chosen as the least energy positive solution which has the smallest J(u)
among all positive solutions of (3.4) (see [29]). The nonexistence of positive non-constant solution for large
dy follows from part (ii) of Theorem 3 in [21].

(ii) The fact that dy = dJ is a bifurcation point follows from Theorem 11.4 of [37], as (3.4) has a
variational formulation with energy function J defined in (3.7). The global bifurcation conclusion follows
from Theorem 1.3 in [306], as (3.4) has no positive non-constant solution for dy > d} from part (i) and all
positive non-constant solutions of (3.4) are bounded by a constant C' > which only depends on m and Q
(Theorem 3 in [21]).

(iii) The properties of 3; follow from Theorems 2.5 and 2.7 of [48], and the fact that each solution (d2, u)
on X; satisfies that u(z) —m changes sign exactly j times is proved in [35]. The results for solutions on ¥,
are from Theorems C of [27]. O

Note that [25-27] also have results on the structure of the solution set of (3.4) for & = B™, the unit
ball in R™, and these results can also be applied to the shadow system (3.3) on a ball similar to the way
below. Now combining Propositions 3.1 and 3.2, we obtain the following existence and multiplicity results
of positive steady state solutions of shadow system (3.3). The proof is obvious from the correspondence
between the solution u of (3.4) and the ones of (3.3) defined in (3.5).
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Theorem 3.3. Suppose da, m,a are positive constants, @ C R™ (1 <n <5) is a bounded domain with smooth
boundary, and pj (7 > 1) are the positive eigenvalues of (2.13).

24Cods"?
m|<|
state solutions (B (x),&F) defined as in (3.5), where u(z) is the positive least energy solution of (3.4)
in Proposition 3.2 part (i); On the other hand, when de > d3* (defined in Proposition 3.2 part (i)),
for any a > 0, the system (3.3) only has three constant nonnegative steady state solutions (0,a) and
(BE, ) with u(x) = m.
(ii) Let X; be the continuum of positive steady state solutions of (3.4) defined in part (ii) of Proposition 3.2.

(i) When 0 <dy <db anda>a= , the shadow system (3.3) has two distinct positive steady

Then the set of positive steady state solutions of (3.3) contains a connected component in the form of
5 = {(da,a, By (), £7) : (da, u) € 85,0 > 2[[ullo/|Q['/},

where (BX(z),¢F) is defined as in (3.5).

(i) Ifn =1 and Q = (0,In), for &t < dy < d&, where d, = mi?/j2 and a > 2m, system (3.3) has exactly
47 + 2 positive solutions in which 45 of them are non-constant solutions and the other two are constant
ones. For fixed dy, the 45 non-constant solutions also exist for some a < 2m.

Proof. (i) When dy < dj, from (3.6), the positive least energy solution u(x) of (3.4) satisfies ||ullz2 <

6Cody? [24Cody? _ 2
ﬁ. Then for a > a = mTQT > |Q|ﬁ/|;’ (3.3) has two distinct positive solutions (BF(z),&F)

defined as in (3.5) from Proposition 3.1. Note that a > a is equivalent to do < Kia*™ where K, =
m|Q]/(24Cy).
(ii) and (iii) follow from Proposition 3.2 part (ii) and (iii). In part (iii), the existence parameter interval

for a is (2||u||2/]92|*/?, 00) from Proposition 3.1 part (i). Each of these 45 intervals contains at least [2m, oo)
from part (ii) of Proposition 3.1 part (ii). O

The linear stability of the non-constant solution (BF(x),£F) of (3.3) can be determined when dy is
small by the methods in [2,57,59]. For that purpose, we set dy = €2. Linearizing (3.3) at a steady state
(Bé(x)age) - (ue(x)/fe,fe) of (33)7 we obtain

Wy = MY — map + 2uct) + £ 2un, in Q >0,
2 1
=—— [ updx — ufdx -, t >0,
4 \m/ v |Q|53/ " (3.9)
aw Q Q
— =0, on 09, t>0.
ov

