
J. Math. Anal. Appl. 497 (2021) 124860
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Bifurcation and pattern formation in diffusive 

Klausmeier-Gray-Scott model of water-plant interaction ✩

Xiaoli Wang a, Junping Shi b,∗, Guohong Zhang a

a School of Mathematics and Statistics, Southwest University, Chongqing, 400715, PR China
b Department of Mathematics, William & Mary, Williamsburg, VA, 23187-8795, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 August 2020
Available online 16 December 2020
Submitted by Y. Yamada

Keywords:
Reaction-diffusion model
Water-plant interaction
Spatial pattern formation
Steady state bifurcation
Shadow system

A reaction-diffusion model describing water and plant interaction proposed by 
Klausmeier is studied. The existence of non-constant steady state solutions is shown 
through bifurcation methods, and the existence of large amplitude spatial patterned 
solutions is proved using associated shadow system. It is rigorously shown that non-
homogeneous patterned vegetation states exist when the rainfall is at a lower level 
in which homogeneous vegetation state cannot survive. Even when the rainfall is 
very low, slow plant diffusion and fast water diffusion can support a vegetation state 
with vegetation concentrating on a small area. This provides an example of diffusion-
induced persistence that non-constant steady states may exist in a reaction-diffusion 
system when there are no positive constant steady states.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Spatial vegetation patterns are distinctive feature of landscapes found in many semiarid regions [7,53], 
and their appearance often serves as an early-warning indicator of critical ecosystem transition such as 
desertification [38,39]. Mathematical models have been established to study the generation of vegetation 
pattern formation, and it has been theorized that the interplay of water source distribution and plant growth 
leads to self-organization of the spatial patterns of vegetation. Mathematically theory of reaction-diffusion 
system, Turing diffusion-induced instability [51] and its variants have been proposed as possible models to 
generate complex spatiotemporal patterns.
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One relatively simple nonlinear partial differential equation model was proposed in Klausmeier [16] and 
its nondimensionalized form is ⎧⎨

⎩Wt = v
∂W

∂x1
+ a − WB2 − W,

Bt = ΔB + WB2 − mB.
(1.1)

Here W (x, t) and B(x, t) are water and plant biomass density respectively, and x ∈ Rn for n = 1, 2 or 3. In 
this model there are three parameters: a is the water input or rainfall rate; m measures plant losses; and 
v is the rate at which water flows downhill. The plant moves diffusively and the water flows down hill (so 
water diffusion is ignored). The primary finding using (1.1) is the formation of banded stripe vegetation 
patterns caused by the downhill water flow [16,41–46,52]. Other similar models for vegetation patterns in 
semiarid ecosystems have been proposed and analyzed in, for example, [1,4–8,50,53–56].

In this paper, we consider the pattern formation in a diffusive Klausmeier model where the plants grow 
on flat land instead of hill:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Wt = d1ΔW + a − WB2 − W, in Ω, t > 0,

Bt = d2ΔB + WB2 − mB, in Ω, t > 0,
∂W

∂ν
= ∂B

∂ν
= 0, on ∂Ω, t > 0,

W (x, 0) = W0(x) ≥ 0, B(x, 0) = B0(x) ≥ 0, in Ω.

(1.2)

Here Ω is a bounded domain in Rn with smooth boundary ∂Ω and ν denotes the unit outer normal to ∂Ω; 
a no-flux boundary condition is imposed so that the water-plant ecosystem is closed; and d1, d2 > 0 are 
the water diffusion coefficient and plant diffusion coefficient, respectively. Note that the kinetic system in 
(1.2) also arises from an autocatalytic chemical reaction model first proposed by Gray and Scott [9–11,32], 
so system (1.2) is also called diffusive Klausmeier-Gray-Scott model [40,52]. A weakly nonlinear stability 
analysis of positive equilibrium point of the model (1.2) was performed in [14], and parameter regions 
corresponding to bare-soil and vegetative patterns were identified. In [32], numerical simulations reveal a 
surprising variety of irregular spatiotemporal patterns for the Gray-Scott model, and some of them resemble 
the steady irregular patterns observed in thin gel reactor experiments and others consist of spots that grow 
until they reach a critical size. Spike layer spatial patterns in the diffusive Gray-Scott system have been 
considered in [17,18,57,58]. In the studies of Gray-Scott model, the input a is often set as a constant 1. We 
emphasize the effect of water input (rainfall) a on the spatial pattern formation in the current study.

In this paper, we give a theoretical analysis of the Klausmeier-Gray-Scott model (1.2) to explain the 
existence of spatial vegetation patterns. Our main findings on the dynamics of system (1.2) are

1. The model (1.2) has two positive constant positive steady states E± for any a > 2m, and the one with 
low plant biomass E− is always unstable. Moreover, there exists a function d̃2(a) for a > 0 such that 
(1.2) only has constant steady states when d2 > d̃2(a).

2. The high plant biomass constant positive steady state E+ is linearly stable when d2 >
m

2 d1 and any 

a > 2m, or d2 <
m

2 d1 and a > a∗(> 2m) (a∗ is defined in Section 2). This indicates that the spatially 

uniform high biomass steady state is most likely to be achieved in these parameter regimes.
3. The high plant biomass constant positive steady state E+ could lose its stability when the rain fall is 

in an intermediate rage (2m < a < a∗) and the plant diffusion coefficient is small (d2 <
m

2 d1), and 

non-constant steady states emanate from the spatially uniform high biomass steady state E+ through 
a symmetry-breaking bifurcation. Numerical bifurcation diagram shows that the bifurcation branch 
of these non-constant steady state extends to an extinction rainfall threshold a∗ < 2m, so patterned 
solutions exist under a lower rainfall a < 2m which cannot support a uniform vegetation state.
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Fig. 1. Parameter regimes for the existence and stability of constant steady states and the existence/nonexistence of nonconstant 
steady states of (1.2). Here m = 0.45 and d1 = 80.

4. Non-constant steady state solutions with spiky plant biomass profile exist even when the rainfall is very 
low, so slow plant diffusion rate d2 and fast water diffusion rate d1 can support patterned vegetation 
states with vegetation concentrating on a small area.

The parameter regimes for the existence and stability of constant steady states and the existence/nonex-
istence of nonconstant steady states of (1.2) on the a − d2 plane are shown in Fig. 1. The positive a − d2

quadrant is divided into five subregions I, II, III, IV and V defined as follows:

I =
{

(a, d2) : 0 < a < 2m, d2 > d̃2(a)
}

; II = R2
+\(I ∪ III ∪ IV ∪ V);

III =
{

(a, d2) : a > 2m, d2 > max{d̂2(a), d∗
2}

}
; IV =

{
(a, d2) : a > 2m, d∗

2 > d2 > d̂2(a)
}

;

V =
{

(a, d2) : 0 < a < 2m, min{K1a4/n, d∗
2} > d2

} ⋃ {
(a, d2) : a > 2m, min{d̂2(a), d∗

2} > d2

}
.

Here the curves d2 = d∗
2, d2 = d̃2(a) and d2 = d̂2(a) are defined in Propositions 3.2, 2.3 and Remark 2.6

respectively, and the constant K1 is defined in Theorem 3.3. In the subregion I there is only the bare-soil 
state E0 = (a, 0); in the subregion III ∪ IV, the high plant biomass constant positive steady state E+ is 
linearly stable; in the subregion IV, E+ and E0 are both locally asymptotically stable, and there exist other 
non-constant steady states; and in the subregion V, E+ is unstable and there exist other non-constant 
steady states. The existence or nonexistence of non-constant steady states in the subregion II is not known. 
Note that a substantial area of the subregion V satisfies a < 2m, which shows the existence of non-constant 
positive steady states while there is no positive constant steady states.

Our results show that pattern formation in reaction-diffusion system such as (1.2) is not just the result 
of symmetry-breaking bifurcations, as patterns exist far away from bifurcation points. We use bifurcation 
theory, singular perturbation methods, and numerical simulations to show that the small amplitude patterns 
generated from bifurcations when the rainfall is ample connect to highly localized patterns existing only 
with low rainfall level. In between these two pattern formation regimes, the spatial pattern transits from 
spots to labyrinth and to gaps. Such transition has been hypothesized and simulated in modeling effort by 
[38], and here we provide a more theoretical justification for the case of Klausmeier-Gray-Scott model (1.2).

Our results also show that constant positive steady states of (1.2) only exist when a ≥ 2m, but non-
constant positive steady states still exist for a < 2m. The case of a < 2m provides an example of “diffusion-
induced persistence” as all solutions in the system tend to the bare-soil state when diffusion is absent, but 
some solutions in the system persist and converge to a non-constant positive steady state when diffusion 
is present. This is different from Turing’s “diffusion-induced instability” which requires the existence of a 
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constant positive steady state to perturb from. Note Turing instability can be found (see Section 2 and [14]) 
in Klausmeier-Gray-Scott model (1.2), but some patterned solutions found here are beyond Turing realm.

The rest of the paper is organized as follows. For the Klausmeier-Gray-Scott model (1.2), we consider 
the symmetry-breaking bifurcation with parameter a and the existence of non-constant steady states in 
Section 2. In Section 3, by using the associated shadow system, we show the existence of non-constant 
positive steady states of (1.2) when the rainfall is at a lower level in which homogeneous grassland cannot 
survive and the water diffusion rate is large. Throughout this paper, N0 is the set of all nonnegative integers, 
C is the set of all complex numbers, and XC = X ⊕ iX = {x1 + ix2 : x1, x2 ∈ X} is the complexification of 
a linear space X.

