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cGAIL: Conditional Generative Adversarial Imitation Learning
—An Application in Taxi Drivers’ Strategy Learning

Xin Zhang, Yanhua Li, Xun Zhou and Jun Luo

Abstract—Smart passenger-seeking strategies employed by taxi drivers contribute not only to drivers’ incomes, but also higher quality
of service passengers received. Therefore, understanding taxi drivers’ behaviors and learning the good passenger-seeking strategies
are crucial to boost taxi drivers’ well-being and public transportation quality of service. However, we observe that drivers’ preferences of
choosing which area to find the next passenger are diverse and dynamic across locations and drivers. It is hard to learn the
location-dependent preferences given the partial data (i.e., an individual driver’s trajectory may not cover all locations). In this paper, we
make the first attempt to develop conditional generative adversarial imitation learning (cGAIL) model, as a unifying collective inverse
reinforcement learning framework that learns the driver’s decision-making preferences and policies by transferring knowledge across
taxi driver agents and across locations. Our evaluation results on three months of taxi GPS trajectory data in Shenzhen, China,
demonstrate that the driver’s preferences and policies learned from cGAIL are on average 36.2% more accurate than those learned
from other state-of-the-art baseline approaches.

Index Terms—Urban Computing, Inverse Reinforcement Learning, Generative Adversarial Imitation Learning
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1 INTRODUCTION

TAXI service plays an important role in the public trans-
portation systems and is an indispensable part for

modern life. It not only provides a convenient way of
transportation, but also creates a large number of jobs that
support many drivers’ families. Therefore, improving taxi
operation efficiency is both a public management matter
that imposes influences on the urban transportation and a
business problem for each taxi driver. In the traditional taxi
operation model when a taxi is vacant, the taxi driver is
making a sequence of decisions on which directions to go to
find the next passengers. A taxi driver may consider various
factors when making such decisions, for example, the traffic
condition and estimated travel demand in the surrounding
areas, given the current location and time. Moreover, differ-
ent drivers are likely to have different preferences over these
decision-making factors, which ultimately lead to divergent
business efficiencies and income levels. Hence, it is valuable
to unveil the good strategies from those expert taxi drivers,
and by sharing such knowledge, to boost taxi driver’s
business efficiencies and public transportation quality.

Inverse reinforcement learning (IRL) [1]–[7] is typically
used as a solution to characterize such unique decision-
making preferences of individual drivers. IRL learns a pref-
erence vector to represent the significance of each factor
to the driver. It is commonly assumed that the learned
preference vector by IRL is inherent to the taxi driver and
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Fig. 1: Diverse driver preferences across regions.
invariant across different geographical regions. Therefore, it
can be used to estimate the decision-making policy of the
driver in any region.

However, we found through analysis on real taxi GPS
trajectory data that this is not true. The preference vectors
of taxi drivers hinge significantly over different locations.
Fig 1 shows the trajectory coverage of a selected taxi driver
in Shenzhen, China. The driver’s home location is marked
on the map. We use MaxEnt IRL [4] approach to learn
a preference vector based on the driver’s GPS trajectories
from the west and the east part of Shenzhen respectively1.
Three decision-making features were considered, including
the time from work started (i.e., working duration), traffic
speed (indicating traffic condition), and visitation frequency
(indicating the popularity) of the surrounding area of the
current location. The table on the top-right suggests that
the same driver exhibits drastically different preferences
towards the same factors while driving in the two different
sides of the city: (i) When the driver is on the east part, she
prefers later working time, i.e., close to the end of a day’s
work, since it is close to her home. However the preference

1. We model the taxi drivers’ passenger seeking process as a Markov
decision process (MDP). See details in Sec 4.
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is the opposite when she is working in the west part of
the city; (ii) The driver prefers regions with higher driving
speed on the east part to avoid traffic, but prefers low
driving speed areas in the west part to increase the chance
of finding a passenger since it is primarily rural areas; (iii)
The driver prefers less popular areas in the east (downtown)
part due to congested traffic, but prefers the opposite in the
west area (i.e., rural areas).

The above phenomenon are common in taxi trajec-
tory data, where the histogram in Fig 1 shows that most
(90%) drivers have significant preference difference (in L∞-
norm) across locations. Hence, in reality, the human (driver)
agents’ preferences are dynamic and dependent on geo-
graphic locations. Assuming such preferences spatially in-
variant makes the results of IRL less accurate and might
lead to infeasible policies being generated. Alternatively, a
better solution is to learn location-dependent preferences of
each driver. Unfortunately, this task is hard for traditional
IRL approaches [1]–[6] because the data for each driver
might only cover part of the city, making it hard to infer
the driver’s preferences in the rest of the areas.

In this paper we tackle the above challenge and pro-
pose a novel solution. Our observation is that all the taxi
drivers (as a group) would have significantly higher data
coverage over geographical regions compared to an individ-
ual driver, and many taxi drivers share common decision-
making preferences. Built upon these observations, in this
paper, we make the first attempt to develop conditional gen-
erative adversarial imitation learning (cGAIL2) model, that
learns drivers’ decision-making preferences and policies by
transferring knowledge across taxi driver agents and across
locations. Our contributions are summarized as follows:
• We formulate the passenger-seeking problem as a

Markov Decision Process (MDP) and extract vari-
ous decision-making features that the drivers evaluate
when making decisions, such as travel demand and
traffic speed (Sec 4).

• We develop a novel conditional generative imitation
learning (cGAIL) model to collectively and inversely
learn the driver’s decision-making preferences and
policies by transferring knowledge across taxi driver
agents and across locations (Sec 5).

• We validate our framework using a unique dataset
from Shenzhen, China, with three months of taxi GPS
trajectory data. Results demonstrate that the policies
learned from cGAIL are on average 36.2% more ac-
curate than those learned from other state-of-the-art
baseline approaches (Sec 6).

• Compared with the preliminary version of this work
in [8], we have i) introduced various inverse reinforce-
ment learning approaches, highlighted their limitations,
to motivate our design of cGAIL in Sec 5.2; ii) provided
more comprehensive experimental results, to evaluate
how various system parameters impact the learning
performances (in Sec 6.6); with case studies to explain
what practical factors impact the comparison results
between our proposed cGAIL vs GAIL (in Sec 6.7);
iii) provided more comprehensive discussion of related
works in both Urban Computing area and Inverse Re-

2. A preliminary version of the results in this paper appeared in [8].

inforcement Learning fields, and clearly distinguished
our work from these works in Sec 7. We have made our
code and unique dataset available to contribute to the re-
search community at https://github.com/XinZhang525/
cGAIL.