Define the linearized operator

A —m + 2u, £72u?
2 1
Loge = ——/u6 -dr — /qum—l )
1€ gz J o °
Q Q

0
in the space X; := W24(Q) x RT where W24(Q) = {u c W1(Q) : 8_u =0 on dQ ;. The linear stability
14
of (Be(z), &) with respect to (3.3) is determined by the eigenvalue problem L (¥, n)T = A(1,n)T, that is
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AP — myp + 2uch + £ 2uln = My, in Q,
2 1
—— | uepdx — uldrn —n = n,
] [ e €z [ wtden—n = (3.10)
8'(/) Q Q
% = O7 on aQ,

or equivalently, the following nonlocal eigenvalue problem:

2Aq) — map + 2uct) 20 Jouedr b, i Q

‘ e T T Qe ()
a—w =0, on 0N.
ov

We consider the linear stability of the positive steady state solution (B.(x),&.) of (3.3) corresponding to
a solution u, of (3.4) with small e. For that purpose, we recall the following result regarding a spike layer
solution u, of (3.4) (see Theorem A in [57]).

Lemma 3.4. Suppose @ C R™ (1 < n < 5) is a bounded domain with smooth boundary 0. Let Py € 0f)
be a nondegenerate critical point of the mean curvature function H(P) for P € 090. Then for € sufficiently
small, problem (3.4) with dy = € has a solution u. such that u. has only one local mazimum point P,
and P, € 99Q. Moreover, P. — Py as ¢ — 0 and uc(y) := uc(ey + P.) = w(y) as € = 0 uniformly for
yeQep ={y:ey+ P € Q}, where w is the unique solution of the following problem:

Avw—mw+uw? =0, w>0 in R7™,
(3.11)
w(0) = max w(y), w(y) =0 as |yl — co.

yeR™

The solution u, of (3.4) in Lemma 3.4 is a spike-layer solution which concentrates near a non-degenerate
critical point of the mean curvature function of the boundary. In particular, the least energy solution defined
in Proposition 3.2 is a spike layer solution which concentrates at the maximum point of the mean curvature
function H(P) [30]. The stability of a spike layer solution with respect to (3.4) is determined by the linearized
operator L, : W29(Q) — L9(2) defined as

Lo=A—m+ 2u.. (3.12)
Then we have the following result on the spectrum set o (L) of L, (see [2, Theorem 4.6] or [57, Theorem 3.1]).
Lemma 3.5. Let u. be the positive solution of (3.4) in Lemma 3./.
1. o(L¢) consists of a sequence of real-valued eigenvalues S\j’e satisfying
5\1,6 >5\2,5 25\375 R 25\]’,5 > s = —00.
(i) Ase — 0, 5\1,6 — A1 (Lo) > 0, where A\ (Lo) is the principal eigenvalue of Lo = A —m + 2w on
W2P(R™) and w is the unique positive solution of (3.11), and 5\;‘,6 <-m forj>n+1.
(i) As e — 0, N\jc = e2yn; + o(€?), 2 < j < n, where y is a positive constant and 1; is the (j — 1)-th

eigenvalue of the Hessian of the mean curvature function of the boundary manifold D*H (P).

Next we have the following result which connects the stability of the positive solution of the shadow
system (3.10) to the one of (3.4) from Theorem 4.1 in [57].
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Lemma 3.6. Suppose that Q C R" (2 <n < 4) is a bounded domain with smooth boundary 0. Let \; . be
the eigenvalues of Loo <, and let \; . be the eigenvalues of L. Then \j = (14+0(1)Aji1.c forj=1,2,--- ,n,
and Re(Xj ) < —co <0 for j > n where ¢y > 0.

Now from Lemma 3.5 and Lemma 3.6, we can conclude the following results about the stability of the
non-constant solutions of (3.3) corresponding to spike layer solution of (3.4).

