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Abstract A coupled system of ordinary differential equations and partial differential
equations is proposed to describe the interaction of pelagic algae, benthic algae and one
essential nutrient in an oligotrophic shallow aquatic ecosystem with ample supply of
light. The existence and uniqueness of non-negative steady states are completely deter-
mined for all possible parameter range, and these results characterize sharp threshold
conditions for the regime shift from extinction to coexistence of pelagic and benthic
algae. The influence of environmental parameters on algal biomass density is also
considered, which is an important indicator of algal blooms. Our studies suggest that
the nutrient recycling from loss of algal biomass may be an important factor in the
algal blooms process; and the presence of benthic algae may limit the pelagic algal
biomass density as they consume common resources even if the sediment nutrient
level is high.
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1 Introduction

Algae are important primary producers of organic compounds through photosynthesis
and chemosynthesis, and they form the base of the food chain in the lakes, oceans and
other aquatic ecosystems. The growth of algae depends on light intensity, temperature
and nutrients in the water, thus the vertical distribution of algae in the water column
usually has a stratified structure. Especially, in shallow lakes or littoral zones, there
are two distinct layers of algae: pelagic algae and benthic algae (Jäger and Diehl 2014;
Scheffer et al. 2003; Vasconcelos et al. 2016).

Pelagic algae, typically phytoplankton, drift in thewater column of lakes and oceans
and provide significant biomass to aquatic ecosystems. It has been recognized that
the growth of pelagic algae needs two essential resources: light and nutrients. The
interaction between pelagic algae and its resources has been studied extensively in
three possible ways, in both the theory and the real practical applications. One extreme
case is in oligotrophic aquatic ecosystems with ample supply of light such that pelagic
algae tend to compete only for nutrients (see Hsu et al. 2013; Mei et al. 2016; Nie et al.
2016, 2015; Wang et al. 2015); and the other extreme case is in eutrophic ecosystems
with ample nutrient supply such that pelagic algae tend to compete only for light (see
Du and Hsu 2010; Du andMei 2011; Du et al. 2015; Hsu and Lou 2010; Huisman et al.
1999; Kolokolnikov et al. 2009; Mei and Zhang 2012a; Peng and Zhao 2016). In some
aquatic ecosystems, pelagic algae compete for light and nutrients simultaneously (see
Du and Hsu 2008a, b; Huisman et al. 2006; Jäger et al. 2010; Kerimoglu et al. 2012;
Klausmeier and Litchman 2001; Ryabov et al. 2010; Yoshiyama et al. 2009; Zagaris
et al. 2009; Zagaris and Doelman 2011).

Benthic algae (typically microalgae) are located in the bottom of lakes or oceans,
and they attach to the surface of other plants and rocks or root in the sediment. There is
growing evidence to show that benthic algae in some shallow, oligotrophic, clear-water
ecosystem not only is an important food source of aquatic animals, but also influence
water quality, energy cycle, and various biogeochemical interactions (Jäger and Diehl
2014; Scheffer et al. 2003; Vadeboncoeur et al. 2008). But there have been very few
studies of the important role of benthic algae.

When both of pelagic and benthic algae are presented in an aquatic ecosystem,
they may have an intense competition for light and nutrition. There have been existing
dynamical models characterizing this relation between pelagic and benthic algae by
using ordinary differential equations (see Jäger and Diehl 2014; Scheffer et al. 2003;
Vasconcelos et al. 2016; Vadeboncoeur et al. 2008), in which an important assumption
is that the pelagic habitat is well mixed to produce homogeneous vertical distributions
of pelagic algae and nutrients in shallow water columns. However there is increasing
recognition that the distributions of pelagic algae show strong spatial heterogeneity,
both vertically and horizontally (see Du and Hsu 2008a, b; Huisman et al. 2002, 2006;
Jäger et al. 2010; Klausmeier and Litchman 2001; Yoshiyama et al. 2009). Therefore
it is important and of great interest to explore the effect of spatial heterogeneity on the
pelagic and benthic algae growth, which has been neglected in previous studies, and
establish some threshold conditions that cause a regime shift between coexistence and
extinction of pelagic algae and benthic algae.
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Motivated by the existing studies and the above considerations, in this study, we
establish a coupled system of ordinary differential equations and partial differential
equations to describe the interactions of pelagic algae, benthic algae and one essential
nutrient in an oligotrophic shallow aquatic ecosystem with ample supply of light. The
new model reveals the effect of the spatial heterogeneity of pelagic algae and gives
threshold conditions of coexistence or regime shifts between pelagic algae and benthic
algae. In addition, from the perspective of preventing algae blooms, we explore the
influence of environmental parameters on algal biomass density. The present paper
only focuses on the case where pelagic algae and benthic algae compete for an essen-
tial nutrient, while other possible cases (compete for light or for light and nutrients
simultaneously) will be considered in forthcoming studies.

The rest of the paper is organized as follows. In Sect. 2, we derive a mathemat-
ical model of pelagic algae, benthic algae and nutrients consisting of two ordinary
differential equations and two partial differential equations. In Sect. 3, we investigate
dynamical properties of this model including the existence, uniqueness and stability
of steady states, which are complemented by numerical simulations under reasonable
parameter values from literature. In Sect. 4, we consider the influence of environmen-
tal parameters on algal biomass density via a systematic sensitivity analysis. In the
discussion section, we summary our findings and state some biologically motivated
mathematical questions for future study.

2 Model construction

In this section, we establish amathematical model to describe the interactions between
pelagic algae and benthic algae in an oligotrophic shallow aquatic ecosystem with
ample supply of light, which means that pelagic algae and benthic algae tend to com-
pete only for nutrients. We assume that the entire shallow aquatic area consists of two
layers of habitat with uniform depth: pelagic habitat and benthic habitat. Let z denote
the depth coordinate. We assume that z = 0 is the surface of the water, z = L3 is the
sediment surface (bottom of the lake/ocean), and z = L1 ∈ (0, L3) is the interface
between the pelagic and benthic habitats. Hence the positive z direction is from the
surface of water to the bottom of lake/ocean. Here L1 and L2 = L3 − L1 are the
thickness of pelagic habitat and benthic habitat respectively (see Fig. 1). In general,
the benthic habitat closely contacts with the sediment and its thickness is far less than
the depth of the pelagic habitat so L2 � L1. Therefore, here we assume that dissolved
nutrients in the benthic habitat are well mixed and homogeneous in space.