2 OVERVIEW
In this section, we introduce our dataset, define collective
inverse preference learning problem, and outline the solution
framework.

2.1 Data Description
We use two datasets for our study, including (1) taxi trajec-
tory data and (2) road map data. For consistency, all these
datasets are aligned with the same time period.
Taxi trajectory data. We use taxi trajectory dataset in July,
August and September, 2016 in Shenzhen, China. This
dataset contains GPS records from 17,877 unique taxis. Each
of these taxis was equipped with a GPS set allowing them
to generate GPS records in roughly every 30 seconds. This
yields a total of 51,485,760 GPS records on a daily basis.
Every GPS record holds five attributes, including a unique
plate ID, longitude, latitude, time stamp and passenger
indicator. The passenger indicator is a binary value with
1 indicating a passenger on board, and 0 otherwise. A
sequence of GPS records forms a trajectory.
Road map data. The road map data of Shenzhen is obtained
from OpenStreetMap [9], covering an area from 22.44°N
to 22.87°N in latitude and from 113.75°E to 114.65°E in
longitude. There are 455, 944 road segments in the datasets
with six road levels, such as primary road, secondary road,
tertiary road, trunk road, motorway, and unclassified road.

2.2 Problem Definition
We denote each driver as d, and the set of all drivers as
D. Taxis equipped with GPS sets generate GPS records over
time. Each GPS point p consists of a location in latitude lat
and longitude lng, and a time stamp t, i.e., p = 〈lat, lng, t〉.
Below, we define a trajectory of a taxi as a sequence of GPS
records.
Definition 1 (Trajectory tr) A trajectory tr is a sequence
of spatio-temporal points, when the taxi is vacant and the
driver is looking for passengers, e.g., starting from drop-
ping off the last passenger to the next passenger aboard.
Therefore, a trajectory can be denoted as tr = {p1, · · · , pn0}
(n0 is the length of trajectory tr). Each taxi driver d has a
collection of GPS trajectories over time. We denote the set of
trajectories generated by a driver d ∈ D as Trd. Hence, we
have Trd = {trd,1, · · · , trd,md}, with md as the number of
trajectories from d.

Note that we focus on drivers’ “seeking” trajecto-
ries, demonstrating the drivers’ decision-making behaviors,
when looking for passengers. We ignore the trajectories
with passengers aboard, since drivers do not make strate-
gic decisions except for heading towards the passenger’s
destination. As a result, the data captures a sequence of
decisions made by the taxi driver on which direction a to
go from the current state s (i.e., where the taxi is and what
time it is in a day) to look for passengers. Hence, the taxi
driver’s passenger-seeking strategy can be characterized
by two inherent functions with driver (formally defined
below): (i) reward function (evaluating how effective a next
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Fig. 2: Solution Framework.

action is) and (i) policy function (likelihood of choosing a
particular action).
Definition 2 (Reward function R). Given the current state
(e.g., location and time of day) s, the driver of a vacant
taxi chooses an action a (e.g., go east or west) based on
her own evaluation of the expected reward (e.g., revenue in
the next hour) of such a move. In other words, each taxi
driver is (implicitly) following a unique reward function
when making decisions. Denote such a function as R(s, a|d)
for d ∈ D.

Such a reward function (in general a non-linear function)
governs which direction a the driver will follow, since
drivers are intrinsically pursuing higher reward over time.
Each driver’s reward function might be unique due to
different knowledge and driving habits. The underlying
patterns of direction choice is characterized as a driver
policy function as defined below.
Definition 3 (Policy function π). A policy function π(a|s, d)
of a taxi driver d ∈ D characterizes the probability distribu-
tion for d to choose action a given the current state s.

Here again, an action is a driver’s driving behavior such
as driving towards a particular direction, and we denote the
set of all possible actions as A. Given a driver d and a state
s, π(·|s, d) gives the likelihood over all actions a ∈ A that
the target driver is likely to take. For example, when a driver
d’s state s is “in the middle of 3rd Ave., which is along the
east-west direction, at 3PM”, the policy function π(·|s, d) =
{p(East) = 0.3, p(West) = 0.7} means the driver d under
such a situation has 30% chance to choose to go east, while
70% chance to go west.

Now we are ready to formally define our problem as
below.
Collective inverse preference learning Problem. Given tra-
jectories Trd collected from a group of taxi drivers D = {d},
we aim to learn a unifying model to inversely and jointly
learn the policy π(a|s, d) and reward function R(s, a|d) for
all drivers d ∈ D.
Challenges. This problem is challenging in two aspects: i) a
driver’s reward and policy functions are location dependent
(as observed in Fig 1). Therefore it is challenging to recover
the two functions for areas without the target driver’s
demonstration data; ii) drivers possess diverse reward and
policy functions, thus how to develop a unifying model to
capture individual driver’s reward and policy functions pre-
cisely is challenging. Next, we outline our solution frame-
work to tackle the two challenges and solve the proposed
collective inverse preference learning problem.

2.3 Solution Framework
Figure 2 outlines our proposed solution framework. It takes
road map and taxi GPS data as input and consists of three
main components: (i) Stage 1 - data preparation, which parti-
tions the urban area into equal-size grid cells, aggregates
taxi drivers’ GPS records in grid cell level, and extracts
decision-making features from them; (ii) Stage 2 - data-
driven modeling, which models taxi driver’s trips as Markov
decision processes (MDPs); (iii) Stage 3 - conditional inverse
preference learning, where we develop a novel conditional
generative adversarial imitation learning (cGAIL) algorithm
to learn taxi driver’s policy function and reward function.

3 STAGE 1 - DATA PREPARATION
3.1 Map Gridding and Time Quantization.
Map griding. For the ease of analyzing taxi drivers’
decision-making behaviors, we partition the city into small
equal side-length grid cells [10], [11] with pre-defined side-
length b = 0.01◦. It leads to 1, 934 grid cells connected by
road network (See Fig 3). We denote each grid cell as gi, with
1 ≤ i ≤ 1, 934, and the complete grid cell set as G = {gi}.
Time quantization. We further divide the time in a day into
five-minutes intervals, i.e., 288 time slots a day, denoted as
I = {t̃j}, with 1 ≤ j ≤ 288.