Theorem 3.7. Suppose that 2 C R™ (2 < n < 4)is a bounded domain with smooth boundary 0. Let Py € 0S)
be a nondegenerate critical point of the mean curvature function H(P), and letn;, 2 < j <n be the (j—1)-th
eigenvalue of the Hessian of the mean curvature function of the boundary manifold D>*H (P). Let u.(z) be a
positive solution of (3.4) concentrating near Py as in Lemma 3./, and let (Bc(z),&) = (ue(x) /&, &) be the
corresponding non-constant steady state solution of (3.3). Then for sufficiently small € > 0, or equivalently
sufficiently small do > 0,

(i) Ifn; <0 for all2 < j <, then (Be(x),&) of (3.3) is linearly stable.
(ii) If n; > 0 for some 2 < j <, then (B(x),&) of (3.3) is unstable.

Part (i) Theorem 3.7 implies that when u.(x) is the least energy solution of (3.4), the solution concentrates
near the maximum point of the mean curvature function on the boundary, and (B¢(x), &) is a linearly stable
steady state of (3.3) as n; < 0 for all 2 < j < n in that case.

3.2. Solutions of the original system for large dy

In this subsection, we return to the original reaction-diffusion system (1.2) and show the existence of
non-constant steady states when d; is sufficiently large by using the results on the shadow system (3.3) and
implicit function theorem (see for example [24,34]).

Theorem 3.8. Suppose that 2 C R™ (2 < n < 4)is a bounded domain with smooth boundary 0. Let Py € 0S)
be a nondegenerate critical point of the mean curvature function H(P). Then there exists a positive dy < ds
(defined in Proposition 3.2 part (i)), such that for 0 < dy < dy there exists a constant s(ds) > 0 such that
(1.2) has a nonconstant positive steady state solution such that the plant biomass concentrates near Py when
dy > 1/s(d2) and 0 < dy < ds. Moreover if Py is the mazimum point of H(P), then the corresponding
nonconstant positive steady state solution is linearly stable with respect to (1.2).

Proof. Define

Y = {u e W21(Q) : /u(a:)da: = O},

Q
and the projection operator P : W24(Q) — Y; by

Pu(z) = u(x) — \QL| /u(s)ds. (3.13)
Q

We consider the following equation:
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A¢+sPla—(§+¢)B* = (E+¢)] =0, in Q,
doAB + (€ + ¢>)32 —mB=0, in Q,
_{+o9 3.14
T —(E+9) =0, (3.14)
¢ aB" -
A A 0, on 0.

Define an operator X(ds, s, ¢, B,&) by

A¢+sPla— (€ + ¢)B* — (£ + ¢)]
X(dy, s,6,B,€) == deAB + (£ + ¢)B? — mB ) (3.15)
a— %fQBzdx—(f-i—(b)

Then X(da,s, ¢, B,§) is an analytic mapping from the open set {(ds,s,$,B,¢) : & > 0,£ + ¢ > 0} of
RT x R x Yy x W29(Q) x RT into LI(Q) x LI(Q) x R.

Let (B(z,dy),&(ds)) be a solution to the shadow system (3.3) when dy < dy so that Theorem 3.7 holds.
Fixing ds < ds, by the definition of X, we have X(d2,0,0, B(x,dz2),£(d2)) = 0 and the Fréchet derivative of
X(da, s, ¢, B,§) at (d2,0,0, B(z,ds),&(ds)) is given by

X6,8,6(d2,0,0,B(z,d2),£(d2)) = (2 Ei) : (3.16)
where 0 = (0,0),
o <d2A2—:(l§2)E(d2)B(x,dg) —m) B2(x,dy) ) )
—Tar Jo Bz, d2) - da fllﬁ Jo B2 (2, dy)dx — 1
and
. < o fQB (xwd;z) da — 1) (3.18)

As A is an isomorphism from Y; to L9(£2) under homogeneous Neumann boundary condition, and from
Theorem 3.8, L, is nondegenerate, then X4 g ¢)(d2,0,0, B(z,dz),{(d2)) is nondegenerate. Consequently,
by the implicit function theorem there exists a one-parameter of solutions (¢s(x), Bs(z),&s) of (3.14) for
s € (0, s(dz)) for some s(d2) > 0. Notice that if (¢(z), Bs(x), &) satisfies (3.14) with s > 0, then (Bs(x), &5+
¢s(x)) is a solution of (1.2) with d; = 1/s. Therefore there exists a family of non-constant steady states
(& + ¢s(x), Bs(x)) of (1.2) for dy = 1/s with s € (0,s(d2)). The stability of the solution follows from
Theorem 1.4 in [57]. O

From Theorem 3.3 and Theorem 3.8, we have the following results regarding the pattern formation in
the reaction-diffusion Klausmeier-Gray-Scott system (1.2).