A coupled system of two ordinary differential equations (ODE) and two partial
differential equations (PDE) is established below to describe the dynamics of biomass
density of pelagic algae (U ), biomass density of benthic algae (V ), concentration of
dissolved nutrients in the pelagic habitat (R), concentration of dissolved nutrients
in the benthic habitat (W ). All the variables and parameters of the system and their
biological significance are listed in Table 1.

123



1162 J. Zhang et al.

Fig. 1 Interactions of pelagic
algae, benthic algae and one
essential nutrient in a shallow
aquatic ecosystem

2.1 Pelagic algae and benthic algae

Let U (z, t) denote the biomass density of pelagic algae at depth z ∈ [0, L1] and
time t . The intrinsic growth rate of pelagic algae depends on the concentration of
dissolved nutrients R(z, t) in the pelagic habitat, and it takes aMichaelis–Menten type
functional response form ru R/(R + γu), where ru is the maximum production rate of
pelagic algae, and γu is the half-saturation constant. On the other hand, the pelagic
algal biomass density is lost at a density-independent rate mu , caused by processes
such as respiration, death and grazing. Pelagic algal transport is governed by passive
movement due to turbulence with a depth independent turbulent diffusion coefficient
Du and also active movement due to sinking or buoyant with speed s. Taking together
these assumptions results in the following reaction–diffusion–advection equation of
U with no-flux boundary condition:

∂U (z, t)

∂t
= turbulent diffusion − sinking(buoyant) + growth − loss

= Du
∂2U

∂z2
− s

∂U

∂z
+

(
ru R

R + γu
− mu

)
U, z ∈ (0, L1),

DuUz(0) − sU (0) = 0, DuUz(L1) − sU (L1) = 0.

(2.1)

The algae in the benthic habitat attach to the surface of other plants, rocks or
roots in the sediment. This implies that they move very slowly or are motionless.
Also the thickness of the benthic habitat is far less than the one of pelagic habitat,
hence we assume that the density function V is spatially uniformly distributed. That
is V (z, t) ≡ V (t) for z ∈ (L1, L3). The change in the benthic algal biomass density
comes from two processes: growth and loss. The intrinsic growth rate of benthic algae
is governed by the concentration of dissolved nutrientsW (z, t) ≡ W (t) in the benthic
habitat, againwith aMichaelis–Menten type functional response rvW/(W+γv),where
rv is the maximum production rate of the benthic algae, and γv is the half-saturation
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Algae growth in a pelagic–benthic aquatic ecosystem 1165

constant. The loss rate of benthic algal biomass density is scaled by a parameter mv .
Combining these assumptions give the following ODE for benthic algae:

dV (t)

dt
= growth − loss =

(
rvW

W + γv

− mv

)
V . (2.2)

2.2 Nutrients in the pelagic and benthic habitats

The function R(z, t) describes the concentration of dissolved nutrients in the pelagic
habitat at depth z ∈ [0, L1] and time t , and W (t) is the concentration of dissolved
nutrients in the benthic habitat at time t . Here again due to the slow movement in the
benthic habitat, the nutrient concentration in the benthic habitat is spatially uniform.
The nutrients in the whole shallow aquatic ecosystems are supplied from the sediment
with a fixed concentrationWsed there. The change of dissolved nutrients in the pelagic
habitat depends on turbulent diffusion with a diffusion coefficient Dr , consumption
by pelagic algae, recycling from the loss of pelagic algal biomass with carbon ratio cu
and proportion βu ∈ [0, 1], and nutrients exchange between the pelagic and benthic
habitat at z = L1 with nutrient exchange rate a. The dynamics of R(z, t) is given by

∂R(z, t)

∂t
= turbulent diffusion + recycling − consumption

= Dr
∂2R

∂z2
+ cuβumuU − curu RU

R + γu
, z ∈ (0, L1),

Rz(0, t) = 0, Dr Rz(L1, t) = a(W (t) − R(L1, t)) (nutrients exchange).

(2.3)

The benthic nutrientW (t) could change as a result of consumption by benthic algae,
recycling from the loss of benthic algal biomass with carbon ratios cv and proportion
βv ∈ [0, 1], nutrients exchange between the pelagic and benthic habitat, and supplying
from the sediment. Thus the dynamics of W (t) is described as

dW (t)

dt
= supplying − nutrients exchange + recycling − consumption

= b

L2
(Wsed − W ) − a

L2
(W − R(L1, t)) + cvβvmvV − cvrvWV

W + γv

.

(2.4)

In Eqs. (2.3) and (2.4), we include the recycle of nutrients cuβumuU and cvβvmvV .
This is because high temperature can cause the rapid decomposition of algae, and
thus promote more nutritious to be recycled. In previous studies, there are very few
dynamical results on recycling. Here our subsequent studies show that the nutrient
recycling from loss of algal biomass may be an important factor in the existence and
uniqueness of non-negative steady state solutions and the algal blooms process.

Also in (2.1) and (2.2), we do not include the exchange of algaes between pelagic
habit and benthic habit, as the experiments in Jäger et al. (2010), Scheffer et al. (2003),
Vasconcelos et al. (2016) show that there is no algal exchange between the pelagic
and benthic habitat found in these situations.
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2.3 The full model

Combining all Eqs. (2.1)–(2.4), we have the following full system of pelagic algae-
benthic algae-nutrients model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
= Du

∂2U

∂z2
− s

∂U

∂z
+ ru RU

R + γu
− muU, 0 < z < L1, t > 0,

dV

dt
= rvWV

W + γv
− mvV, t > 0,

∂R

∂t
= Dr

∂2R

∂z2
+ cuβumuU − curu RU

R + γu
, 0 < z < L1, t > 0,

dW

dt
= b

L2
(Wsed − W ) − a

L2
(W − R(L1, t)) + cvβvmvV − cvrvWV

W + γv
, t > 0,

Du
∂U

∂z
(0, t) − sU (0, t) = 0, Du

∂U

∂z
(L1, t) − sU (L1, t) = 0, t > 0,

∂R

∂z
(0, t) = 0, Dr

∂R

∂z
(L1, t) = a(W (t) − R(L1, t)), t > 0.