2. Bifurcations

In this section, we consider the existence of non-constant positive steady state solutions of (1.2) via 
bifurcation analysis using the water input a as a bifurcation parameter.

2.1. A priori estimates and nonexistence of solutions

The non-negative steady state solutions of (1.2) satisfy the following semilinear elliptic equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d1ΔW + a − WB2 − W = 0, in Ω,

d2ΔB + WB2 − mB = 0, in Ω,

∂W

∂ν
= ∂B

∂ν
= 0, on ∂Ω.

(2.1)

Clearly, system (2.1) has a trivial solution (W, B) = (a, 0), which means a bare-soil state. If a ≥ 2m, system 
(2.1) admits two positive constant solutions (W±(a), B±(a)) with

W±(a) = a ∓
√

a2 − 4m2

2 , B±(a) = a ±
√

a2 − 4m2

2m
. (2.2)

In this subsection, we give some a priori estimates for the non-negative solutions and the nonexistence 
of nonconstant positive solutions of system (2.1). Firstly, we recall the following maximum principle (see 
Lemma 2.3 in [19] or Proposition 2.2 in [23]).

Lemma 2.1. Let Ω be a bounded Lipschitz domain, and g ∈ C(Ω̄ ×R). If w ∈ W 1,2(Ω) is a weak solution of 
the inequalities

Δw + g(x, w) ≥ 0, in Ω,
∂w

∂ν
≥ 0 on ∂Ω,

and if there is a constant K such that g(x, w) < 0 for w > K, then w ≤ K a.e. in Ω.

We now have the following a priori estimates for the non-negative solutions of (2.1).

Proposition 2.2. Suppose d1, d2, a, m are all positive constants. Let (W, B) be any nonnegative solution 
to (2.1). Then either (W, B) is the constant solution (a, 0) or a positive solution satisfying

0 < W (x) ≤ a and 0 < B(x) ≤
(

d1 + 1
)

a, x ∈ Ω̄. (2.3)

d2 m
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Proof. If there exists x0 ∈ Ω such that W (x0) = 0, then ΔW (x0) > 0 which results in a contraction from 
the first equation of (2.1). If there exists x0 ∈ Ω such that B(x0) = 0, then from the strong maximum 
principle B(x) ≡ 0 on Ω̄. Thus, W (x) satisfies

⎧⎨
⎩

d1ΔW + a − W = 0, in Ω,
∂W

∂ν
= 0, on ∂Ω.

Then W (x) ≡ a. Therefore, (W (x), B(x)) is either the constant solution (a, 0) or it satisfies W (x) > 0 and 
B(x) > 0.

From Lemma 2.1, we have W (x) ≤ a for any x ∈ Ω̄. Let U = d1W + d2B. Adding the two equations 
in (2.1) we have

−ΔU = a − W − mB, x ∈ Ω,
∂U

∂ν
= 0, x ∈ ∂Ω.

Let x1 ∈ Ω̄ be a maximum point of U , then it follows from Lemma 2.1 that mB(x1) ≤ a. Hence we have

d2B(x) ≤ U(x) ≤ U(x1) = d1W (x1) + d2B(x1) ≤ ad1 + ad2

m
, x ∈ Ω̄.

This yields the upper bound of B(x) in (2.3). �
Now we show that system (2.1) admits positive non-constant solutions only if the plant diffusion rate d2

is somewhat small.

Proposition 2.3. For any fixed d1, a, m > 0, there exists d̃2 = d̃2(d1, a, m, Ω) defined by

d̃2(d1, a, m, Ω) = M +
√

M2 + 4d1mM

m
, M = a2

μ1

( a2

2m2√
d1μ1

+ 1
)

, (2.4)

where μ1 is the smallest positive eigenvalue of −Δ on Ω with Neumann boundary condition such that when 
d2 > d̃2, the only nonnegative solutions to (2.1) are the constant ones (a, 0) and (W±, B±).

Proof. Let (W, B) be a positive solution of (2.1). Denote the averages of W and B over Ω by

W̄ = 1
|Ω|

∫
Ω

W (x)dx, B̄ = 1
|Ω|

∫
Ω

B(x)dx.

Define φ = W − W̄ and ψ = B − B̄. Then 
∫
Ω

φdx =
∫
Ω

ψdx = 0. Adding the two equations in (2.1) and 

integrating over Ω, we find that W̄ + mB̄ = a, which implies

B̄ ≤ a

m
. (2.5)

Multiplying the equation of W in (2.1) by φ, and using (2.5), the a priori estimates in Proposition 2.2
and the Cauchy-Schwarz inequality, we obtain that
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d1

∫
Ω

|∇φ|2dx =
∫
Ω

(a − WB2 − W )φdx

=
∫
Ω

[((a − W ) − (a − W̄ )) − (WB2 − WB̄2 + WB̄2 − W̄ B̄2)]φdx

=
∫
Ω

(−1 − B̄2)φ2dx −
∫
Ω

W (B + B̄)φψdx ≤ a2
(d1

d2
+ 2

m

) ∫
Ω

|φψ|dx −
∫
Ω

φ2dx

≤a2
(d1

d2
+ 2

m

) ⎛
⎝∫

Ω

φ2dx

⎞
⎠

1/2 ⎛
⎝∫

Ω

ψ2dx

⎞
⎠

1/2

−
∫
Ω

φ2dx

≤a4

4

(d1

d2
+ 2

m

)2 ∫
Ω

ψ2dx.

(2.6)

Combining with the Poincaré inequality μ1

∫
Ω

ψ2dx ≤
∫
Ω

|∇ψ|2dx, we have

∫
Ω

|∇φ|2dx ≤ a4

4d1μ1

(d1

d2
+ 2

m

)2 ∫
Ω

|∇ψ|2dx. (2.7)

Similarly multiplying the equation of B in (2.1) by ψ, and using similar estimates and (2.7), we obtain 
that

d2

∫
Ω

|∇ψ|2dx =
∫
Ω

(WB2 − mB)ψdx

=
∫
Ω

[(WB2 − WB̄2 + WB̄2 − W̄ B̄2) − m(B − B̄)]ψdx

=
∫
Ω

B̄2φψdx +
∫
Ω

(W (B + B̄) − m)ψ2dx ≤ a2

m2

∫
Ω

|φψ|dx + a2
(d1

d2
+ 2

m

) ∫
Ω

ψ2dx

≤ a2

m2

⎛
⎝∫

Ω

φ2dx

⎞
⎠

1/2 ⎛
⎝∫

Ω

ψ2dx

⎞
⎠

1/2

+ a2
(d1

d2
+ 2

m

) ∫
Ω

ψ2dx

≤ a2

m2μ1

⎛
⎝∫

Ω

|∇φ|2dx

⎞
⎠

1/2 ⎛
⎝∫

Ω

|∇ψ|2dx

⎞
⎠

1/2

+ a2

μ1

(d1

d2
+ 2

m

) ∫
Ω

|∇ψ|2dx

= a2

μ1

(d1

d2
+ 2

m

)( a2

2m2√
d1μ1

+ 1
) ∫

Ω

|∇ψ|2dx.

(2.8)

Now (2.8) implies that when

d2 >
a2 (d1 + 2 )( a2

2√ + 1
)

, (2.9)

μ1 d2 m 2m d1μ1
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we have 
∫
Ω

|∇ψ|2dx = 0 and thus 
∫
Ω

|∇φ|2dx = 0 from (2.7). Hence, ∇φ ≡ ∇ψ ≡ 0 for all x ∈ Ω. Therefore, 

(W, B) must be a constant solution. Finally we can derive d̃2 in (2.4) from (2.9), and this verifies the 
assertion. �
Remark 2.4. It is noted that (2.9) implies that for fixed d1, d2, m > 0 and Ω, (2.1) has non-constant solutions 
only if a > a1, where

a1 =

√
−M1M2μ1 +

√
M2

1 M2
2 μ2

1 + 4μ1d2M2

2M2
, M1 = 2m2

√
d1

μ1
, M2 = 1

2m2√
d1μ1

(d1

d2
+ 2

m

)
.

2.2. Stability of constant steady states

In this subsection, we consider the stability of positive constant solutions of (2.1), based on the Turing 
instability mechanism. It is easy to show that the bare-soil state (a, 0) is always a locally asymptotically 
stable steady state of (1.2) for any parameter values. So we focus on the stability of the positive constant 
steady state (W±(a), B±(a)) defined in (2.2). The Jacobian matrix of the corresponding kinetic system at 
a positive constant steady state (W, B) is

J =
(

−1 − B2 −2m

B2 m

)
. (2.10)

Then the corresponding characteristic equation is λ2 − T0λ + D0 = 0, with the trace of J being T0 =
m − (1 + B2), and the determinant of J being D0 = m(B2 − 1). Note that B−(a) < 1 and B+(a) > 1, 
which means that the positive steady state (W−(a), B−(a)) is always an unstable saddle whenever it exists. 
The stability of (W+(a), B+(a)) with respect to the ODE dynamics can be determined by the sign of 
T0 at (W+(a), B+(a)). Direct computations show that (W+(a), B+(a)) is locally asymptotically stable if 
0 < m < 2.