3.2 Trajectory Aggregation
A combination of a grid cell gi, time interval t̃j , and the day
of the week day, uniquely defines a spatio-temporal state,
or state in short. Each GPS record p = 〈lat, lng, t〉 can thus
be represented as an aggregated state s = 〈g, t̃, day〉, where
the location (lat, lng) ∈ g, the time stamp t ∈ t̃, and day
indicates the day of the week. Similarly, we can aggregate
taxi trajectories into state level sequences. Each of taxi driver
d’s trajectories tr ∈ Trd defined in section 2.2 can then be
mapped as sequences of spatio-temporal states s, and the
set of d’s trajectories can be denoted by Td:

τ = {s1, · · · , sn′},
Td = {τ1, · · · , τmd},

(1)

where n′ is the length of a trajectory in states, and md is the
number of trajectories of driver d.

3.3 Decision-Making Feature Extraction
Taxi drivers consider various factors (features) of the cur-
rent “state” (i.e., where the taxi is and what time it is
in a day), when making decisions of which direction to
go to look for passengers. In this section, we extract and
summarize all such features (denoted as a feature vector
f ) into two categories below, namely, state features fs, which
characterizes various statistics of the state from the historical
data and condition features fc, which captures the features of
the current state with respect to the driver’s profile, e.g.,
home location, etc. Clearly, f = [fs, fc]. All of the state and
condition features were extracted from historical taxi GPS
trajectory data from 07/2016 to 09/2016 in Shenzhen, China.
State features fs. When a taxi driver d is at a certain
state s = 〈g, t̃, day〉, the driver considers a list of features
associated with the state s to make a decision, including
three categories (fs = [fT, fM, fD]) as traffic features fT,
temporal features fM and PoI distance features fD. We detail
all these state features below.
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Fig. 3: Distribution of places of interests (PoIs).

Traffic features (fT): This category include four features rep-
resenting the traffic status of the state s from the historical
data, including travel demand fT,1, traffic volume fT,2,
traffic speed fT,3, and waiting time fT,4. Travel demand fT,1
captures the average number of requests for taxi pickups
of the state s in the historical data. Traffic volume fT,2
represents the average number of taxis in a state s from the
historical data. It shows how congested a state is. A higher
traffic volume is likely to be an evidence of heavy traffic,
and a lower one is likely to show a light traffic. Traffic speed
fT,3 estimates the average speed of all trajectories passing a
state s in the historical data. Low traffic speed indicates that
s is likely to be under traffic congestion. Waiting time fT,4
captures the average time a taxi stays in the target state s
from the historical taxi trajectory data.
Temporal features (fM): This category includes the time of
the day fM,1 and the day of the week fM,2 for the target
state s.
Distance to places of interests (PoIs) (fD): There are 23 fea-
tures [fD,1, · · · , fD,23] in this category, which characterize
the distances in kilometers from the location of state s to 23
places of interests in Shenzhen, including 5 train stations,
1 airport, 5 popular shopping malls, 8 ports and checking
points, and 4 major hospitals.
Fig 3 shows the geodistribution of 23 places of interests for
fD,1 to fD,23.
Condition features fc. Condition features fc consist of
four driver-related features serving as driver identity and
a location identifier. Each driver is identified by his/her
home location, working schedule and experience. A location
identifier is a target grid cell g.
Home location (fc,1): Each driver’s home location can be
extracted from their GPS records. Different drivers have
different preferences to work closer vs far away to the
home location. This feature characterizes the distance in
kilometers from the current state location to the driver’s
home location.
Working schedule (fc,2 and fc,3): Each driver has her own
unique working schedule. This feature consists of time dif-
ferences of current state s from the driver’s average starting
time and to the ending time.
Familiarity (fc,4): This feature captures the average visita-
tions of the driver to the current state s from the historical
data. It indicates how familiar the driver is to this particular
region.
Location identifier (`): Each location is a specific grid g ∈ G
in the partitioned road map of the city.

4 STAGE 2 - DATA-DRIVEN MODELING
Taxi drivers make a sequence of decisions on which direc-
tion to go to find the next passenger. In this section, we
review the Markov Decision Process (MDP), and elaborate
on how to model taxi drivers’ decision-making processes as
MDPs.

4.1 Markov Decision Process (MDP)
Markov decision processes (MDPs) [12] provides a mathe-
matical framework to model stochastic decision making pro-
cesses. An MDP includes an agent as the decision maker and
the environment that interacts with the agent. Each MDP
contains five elements forming a 5-tuple 〈S,A, P,R, γ〉:
• S is a set of states, and A is a set of actions;
• P is the transition probability with P (s′|s, a) as the

probability of reaching state s′ by taking action a at
state s;

• R : S × A 7→ R is the reward function that outputs
scores for a given state-action pair;

• γ ∈ [0, 1] is the discount factor informing importance
difference between future and present rewards.

The agent of an MDP starts from an initial state s0 ∈ S
and makes an action a ∈ A following his/her policy π.
A policy specifies a probability distribution on actions to
be executed in each state, defined as π : S × A 7→ [0, 1].
The action a taken at state s leads to the transition to the
next state s′ based on the transition probability P (s′|s, a)
and receives a reward under the reward function R(s, a).
Continuing along this process generates a sequence of state-
action pairs which we refer to as a trajectory3. We use
τ = [(s0, a0), (s1, a1), ..., (sL, aL)] to denote a trajectory
generated by an agent over an MDP, where L is trajectory
length. Without loss of generality, we set γ = 1 in this work.
The problem of MDP aims at finding a policy π, such that
the expected total reward is maximized, i.e., in eq.(2),

π∗ = arg max
π∈Π

Eπ(
T∑
t=0

γtR(st, at)|s0 ∼ µ0), (2)

where st and at are random variables for the state and action
at the time step t, and T ∈ R∪{∞} is the time horizon. The
initial state s0 follows the initial distribution µ0 : S 7→ [0, 1].
Here, Π is the memory-less policy space.

4.2 Modeling Taxi Driver’s Decision Making with MDP
We consider each taxi driver as an “agent”. When looking
for passengers, the driver keeps evaluating various features
in surrounding areas of the current spatio-temporal region
s, based on which the driver decides which direction to
go to find the passengers. This whole process consisting
of a sequence of decisions from the driver forms a trajec-
tory. Each taxi driver aims to maximize the total received
“reward” along the trajectory. As a result, the driver’s
passenger-seeking process can be naturally modelled as an
MDP. Below, we explain how each component in an MDP is
mapped and extracted from taxi trajectory data.
Agent: Each taxi driver d is considered as a unique agent.
Different drivers have different reward functions.