(2.5)
In consideration of the biological significance of (2.5), we assume that s ∈ R,

βu, βv ∈ [0, 1] and the remaining parameters are all positive constants. Furthermore,
we consider the solutions of (2.5) with nonnegative initial values, i.e.

U (z, 0) = U0(z) ≥ �≡ 0, R(z, 0) = R0(z) ≥ �≡ 0, 0 ≤ z ≤ L1,

V (0) = V0 ≥ 0, W (0) = W0 ≥ 0.
(2.6)

In the following we study the dynamics of (2.5). In particular, we are interested
in the existence, uniqueness, and stability of non-negative steady state solutions
(U (z), V, R(z),W ) which satisfy the following steady state system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DuU ′′(z) − sU ′(z) +
(

ru R(z)

R(z) + γu
− mu

)
U (z) = 0, 0 < z < L1,

V

(
rvW

W + γv
− mv

)
= 0,

Dr R′′(z) + cuβumuU (z) − curu R(z)U (z)

R(z) + γu
= 0, 0 < z < L1,

b(Wsed − W ) − a(W − R(L1)) + cvL2

(
βvmv − rvW

W + γv

)
V = 0,

DuU ′(0) − sU (0) = DuU ′(L1) − sU (L1) = 0,

R′(0) = 0, Dr R′(L1) = a(W − R(L1)).

3 Existence and stability of steady states

The main purpose of this section is to investigate the existence, uniqueness and
local/global stability of non-negative steady state solutions of (2.5). The possible
non-negative steady states of (2.5) are listed below:

1. Nutrient-only semi-trivial steady state E1 : (0, 0, R1(z),W1), where (R1(z),W1)

solves ⎧⎪⎨
⎪⎩
R′′(z) = 0, 0 < z < L1,

b(Wsed − W ) − a(W − R(L1)) = 0,

R′(0) = 0, Dr R′(L1) = a(W − R(L1));
(3.1)
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2. Benthic algae-nutrient semi-trivial steady state E2 : (0, V2, R2(z),W2), where
(V2, R2(z),W2) solves

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

rvW

W + γv

− mv = 0,

R′′(z) = 0, 0 < z < L1,

b(Wsed − W ) − a(W − R(L1)) + cvL2

(
βvmv − rvW

W + γv

)
V = 0,

R′(0) = 0, Dr R′(L1) = a(W − R(L1));
(3.2)

3. Pelagic algae-nutrient semi-trivial steady state E3 : (U3(z), 0, R3(z),W3), where
(U3(z), R3(z),W3) solves

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DuU ′′(z) − sU ′(z) +
(

ru R(z)

R(z) + γu
− mu

)
U (z) = 0, 0 < z < L1,

Dr R′′(z) + cuβumuU (z) − curu R(z)U (z)

R(z) + γu
= 0, 0 < z < L1,

b(Wsed − W ) − a(W − R(L1)) = 0,

DuU ′(0) − sU (0) = DuU ′(L1) − sU (L1) = 0,

R′(0) = 0, Dr R′(L1) = a(W − R(L1));

(3.3)

4. Coexistence steady state E4 : (U4(z), V4, R4(z),W4), where (U4(z), V4, R4(z),
W4) solves

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DuU ′′(z) − sU ′(z) +
(

ru R(z)

R(z) + γu
− mu

)
U (z) = 0, 0 < z < L1,

rvW

W + γv
− mv = 0,

Dr R′′(z) + cuβumuU (z) − curu R(z)U (z)

R(z) + γu
= 0, 0 < z < L1,

b(Wsed − W ) − a(W − R(L1)) + cvL2

(
βvmv − rvW

W + γv

)
V = 0,

DuU ′(0) − sU (0) = DuU ′(L1) − sU (L1) = 0,

R′(0) = 0, Dr R′(L1) = a(W − R(L1)).

(3.4)

In the following subsections, we will discuss the existence, uniqueness and local sta-
bility of steady states in each form categorized above, and also discuss the implication
of such steady states to the whole dynamics of (2.5).

To establish the local stability of the above steady states, we linearize the system
(2.5) about a steady state (ū(z), v̄, r̄(z), w̄) and obtain an eigenvalue problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λϕ(z) = Duϕ′′(z) − sϕ′(z) +
(

rur̄(z)

r̄(z) + γu
− mu

)
ϕ(z) + ruγu ū(z)

(r̄(z) + γu)2
φ(z), 0 < z < L1,

λξ =
(

rvw̄

w̄ + γv
− mv

)
ξ + rvγvv̄

(w̄ + γv)2
ζ,

λφ(z) =
(
cuβumu − curur̄(z)

r̄(z) + γu

)
ϕ(z) + Drφ

′′(z) − curuγu ū(z)

(r̄(z) + γu)2
φ(z), 0 < z < L1,

λζ =
(
cvβvmv − cvrvw̄

w̄ + γv

)
ξ − cvrvγvv̄

(w̄ + γv)2
ζ + a

L2
φ(L1) −

(
a + b

L2

)
ζ,

Duϕ′ − sϕ|z=0,L1 = 0, φ′(0) = 0, Drφ
′(L1) = a(ζ − φ(L1)).

(3.5)
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A steady state solution of (2.5) is locally asymptotically stable if all eigenvalues of
(3.5) have negative real part, and it is unstable if at least one eigenvalue has positive
real part. Note that here for (2.5), the linear stability defined by (3.5) (consisting of
reaction–diffusion equations and ordinary differential equations) implies the nonlinear
local stability (uniformly asymptotically stable) in some proper function spaces (see
Henry 1981, Chapter 5). Similar stability of steady state solutions of shadow systems
of reaction–diffusion systems have been considered in Ni et al. (2001a, b).

Before we discuss each possible steady state as introduced above, we notice the
following observation for the dynamics of the system (2.5).

Proposition 3.1 Let (U (z, t), V (t), R(z, t),W (t)) be a solution of (2.5) with initial
condition specified as in (2.6).