In this section, we always assume a ≥ 2m and 0 < m < 2 so the positive constant steady states exist. 
Define the real-valued Sobolev spaces

X =
{

(W, B) ∈ W 2,q(Ω) × W 2,q(Ω) : ∂W

∂ν
= ∂B

∂ν
= 0 on ∂Ω

}
,

Y = Lq(Ω) × Lq(Ω),

where q > n, and a nonlinear mapping G by

G(a, W, B) :=
(

d1ΔW + a − WB2 − W

d2ΔB + WB2 − mB

)
. (2.11)

Then G : R+ × X → Y is Fréchet differentiable, and at the constant steady state (W+(a), B+(a)), the 
linearized operator is

L(a) :=
(

−1 − B2
+(a) + d1Δ −2m

B2
+(a) m + d2Δ

)
, (2.12)

with the domain D(L(a)) = XC.
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The eigenvalue problem

−Δϕ = μϕ in Ω,
∂ϕ

∂ν
= 0 on ∂Ω (2.13)

has eigenvalues μk satisfying 0 = μ0 < μ1 ≤ μ2 ≤ · · · ≤ μk ≤ · · · → +∞ with corresponding eigenfunctions 
ϕk(x) for k ∈ N0. Let

(
φ

ψ

)
=

∞∑
k=0

(
αk

βk

)
ϕk(x)

be an eigenfunction of L(a) corresponding to an eigenvalue λ(a), i.e. L(a)(φ, ψ)T = λ(a)(φ, ψ)T . Then 
from the Fourier theory, there exists k ∈ N0 and (αk, βk) ∈ R2\{(0, 0)}, such that Lk(a)(αk, βk)T =
λ(a)(αk, βk)T , where

Lk(a) :=
(

−1 − B2
+ − d1μk −2m

B2
+ m − d2μk

)
. (2.14)

Then the characteristic equation of Lk(a) is

λ2 − Tk(a)λ + Dk(a) = 0, (2.15)

and the eigenvalues λ(a) of Lk(a) are given by

λ(a) =
Tk(a) ±

√
T 2

k (a) − 4Dk(a)
2 ,

where

Tk(a) = − (d1 + d2)μk + m − 1 − B2
+(a),

Dk(a) =d1d2μ2
k + [d2(1 + B2

+(a)) − d1m]μk + m(B2
+(a) − 1).

(2.16)

For the diffusion-induced instability (Turing instability) to occur at (W+(a), B+(a)), the constant steady 
state (W+(a), B+(a)) is stable with respect to the kinetic ordinary differentiate equation system while is 
unstable with respect to the reaction-diffusion system (1.2). We show the following stability/instability 
result to identify the parameter regime where the Turing instability occurs.

Theorem 2.5. Assume d1, d2, a, m are positive constants and 0 < m < 2. Then

(i) If d1

d2
<

2
m

, then (W+(a), B+(a)) is locally asymptotically stable for any a > 2m;

(ii) If d1

d2
>

2
m

, then there exists a unique a∗ := a∗
(d1

d2

)
such that (W+(a), B+(a)) is locally asymptotically 

stable for a > a∗, and it is possibly unstable when 2m < a < a∗.

Proof. Since 0 < m < 2 and a ≥ 2m, the constant steady state (W+(a), B+(a)) is locally asymptotically 
stable with respect to the kinetic ordinary differentiate equation system. Hence T0(a) < 0 and D0(a) > 0. 
It is clear that Tk(a) = −(d1 + d2)μk + T0(a) < 0 for any k ∈ N. So for the Turing instability to occur, 
it is necessary that Dk(a) < 0 for some k ∈ N [13,60]. Then a necessary condition for the instability of 
(W+(a), B+(a)) with respect to system (1.2) is
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{
d2(1 + B2

+(a)) − d1m < 0,

[d2(1 + B2
+(a)) − d1m]2 − 4d1d2m(B2

+(a) − 1) > 0,
(2.17)

which is equivalent to

d1

d2
>

3B2
+(a) − 1 + 2B+(a)

√
2(B2

+(a) − 1)
m

:= G0(B+(a)), (2.18)

where

G0(B) :=
3B2 − 1 + 2B

√
2(B2 − 1)

m
, for B > 1. (2.19)

Then 
∂G0(B+(a))

∂a
= G′

0(B+)B′
+(a). It is easy to calculate that

G′
0(B) = 6B

√
B2 − 1 + 2

√
2(2B2 − 1)

m
√

B2 − 1
> 0, B > 1,

B′
+(a) = a +

√
a2 − 4m2

2m
√

a2 − 4m2
> 0, a > 2m.

Thus, ∂G0(B+(a))
∂a

> 0 for all a > 2m, which implies that G0(B+(a)) is strictly increasing in a. Therefore 

we have

min
a∈[2m,+∞)

G0(B+(a)) = G0(B+(2m)) = 2
m

. (2.20)

From (2.18) and (2.20), we conclude that when 
d1

d2
<

2
m

, (2.17) cannot hold, thus (W+(a), B+(a)) is locally 

asymptotically stable for any a > 2m. This proves part (i).
To prove (ii), from (2.16), we define a function

D(a, p) := d1d2p2 + [d2(1 + B2
+(a)) − d1m]p + m(B2

+(a) − 1). (2.21)

Then D(a, p) = 1
2m2 K(a, p) where

K(a, p) := 2d1d2m2p2 − [2m3d1 − d2(a2 + a
√

a2 − 4m2)]p + m(a2 − 4m2 + a
√

a2 − 4m2).

Solving K(a, p) = 0, we have

a2(p) = m2(2m + md1p − d1d2p2)2

(m2 − d2
2p2)(d1p + 1) ,

which implies p < p∗ := m

d2
. Then when p < p∗ we have

a(p) = m(2m + md1p − d1d2p2)√
(m2 − d2

2p2)(d1p + 1)
, (2.22)

and
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a′(p) = mp(d1d2
2p2 + 2md1d2p + m(2d2 − md1))(d1d2p + 2d2 − md1)

2
√

(m2 − d2
2p2)3(d1p + 1)3

.

When 
d1

d2
>

2
m

, define

p1 :=
−md1 +

√
2md1(md1 − d2)
d1d2

, p2 := md1 − 2d2

d1d2
.

Then 0 < p1 < p2 < p∗, a(0) = a(p2) = 2m, a′(p) > 0 when 0 < p < p1, a′(p) < 0 when p1 < p < p2 and 
a′(p1) = a′(p2) = 0. This implies that max

p∈[0,p2]
a(p) = a(p1). Define

a∗ = a(p1) := a∗
(d1

d2

)
, (2.23)

where a∗(r) is defined by, for r > 2/m,

a∗(r) =
m2r(4 − 4mr + 3

√
2mr(mr − 1))√√

2mr(mr − 1)(2mr −
√

2mr(mr − 1))(
√

2mr(mr − 1) + 1 − mr)
.

Indeed the function a∗(r) is the inverse function of H(B) defined in (2.19), and direct computation shows 
that (a∗)′(r) > 0 when r > 2/m and a∗(2/m) = 2m. Note that the inequality (2.18) is equivalent to 
2m < a < a∗(d1/d2). This implies (W+(a), B+(a)) is linearly stable (and locally asymptotically stable) for 
a > a∗(d1/d2), and it is possibly unstable when 2m < a < a∗(d1/d2). �
Remark 2.6. For fixed d1, m > 0 and a > 2m, (2.18) also implies that (W+(a), B+(a)) is linearly stable (and 
locally asymptotically stable) when d2 > d̂2(d1, a, m), and it is unstable when 0 < d2 < d̂2(d1, a, m), where

d̂2(d1, a, m) = d1

G0(B+(a)) , (2.24)

G0(B) and B+(a) are defined in (2.19) and (2.2).

2.3. Global steady state bifurcation

From the last subsection, (W+(a), B+(a)) may be unstable if d1/d2 > 2/m and 2m < a < a∗. In 
this subsection, by applying the well-known Crandall-Rabinowitz bifurcation theorem [3] and its global 
bifurcation version [49], we obtain a global bifurcation diagram for the steady state solutions of model (1.2)
when d1/d2 > 2/m and 2m < a < a∗.

Define the sets

Γ ={(a, W, B) ∈ R+ × X : (a, W, B) satisfies (2.1), W > 0, B > 0, W 
≡ const, B 
≡ const},

Z0 ={(W, B) ∈ X : W + W+ > 0, B + B+ > 0}.

Then we have the following result on the global bifurcation for the steady state solutions of model (1.2).

Theorem 2.7. Assume d2 > 0, 0 < m < 2 and d1 >
2
m

d2. Let μj be an eigenvalue of (2.13) with the 

corresponding eigenfunction ϕj such that

(i) μj is a simple eigenvalue;
(ii) 0 < μj <

m .

d2
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, ψ] =
Let a(p) and a∗ be defined as in (2.22) and (2.23) respectively. Define aS
j := a(μj). Then

1. a = aS
j is a bifurcation point for system (2.1) where a steady state bifurcation occurs from the curve of 

trivial steady states Γ+
0 = {(a, W+(a), B+(a)) : a ≥ 2m};

2. There exists a connect component Γj of the closure of Γ such that near (a, W, B) = (aS
j , W+(aS

j ), B+(aS
j )), 

Γj can be parameterized as Γj = {(aj(s), Wj(s), Bj(s)) : s ∈ (0, ε)}, with aj(0) = aS
j , Wj(s) =

W+(aS
j ) +s(d2μj−m)ϕj+sϕ1,j(s), Bj(s) = B+(aS

j ) +sB2
+(aS

j )ϕj+sϕ2,j(s), ϕ1,j(0) = ϕ2,j(0) = 0, ϕ1,j(s)
and ϕ2,j(s) are differentiable functions defined as ϕ1,j, ϕ2,j : [0, ε) → Z1, where Z1 = {(W, B) ∈ X :∫

Ω[(d2μj −m)W +B2
+(aS

j )B]ϕjdx = 0} is a subspace of X complement to Span{(d2μj −m, B2
+(aS

j ))ϕj};
3. Either Γj is unbounded and its projection onto a-axis is (aS

j , ∞), or Γj is bounded and it contains 
another point (aS

k , W+(aS
k ), B+(aS

k )) with k 
= j or (2m, a/2, a/(2m)).