3. In this paper we use “trajectory” to refer to both the physical GPS
trace of a taxi and the state-action pairs of a driver in the MDP model
because each physical “trajectory” can be mapped to a certain sequence
of state-action pairs so the two concepts are equivalent in our problem.
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State set S : Each state s ∈ S is a spatio-temporal region,
denoted as 〈g, t̃, day〉 as illustrated in Sec 3. Map griding
partitions the road map into 1, 934 grid cells, and each day
is divided into 288 5-minutes intervals with seven days a
week. As a result, the state space size is 1, 934 × 288 × 7 =
3, 898, 944.
Action set A: An action a ∈ A denotes a direction to
go when looking for passengers. We consider nine actions
that an agent can take, including moving to one of the
eight neighboring grid cells as an action, and staying at the
current action.
Transition probability function P : S ×A 7→ [0, 1]: Clearly,
transitions in this MDP are deterministic, namely, an action
will surely lead the agent to the corresponding next grid
cell.
RewardR : S×A 7→ R: A reward functionR(s, a) measures
the reward a driver obtains by taking a direction (action)
a from state s. Since a driver agent aims to maximize the
total expected reward, the reward function governs how
the driver chooses the next directions to go to. R(s, a) is in
general a non-linear function of the features associated with
the surrounding regions of state s. In our study, R(s, a) is
unknown and is to be learned from the driver’s historical
trajectory data.
Policy function π : S × A 7→ [0, 1]: A policy function
π(a|s, d) defines the probability of choosing a direction
action a ∈ A at the current state s. Taking the features of
a state s and the driver id d as input, a policy function
randomly outputs a direction a ∈ A from the driver’s policy
distribution. In our study, the policy function (as a non-
linear function in general) is to be learned from the driver’s
trajectories.

5 STAGE 3 - CONDITIONAL GENERATIVE ADVER-
SARIAL IMITATION LEARNING
With the MDP modeling for taxi driver decision-making
process, we are in a position to investigate how we may
learn the policy and reward functions of each individual
driver (agent) from their demonstrated trajectory data, with
which we can further quantify and predict their passenger-
seeking behaviors accurately. To achieve this goal, we need
to answer two questions below:
Q1 (Reward/Policy Function Learning): For each individual
driver agent, how to inversely learn the reward/policy
function from the demonstrated trajectory data?
Q2 (Function Transferability across Locations and Agents): How
to learn the reward/policy functions for agents that are
transferable across locations and agents?

To answer Q1, we introduce the state-of-the-art inverse
reinforcement learning, IRL (with linear function assump-
tion) and generative adversarial imitation learning, GAIL
(for non-linear functions) in Sec 5.1. For Q2, we develop a
novel conditional generative adversarial imitation learning,
cGAIL, in Sec 5.2. The proposed cGAIL model is a unify-
ing inverse learning model that allows knowledge transfer
across taxi driver agents and across locations.
5.1 Learning Reward/Policy functions with IRL and
GAIL
User choice modeling has been extensively studied in the
literature aiming to learn human agents’ decision-making
reward and policy functions from data they generated [4],

[6], [13]–[16], where inverse reinforcement learning (IRL) [1]
models assume linear reward function, and GAIL [6] learns
general non-linear reward function. We briefly introduce
both below, and highlight their limitations on the trans-
ferability across locations and agents. Built upon these ap-
proaches, we will propose our cGAIL model in Sec 5.2.
IRL with linear reward function assumption. Given the
observed trajectory data set T from a driver agent and the
features, f = [fs, fc], various IRL approaches have been
proposed to inversely learn the agent’s reward function,
such as Apprenticeship learning [2], Maximum Entropy
IRL [4], Maximum Causal Entropy IRL [3], and Relative
Entropy IRL [5]. They all share the same principle and goal
of recovering a linear reward function of the agent under
which the observed trajectories have the highest likelihood
to be generated. Below, we use Maximum Causal Entropy
(MaxCausalEnt) IRL [3] as an example to illustrate the prob-
lem formulation (where other IRL approaches [4], [6], [13]–
[16] share a common framework, and we omit the details
for brevity4),

max
πθ

:H(πθ), (3)

s.t.: Eπθ
[Rθ(s, a)] = ẼπE [Rθ(s, a)], ∀s, a ∈ S,A, (4)∑

a

πθ(s, a) = 1, ∀s ∈ S, (5)

where H(πθ) = −
∑
s∈S

∑
a∈ADπθ

(s, a) lnπθ(a|s) is the
total causal entropy5 induced by a policy πθ , which mea-
sures the uncertainty present in the (causally conditioned)
trajectory data distribution; Eπθ

[Rθ(s, a)] and ẼπE [Rθ(s, a)]
are the expected reward over a state-action pair (s, a) in-
duced by a policy πθ and by the empirical data T , re-
spectively. The reward function Rθ(s, a) = θ> · f(s, a) is
a linear combination of a reward (weight) vector and the
feature vector f(s, a) at state-action pair (s, a). It is proven
that the reward function (i.e., vector) θ and the policy πθ
in the above IRL problem can be optimally solved with
maximum likelihood estimation (MLE). However, the linear
assumption of reward function is in general too strong for
real world applications, where GAIL [6] (as highlighted
below) was proposed to extend the linear reward function
in IRL approaches to non-linear fashion using deep neural
networks.
GAIL for general non-linear reward function. Generative
adversarial imitation learning (GAIL) [6] naturally extends
the IRL formulation (presented in eq.(3)–(5)) by a non-linear
reward function R(s, a), and a non-linear policy function
π(a|s) both using deep neural networks. The generalization
was made by the following connections.

First, MaxCausalEnt IRL (in eq.(3)–(5)) can be rewritten
as eq.(6) below (See eq.(1) in [6]), by rewriting the con-
straints into the objective function6:

max
R

(
min
π
−H(π)− Eπ[R(s, a)]

)
+ EπE [R(s, a)]. (6)

4. Note that IRL approaches [2]–[5] share the common formulation in
eq.(3)-(5), with various forms of H(π), Eπ [R(s, a)], and ẼπE [R(s, a)].

5. Dπθ (s, a) is the visitation frequency at (s, a) under πθ . Please see
more details in [3].

6. Note that in eq.(1) in [6], authors use cost function c(s, a) : S×A 7→
(0, 1) (indicating the cost of taking (s, a)). We in this work use reward
R(s, a), equivalent to R(s, a) = 1− c(s, a) for clarity.
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In large-scale real world problems, with a large amount of
demonstration data, GAIL introduces a regularizer function
ψ(R) to avoid overfitting, which leads to eq.(7),

max
R

ψ(R) +
(

min
π
−H(π)− Eπ[R(s, a)]

)
+ EπE [R(s, a)].