[24Cy0m/2
Corollary 3.9. For any positive § < d5, when 0 < dz < and a > a = #, there exists d‘ls > 0 such
m

that (1.2) has a non-constant positive steady state solution provided dy > di. In particular such a solution
could exist for arbitrarily small rainfall value a = O(6™/*) < 2m.
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Fig. 3. Bifurcation diagrams of (2.1) when m = 0.45, d; = 80, d2 = 1. (Left) ©; = (0, 107); (Right) Q2 = (0,107) x (0, 107). The
horizontal axis is a (rainfall). Green curve: constant plant density; blue curve: maximum value of patterned steady state plant
biomass; and red curve: mean value of patterned steady state plant biomass. (For interpretation of the colors in the figure(s), the
reader is referred to the web version of this article.)
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Fig. 4. Patterned plant distribution in (1.2) with m = 0.45, d1 = 80, d2 = 1 and Q = (0, 10m).

Fig. 3 shows the bifurcation diagram of steady state solutions of (1.2) for both ©; = (0,107) and
Qe = (0,107) x (0,107). Indeed the diagram shows that the transcritical bifurcation branch of the stable
non-constant steady state solutions emerging from the constant ones continues to the left to a threshold
value a, < 2m = 0.9, so that for a € (a.,2m), only non-constant positive steady state solutions exist not
the constant ones. This verifies the assertion in Corollary 3.9 as in Fig. 3, the water diffusion coefficient d;
is large and the plant diffusion coefficient ds is small. When the rainfall a is near the extinction threshold
a, the total biomass approaches to 0 but the maximum value of the patterned solution approaches to a
very high level, which indicates the concentration of plant biomass.

Fig. 4 shows the profile of the spatial patterns for varying rainfall ¢ in a one-dimensional domain ; =
(0,107). In Fig. 4 (a) and (b), the rainfall « = 0.66 and a = 0.7 are smaller than smallest rainfall a = 0.9
supporting a uniform steady state, which implies that patterned vegetation states could exist with much
smaller amount of rainfall. Fig. 4 (a) slows a spike layer solution for the plant concentrating on one of the
end points which corresponds to the least energy solution discussed above. When the rainfall increases, the
number of plant concentration areas (patches) also increases (see Fig. 4 (b), (c) and (d)).

Fig. 5 shows the profile of the spatial patterns for varying rainfall a in a two-dimensional domain s =
(0,107) x (0,107). Again when the rainfall a is near the threshold (a = 0.502 in Fig. 5 (a)), slow plant
diffusion and fast water diffusion can support a vegetation state with vegetation concentrating on a small
area, and the solution is a quarter spike concentrating at a corner of the square. When the rainfall increases,
the spatial pattern becomes to spots, labyrinth and gaps (see Fig. 5 (b), (¢) and (d)).
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(a) a=0.502 . (c)a=12

Fig. 5. Patterned plant distribution in (1.2) with m = 0.45, d; = 80, d2 = 1 and Q2 = (0, 107) x (0, 107). Here, blue color area is

bare soil (B = 0) and red color area is high vegetation concentration (B > 0).
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Appendix A. Direction of the pitchfork bifurcation

Setting u =W — g-,v = B — By, system (1.2) can be written as

ou m 9 .
E—d1AU+a—<U+B—+>(U+B+) _(U+B_+) in Q,t>0,
ov m 9 .
E—dgAv—l—(u—i— B—+>(U+B+) —m(v+ By), in Q,t>0,
ou Ov

_— = — = Q

5~ o 0, on 09, t>0,
ul(w,0) = uo(x) > 0,0(x,0) = vo(z) >0, in Q.