Proof. Setting W̃ = W − W+, B̃ = B − B+ and neglecting the tildes, we can rewrite system (2.1) as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d1ΔW + a − (W + W+)(B + B+)2 − (W + W+) = 0, in Ω,

d2ΔB + (W + W+)(B + B+)2 − m(B + B+) = 0, in Ω,

∂W

∂ν
= ∂B

∂ν
= 0, on ∂Ω,

(2.25)

and the positive constant solution (W+, B+) of model (2.1) is translated to (0, 0) solution of (2.25). Define 
a nonlinear mapping F : R+ × Z0 → Y by

F (a, W, B) :=
(

d1ΔW + a − (W + W+)(B + B+)2 − (W + W+)
d2ΔB + (W + W+)(B + B+)2 − m(B + B+)

)
. (2.26)

Then the nonlinear map F is infinitely differential in W, B, and F (a, 0, 0) = 0 for all a ≥ 2m. At a bifurcation 
point (a, W, B) = (a0, 0, 0),

F(W,B)(a0, 0, 0)[φ, ψ] :=
(

d1Δφ − (1 + B2
+(a0))φ − 2mψ

d2Δψ + B2
+(a0)φ + mψ

)
. (2.27)

Recall that μk is the k-th eigenvalue of (2.13) with the corresponding eigenfunction ϕk. Then F(W,B)(a0, 0, 0)[φ
0 has a nontrivial solution if and only if

Dk(a0) = d1d2μ2
k + [d2(1 + B2

+(a0)) − d1m]μk + m(B2
+(a0) − 1) = 0, (2.28)

for some k ∈ N. Follow the proof of Theorem 2.5, define a(p) and a∗ as in (2.22) and (2.23) respectively, 
then the function a(p) : [0, p2] → [2m, a∗] is monotone increasing on the interval [0, p1], and is monotone 
decreasing on the interval [p1, p2]. On the other hand, we can also solve p from (2.21) to obtain

p±(a) =
[d1m − d2(1 + B2

+(a))] ±
√

[d1m − d2(1 + B2
+(a))]2 − 4md1d2(B2

+(a) − 1)
2d1d2

. (2.29)

Then p±(a) are well defined for 2m ≤ a ≤ a∗, and the function p−(a) (p+(a)) is monotone increasing 
(decreasing) on the interval [2m, a∗], and p−(a∗) = p+(a∗) = p1.

Since μj satisfies (i) and (ii), from the proof of Theorem 2.5, F(W,B)(a, 0, 0)[φ, ψ] = 0 has a nontrivial solu-
tion when a = aS

j := a(μj). Furthermore, direct calculations show that the null space N (F(W,B)(aS
j , 0, 0)) =

Span{(φ0, ψ0)}, where (φ0, ψ0) = (d2μj − m, B2
+(aS

j ))ϕj . This implies that dimN (F(W,B)(aS
j , 0, 0)) = 1. 
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Next we show that codimR(F(W,B)(aS
j , 0, 0)) = 1 where R(F(W,B)(aS

j , 0, 0)) is the range space. Suppose 
there exists a (φ, ψ) ∈ Z0 such that

F(W,B)(aS
j , 0, 0)[φ, ψ] :=

(
d1Δφ − (1 + B2

+(aS
j ))φ − 2mψ

d2Δψ + B2
+(aS

j )φ + mψ

)
=

(
σ

τ

)
, (2.30)

where y1 := (σ, τ) ∈ Y . Note that the conjugate operator of F(W,B)(aS
j , 0, 0)

F ∗
(W,B)(aS

j , 0, 0)[φ, ψ] :=
(

d1Δφ − (1 + B2
+(aS

j ))φ + B2
+(aS

j )ψ
d2Δψ − 2mφ + mψ

)
=

(
0
0

)
(2.31)

has a nontrivial solution y2 := (m − d2μj , 2m)ϕj . Then according to the Fredholm alternative, problem 
(2.30) has a solution (φ, ψ) if and only if 〈y1, y2〉 = 0, where 〈·, ·〉 is the complex-valued L2 inner product on 
the Hilbert space L2(Ω) × L2(Ω), which is defined as 〈Φ1, Φ2〉 =

∫
Ω(φ̄1φ2 + ψ̄1ψ2)dx, with Φi = (φi, ψi) ∈

L2(Ω) × L2(Ω), i = 1, 2. Then we have R(F(W,B)(aS
j , 0, 0)) = {(σ, τ) ∈ Y : l(σ, τ) = 0}, where l : Y → R

is a linear function in Y ∗ defined by l(σ, τ) =
∫

Ω[(m − d2μj)σ + 2mτ ]ϕjdx. Therefore, F(W,B)(aS
j , 0, 0) is a 

Fredholm operator with index 0, and dimN (F(W,B)(aS
j , 0, 0)) = codimR(F(W,B)(aS

j , 0, 0)) = 1.
Finally we prove the transversality condition: F(a,W,B)(aS

j , 0, 0)[φ, ψ] /∈ R(F(W,B)(aS
j , 0, 0)), where 

(φ, ψ) ∈ N (F(W,B)(aS
j , 0, 0)) and (φ, ψ) 
= (0, 0). Note that

F(a,W,B)(aS
j , 0, 0)[φ, ψ] :=

(
−2B+(aS

j )B′
+(aS

j )φ
2B+(aS

j )B′
+(aS

j )φ

)
, (2.32)

and B′
+(aS

j ) =
aS

j +
√

(aS
j )2 − 4m2

2m
√

(aS
j )2 − 4m2

> 0. Then

l(F(a,W,B)(aS
j , 0, 0)[φ0, ψ0]) = 2B+(aS

j )B′
+(aS

j )
∫
Ω

(d2μj − m)ϕjφ0dx

= 2B+(aS
j )B′

+(aS
j )

∫
Ω

(d2μj − m)2ϕ2
jdx > 0,

(2.33)

as μj < m/d2. Therefore, F(a,W,B)(aS
j , 0, 0)[φ, ψ] /∈ R(F(W,B)(aS

j , 0, 0)).
Now from the local bifurcation theorem in [3], near the bifurcation point (aS

j , 0, 0) the set of posi-
tive solutions of (2.25) can be parameterized as Γ′

j = {(aj(s), Wj(s), Bj(s)) : s ∈ (0, ε)}, with aj(0) =
aS

j , Wj(s) = s(d2μj − m)ϕj + sϕ1,j(s), Bj(s) = sB2
+(aS

j )ϕj + sϕ2,j(s), ϕ1,j(0) = ϕ2,j(0) = 0, ϕ1,j(s)
and ϕ2,j(s) are differentiable functions defined by ϕ1,j , ϕ2,j : [0, ε) → Z1, where Z1 = {(W, B) ∈ Z0 :∫

Ω[(d2μj − m)W + B2
+(aS

j )B]ϕjdx = 0} is a subspace of Z0 complement to Span{(φ0, ψ0)}.
Moreover from the global bifurcation theorem in [49, Theorem 4.3], there exists a connect component Γj

of Γ containing Γ′
j such that (aS

j , 0, 0) ∈ Γj and two possibilities may occur:

(i) Γj is not compact in R+ × Z0;
(ii) there exists another bifurcation point (aS

k , 0, 0) ∈ Γj with k 
= j.

If case (i) occurs, Γj is either unbounded in R+ ×Z0, or Γj contains a boundary point of R+ ×Z0. We prove 
the latter cannot occur. From Remark 2.4, Γj does not contain a point such that a = 0. Suppose Γj contains 
a point (a, W, B) ∈ R+ ×∂Z0. Then there exists x0 ∈ Ω such that W (x0) +W+(a) = 0 or B(x0) +B+(a) = 0. 
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If W (x0) + W+(a) = 0 and x0 ∈ Ω, then x0 is a local minimum of W , but d1ΔW (x0) = −a < 0 which 
is a contradiction. If W (x0) + W+(a) = 0 and x0 ∈ ∂Ω, again we reach a contradiction by using the 
Hopf boundary lemma. Thus we must have B(x0) + B+(a) = 0. By applying maximum principle and Hopf 
boundary lemma again, we conclude that B(x) + B+(a) ≡ 0 for x ∈ Ω. Hence (a, W, B) is the bare-soil 
state. But at the constant steady state (a, W, B) = (a, −W+(a), −B+(a)), the linearized operator is

F(W,B)(a, −W+(a), −B+(a)) =
(

d1Δ − 1 0
0 d2Δ − m

)
. (2.34)

Then it is easy to see that all eigenvalues of F(W,B)(a, −W+(a), −B+(a)) are negative, so it cannot be a 
bifurcation point such that (a, −W+(a), −B+(a)) ∈ Γj . Therefore Γj does not contain a boundary point of 
R+ × Z0. Hence Γj is unbounded in R+ × Z0. From Proposition 2.2 and standard elliptic estimates, Γj is 
bounded in Z0 for any bounded a-interval. From Remark 2.4, the projection of Γj onto a-axis is contained 
in (a1, ∞). Thus the projection of Γj onto a-axis must contain (aS

j , ∞).
If (ii) occurs, we note that the branch of trivial solutions (a, 0, 0) is only defined for a ≥ 2m not all a > 0. 