(7)
It was proven in [6] that when the function ψ(R) is prop-
erly chosen, the dual problem of eq.(7) is equivalent to
minimizing the Jensen-Shannon (JS) divergence between the
trajectory distribution induced by obtained π and empirical
πE (from T ), namely, eq.(6) becomes7

min
π

−λH(π) +DJS(π, πE), with (8)

DJS(π, πE) = max
R

EπE [ln(R(s, a))] + Eπ[ln(1−R(s, a))],

with λ ≥ 0 as the Lagrangian multiplier introduced in
deriving the IRL dual problem [6]. Clearly, DJS(π, πE) is
the JS-divergence. As a result, The problem in eq.(8) can
be tackled using generative adversarial networks (GAN)
model [17], where the policy function π(a|s) and reward
function R(s, a) are the generator network and discrim-
inator network, respectively. Hence, GAIL model applies
to each individual driver agent to extract the policy and
reward function. Given that the driver’s reward function
is location dependent in Fig 1, GAIL cannot model the
reward function on locations where the driver have never
visited from the demonstrated trajectory data. Moreover,
for each individual driver agent, a separate GAN model
needs to be trained, thus no knowledge is shared across
driver agents. To tackle these problems (namely, answering
Q2), we proposed a novel conditional generative adversarial
imitation learning (cGAIL) model below.

5.2 Conditional Generative Adversarial Imitation
Learning
There are two ideas behind cGAIL design: First, each indi-
vidual driver agent covers partly the state (spatio-temporal
regions) and action (directions to go) space in the underlying
MDP, but the trajectories from all driver agents collectively
provide a better coverage of states and actions; Second,
driver agents share commonalities of their reward functions,
e.g., some drivers may possess similar reward functions
due to their common profiles (in ages, home locations,
etc), thus their trajectories can be reused to infer reward
functions of each other. To summarize, i) knowledge learned
from trajectories of different driver agents is transferable
across driver agents (referred to as agent transferability); ii)
knowledge learned from trajectories in different geograph-
ical regions is transferable across locations (referred to as
location transferability). In this section, we will develop con-
ditional generative adversarial imitation learning (cGAIL),
a unifying collective inverse reward learning framework to
characterize drivers’ rewards and policies by transferring
knowledge across trajectories from various locations and
driver agents.

To distinguish the locations and driver agents, we define
the condition variable (vector) as a list of condition features
(as defined in Sec 3.3), i.e., c = fc = [fc,1, fc,2, fc,3, fc,4, `].
The inverse reinforcement learning problem in eq.(6) was
defined for a single agent and without location dependency,

7. Please refer to [6] for detailed proof.

Fig. 4: cGAIL model structure.
which can be extended to the following format to character-
ize location and agent transferabilities by considering it as a
minmax game under condition c.

max
R

min
π

−λH(π(·|c)) + EπE [ln (R(s, a|c))]

+ Eπ[ln (1−R(s, a|c))] + EπE [ln (1−R(s, a|c′))],
(9)

where the policy net (as the generator) π generates an action
a for an input state s given a condition c, such that (s, a)
looks “real”, i.e., as if generated by the given driver agent
and location (defined in c). Moreover, the reward net (as
the discriminator) R increases the rewards for (s, a)’s from
policy πE with the condition c, lowers down the rewards
for (s, a)’s generated from π with the condition c, and also
decreases the rewards for (s, a)’s from expert policy πE ,
but by a different condition (in driver and/or location) c′.
Below, we detail the policy net π and reward net R, and the
training algorithm for the proposed cGAIL model.
Policy network π (Generator): The policy net π takes
condition features c = fc as input, indicating the target
driver agent and the target location (grid cell) `. Moreover,
the input state features for policy net π include three parts
below:
• The traffic features fT = [fT,1, · · · , fT,4] of the current
state s (at location `) and all 24 neighboring grid cells in
`’s 5 × 5 neighborhood, N (s) = {s′1, · · · , s′24}, denoted as
[fT(s), fT(s′1), · · · , fT(s′24)].
• Temporal features of the current state s, fM(s) =
[fM,1(s), fM,2(s)], indicating the current time of the day and
the day of the week.
• POI distance features of the current state s, fD(s) =
[fD,1(s), · · · , fD,23(s)], indicating the current distances to
23 places of interests.

As a result, the input state features for s form a feature
vector fs(s) = [fT(s), fT(s′1), · · · , fT(s′24), fM(s), fD(s)]
with length of 125. Consistent with [3], [4], [6], [18], we
represent a state s by its high-dimensional features. For
notational simplicity, we use state feature vector fs(s) to
represent a state s. The output of policy net π is a dis-
tribution π(·|s) indicating the probabilities of choosing the
nine actions (directions), and a particular action direction a.
These actions will be randomly chosen based on π(·|s). Fig 4
illustrates the input and output of the policy net. Since the
input traffic features fT cover the 5× 5 neighborhood of the
target state s, which can be viewed as a local traffic map,
we employ two layers of convolutional neural network [19]
with kernel size of 3 as the network structure for policy net.
Reward network R (Discriminator): The reward network R
takes the same condition features c and state features fs(s)
from policy net, and the policy net output action a as input.
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It outputs scalars within [0, 1], indicating the reward value
of a state-action pair (s, a). Similar to policy net, we employ
two layers of convolutional neural network with kernel size
of 3 for the reward network R. For more implementation
details, please refer to our project website https://github.
com/XinZhang525/cGAIL.
cGAIL training algorithm. Alg 1 illustrates the detailed
process to train our proposed cGAIL model. During the
training process, we apply batch gradient descent approach
to update the policy network π and reward network R, with
a predefined K (i.e., the total number of epochs). The taxi
driver’s trajectories Td’s (as defined in Sec 3.1) can be broken
down into n individual triples in state features, action, and
condition features, thus forming a training set for cGAIL
as T = {(fs(s1), a1, c1), · · · , (fs(sn), an, cn)}. During each
epoch 1 ≤ i ≤ K, we sample a batch of m real data
points, as Ti = {(fs(si1), ai1, c

i
1), · · · , (fs(sim), aim, c

i
m)} ⊂ T

from the training set (Line 2). Then, we input the state and
condition features in Ti into policy network π to generate
actions ã, to construct a generated sample set denoted as
T̃i = {(fs(si1), ãi1, c

i
1), · · · , (fs(sim), ãim, c

i
m)} (Line 3). More-

over, we replace the condition features in Ti with randomly
sampled condition features from T to construct triples with
real state-action pairs coupled with mismatched conditions,
i.e., T̂i = {(fs(si1), ai1, ĉ

i
1), · · · , (fs(sim), aim, ĉ

i
m)} (Line 4).

Then, the reward network parameters θR are updated
(Line 5) by eq.(11) to maximize ṼR in eq.(10), with step size
ηR.