1. If mu > ru, then limt→∞ U (x, t) = 0 uniformly for x ∈ [0, L1];
2. If mv > rv , then limt→∞ V (t) = 0.

Proof From the equation of V (t), we have V ′(t) ≤ (rv −mv)V (t), thus it is clear that
if mv > rv , then limt→∞ V (t) = 0. On the other hand, from

∂U

∂t
≤ Du

∂2U

∂z2
− s

∂U

∂z
+ (ru − mu)U,

and mu > ru , we obtain that u(x, t) converges to 0 uniformly for x ∈ [0, L1] as
t → ∞ by the comparison theorem of parabolic equations. ��
The result in Proposition 3.1 indicates that when mu > ru , the dynamics of (2.5) is
effectively reduced to benthic algae-nutrients subsystem, while when mv > rv , the
dynamics of (2.5) is effectively reduced to pelagic algae-nutrients subsystem.

3.1 Nutrient-only semi-trivial steady state

For any parameter value, there is a unique nutrient-only steady state that is in balance
with the sediment nutrient concentrationWsed , and it is at least locally asymptotically
stable when the algae’s loss rates are high.

Theorem 3.2 The system (2.5) has a unique nutrient-only steady state solution

E1 ≡ (0, 0,Wsed ,Wsed). (3.6)

Moreover if

mu >
ruWsed

Wsed + γu
and mv >

rvWsed

Wsed + γv

, (3.7)

then E1 is locally asymptotically stable with respect to (2.5), and if

0 < mu <
ruWsed

Wsed + γu
or 0 < mv <

rvWsed

Wsed + γv

, (3.8)

then E1 is unstable.
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Algae growth in a pelagic–benthic aquatic ecosystem 1169

Proof It is easy to see that E1 given in (3.6) is the unique solution of (3.1). For
the stability of E1(0, 0,Wsed ,Wsed), it follows from (3.5) that the stability of E1 is
determined by the eigenvalue problem

λϕ(z) = Duϕ
′′(z) − sϕ′(z) +

(
ruWsed

Wsed + γu
− mu

)
ϕ(z), 0 < z < L1, (3.9a)

λξ =
(

rvWsed

Wsed + γv

− mv

)
ξ, (3.9b)

λφ(z) =
(
cuβumu − curuWsed

Wsed + γu

)
ϕ(z) + Drφ

′′(z), 0 < z < L1, (3.9c)

λζ =
(
cvβvmv − cvrvWsed

Wsed + γv

)
ξ + a

L2
φ(L1) −

(
a + b

L2

)
ζ, (3.9d)

Duϕ
′ − sϕ|z=0,L1 = 0, φ′(0) = 0, Drφ

′(L1) = a(ζ − φ(L1)). (3.9e)

To establish the local stability of E1, we set

h1 = ruWsed

Wsed + γu
− mu, h2 = rvWsed

Wsed + γv

− mv.

Let λ1 be the largest eigenvalue of (3.9), and let (ϕ, ξ, φ, ζ ) be the corresponding
eigenfunction. We consider the following three cases: (a1) ϕ �≡ 0; (a2) ϕ = 0 and
ξ �= 0; or (a3) ϕ = 0 and ξ = 0.
Case (a1): ϕ �≡ 0. In this case, the stability of E1 is completely described by char-
acteristic equations (3.9a), (3.9c), (3.9d). Let ϕ = e(s/Du)z ϕ̃. Then (3.9a) translates
into {

λϕ̃(z) = Du ϕ̃
′′(z) + sϕ̃′(z) + h1ϕ̃(z), 0 < z < L1,

ϕ̃′(0) = ϕ̃′(L1) = 0.
(3.10)

It is easy to see that the dominant eigenvalue of (3.10) is h1 and the corresponding
eigenfunction is ϕ̃1(z) = 1. Then the dominant eigenvalue of (3.9a) is λ1 = h1 and
the corresponding eigenfunction is ϕ(z) = esz/Du . Substituting λ1 and ϕ(z) into (3.9c)
and (3.9d) we have

ζ = a

a + b + h1L2
φ(L1), (3.11a)

φ(z) = −cu(mu(1 − βu) + h1)esz/Du

h1
+ Drφ

′′(z)
h1

, 0 < z < L1, (3.11b)

φ′(0) = 0, Drφ
′(L1) = − a(b + h1L2)

a + b + h1L2
φ(L1). (3.11c)

Solving (3.11b) one has that

φ1(z) = ĉ1e
z
√
h1/Dr + ĉ2e

−z
√
h1/Dr + cuD2

u(mu(1 − βu) + h1)esz/Du

s2Dr − h1D2
u

, ĉ1, ĉ2 ∈ R,
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when
√
h1/Dr �= s/Du , or

φ1(z) = ĉ3e
z
√
h1/Dr + ĉ4e

−z
√
h1/Dr + cuDu(mu(1 − βu) + h1)zesz/Du

2sDr
, ĉ3, ĉ4 ∈ R,

when
√
h1/Dr = s/Du . It follows from the boundary conditions (3.11c) that there

exist constants ĉi (i = 1, 2, 3, 4) such that φ1(z) satisfies (3.11c). This shows that
there exists a solution (ζ, φ(z)) satisfying Eq. (3.11). Therefore, in case (a1), λ1 = h1
determines the stability of E1.
Case (a2): ϕ = 0 and ξ �≡ 0. In this case it follows from (3.9b) that λ1 = h2 with
eigenfunction ξ = 1. Combining (3.9c) with (3.9d), we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ζ = a

a + b + h2L2
φ(L1) − cvL2(h2 + mv(1 − βv))

a + b + h2L2
,

φ(z) = Drφ
′′(z)

h2
, 0 < z < L1,

φ′(0) = 0, Drφ
′(L1) = −a

[
b + h2L2

a + b + h1L2
φ(L1) + cvL2(h2 + mv(1 − βv))

a + b + h1L2

]
.

(3.12)

It is straightforward to show that there exists a solution (ζ, φ(z)) satisfying Eq. (3.12).
This implies that λ1 = h2 determines the stability of E1 in case (a2).
Case (a3): ϕ = 0 and ξ = 0. Now (3.9) reduces to

⎧⎪⎪⎨
⎪⎪⎩

λφ(z) = Drφ
′′(z), 0 < z < L1,

λζ = aφ(L1)

L2
− (a + b)ζ

L2
,

φ′(0) = 0, Drφ
′(L1) = a(ζ − φ(L1)).