Hence in case (ii), Γj may contain another bifurcation point (aS
k , W+(aS

k ), B+(aS
k )) with k 
= j, but it is also 

possible it contains the end point (2m, a/2, a/(2m)) at a = 2m. This completes the proof. �
We make some further remarks on the set of nonconstant solutions of (2.1).

Remark 2.8.

1. Since the bifurcation point aS
j = a(μj) satisfies 0 < μj < m/d2, the number of bifurcation points 

is finite so the number of connected components Γj emanating from the branch of constant solutions 
Γ+

0 = {(a, W+(a), B+(a) : a ≥ 2m} is also finite. It is possible that Γj = Γk for some j 
= k as they can 
connect to each other through secondary bifurcations not occurring on Γ+

0 .
2. Theorem 2.7 shows that the branch Γj of nonconstant steady state solutions of (1.2) could be bounded 

and it may connect back to the branch of constant solutions. This kind of bounded bifurcating branches 
is called “loops” or “mushroom” [22,28,33].

3. The branch Γj of nonconstant steady state solutions of (1.2) may connect to the other branch of constant 
solutions Γ−

0 = {(a, W−(a), B−(a) : a ≥ 2m} and not Γ+
0 directly. In that case, Γj connects to Γ−

0 , then 
Γ−

0 connects to Γ+
0 at the saddle-node bifurcation point (a, W, B) = (2m, a/2, a/(2m)), which is the 

second alternative in Theorem 2.7 (iii).
4. The bifurcation direction of Γj at a = aS

j (a′
j(0) and a′′

j (0)) can be calculated following the calculation 
in [13,47]. We include that in Appendix A, and a numerical example is given below.

We demonstrate our theoretical results to the Klausmeier-Gray-Scott model (1.2) with m = 0.45, d1 =
80, d2 = 1. Then we can calculate that p1 = 0.1775, p2 = 0.4250, p∗ = 0.45, a∗ = 1.3313 and the graphs of 
D(a, p) = 0 and bifurcation points are shown in Fig. 2.

For the one-dimensional domain Ω = (0, 10π), the eigenvalues of (2.13) are λk = k2/100 for k ∈ N, and 
the steady state bifurcation points a = aS

j marked in Fig. 2 left panel are

aS
1 = 0.9334 < aS

6 = 1.0661 < aS
2 = 1.0836 < aS

3 = 1.2446

< aS
5 = 1.2860 < aS

4 = 1.3283.

The steady state bifurcations for Ω1 = (0, 10π) are always pitchfork bifurcation, i.e. a′
j(0) = 0; and the 

bifurcation is supercritical one if a′′(0) > 0 and subcritical one if a′′(0) < 0. By using Maple and the 
algorithm in Appendix A, we find that a′′

4(0) = −2527.1042 < 0 at a = aS
4 . This implies that the bifurcation 
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Fig. 2. Graph of D(a, p) = 0. Parameters: m = 0.45, d1 = 80, d2 = 1. (Left) Ω = (0, 10π); (Right) Ω = (0, 10π) × (0, 10π).

at the most unstable mode, i.e. the pitchfork bifurcation at (aS
4 , W+(aS

4 ), B+(aS
4 )), is subcritical and the 

bifurcating non-constant steady state solutions are linearly stable. For the two-dimensional domain Ω2 =
(0, 10π) × (0, 10π), the eigenvalues of (2.13) are λk1,k2 = (k2

1 + k2
2)/100 for k1, k2 ∈ N, then only valid 

bifurcation points corresponding to simple eigenvalues are (marked by stars in Fig. 2 right panel):

aS
1,1 = 0.9858 < aS

4,4 = 1.1660 < aS
2,2 = 1.2208 < aS

3,3 = 1.3312.

For Ω2, there are many other non-simple eigenvalues where bifurcations can also happen, but aS
3,3 indeed is 

the largest one among all bifurcation points. In Fig. 3, numerical bifurcation diagrams of (1.2) from aS
4 for 

Ω1 and aS
3,3 for Ω2 are shown.

3. Existence of patterns with small rain fall

In this section, we show the existence of non-constant solutions of (2.1) for large d1 and small rain fall a.

3.1. The shadow system

To show the existence of non-constant solutions of (2.1) for large d1, we introduce the shadow system of 
(1.2). The shadow system of (1.2) is obtained by formally letting d1 → ∞ (see [12,15,31]). From the first 
equation of (1.2) and the Neumann boundary condition we obtain

1
|Ω|

∂

∂t

∫
Ω

Wdx = 1
|Ω|

∫
Ω

(a − WB2 − W )dx. (3.1)

If d1 → +∞, then W (x, t) → ξ(t) in the first equation of (1.2) because of the boundary condition, so that 
(3.1) is written as

ξt = a − ξ

|Ω|

∫
Ω

B2dx − ξ. (3.2)

Hence the shadow system of model (1.2) is in form
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Bt = d2ΔB + ξB2 − mB, in Ω, t > 0,

ξt = a − ξ

|Ω|

∫
Ω

B2dx − ξ, t > 0,

∂B

∂ν
= 0, on ∂Ω, t > 0.

(3.3)

It is easy to see that if u = ud2,m(x) is a solution of the scalar equation

⎧⎨
⎩

d2Δu − mu + u2 = 0, in Ω,
∂u

∂ν
= 0, on ∂Ω,

(3.4)

then the shadow system (3.3) has two positive steady state solutions (B±
a (x), ξ±

a ) for any a ≥ 2||u||2/|Ω|1/2, 
where |Ω| is the Lebesgue measure of Ω,

ξ±
a =

a ±
√

a2 − 4
|Ω|

∫
Ω u2(x)dx

2 , B±
a (x) = u(x)

ξ±
a

. (3.5)

So we have the following results regarding the set S of positive steady state solutions of the shadow 
system (3.3) with parameter a.

Proposition 3.1.

(i) For any positive solution u(x) of (3.4), there is a subset Su of S (the set of positive steady state solutions 
of (3.3)) in form of

Su = {(a, B+
a , ξ+

a ) : a ≥ 2||u||2/|Ω|1/2} ∪ {(a, B−
a , ξ−

a ) : a ≥ 2||u||2/|Ω|1/2}.

(ii) For any positive solution u(x) of (3.4), ||u||2 ≤ m|Ω|1/2, and the equality holds only when u(x) ≡ m for 
x ∈ Ω. In particular, the projection of Su onto a-axis contains [2m, ∞), and the projection is precisely 
[2m, ∞) only for the branch of positive constant steady states of (3.3).

Proof. Part (i) is clear from the definition in (3.5). Part (ii) follows from integrating (3.4) and Cauchy-
Schwarz inequality:

m

∫
Ω

udx =
∫
Ω

u2dx ≥ 1
|Ω|

⎛
⎝∫

Ω

udx

⎞
⎠

2

.

Apparently the equality holds only when u is a constant. �
We recall some existence and multiplicity results for the non-constant solutions of the nonlinear 

Schrödinger equation (3.4).

Proposition 3.2. Suppose d2, m are positive constants, Ω ⊂ Rn (1 ≤ n ≤ 5) is a bounded domain with smooth 
boundary ∂Ω, and μj (j ≥ 1) are the positive eigenvalues of (2.13). Then

(i) There exist d∗∗
2 > d∗

2 > 0 such that when 0 < d2 < d∗
2, (3.4) has a non-constant positive least energy 

solution u(x, d2) satisfying
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m

6

∫
Ω

u2dx ≤ J(u) ≤ C0d
n/2
2 , (3.6)

where C0 > 0 depends only on Ω and m, and the energy function is defined by

J(v) =
∫
Ω

(d2

2 |∇v|2 + m

2 v2 − 1
3v3

+

)
dx, for v ∈ W 1,2(Ω), (3.7)

where v+ := max{v, 0}; On the other hand (3.4) has no positive non-constant solution for d2 > d∗∗
2 .

(ii) Let dj
2 = m/μj for j ≥ 1. Then each (d2, u) = (dj

2, m) is a bifurcation point where non-constant positive 
solutions of (3.4) bifurcate from the constant solution u = m. If in addition, μj is an eigenvalue with 
odd algebraic multiplicity, then there is a continuum Σj of positive non-constant solutions of (3.4) such 
that (dj

2, m) ∈ Σj, and either the projection of Σj onto d2-axis contains (0, dj
2), or Σj contains another 

bifurcation point (dk
2 , m) with k 
= j.

(iii) If n = 1 and Ω = (0, lπ), then dj
2 = ml2/j2, each Σj is a curve with only one degenerate point at 

(d2, u) = (dj
2, m) and the projection of Σj onto d2-axis is (0, dj

2]. In particular, (3.4) has exactly 2j

non-constant positive solutions if dj+1
2 ≤ d2 < dj

2 and all of them are unstable, and each solution (d2, u)
on Σj satisfies that u(x) − m changes sign exactly j times. Moreover the bifurcation from (d1

2, m) is a 
supercritical pitchfork one, and each solution on Σ1 is non-degenerate with Morse index is two. Here 
the Morse index is the number of the strictly positive eigenvalues.