Then the positive constant steady state (W, B) = (%, B ) of model (1.2) turns to the one (u,v) =

of model (A.1). Here,

a++vVa? —4m?

B+ = B+ (CL) = om

The corresponding steady state system of (A.1) is

~didu=a-(ut o)+ B2 (ut5-), i Q

B, B,
—doAv = (u+ —)(U+B+)2 —m(v+ By), in
B,
Uy (z,t) = v (2,t) = 0, on 0.

According to [13,47], we have the following lemma.

(0,0)

(A.2)

Lemma A.1. Suppose that the conditions of Theorem 2.7 are satisfied at a = ag := af. Then the steady state

bifurcation of model (2.1) is always pitchfork bifurcation, i.e. a’(0) = 0; the bifurcation are supercritical

bifurcations if a”’ (0) > 0 and subcritical bifurcations if o’ (0) < 0.
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Proof. For system (1.2), define a mapping G(a,u,v) by

[ diuge + f(a,u,v)
G(a’ " U) o < d2vVgy + g(a7 U, U) ) ’ (A4)

with

fla,u,v) =a— <u+Bﬂ+>(v+B+)2— (u+ Bﬁ+)’

gla,u,v) = (u + BEJF)(U + By)? —m(v+ By).

Then G : Rt x Zy — Y is Fréchet differentiable, and at a constant steady state (W, B.), the linearized
operator at (ag,0,0) is

,C(ao) — <—1 — Bi(ao) +d1A —2m ) .

Bi(ao) m + da A

Assume

0= () = (1, 2Ly

Hydz = m (A.5)
* w axy . (M — lu‘jd2 T
¢ = (0,57 = (F5E2 )
Then for j € N, we have £L;(ao)(a, 8)Tp;(z) = 0, and L (ao)(a, B*) pi(x) = 0, where
—1— B2 (ag) — dy; —2m
Li(ag) :== + J , A6
]( 0) ( B—Q‘r(ao) m — d2/lj ( )

and L3 (ag) is the adjoint operator of £;(ap). According to Theorem 2.7, near the bifurcation point (af,0,0)
the set of positive solutions of (A.3) can be parameterized as

I = {(a;(s),u(s),v(s)) : s € (0,€)},

with a;(0) = af, u(s) = sap; + s¢1,;(s),v(s) = sBp; + sp2,;(s), ©1,;(0) = 2,;(0) = 0, ¢1,;(s) and @2 ;(s)
are differentiable functions defined by 1,2 ; : [0,€) = Z1, where Z1 = {(u,v) € Zo : [ [(d2pr; — m)u +
Bi(af)v]gpjdx = 0} is a subspace of Zy complement to span{(¢o, o)}

From [47],

<<7 G(u,v),(u,v) [Qa (1]>
2<<7 Ga(u,v) [Qa q]

a'(0) = —
where ¢ € Y* satisfying N'({) = R(L(ap)) and the function ( is given by

(€, (pr,p2)) = / (d; " py + dy B pa)o; () da,
Q

for (p1,p2) € Y. Then
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<C7 G(u,v),(u,v)[Qv Q]> = /G(u,v),(u,v)[Q7Q] - pdz, (A7)
Q

where p = (dy *a*,dy ' 8*)p; (). Thus,

WG uv)(uv)qq] pdz
2 [ Gy |- pdx

/G(u,v),(u,v) [Q7 Q] ’ pd$ = /l@(p?(.’l))dl‘
Q Q

/Ga(u,v)[Q] pdl‘:/’r](p?(‘r)dxa

Q Q

a'(0) =

Direct computations show that

where

kj = di '@ (fuu@® + 2funaf + fouB8) + dy ' B (guu0® + 29000 + guu ),

' . (A.8)
rj = dl a*(faua + fa'uﬁ) + d2 B*(gaua + gavﬁ)-

Here, all the partial derivatives of f and g are calculated at (ag,0,0). Hence, a’(0) = 0 and the bifurcation
is a pitchfork bifurcation.