ṼR =
1

m

m∑
j=1

(
ln (R(fs(s

i
j), a

i
j |cij)) + ln (1−R(fs(s

i
j), ã

i
j |cij))

+ ln (1−R(fs(s
i
j), a

i
j |ĉij))

)
, (10)

θR =θR + ηR∇θR ṼR. (11)

Next, we update policy network parameters θπ by eq.(12)
to minimize Ṽπ below, with ηπ as the step size (Line 6).

Ṽπ =
m∑
j=1

( 1

m
ln (1−R(fs(s

i
j), ã

i
j |cij))− λH(π(fs(s

i
j)|cij))

)
,

θπ =θπ + ηπ∇θπ Ṽπ. (12)

Algorithm 1 cGAIL Training Process

Input: Taxi drivers’ decision-making data as state-action-
condition pairs T = {(fs(s), a, c)}. Initialize parameter
vectors θπ and θR for policy net and reward net, respec-
tively;

Output: Resulting θπ and θR.
1: for Each Epoch 1 ≤ i ≤ K do
2: Sample Ti ⊂ T ;
3: Generate T̃i from policy net π;
4: Sample/construct T̂i from T ;
5: Update θπ with Eq.11;
6: Update θR with Eq.12;
7: end for

6 EVALUATIONS
We use three months taxi trajectory data collected from
07/2016 to 09/2016 to evaluate our proposed cGAIL in
inversely learning the driver agents’ policy and reward
functions. The trajectory data contains taxi GPS traces col-
lected from 17,877 taxis, each of which generates a GPS

record every 40 seconds on average. Each GPS point records
the taxi ID, time stamp, latitude and longitude of the taxi
and a passenger indicator. The passenger indicator bears a
binary value with 1 indicating passenger on board, and 0
otherwise. These data are processed following Sec 3 for ex-
periment. Our results demonstrate that the policies learned
from cGAIL are on average 36.2% more accurate than those
learned from other state-of-the-art baseline approaches.

6.1 Evaluation Metrics
In order to measure the accuracy of the learned policy net 8

from the empirical ground-truth policy from the collected
data, we employ the Kullback-Leibler (KL) divergence and
L2-norm. KL divergence [20] measures how one distribution
P is different from a ground truth distribution Q as in eq.13,

DKL(P ||Q) = −
∑
x∈X

P (x) ln
Q(x)

P (x)
. (13)

L2-norm [21] is also called the Euclidean norm, which views
two n-dimensional policies as two points in n-dimensional
space and measures the ordinary distance from the ground
truth policy Q = (q1, · · · , qn)to the learned policyP =
(p1, · · · , pn), i.e. in eq.14,

L2(P,Q) =

√√√√ n∑
i=1

(pi − qi)2. (14)

6.2 Expert Driver Selection
In all inverse reinforcement learning (IRL) approaches [22],
a common assumption is made that the demonstrations
were collected from experts, namely, generated by the (near-
)optimal policy. As a result, we select experienced drivers
(with high earning efficiencies) from our datasets to conduct
our study. First, we quantify the expertise of taxi driver by
their Earning efficiency re, defined as re = E/tw, where
E is the total income in the sampling time span, and tw
represents the driver’s total working time in hour in the
same sampling period of three months. Based on the earning
efficiency, we define and select expert drivers with earning
efficiency ranked top 15% in 07/2016-09/2016 (with average
monthly earning efficiency above 61.5 CNY/hour). We de-
note this set of expert taxi drivers as E , and each individual
expert taxi driver as e ∈ E . Eventually, we obtained a group
of 3, 044 expert drivers for our study, out of a total of 17, 877
drivers from the data. Notice that earning efficiency is not
the only index that defines an expert. In fact, there are
multiple ways and perspectives of defining expert drivers,
for example, taxi drivers with top earnings and lowest idle
time. Considering [23], earning efficiency is likely the dom-
inant feature that characterize an expert driver. Moreover,
we observed large portion (roughly 70%) of overlapping
top drivers when ranked by earning efficiency (high to low)
and by earnings (high to low) with idle time (low to high).
These factors contribute to our choice of expert definition.
Our method is general to other definitions of experts.
Testing location selection For each expert taxi driver, we
choose 20 grid cells as testing locations. Trajectories travers-
ing these testing locations are test trajectories. The testing

8. Note that reward net and policy net are coupled in mimicking data
distributions generated from driver agents. It is sufficient to evaluate
policy net (rather than reward net) by comparing the obtained policy
to the empirical policy from the data.
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Fig. 5: Comparison with baselines
TABLE 1: Average KL divergence, L2 norm and their stan-
dard deviations calculated over 3,044 expert drivers.

cGAIL GAIL RelEnt IRL BC

Average KL 0.4953 0.6873 0.6947 0.6583
±0.1037 ±0.1558 ±0.1705 ±0.2052

Average L2
0.0118 0.0178 0.0209 0.0185
±0.0037 ±0.0053 ±0.0071 ±0.0070

locations are with high visits by the driver, say, more than
2000 visits, so we have a relatively accurate estimate of
the ground-truth policy in these grid cells. Then, we train
the cGAIL model without these testing locations, infer the
policies for these testing locations, and compare them with
the ground-truth policies.

6.3 Experiment Settings
We conduct two sets of data-driven experiments.
• Baseline methods comparison. We learn expert taxi

drivers’ policies and compare the learning accuracy to
various baseline methods, including MaxEnt IRL [4],
MaxCausalEnt IRL [3], RelEnt IRL [5], GAIL [6], and a
supervised approach BC [24] against ground truth;

• Effects of model parameters. we evaluate and examine
how the policy learning accuracy varies with different
parameters in cGAIL framework.

• Case studies. We present case studies in a few concrete
driver examples to explain why cGAIL outperforms other
baseline approaches.

6.4 Baseline Methods Comparison
When implementing cGAIL, we employ three (de-
)convolutional layers with sigmoid activation functions for
both policy net and reward net. Given the input state
features with size of 5× 5× 5, we use a kernel size of 2× 2
for the convolutional layers with padding of 1 and shrink
the channel number 1 at a layer. Similar network structures
are used for baseline method GAIL for a fair comparison.