(3.13)

If ζ = 0 in (3.13), then φ satisfies

λφ(z) = Drφ
′′(z), 0 < z < L1, φ′(0) = 0, φ′(L1) = 0, φ(L1) = 0, (3.14)

which implies that φ(z) = 0. Hence ζ �= 0, and consequently φ(z) �≡ 0 and (φ, ζ )

satisfies ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ζ = a

a + b + λL2
φ(L1),

λφ(z) = Drφ
′′(z), 0 < z < L1,

φ′(0) = 0, Drφ
′(L1) = − a(b + λL2)

a + b + λL2
φ(L1).

(3.15)

If λ > 0 is an eigenvalue of (3.15), then from φ′(0) = 0 we have φ(z) = cosh(ωz)
for ω = √

λ/Dr . But from the boundary condition at x = L1, we get

Dr sinh(ωL1) = − a(b + λL2)

a + b + λL2
cos(ωL1),
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that is a contradiction. It is also easy to see λ = 0 cannot be an eigenvalue of (3.15).
Thus the eigenvalues of (3.15) must be negative. Indeed for λ < 0, we have φ(z) =
cos(ωz) for ω = √−λ/Dr since φ′(0) = 0. From the boundary condition at x = L1,
we find that

tan(ωL1) = (a/Dr )(b − ω2Dr L2)

ω(a + b − ω2Dr L2)
. (3.16)

Then the dominant eigenvalue λ1 of (3.15) is−Drω
2
1, whereω1 is the smallest positive

root of (3.16). Summarizing above discussions, we conclude that in case (a3), λ1 is
negative.

In view of case (a1)–(a3), we conclude that λ1 = max{h1, h2,−Drω
2
1}, and if (3.7)

holds, then λ1 < 0 and E1 is locally asymptotically stable. On the other hand, if (3.8)
holds, then E1 is unstable. ��

The condition (3.7) implies that large algal loss rates in both the pelagic and benthic
habitats lead to extinction of both algae population. Indeed we prove next that the
extinction is global for all initial conditions if a stronger condition on the loss rates is
satisfied.

Theorem 3.3 Suppose that

mu > ru, and mv > rv, (3.17)

then the nutrient-only steady state solution E1 ≡ (0, 0,Wsed ,Wsed) is globally asymp-
totically stable for (2.5) with respect to any nonnegative initial value.

Proof From Proposition 3.1, we have lim
t→∞ u(x, t) = 0 uniformly for x ∈ [0, L1] and

lim
t→∞ V (t) = 0 provided (3.17) holds. From the theory of asymptotical autonomous

systems Mischaikow et al. (1995), (2.5) reduces to a limiting system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂R

∂t
= Dr

∂2R

∂z2
, 0 < z < L1, t > 0,

dW

dt
= b

L2
(Wsed − W ) − a

L2
(W − R(L1, t)), t > 0,

∂R

∂z
(0, t) = 0, Dr

∂R

∂z
(L1, t) = a(W (t) − R(L1, t)), t > 0.

(3.18)

In order to obtain our results, we construct a Lyapunov function for system (3.18):

V (R,W ) = 1

2

∫ L1

0
(R(z) − Wsed)

2dz + L2

2
(W − Wsed)

2.

Let (R(z, t),W (t)) be an arbitrary solution of (3.18) with nonnegative initial values.
Then

dV (R(·, t),W (t))

dt
=

∫ L1

0
(R(z, t) − Wsed )

∂R

∂t
dz + L2(W (t) − Wsed)

dW

dt
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=
∫ L1

0
(R(z, t) − Wsed )

∂2R

∂z2
dz − b(W (t) − Wsed )

2

− a(W (t) − Wsed)(W (t) − R(L1, t))

= Dr
∂R

∂z
(R − Wsed )

∣∣∣L1

0
−

∫ L1

0

(
∂R

∂z

)2

dz

− b(W (t) − Wsed )
2 − a(W (t) − Wsed )(W (t) − R(L1, t))

= a(W (t) − R(L1, t))(R(L1, t) − Wsed ) −
∫ L1

0

(
∂R

∂z

)2

dz

− b(W (t) − Wsed )
2 − a(W (t) − Wsed )(W (t) − R(L1, t))

= − a(W (t) − R(L1, t))
2 − b(Wsed − W (t))2 −

∫ L1

0

(
∂R

∂z

)2

dz ≤ 0.

Note that dV (·)/dt = 0 holds if and only if W (t) = Wsed , R(L1, t) = W (t), and
∂R/∂z = 0, that is, W (t) ≡ R(z, t) ≡ Wsed . It follows from the LaSalle’s Invariance
Principle that (R(z, t),W (t)) converges to (Wsed ,Wsed) uniformly for x ∈ [0, L1]
as t → ∞ for (3.18), and it also follows that any solution of (2.5) with nonnegative
initial value converges to E1 as t → ∞. ��

We remark that the global stability of (Wsed ,Wsed) in the nutrient-only subspace
always holds without the condition (3.17), as shown in the proof of Theorem 3.3. The
global stability in Theorem 3.3 also implies that under the condition (3.17), there exist
no any other steady state solutions such as E2, E3, E4 as mentioned in the beginning
of this section.

3.2 Benthic algae-nutrient semi-trivial steady state

In this subsection, we prove that when the benthic algal loss rate mv is not large,
then benthic algae is able to grow to a positive equilibrium level. In fact, we show
that m∗

v = rvWsed/(Wsed + γv) is a sharp threshold for the persistence/extinction of
benthic algae.