Proof. (i) The existence of a non-constant positive solution u(x, d2) for small d2 satisfying the energy bound 
follows from Theorem 2 in [20]. Here the exponent p = 2 < (n + 2)/(n − 2) for 3 ≤ n ≤ 5 and there is no 

restriction on the exponent when n = 1, 2. By integrating (3.4), we have 
∫
Ω

(−d2|∇u|2 − mu2 + u3)dx = 0

which implies that

m

6

∫
Ω

u2dx ≤ J(u) = 1
6

∫
Ω

(d2|∇u|2 + mu2)dx ≤ C0d
n/2
2 . (3.8)

Moreover this solution can be chosen as the least energy positive solution which has the smallest J(u)
among all positive solutions of (3.4) (see [29]). The nonexistence of positive non-constant solution for large 
d2 follows from part (ii) of Theorem 3 in [21].

(ii) The fact that d2 = dj
2 is a bifurcation point follows from Theorem 11.4 of [37], as (3.4) has a 

variational formulation with energy function J defined in (3.7). The global bifurcation conclusion follows 
from Theorem 1.3 in [36], as (3.4) has no positive non-constant solution for d2 > d∗

2 from part (i) and all 
positive non-constant solutions of (3.4) are bounded by a constant C > which only depends on m and Ω
(Theorem 3 in [21]).

(iii) The properties of Σj follow from Theorems 2.5 and 2.7 of [48], and the fact that each solution (d2, u)
on Σj satisfies that u(x) − m changes sign exactly j times is proved in [35]. The results for solutions on Σ1

are from Theorems C of [27]. �
Note that [25–27] also have results on the structure of the solution set of (3.4) for Ω = Bn, the unit 

ball in Rn, and these results can also be applied to the shadow system (3.3) on a ball similar to the way 
below. Now combining Propositions 3.1 and 3.2, we obtain the following existence and multiplicity results 
of positive steady state solutions of shadow system (3.3). The proof is obvious from the correspondence 
between the solution u of (3.4) and the ones of (3.3) defined in (3.5).
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Theorem 3.3. Suppose d2, m, a are positive constants, Ω ⊂ Rn (1 ≤ n ≤ 5) is a bounded domain with smooth 
boundary, and μj (j ≥ 1) are the positive eigenvalues of (2.13).

(i) When 0 < d2 < d∗
2 and a > ã =

√
24C0d

n/2
2

m|Ω| , the shadow system (3.3) has two distinct positive steady 

state solutions (B±
a (x), ξ±

a ) defined as in (3.5), where u(x) is the positive least energy solution of (3.4)
in Proposition 3.2 part (i); On the other hand, when d2 > d∗∗

2 (defined in Proposition 3.2 part (i)), 
for any a > 0, the system (3.3) only has three constant nonnegative steady state solutions (0, a) and 
(B±

a , ξ±
a ) with u(x) = m.

(ii) Let Σj be the continuum of positive steady state solutions of (3.4) defined in part (ii) of Proposition 3.2. 
Then the set of positive steady state solutions of (3.3) contains a connected component in the form of

Σ̃j = {(d2, a, B±
a (x), ξ±

a ) : (d2, u) ∈ Σj , a ≥ 2||u||2/|Ω|1/2},

where (B±
a (x), ξ±

a ) is defined as in (3.5).
(iii) If n = 1 and Ω = (0, lπ), for dj+1

2 ≤ d2 < dj
2 where dj

2 = ml2/j2 and a > 2m, system (3.3) has exactly 
4j + 2 positive solutions in which 4j of them are non-constant solutions and the other two are constant 
ones. For fixed d2, the 4j non-constant solutions also exist for some a < 2m.

Proof. (i) When d2 < d∗
2, from (3.6), the positive least energy solution u(x) of (3.4) satisfies ||u||2 ≤√

6C0d
n/2
2

m|Ω| . Then for a > ã =

√
24C0d

n/2
2

m|Ω| ≥ 2||u||2
|Ω|1/2 , (3.3) has two distinct positive solutions (B±

a (x), ξ±
a )

defined as in (3.5) from Proposition 3.1. Note that a > ã is equivalent to d2 < K1a4/n where K1 =
m|Ω|/(24C0).

(ii) and (iii) follow from Proposition 3.2 part (ii) and (iii). In part (iii), the existence parameter interval 
for a is (2||u||2/|Ω|1/2, ∞) from Proposition 3.1 part (i). Each of these 4j intervals contains at least [2m, ∞)
from part (ii) of Proposition 3.1 part (ii). �

The linear stability of the non-constant solution (B±
a (x), ξ±

a ) of (3.3) can be determined when d2 is 
small by the methods in [2,57,59]. For that purpose, we set d2 = ε2. Linearizing (3.3) at a steady state 
(Bε(x), ξε) = (uε(x)/ξε, ξε) of (3.3), we obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψt = ε2Δψ − mψ + 2uεψ + ξ−2
ε u2

εη, in Ω, t > 0,

ηt = − 2
|Ω|

∫
Ω

uεψdx − 1
|Ω|ξ2

ε

∫
Ω

u2
εdxη − η, t > 0,

∂ψ

∂ν
= 0, on ∂Ω, t > 0.

(3.9)

Define the linearized operator

L∞,ε :=

⎛
⎜⎝

ε2Δ − m + 2uε ξ−2
ε u2

ε

− 2
|Ω|

∫
Ω

uε · dx − 1
|Ω|ξ2

ε

∫
Ω

u2
εdx − 1

⎞
⎟⎠ ,

in the space X1 := W 2,q
ν (Ω) × R+ where W 2,q

ν (Ω) =
{

u ∈ W 2,q(Ω) : ∂u

∂ν
= 0 on ∂Ω

}
. The linear stability 

of (Bε(x), ξε) with respect to (3.3) is determined by the eigenvalue problem L∞,ε(ψ, η)T = λ(ψ, η)T , that is
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε2Δψ − mψ + 2uεψ + ξ−2
ε u2

εη = λψ, in Ω,

− 2
|Ω|

∫
Ω

uεψdx − 1
|Ω|ξ2

ε

∫
Ω

u2
εdxη − η = λη,

∂ψ

∂ν
= 0, on ∂Ω,

(3.10)

or equivalently, the following nonlocal eigenvalue problem:
⎧⎪⎪⎨
⎪⎪⎩

ε2Δψ − mψ + 2uεψ −
2u2

ε

∫
Ω uεψdx∫

Ω u2
εdx + |Ω|ξ2

ε (1 + λ)
= λψ, in Ω,

∂ψ

∂ν
= 0, on ∂Ω.

We consider the linear stability of the positive steady state solution (Bε(x), ξε) of (3.3) corresponding to 
a solution uε of (3.4) with small ε. For that purpose, we recall the following result regarding a spike layer 
solution uε of (3.4) (see Theorem A in [57]).

Lemma 3.4. Suppose Ω ⊂ Rn (1 ≤ n ≤ 5) is a bounded domain with smooth boundary ∂Ω. Let P0 ∈ ∂Ω
be a nondegenerate critical point of the mean curvature function H(P ) for P ∈ ∂Ω. Then for ε sufficiently 
small, problem (3.4) with d2 = ε2 has a solution uε such that uε has only one local maximum point Pε

and Pε ∈ ∂Ω. Moreover, Pε → P0 as ε → 0 and uε(y) := uε(εy + Pε) → w(y) as ε → 0 uniformly for 
y ∈ Ωε,Pε

:= {y : εy + Pε ∈ Ω̄}, where w is the unique solution of the following problem:

⎧⎨
⎩

Δw − mw + w2 = 0, w > 0 in Rn,

w(0) = max
y∈Rn

w(y), w(y) → 0 as |y| → ∞.
(3.11)

The solution uε of (3.4) in Lemma 3.4 is a spike-layer solution which concentrates near a non-degenerate 
critical point of the mean curvature function of the boundary. In particular, the least energy solution defined 
in Proposition 3.2 is a spike layer solution which concentrates at the maximum point of the mean curvature 
function H(P ) [30]. The stability of a spike layer solution with respect to (3.4) is determined by the linearized 
operator Lε : W 2,q

ν (Ω) → Lq(Ω) defined as

Lε = ε2Δ − m + 2uε. (3.12)

Then we have the following result on the spectrum set σ(Lε) of Lε (see [2, Theorem 4.6] or [57, Theorem 3.1]).

Lemma 3.5. Let uε be the positive solution of (3.4) in Lemma 3.4.

1. σ(Lε) consists of a sequence of real-valued eigenvalues λ̃j,ε satisfying

λ̃1,ε > λ̃2,ε ≥ λ̃3,ε ≥ · · · ≥ λ̃j,ε ≥ · · · → −∞.

(i) As ε → 0, λ̃1,ε → λ1(L0) > 0, where λ1(L0) is the principal eigenvalue of L0 = Δ − m + 2w on 
W 2,p(Rn) and w is the unique positive solution of (3.11), and λ̃j,ε ≤ −m for j ≥ n + 1.

(ii) As ε → 0, λ̃j,ε = ε2γηj + o(ε2), 2 ≤ j ≤ n, where γ is a positive constant and ηj is the (j − 1)-th 
eigenvalue of the Hessian of the mean curvature function of the boundary manifold D2H(P ).

Next we have the following result which connects the stability of the positive solution of the shadow 
system (3.10) to the one of (3.4) from Theorem 4.1 in [57].
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Lemma 3.6. Suppose that Ω ⊂ Rn (2 ≤ n ≤ 4) is a bounded domain with smooth boundary ∂Ω. Let λj,ε be 
the eigenvalues of L∞,ε, and let λ̃j,ε be the eigenvalues of Lε. Then λj,ε = (1 +o(1))λ̃j+1,ε for j = 1, 2, · · · , n, 
and Re(λj,ε) < −c0 < 0 for j > n where c0 > 0.