Figure 5 shows the KL divergence and L2 norm of the
learned policies from the ground-truth policies for different
methods. We randomly choose 50 driver agents (on the
x-axis) to show the comparison results. Table 1 contains
the results of all 3,044 expert drivers in their average KL
divergence, average L2 norm and standard deviations re-
spectively. The results with MaxEnt IRL and MaxCausalEnt
IRL have poor accuracies, say, roughly 1.5–8 times of that
with cGAIL, and we ignored their results for brevity. Their
poor performances are simply due to the linear assumption
of the reward function and their inaccurate estimation of
transition probability matrix (given MaxEnt IRL and Max-
CausalEnt IRL are both model-based approaches). When
comparing to RelEnt IRL, GAIL and BC, our proposed
cGAIL still outperform them with an average of 36.2%,

Fig. 6: Learning curves of cGAIL, GAIL and RelEnt IRL.

Fig. 7: KL divergence and standard deviation change with
cold spot demonstration number.

31.1% and 34.9% reduction on KL divergence and L2 norm
distance respectively. Figure 6 shows the learning curve of
cGAIL, GAIL and RelEnt IRL, where y-axis represents the
KL divergence between learned policies and ground-truth
policies on testing locations.

6.5 Cold Spot Evaluation
For detailed evaluation on cold spots where target taxi
drivers have few visitations (with limited demonstration
numbers), we categorized these cold spots by their demon-
stration number (as the x-axis in Fig 7), estimated their
ground-truth policies, and calculated the KL divergence
between the learned policies and the ground-truth as is
shown in Fig 7. In Fig 7, the lines show the average KL
divergences, and shadows show their standard deviations,
calculated from 3,044 expert taxi drivers in cold spots with
x-axis specified demonstration number. This figure shows
that though studied models (cGAIL, GAIL, RelEnt IRL and
BC) all have high variance when learning taxi drivers’
policies in cold spots, cGAIL still outperforms baselines by
a margin of roughly 24.8% (over GAIL) in cold spots with
demonstration number less than or equal to 5.

6.6 Effects of Model Parameters
When applied to a particular target driver d and a location `,
cGAIL can precisely generate actions for various states the
driver d may encounter at `. Especially, even no trajectory
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Fig. 8: 20 testing locations of an example driver agent.
data was collected for d at `, cGAIL can still accurately
estimate d’s policy at ` by transferring knowledge from
other “supporting” drivers used in the training process.
However, given a target driver d, data from different sup-
porting drivers may have diverse abilities to assist learning
the policy of d at a location `. Intuitively, the more “similar”
the supporting drivers are to the target driver, the more
knowledge we can utilize to “support” learning the policy
of target driver d. Below, we evaluate how two similarity
measures between the target and supporting drivers and
the total number of supporting drivers affect the accuracy
of learned policy for target drivers at various locations.
We run our experiments over all expert drivers (as target
drivers separately) in the selected group E . Similar results
were obtained for all drivers, where we demonstrate the
results from a few example drivers. Fig. 8 illustrates one
example target driver, with orange grid cells as 20 testing
locations selected with the number of visits more than 2,000
times. Clearly, those highly visited locations are primarily
transport stations, airport, as marked in the figure. In the
training process, we hide the data from the 20 testing loca-
tions to train cGAIL, and compare the difference between
the learned policies and the true policies observed in the
data.
Working location overlapping ratio. This measure quanti-
fies how similar in working regions between the supporting
driver and the target driver, and is calculated by the ratio
between the overlapping working regions and the union
of all working regions of the supporting and target driver.
Fig 9a shows that as the location overlapping ratio increases
between the supporting and target drivers, the accuracy of
learned policy (in KL-divergence on the left and L2 norm
on the right) improves significantly.
Supporting driver’s familiarity to the testing locations. This
measure quantifies the number of times the supporting
driver has visited testing locations from the training data,
which indicates the familiarity of the supporting driver to
the testing location. Fig 9b shows that as the familiarity
increases, the accuracy of learned policy (in KL-divergence
on the left and L2 norm) for the target driver improves
accordingly.
Supporting driver’s policy similarity to target driver. This
parameter uses L2 norm to evaluate how similar a support-
ing driver is to the target driver when making decisions in
their common visited areas. Fig 9c shows that higher policy
similarity (in L2 norm) contributes to better cGAIL policy
inference.
The number of supporting drivers. We examined the effect
of the number of supporting drivers from 2 to 49 to the

(a) Supporting and target driver’s common locations.

(b) Supporting driver’s familiarity to test locations.

(c) Policy similarity in L2-norm.
Fig. 9: Effects of cGAIL parameters.

Fig. 10: Number of supporting drivers.

accuracy of learned policy of target driver. We randomly
choose 50 target drivers from E to reduce the randomness
of the results. For each target, we randomly choose 2 to
49 supporting drivers from E to train a cGAIL model and
evaluate the average accuracy of learned policies in 20 test-
ing locations. Fig. 10 shows the average KL-divergence and
L2-norm over the number of supporting drivers. Clearly,
more supporting drivers lead to more accurate learned
policies for target driver (with both KL-divergence and L2-
norm decreases). Moreover, when there are less than five
supporting drivers, adding an additional supporting driver
improves the learning accuracy significantly, while when
there are more than five supporting drivers, the effect of
adding additional drivers becomes smaller.
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6.7 Case Studies
Now, we further dissect how and under what circumstances,
cGAIL improves the policy learning accuracy (over GAIL),
by looking into the learned policies vs ground-truth policies
in a few representative case studies. In most (about 97%) of
the cases, our cGAIL can learn a more accurate policy than
GAIL by transferring knowledge from supporting drivers.
Under certain cases, we observe that cGAIL and GAIL both
perform well, or both perform badly. We will investigate
these cases from two aspects: the target driver’s preference
location dependency, and supporting drivers’ ability.
• To evaluate target driver’s preference location depen-

dency, we use the hypothesis testing. The hypothesis is
that the reward functions learned from MaxCausalEnt
IRL [3] (i.e., the weights of state features) are the same,
given testing data and training data. Then we do the
Wilcoxon signed rank test [25] to get the test p-value.
If the p-value is greater than 0.05, it shows the target
driver’s preference is location independent.

• To evaluate supporting drivers’ ability, we measure the
driver’s familiarity to the target location in visitation
frequency and behavior similarity to the expert in pol-
icy KL-divergence. A higher visitation frequency and
a lower policy KL indicates a more helpful supporting
driver.