Theorem 3.4 The system (2.5) has a positive benthic algae-nutrient semi-trivial
steady state E2 if and only if

0 ≤ βv < 1, mu > 0, 0 < mv <
rvWsed

Wsed + γv

. (3.19)

Whenever E2 exists, it is unique and it is given by

E2 ≡ (0, V2, R2(z),W2) =
(
0,

b(Wsed − W2)

cvmvL2(1 − βv)
,

γvmv

rv − mv

,
γvmv

rv − mv

)
. (3.20)

Moreover if in addition to (3.19), we also have

mu >
ruγvmv

γvmv + γu(rv − mv)
, (3.21)

123



Algae growth in a pelagic–benthic aquatic ecosystem 1173

then E2 is locally asymptotically stable with respect to (2.5), while E2 is unstable if

0 < mu <
ruγvmv

γvmv + γu(rv − mv)
. (3.22)

Proof The steady state equation (3.2) can be explicitly solved. The equation of R and
its boundary conditions imply that W2 = R2. The value of W2 can be solved from the
first equation of (3.2), and finally V2 can be solved from the third equation of (3.2).
Thus E2 must be given by (3.20). And it is easy to verify that (V2, R2,W2) is positive
if and only if (3.19) holds.

Next we investigate the stability of E2. From (3.5), the stability of E2 is determined
by the eigenvalue problem

λϕ(z) = Duϕ
′′(z) − sϕ′(z) + h3ϕ(z), 0 < z < L1, (3.23a)

λξ = rvγvV2
(W2 + γv)2

ζ, (3.23b)

λφ(z) = −[cu(mu(1 − βu) + h3)]ϕ(z) + Drφ
′′(z), 0 < z < L1, (3.23c)

λζ = cvmv(βv − 1)ξ − cvrvγvV2
(W2 + γv)2

ζ + a

L2
φ(L1) −

(
a + b

L2

)
ζ, (3.23d)

Duϕ
′ − sϕ|z=0,L1 = 0, φ′(0) = 0, Drφ

′(L1) = a(ζ − φ(L1)), (3.23e)

where

h3 = ruW2

W2 + γu
− mu .

Again let λ1 be the largest eigenvalue of (3.23), and let (ϕ, ξ, φ, ζ ) be the correspond-
ing eigenfunction. We consider two cases: (b1): ϕ �≡ 0, or (b2): ϕ ≡ 0.
Case (b1): ϕ �≡ 0. Carrying out similar arguments as those of case (a1) in Theorem 3.2,
we conclude that the dominant eigenvalue of (3.23a) is λ1 = h3 and the corresponding
eigenfunction is ϕ(z) = esz/Du . With this λ1 and ϕ(z), (ξ, φ(z), ζ ) in (3.23) can be
uniquely solved.
Case (b2): ϕ = 0. If ξ = 0, then it is clear that ζ = 0 as well. Then (3.23) reduces
into (3.14) again, thus the dominant eigenvalue is λ1 = −(Drπ

2)/L2
1 and the corre-

sponding eigenfunction is φ(z) = cos(π z/L1). If ξ �= 0, then (3.23) is reformulated
as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λξ = h4ζ,

λφ(z) = Drφ
′′(z), 0 < z < L1,

λζ = cvmvh4(βv − 1)ζ

λ
− cvh4ζ + a

L2
φ(L1) −

(
a + b

L2

)
ζ,

φ′(0) = 0, Drφ
′(L1) = − a(L2λ

2 + (b + cvh4L2)λ + cvmvh4L2(1 − βv)

a(L2λ2 + (a + b + cvh4L2)λ + cvmvh4L2(1 − βv)
φ(L1),

(3.24)
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where h4 = rvγvV2/(W2 + γv)
2. Then similar to case (a3) in Theorem 3.2, (3.24) has

only negative eigenvalues, and the dominant eigenvalue λ1 = −Drη
2
1, where η1 is the

smallest root of

tan ηL1 = a[Dr L2η
4 − (b + cvh4L2)Drη

2 + cvmvh4L2(1 − βv)]
Drη[Dr L2η4 − (a + b + cvh4L2)Drη2 + cvmvh4L2(1 − βv)] .

Combining the cases (b1) and (b2), we conclude that E2 is locally asymptotically
stable if h3 < 0 which is equivalent to (3.21), and E2 is unstable if h3 > 0 which is
equivalent to (3.22). ��
Remark 3.5 1. It follows from (3.20) that V2 increases with respect to the recycling

proportion βv and limβv→1− V2 = ∞. This implies that the benthic algae-nutrient
semi-trivial steady state E2 does not exist when βv = 1. From the perspective of
ecological point of view, if the recycling proportion βv from the loss of benthic
algal biomass is high, then there is a benthic algal bloom in this oligotrophic
shallow aquatic ecosystem with ample supply of light.

2. One can see that limmv→m∗
v
E2 = E1, where m∗

v = rvWsed/(Wsed + γv). Hence
mv = m∗

v is a critical value for the existence/nonexistence of benthic algae-nutrient
steady state E2.

3. If mu > ru , then from Proposition 3.1, one has that limt→∞ U (x, t) = 0. Thus
the pelagic algae become extinct in this case, and the system (2.5) reduces to the
subsystem of benthic algae and (pelagic and benthic) nutrients. It is an interesting
question whether E2 is globally asymptotically stable in this situation, which is
indicated by our numerical simulations.

3.3 Pelagic algae-nutrient semi-trivial steady state

In the oligotrophic shallow aquatic ecosystem, it is also possible that pelagic algae can
grow while benthic algae become extinct. In this subsection, we show the existence
and uniqueness of pelagic algae-nutrients semi-trivial steady state, in which benthic
algae is absent in the system. Such a steady state is in a form of E3 = (U3, 0, R3,W3)

with (U3, R3,W3) being a positive solution of (3.3).
We first establish some a priori estimates for positive solutions of (3.3).

Lemma 3.6 Assume that (U3, R3,W3) ∈ C([0, L1])×C([0, L1])×R+ is a positive
solution of (3.3) and βu ∈ [0, 1). Then
(i) 0 < mu <

ruWsed

Wsed + γu
;

(ii) R3 is a strictly increasing function on [0, L1] and βuγumu

ru − βumu
≤ R3(z) < Wsed

for all z ∈ [0, L1];
(iii) 0 < W3 < Wsed;
(iv) U3(z)e−sz/Du is a strictly increasing function of z on (0, L1), and for any

ε > 0, there exists a positive constant A(ε) such that ‖U3‖∞ ≤ A(ε) if
mu ∈ [ε, ruWsed/(Wsed + γu)).
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Proof (i): It follows from the first equation of (3.3) and its boundary conditions that

⎧⎪⎨
⎪⎩

−DuU ′′
3 (z) + sU ′

3(z) −
(

ru R3(z)

R3(z) + γu

)
U3(z) = −muU3(z), 0 < z < L1,

DuU ′
3(0) − sU3(0) = DuU ′

3(L1) − sU3(L1) = 0.