Now from Lemma 3.5 and Lemma 3.6, we can conclude the following results about the stability of the 
non-constant solutions of (3.3) corresponding to spike layer solution of (3.4).

Theorem 3.7. Suppose that Ω ⊂ Rn (2 ≤ n ≤ 4) is a bounded domain with smooth boundary ∂Ω. Let P0 ∈ ∂Ω
be a nondegenerate critical point of the mean curvature function H(P ), and let ηj, 2 ≤ j ≤ n be the (j−1)-th 
eigenvalue of the Hessian of the mean curvature function of the boundary manifold D2H(P ). Let uε(x) be a 
positive solution of (3.4) concentrating near P0 as in Lemma 3.4, and let (Bε(x), ξε) = (uε(x)/ξε, ξε) be the 
corresponding non-constant steady state solution of (3.3). Then for sufficiently small ε > 0, or equivalently 
sufficiently small d2 > 0,

(i) If ηj < 0 for all 2 ≤ j ≤ n, then (Bε(x), ξε) of (3.3) is linearly stable.
(ii) If ηj > 0 for some 2 ≤ j ≤ n, then (Bε(x), ξε) of (3.3) is unstable.

Part (i) Theorem 3.7 implies that when uε(x) is the least energy solution of (3.4), the solution concentrates 
near the maximum point of the mean curvature function on the boundary, and (Bε(x), ξε) is a linearly stable 
steady state of (3.3) as ηj < 0 for all 2 ≤ j ≤ n in that case.

3.2. Solutions of the original system for large d1

In this subsection, we return to the original reaction-diffusion system (1.2) and show the existence of 
non-constant steady states when d1 is sufficiently large by using the results on the shadow system (3.3) and 
implicit function theorem (see for example [24,34]).

Theorem 3.8. Suppose that Ω ⊂ Rn (2 ≤ n ≤ 4) is a bounded domain with smooth boundary ∂Ω. Let P0 ∈ ∂Ω
be a nondegenerate critical point of the mean curvature function H(P ). Then there exists a positive d̃2 < d∗

2
(defined in Proposition 3.2 part (i)), such that for 0 < d2 < d̃2 there exists a constant s(d2) > 0 such that 
(1.2) has a nonconstant positive steady state solution such that the plant biomass concentrates near P0 when 
d1 > 1/s(d2) and 0 < d2 < d̃2. Moreover if P0 is the maximum point of H(P ), then the corresponding 
nonconstant positive steady state solution is linearly stable with respect to (1.2).

Proof. Define

Y1 :=
{

u ∈ W 2,q
ν (Ω) :

∫
Ω

u(x)dx = 0
}

,

and the projection operator P : W 2,q
ν (Ω) → Y1 by

Pu(x) = u(x) − 1
|Ω|

∫
Ω

u(s)ds. (3.13)

We consider the following equation:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Δφ + sP[a − (ξ + φ)B2 − (ξ + φ)] = 0, in Ω,

d2ΔB + (ξ + φ)B2 − mB = 0, in Ω,

a − ξ + φ

|Ω|

∫
Ω

B2dx − (ξ + φ) = 0,

∂φ

∂ν
= ∂B

∂ν
= 0, on ∂Ω.

(3.14)

Define an operator X (d2, s, φ, B, ξ) by

X (d2, s, φ, B, ξ) :=

⎛
⎜⎜⎝

Δφ + sP[a − (ξ + φ)B2 − (ξ + φ)]
d2ΔB + (ξ + φ)B2 − mB

a − ξ+φ
|Ω|

∫
Ω B2dx − (ξ + φ)

⎞
⎟⎟⎠ . (3.15)

Then X (d2, s, φ, B, ξ) is an analytic mapping from the open set {(d2, s, φ, B, ξ) : ξ > 0, ξ + φ > 0} of 
R+ × R+ × Y1 × W 2,q

ν (Ω) × R+ into Lq(Ω) × Lq(Ω) × R.
Let (B(x, d2), ξ(d2)) be a solution to the shadow system (3.3) when d2 < d̃2 so that Theorem 3.7 holds. 

Fixing d2 < d̃2, by the definition of X , we have X (d2, 0, 0, B(x, d2), ξ(d2)) = 0 and the Fréchet derivative of 
X (d2, s, φ, B, ξ) at (d2, 0, 0, B(x, d2), ξ(d2)) is given by

X(φ,B,ξ)(d2, 0, 0, B(x, d2), ξ(d2)) =
(

Δ 0
B L∞

)
, (3.16)

where 0 = (0, 0),

L∞ =
(

d2Δ + (2ξ(d2)B(x, d2) − m) B2(x, d2)
−2ξ(d2)

|Ω|
∫

Ω B(x, d2) · dx − 1
|Ω|

∫
Ω B2(x, d2)dx − 1

)
, (3.17)

and

B =
(

B2(x, d2)
− 1

|Ω|
∫

Ω B2(x, d2)dx − 1

)
. (3.18)

As Δ is an isomorphism from Y1 to Lq(Ω) under homogeneous Neumann boundary condition, and from 
Theorem 3.8, L∞ is nondegenerate, then X(φ,B,ξ)(d2, 0, 0, B(x, d2), ξ(d2)) is nondegenerate. Consequently, 
by the implicit function theorem there exists a one-parameter of solutions (φs(x), Bs(x), ξs) of (3.14) for 
s ∈ (0, s(d2)) for some s(d2) > 0. Notice that if (φs(x), Bs(x), ξs) satisfies (3.14) with s > 0, then (Bs(x), ξs+
φs(x)) is a solution of (1.2) with d1 = 1/s. Therefore there exists a family of non-constant steady states 
(ξs + φs(x), Bs(x)) of (1.2) for d1 = 1/s with s ∈ (0, s(d2)). The stability of the solution follows from 
Theorem 1.4 in [57]. �

From Theorem 3.3 and Theorem 3.8, we have the following results regarding the pattern formation in 
the reaction-diffusion Klausmeier-Gray-Scott system (1.2).

Corollary 3.9. For any positive δ < d∗
2, when 0 < d2 < δ and a > ã =

√
24C0δn/2

m|Ω| , there exists dδ
1 > 0 such 

that (1.2) has a non-constant positive steady state solution provided d1 > dδ
1. In particular such a solution 

could exist for arbitrarily small rainfall value a = O(δn/4) � 2m.
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Fig. 3. Bifurcation diagrams of (2.1) when m = 0.45, d1 = 80, d2 = 1. (Left) Ω1 = (0, 10π); (Right) Ω2 = (0, 10π) × (0, 10π). The 
horizontal axis is a (rainfall). Green curve: constant plant density; blue curve: maximum value of patterned steady state plant 
biomass; and red curve: mean value of patterned steady state plant biomass. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

Fig. 4. Patterned plant distribution in (1.2) with m = 0.45, d1 = 80, d2 = 1 and Ω = (0, 10π).

Fig. 3 shows the bifurcation diagram of steady state solutions of (1.2) for both Ω1 = (0, 10π) and 
Ω2 = (0, 10π) × (0, 10π). Indeed the diagram shows that the transcritical bifurcation branch of the stable 
non-constant steady state solutions emerging from the constant ones continues to the left to a threshold 
value a∗ < 2m = 0.9, so that for a ∈ (a∗, 2m), only non-constant positive steady state solutions exist not 
the constant ones. This verifies the assertion in Corollary 3.9 as in Fig. 3, the water diffusion coefficient d1

is large and the plant diffusion coefficient d2 is small. When the rainfall a is near the extinction threshold 
a∗, the total biomass approaches to 0 but the maximum value of the patterned solution approaches to a 
very high level, which indicates the concentration of plant biomass.

Fig. 4 shows the profile of the spatial patterns for varying rainfall a in a one-dimensional domain Ω1 =
(0, 10π). In Fig. 4 (a) and (b), the rainfall a = 0.66 and a = 0.7 are smaller than smallest rainfall a = 0.9
supporting a uniform steady state, which implies that patterned vegetation states could exist with much 
smaller amount of rainfall. Fig. 4 (a) slows a spike layer solution for the plant concentrating on one of the 
end points which corresponds to the least energy solution discussed above. When the rainfall increases, the 
number of plant concentration areas (patches) also increases (see Fig. 4 (b), (c) and (d)).

Fig. 5 shows the profile of the spatial patterns for varying rainfall a in a two-dimensional domain Ω2 =
(0, 10π) × (0, 10π). Again when the rainfall a is near the threshold (a = 0.502 in Fig. 5 (a)), slow plant 
diffusion and fast water diffusion can support a vegetation state with vegetation concentrating on a small 
area, and the solution is a quarter spike concentrating at a corner of the square. When the rainfall increases, 
the spatial pattern becomes to spots, labyrinth and gaps (see Fig. 5 (b), (c) and (d)).
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Fig. 5. Patterned plant distribution in (1.2) with m = 0.45, d1 = 80, d2 = 1 and Ω2 = (0, 10π) × (0, 10π). Here, blue color area is 
bare soil (B = 0) and red color area is high vegetation concentration (B > 0).
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Appendix A. Direction of the pitchfork bifurcation

Setting u = W − m
B+

, v = B − B+, system (1.2) can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= d1Δu + a −

(
u + m

B+

)
(v + B+)2 −

(
u + m

B+

)
, in Ω, t > 0,

∂v

∂t
= d2Δv +

(
u + m

B+

)
(v + B+)2 − m(v + B+), in Ω, t > 0,

∂u

∂ν
= ∂v

∂ν
= 0, on ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, in Ω.