Thus, the sign of a”(0) is needed to determine the direction of the pitchfork bifurcation. According to
[47], a”(0) is given by

<Ca G(u,v),(u,v),(u,v) [q’ q, q]> + 3<C7 G(u,v),(u,v) [Q7 9]>

a"(0) = — : (A.9)
2<C7 Ga(u,v) [Q]>
where 6 is the solution of
G(u,v),(u,v) [q, q] + G(u’v) [9] = 0. (A.lO)
Similarly to (A.7), we have
a//(o) _ fQ G(u,v),(u,v),(u,v) [Qa q, q] -pdxr + 3 fQ G(u,v),(u,v) [Q» 0] ) pdl‘. (A.ll)

3 fQ Ga(u,v) [q] ! pdl’

Direct calculation shows that [13]

/G(u'u) (u,v), (uv)[Q7q Q] pdm_/sj(lpj( )d

/G(u,v),(u’v)[q,o] pdx:/ dl“"/tz

Q Q Q

where

S5 :dl_la* (fuuuag + S.fuqu‘Q/B + 3fu1waﬂ2 + fvvvﬁg)
+ dg_lﬁ* (guuuag + 3guuv052/8 + 3gu'uv0162 + gvvvﬁg)v
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ty =di ' o [(fuutt + fuoB)O) + (fuvat + fonB)OF] (A.12)
+dy B [(Guu + 9uuB)O5 + (Guv + 900 8)O3),

t2 =di '@ [(fuua + funB)O) + (fuva + fouB)O7]
+d3 " B [(guu + GuuB)O} + (guver + 9008)07],

with

O = 05 — 055,05 = 03 — 03;, 0] = 20;,07 = 263

2_77

o 01

satisfies the equation (A.10) and (6} ,62%) = (0,0) for all odd m, and

m’’m

Here,

96 _ L gv(fuuQQ + quvaﬂ + fvvﬂQ) - fv(guua2 + 2guvaﬂ + gvvﬂ2)
98 2D fu(guua2 + 2guvaﬂ + gvaQ) - gu(fuua2 + 2fuva5 + fvvﬂQ) 7

<G%J ) _ 1 ( (gv 4d2] )(fuua + quva/B + fm)ﬂ ) f;(gqué2 + 29m)aﬂ + 91)1)52) )
03; 2Dgj \ (f, — 4d“ )(Guuc® + 261w + GouB?) — gu(fuu@® + 2fuwaB + fouB?)

where Dy, Dy; are the determinants of Lo(ap) and Lg;(ag). Hence,

55 + 4t] + 3t3

"(0) = - A3
Z"(0) - (A.13)
a a27 m a an—4am
Note that By (ag) = &tveo—am” %“,Bﬁr(ao) = Qg\/—vao_ﬁ‘, and
fu = _Bi(GO) - 17 fv = _2m7 Gu = B<2|»<a0)a Go = M,
fau = —2B(ao) B!, (ap), fav =0, Jau = 2B (ao) B (ao), Gav =0,
2m
uu:07 uv:_2B agp), vv = T )
f f ) o= s
2m
Guu = 0, Guv = 2B+(a0), Gov = Ma
fuuu = Oa fuuv = 07 fuvv = _2a fvv'u = 07
Guuu = 0, Guuv = 07 Guvv = 27 Govv = 0.
Substituting r;, s;, t; and t? into (A.13), we have
" _ 2 1 1 pm 2 2
sgn{a”(0)} = —sgn{ 38~ + BB (ao) (46, + 30;) + ( By (ao) + B+ (ag) (465 + 305) ¢, (A.14)
+

where
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2m 2m m—i—M
40} L— (4B _ A g2 2
e} + 36! ( +(ao)aﬂ+B+(a0)ﬂ)(D0+ e )
2m 2 1+4d§j2
4@2+362=(4B ag)af 4+ — 2)(____1 ) -
’ ! +(ao)al B+(ao),6 Dq Dy,
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