(3.25)

Hence the principal eigenvalue of (3.25) is

λ1

(
− ru R3(·)
R3(·) + γu

)
= −mu,

with principal eigenfunction U3. From the monotonicity of the principal eigenvalue
on the weight functions, we have

− ruWsed

Wsed + γu
= λ1

(
− ruWsed

Wsed + γu

)
< λ1

(
− ru R3(·)
R3(·) + γu

)
< λ1(0) = 0.

This means that 0 < mu < ruWsed/(Wsed + γu).
(ii) and (iii): It follows from the first two equations of (3.3) and its boundary

conditions that

∫ L1

0

(
ru R3(z)

R3(z) + γu
− mu

)
U3(z)dz = 0,

a(W3 − R3(L1)) + cu

∫ L1

0

(
βumu − ru R3(z)

R3(z) + γu

)
U3(z)dz = 0.

(3.26)

Since βu ∈ [0, 1), we have R3(L1) < W3. From the third equation of (3.3), we have

W3 = aR3(L1) + bWsed

a + b
< Wsed . (3.27)

This proves (iii) as W3 > 0. It follows from (3.27) that R3(z) satisfies

⎧⎪⎪⎨
⎪⎪⎩
Dr R′′

3 (z) + cu

(
βumu − ru R3(z)

R3(z) + γu

)
U3(z) = 0, 0 < z < L1,

R′
3(0) = 0, Dr R′

3(L1) = ab(Wsed − R3(L1))

a + b
> 0.

(3.28)

To prove the upper bound of R3(z), we set

�1 := {z ∈ [0, L1] : βumu ≤ ru R3(z)/(R3(z) + γu), z ∈ �1},
�2 := {z ∈ [0, L1] : βumu > ru R3(z)/(R3(z) + γu), z ∈ �2}.
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It is clear that

�1 ∩ �2 = ∅, �1 ∪ �2 = [0, L1], inf
z∈�1

R3(z)|�1 ≥ sup
z∈�2

R3(z)|�2 .

We show that�2 = ∅. We consider the following two cases: (c1) 0 ∈ �1; (c2) 0 ∈ �2.
Case (c1): 0 ∈ �1. For any z ∈ �1, R′′

3 (z) ≥ 0 and R′
3(z) is increasing for z on �1.

This shows that R′
3(z) ≥ 0 for all z ∈ �1 and R3(z) is an increasing function of z on

�1 since R′
3(0) = 0 holds. Note that inf z∈�1 R3(z)|�1 ≥ supz∈�2

R3(z)|�2 and R3(z)
is continuous, then x ∈ �1 for any x ∈ (0, L1] and �2 = ∅;
Case (c2): 0 ∈ �2. For any z ∈ �2, R′′

3 (z) < 0 and R′
3(z) is a strictly decreasing

function of z on �2. It follows from 0 ∈ �2 that R3(z) is strictly decreasing for z
on �2, then x ∈ �2 for any x ∈ (0, L1] . But on the other hand L1 ∈ �1 since
R′
3(L1) > 0. This is a contradiction. Therefore, 0 /∈ �2.
Combining cases (c1) and (c2), we conclude that R3(z) is strictly increasing for

z ∈ [0, L1] as R′
3(L1) > 0. By the boundary conditions of (3.28) and the definition

of �1, we have R3(0) ≥ βuγumu/(ru − βumu) and R3(L1) < Wsed , which implies
that (ii) holds.

(iv): It follows from the first equality of (3.26) and U3 > 0 that ru R3/(R3 + γu) −
mu must change sign in (0, L1). From the monotonicity of R3, we conclude that
ru R3(z)/(R3(z)+ γu)−mu is an increasing function of z on (0, L1). This means that
there is a z∗ ∈ (0, L1) such that ru R3(z)/(R3(z) + γu) − mu < 0 for z ∈ (0, z∗) and
ru R3(z)/(R3(z)+γu)−mu > 0 for z ∈ (z∗, L1). Combining the first equation of (3.3)
with its boundary conditions, we have DuU ′

3(z) − sU3(z) > 0 for any z ∈ (0, L1).
Then U3(z)e−sz/Du is a strictly increasing function of z on (0, L1).

To establish the boundedness of U3(z), for any ε > 0, we assume that there are
a sequence mi

u ∈ [ε, ruWsed/(Wsed + γu)] and corresponding positive solutions
(Ui

3(z), R
i
3(z),W

i
3) of (3.3) such that ‖Ui

3‖∞ → ∞ as i → ∞. Without loss of
generality, we assume that mi

u → m̄u as i → ∞. Let ui = Ui
3/‖Ui

3‖∞. Then ui
satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−(Duu′
i (z) − sui (z))′ + mi

uui (z) =
(

ru Ri
3(z)

Ri
3(z) + γu

)
ui (z), 0 < z < L1,

Duu′
i (0) − sui (0) = Duu′

i (L1) − sui (L1) = 0,
∫ L1

0

(
ru Ri

3(z)

Ri
3(z) + γu

− mi
u

)
ui (z)dz = 0.

It follows from (ii) that 0 < ru Ri
3(z)/(R

i
3(z) + γu) < ruWsed/(Wsed + γu) for all

z ∈ [0, L1], which means that we may assume that there is a function d1 ∈ C([0, L1])
such that ru Ri

3(z)/(R
i
3(z) + γu) → d1(z) in C([0, L1]) as i → ∞. Noting that

{ui }, {mi
u} are both bounded in L∞[0, L1], by using L p theory for elliptic operators

and the Sobolev embedding theorem, we may assume (passing to a subsequence if
necessary) that ui → u in C1([0, L1]) as i → ∞, and u satisfies (in the weak
sense)

123



Algae growth in a pelagic–benthic aquatic ecosystem 1177

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(Duu′(z) − su(z))′ + m̄uu(z) = d1(z)u(z), 0 < z < L1,

Duu′(0) − su(0) = Duu′(L1) − su(L1) = 0,∫ L1

0
(d1(z) − m̄u)u(z)dz = 0.