(A.1)

Then the positive constant steady state (W, B) = ( m
B+

, B+) of model (1.2) turns to the one (u, v) = (0, 0)
of model (A.1). Here,

B+ = B+(a) := a +
√

a2 − 4m2

2m
. (A.2)

The corresponding steady state system of (A.1) is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−d1Δu = a −
(

u + m

B+

)
(v + B+)2 −

(
u + m

B+

)
, in Ω,

−d2Δv =
(

u + m

B+

)
(v + B+)2 − m(v + B+), in Ω,

ux(x, t) = vx(x, t) = 0, on ∂Ω.

(A.3)

According to [13,47], we have the following lemma.

Lemma A.1. Suppose that the conditions of Theorem 2.7 are satisfied at a = a0 := aS
j . Then the steady state 

bifurcation of model (2.1) is always pitchfork bifurcation, i.e. a′(0) = 0; the bifurcation are supercritical 
bifurcations if a′′(0) > 0 and subcritical bifurcations if a′′(0) < 0.
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Proof. For system (1.2), define a mapping G(a, u, v) by

G(a, u, v) :=
(

d1uxx + f(a, u, v)
d2vxx + g(a, u, v)

)
, (A.4)

with

f(a, u, v) = a −
(

u + m

B+

)
(v + B+)2 −

(
u + m

B+

)
,

g(a, u, v) =
(

u + m

B+

)
(v + B+)2 − m(v + B+).

Then G : R+ × Z0 → Y is Fréchet differentiable, and at a constant steady state (W+, B+), the linearized 
operator at (a0, 0, 0) is

L(a0) :=
(

−1 − B2
+(a0) + d1Δ −2m

B2
+(a0) m + d2Δ

)
.

Assume

q = (α, β) :=
(

1,
B2

+(a0)
μjd2 − m

)T

,

q∗ = (α∗, β∗) :=
(m − μjd2

2m
, 1

)T

.

(A.5)

Then for j ∈ N, we have Lj(a0)(α, β)T ϕj(x) = 0, and L∗
j (a0)(α∗, β∗)T ϕj(x) = 0, where

Lj(a0) :=
(

−1 − B2
+(a0) − d1μj −2m

B2
+(a0) m − d2μj

)
, (A.6)

and L∗
j (a0) is the adjoint operator of Lj(a0). According to Theorem 2.7, near the bifurcation point (aS

j , 0, 0)
the set of positive solutions of (A.3) can be parameterized as

Γ′
j = {(aj(s), u(s), v(s)) : s ∈ (0, ε)},

with aj(0) = aS
j , u(s) = sαϕj + sϕ1,j(s), v(s) = sβϕj + sϕ2,j(s), ϕ1,j(0) = ϕ2,j(0) = 0, ϕ1,j(s) and ϕ2,j(s)

are differentiable functions defined by ϕ1,j, ϕ2,j : [0, ε) → Z1, where Z1 = {(u, v) ∈ Z0 :
∫

Ω[(d2μj − m)u +
B2

+(aS
j )v]ϕjdx = 0} is a subspace of Z0 complement to span{(φ0, ψ0)}.

From [47],

a′(0) = −
〈ζ, G(u,v),(u,v)[q, q]〉

2〈ζ, Ga(u,v)[q, q] ,

where ζ ∈ Y ∗ satisfying N (ζ) = R(L(a0)) and the function ζ is given by

〈ζ, (p1, p2)〉 =
∫
Ω

(d−1
1 α∗p1 + d−1

2 β∗p2)ϕj(x)dx,

for (p1, p2) ∈ Y . Then
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〈ζ, G(u,v),(u,v)[q, q]〉 =
∫
Ω

G(u,v),(u,v)[q, q] · pdx, (A.7)

where p = (d−1
1 α∗, d−1

2 β∗)ϕj(x). Thus,

a′(0) = −
∫

Ω G(u,v),(u,v)[q, q] · pdx

2
∫

Ω Ga(u,v)[q] · pdx
.

Direct computations show that
∫
Ω

G(u,v),(u,v)[q, q] · pdx =
∫
Ω

kjϕ3
j (x)dx,

∫
Ω

Ga(u,v)[q] · pdx =
∫
Ω

rjϕ2
j (x)dx,

where

kj = d−1
1 α∗(fuuα2 + 2fuvαβ + fvvβ2) + d−1

2 β∗(guuα2 + 2guvαβ + gvvβ2),

rj = d−1
1 α∗(fauα + favβ) + d−1

2 β∗(gauα + gavβ).
(A.8)

Here, all the partial derivatives of f and g are calculated at (a0, 0, 0). Hence, a′(0) = 0 and the bifurcation 
is a pitchfork bifurcation.

Thus, the sign of a′′(0) is needed to determine the direction of the pitchfork bifurcation. According to 
[47], a′′(0) is given by

a′′(0) = −
〈ζ, G(u,v),(u,v),(u,v)[q, q, q]〉 + 3〈ζ, G(u,v),(u,v)[q, θ]〉

2〈ζ, Ga(u,v)[q]〉 , (A.9)

where θ is the solution of

G(u,v),(u,v)[q, q] + G(u,v)[θ] = 0. (A.10)

Similarly to (A.7), we have

a′′(0) = −
∫

Ω G(u,v),(u,v),(u,v)[q, q, q] · pdx + 3
∫

Ω G(u,v),(u,v)[q, θ] · pdx

3
∫

Ω Ga(u,v)[q] · pdx
. (A.11)

Direct calculation shows that [13]
∫
Ω

G(u,v),(u,v),(u,v)[q, q, q] · pdx =
∫
Ω

sjϕ4
j (x)dx,

∫
Ω

G(u,v),(u,v)[q, θ] · pdx =
∫
Ω

t1
jϕ2

j (x)dx +
∫
Ω

t2
jϕ4

j (x)dx,

where

sj =d−1
1 α∗(fuuuα3 + 3fuuvα2β + 3fuvvαβ2 + fvvvβ3)

+ d−1
2 β∗(guuuα3 + 3guuvα2β + 3guvvαβ2 + gvvvβ3),
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t1
j =d−1

1 α∗[(fuuα + fuvβ)Θ1
0 + (fuvα + fvvβ)Θ2

0] (A.12)

+ d−1
2 β∗[(guuα + guvβ)Θ1

0 + (guvα + gvvβ)Θ2
0],

t2
j =d−1

1 α∗[(fuuα + fuvβ)Θ1
j + (fuvα + fvvβ)Θ2

j ]

+ d−1
2 β∗[(guuα + guvβ)Θ1

j + (guvα + gvvβ)Θ2
j ],

with

Θ1
0 = θ1

0 − θ1
2j , Θ2

0 = θ2
0 − θ2

2j , Θ1
j = 2θ1

2j , Θ2
j = 2θ2

2j .

Here,

θ =
∞∑

m=0

(
θ1

m

θ2
m

)
ϕm(x)

satisfies the equation (A.10) and (θ1
m, θ2

m) = (0, 0) for all odd m, and

(
θ1

0
θ2

0

)
= 1

2D0

(
gv(fuuα2 + 2fuvαβ + fvvβ2) − fv(guuα2 + 2guvαβ + gvvβ2)
fu(guuα2 + 2guvαβ + gvvβ2) − gu(fuuα2 + 2fuvαβ + fvvβ2)

)
,

(
θ1

2j

θ2
2j

)
= 1

2D2j

(
(gv − 4d2j2

l2 )(fuuα2 + 2fuvαβ + fvvβ2) − fv(guuα2 + 2guvαβ + gvvβ2)

(fu − 4d1j2

l2 )(guuα2 + 2guvαβ + gvvβ2) − gu(fuuα2 + 2fuvαβ + fvvβ2)

)
,

where D0, D2j are the determinants of L0(a0) and L2j(a0). Hence,

a′′(0) = −
sj + 4t1

j + 3t2
j

4rj
. (A.13)

Note that B+(a0) = a0+
√

a2
0−4m2

2m , B′
+(a0) = a0+

√
a2

0−4m2

2m
√

a2
0−4m2 , and

fu = −B2
+(a0) − 1, fv = −2m, gu = B2

+(a0), gv = m,

fau = −2B+(a0)B′
+(a0), fav = 0, gau = 2B+(a0)B′

+(a0), gav = 0,

fuu = 0, fuv = −2B+(a0), fvv = − 2m

B+(a0) ,

guu = 0, guv = 2B+(a0), gvv = 2m

B+(a0) ,

fuuu = 0, fuuv = 0, fuvv = −2, fvvv = 0,

guuu = 0, guuv = 0, guvv = 2, gvvv = 0.

Substituting rj , sj , t1
j and t2

j into (A.13), we have

sgn{a′′(0)} = −sgn
{

3β2 + βB+(a0)(4Θ1
0 + 3Θ1

j ) +
(

B+(a0) + βm

B+(a0)

)
(4Θ2

0 + 3Θ2
j )

}
, (A.14)

where
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4Θ1
0 + 3Θ1

j =
(

4B+(a0)αβ + 2m

B+(a0)β2
)(2m

D0
+

m + 4d2j2

l2

D2j

)
,

4Θ2
0 + 3Θ2

j =
(

4B+(a0)αβ + 2m

B+(a0)β2
)(

− 2
D0

−
1 + 4d1j2

l2

D2j

)
. �
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