We also estimated the likelihood of the four cases by
when randomly choosing a target-supporting driver pair.
We found that a large portion of cases (approximately 97%),
cGAIL outperforms GAIL. We estimated the statistics of the
target and supporting drivers belonging to the four cases as
is shown in Tab. 2 and give detailed analysis below. Below
please find more detailed explanations of the four scenarios.
When cGAIL and GAIL both perform well? Fig 11a shows
(in both probability density distribution on the left and
dimension-map on the right) an example case, where the
policies learned from cGAIL (green dashed) and GAIL (blue
dotted) both match the ground-truth policy (orange) well.
This happens because the target driver has consistent pol-
icy function over locations, namely, the policy function is
independent to locations. This is validated by the p-values
of such target drivers are high above 0.05 with an average of
0.28 as is shown in Tab. 2. Thus, without supporting drivers’
knowledge, GAIL can perform well to learn the ground-
truth policy.
When cGAIL and GAIL both perform badly? Fig 11b shows
an example case, where the policies learned from cGAIL
(green dashed) and GAIL (blue dotted) both match the
ground-truth policy (orange) poorly. Two reasons contribute
to this phenomenon. Firstly, the target driver’s policy is
highly dependent to the locations with a p-value less than
0.05. Therefore, GAIL is not capable of learning a good pol-
icy to locations not observed in the training data. Secondly,
the supporting driver is not familiar to testing location, i.e.,
only visited it 106 times. This case can be improved by
carefully choosing more supporting drivers for the target
driver.
When cGAIL outperforms GAIL? Fig 11c shows the case
where cGAIL gives better matching on ground truth policy.
This is due to the positive supports from the supporting
driver. In this case, the supporting driver is familiar to the
testing location with high visitation frequency (an average

TABLE 2: Target and supporting drivers’ characteristics
statistics, and case likelihood. The p-value > 0.05 indicates
invariant preference over locations.

p-value Visitation frequency Policy KL Likelihood
Both well 0.28 980 0.45 1.5%

Both badly 0.02 155 0.88 1.4%
cGAIL better 0.4 1,232 0.24 96.7%
GAIL better 0.14 1,326 1.22 0.4%

of 1,232 times) and acts similarly to the target driver with
similar policy in common activity regions with average
policy KL 0.24.
When GAIL outperforms cGAIL? Fig 11d shows the case
where GAIL outperforms cGAIL. This is the effect of mis-
leading knowledge from a supporting drier. In this location,
the selected supporting driver tends to have adequate expe-
rience driving in the test location (1,326 visits). However, the
supporting drivers behave differently from the target driver
with an average policy KL to the target driver of 1.22. This
introduces misleading information to the inference of target
driver’s policy. This case shows the importance of careful
supporting driver selection in application.

7 RELATED WORK
In this section, we summarize the literature works in two
related areas to our study: 1) urban computing, and 2)
inverse reinforcement learning.
Urban Computing is a research area encompassing urban
sensing, data management and data analytic. It forms a
unified process to explore, analyze and solve existing critical
problems that are closely related with daily life in urban
area such as traffic congestion, energy consumption and
pollution [26]. In taxi operation management, works are
focusing on dispatching [27], [28], and passenger seeking
[29], [30], [31]. They targets finding an optimal actionable
solution to improve the performance/revenue of individual
taxi drivers. [32] solves the passenger seeking problem by
giving direction recommendations to drivers. However, all
of these works focus on finding the optimal strategies in-
stead of answering “how” good drivers make decisions. By
contrast, our work focuses on learning the decision-making
policy and reward from taxi drivers.
Inverse Reinforcement Learning (Imitation Learning) aims
to inversely learn the reward function and policy of experts
from their demonstrations [1]–[7], which models the agent’s
decision making process as Markov Decision Processes
(MDPs). MaxEnt IRL [4], MaxCausalEnt IRL [3], and RelEnt
IRL [5] were proposed to learn a reward function with
maximized entropy, causal entropy, and relative entropy
of the distribution on trajectories under the learned pol-
icy, respectively. They all assume a linear reward function
of the feature vectors associated with state-action pairs.
GAIL [6], [33] extends the above approaches (especially
MaxCausalEnt IRL) to general non-linear reward function
by using generative adversarial networks (GANs) frame-
work. Adversarial inverse reinforcement learning (AIRL) [7]
also employs GANs structure to learn non-linear policy
function for individual agent, by considering the dynamics
of the environment (i.e., the transition probability), but
AIRL does not allow knowledge sharing across agents, and
environment dynamics studied in AIRL does not exist in our
problem. These two approaches have been applied to un-
derstand human driving behaviors [34] for the assistance of
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(a) cGAIL and GAIL both perform well. (b) cGAIL and GAIL both perform badly.

(c) cGAIL outperforms GAIL. (d) GAIL outperforms cGAIL.

Fig. 11: cGAIL and GAIL performance case studies.
autonomous driving [35], [36], and predict human pose [37].
In addition, [38] utilizes the GAIL architecture to uncover
the latent structures of different experts’ demonstrations.
Differing from all these works, our study focuses on a
unique scenario, where the human agent’s reward/policy
are location dependent, and each human agent only has
limited data coverage over location. We develop a unifying
conditional generative adversarial imitation learning frame-
work, which collectively integrates and transfers knowledge
across human agents and locations to improve the policy
learning accuracy.

8 DISCUSSION
We model taxi drivers’ sequential decision making processes
as MDPs, where the definition of the state space is general
and extensible, e.g., to capture the historical path a taxi
driver traversed, so that historical (temporal) information
is modeled and carried. Therefore, our proposed method is
a general framework modeling taxi drivers’ sequential deci-
sion making process to consider the temporal dependency
in trajectories.
Taxi drivers’ sequential decision processes can also be
viewed as partially observable Markov decision processes
(POMDP) [39] which contain an extra element O as the
set of observations than MDP. We can view a state s ∈ S
as the global information (e.g., for the entire city), and an
observation o ∈ O with local information of nearby features
around the driver. Intuitively, when a taxi driver is making
decisions, he/she is likely to be only affected by nearby
information. Therefore, the state s defined in our work can
be viewed as and is equivalent to the observation o in a
POMDP, with POMDP state as all features of the entire city.
Hence, cGAIL is able to learn the policy π(a|o) and reward
R(o, a) defined on observations in POMDPs as in [40], [41].
Another modeling flexibility is that the condition features
introduced in our work can be extended, for example, to
include a latent code representing a taxi driver, the weather,
the traffic condition and so on. The latent code can be

extracted directly from data, such as a taxi driver’s working
schedule and the precipitation amount, or can be learned
from other neural networks depicting the high-order char-
acteristics of cared conditions.
9 CONCLUSION
In this paper, we developed a novel conditional generative
adversarial imitation learning (cGAIL) model that learns
drivers’ decision-making preferences and policies by trans-
ferring knowledge across taxi driver agents and across lo-
cations. Our evaluation results on three months of taxi GPS
trajectory data in Shenzhen, China, demonstrated that the
driver’s preferences and policies learned from cGAIL are on
average 34.7% more accurate than those learned from other
state-of-the-art baseline approaches.
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