(3.29)

Since u ≥ 0 and ‖u‖∞ = 1, it follows from the strong maximum principle that u > 0
on [0, L1]. On the other hand, Ri

3 satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Dr (Ri

3(z))
′′ = cu

(
ru Ri

3(z)

Ri
3(z) + γu

− βum
i
u

)
ui (z)‖Ui

3‖∞, 0 < z < L1,

(Ri
3)

′(0) = 0, Dr (Ri
3)

′(L1) = ab(Wsed − Ri
3(L1))

a + b
.

(3.30)

Choosing d2 ∈ C∞([0, L1]) with d ′
2|z=0,L1 = 0 and d2 > 0 on [0, L1], and multiply-

ing both sides of (3.30) by d2 and integrating in (0, L1), we have(
ab

a + b

)
d2(L1)(Wsed − Ri

3(L1)) +
∫ L1

0
Ri
3(z)(d2(z))

′′dz

= cu‖Ui
3‖∞

∫ L1

0

(
ru Ri

3(z)

Ri
3(z) + γu

− βum
i
u

)
ui (z)dz.

Dividing by ‖Ui
3‖∞ on both sides of the above equality and letting i → ∞ give

0 =
∫ L1

0
(d1(z) − βum̄u)u(z)dz =

∫ L1

0
(1 − βu)m̄uu(z)dz,

since the third equation of (3.29) holds. This is a contradiction to βu ∈ [0, 1), m̄u ∈
[ε, ruWsed/(Wsed + γu)] and u > 0 on [0, L1]. Hence the boundedness of U3 holds
for mu ∈ [ε, ruWsed/(Wsed + γu)). ��

It is noteworthy that if (U3, R3,W3) ∈ C([0, L1]) × C([0, L1]) × R+ is a non-
negative solution of (3.3) with U3 �≡ 0, then (U3, R3,W3) is a positive solution of
(3.3). In fact, we first claim that U3(0) > 0 and R3(0) > 0. Suppose that U3(0) = 0,
then U ′

3(0) = 0 from the boundary condition of U3, so U3(z) ≡ 0 for z ∈ [0, L1]
from (3.25). Hence we have U3(0) > 0. Next we assume that R3(0) = 0. From
(3.28), we have Dr R′′

3 (0) = −cuβumuU3(0) < 0. Since R3(0) = R′
3(0) = 0, then

R3(z) < 0 for z ∈ (0, δ) for some δ > 0, that is a contradiction to R3(z) ≥ 0 for all
z ∈ [0, L1]. Therefore we must have R3(0) > 0. By using the maximum principle, we
get R3(z) > 0 for all z ∈ [0, L1]. On the other hand, similarly, we have U3(0) > 0,
U3(1) > 0 and⎧⎨

⎩
−DuU ′′

3 (z) + sU ′
3(z) + muU3(z) = ru R3(z)U3(z)

R3(z) + γu
≥�≡ 0, 0 < z < L1,

DuU ′
3(0) − sU3(0) = DuU ′

3(L1) − sU3(L1) = 0,

which imply that U3(z) > 0 for all z ∈ [0, L1] from the strong maximum principle.
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It follows from (3.27), (3.28) and (3.25) that (3.3) is equivalent to

W = aR(L1) + bWsed

a + b
≤ Wsed

and (U (z), R(z)) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

DuU ′′(z) − sU ′(z) +
(

ru R(z)

R(z) + γu
− mu

)
U (z) = 0, 0 < z < L1,

Dr R′′(z) + cu

(
βumu − ru R(z)

R(z) + γu

)
U (z) = 0, 0 < z < L1,

DuU ′(0) − sU (0) = DuU ′(L1) − sU (L1) = 0,

R′(0) = 0, Dr R′(L1) = ab(Wsed − R(L1))

a + b
≥ 0.

(3.31)

Hence the existence and uniqueness of positive solutions of (3.3) is reduced to the
existence and uniqueness of positive solutions of (3.31). Note that (3.31) is an elliptic
system with predator-prey type nonlinearity. We recall the following assertion for the
non-degeneracy of positive solutions of such system.

Lemma 3.7 If (U3, R3) is a positive solution of (3.31), then the linearization of (3.31)
with respect to (U3, R3), which is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Duϕ
′′(z) − sϕ′(z) +

(
ru R3(z)

R3(z) + γu
− mu

)
ϕ(z) + ruγuU3(z)

(R3(z) + γu)2
φ(z) = 0, 0 < z < L1,

(
cuβumu − curu R3(z)

R3(z) + γu

)
ϕ(z) + Drφ

′′(z) − curuγuU3(z)

(R3(z) + γu)2
φ(z) = 0, 0 < z < L1,

Duϕ
′ − sϕ|z=0,L1 = 0, φ′(0) = 0, Drφ

′(L1) + ab

a + b
φ(L1) = 0,

only has the trivial solution. This means that (U3, R3) is non-degenerate.

The proof of Lemma 3.7 is similar to that of Nie et al. (2015, Lemma 3.1) and
López-Gómez and Pardo (1993, Lemma 3.1), so we omit it here.

We now embed our problem into the framework of topological degree theory. We
first assume that mu ∈ [ε, ruWsed/(Wsed + γu)), βu ∈ [0, 1) hold for some ε > 0 and
let ω(z) = Wsed − R(z) for any z ∈ [0, L1] and 0 < R(z) < Wsed . Then there is a
positive constant K1 such that

Wsed − ω(z)

Wsed − ω(z) + γu
≥ Wsed

Wsed + γu
− K1ω(z).

Let

X := {(μ, ν) ∈ C([0, L1]) × C([0, L1]) : μ ≥ 0, ν ≥ 0},
� := {(μ, ν) ∈ X : μ < A + 1, ν < Wsed + 1}.
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Then X is the positive cone inC([0, L1])×C([0, L1]) and� is a bounded open subset
of X . For any (U, ω) ∈ �, we consider

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−(Duϕ′′(z) − sϕ′(z)) + K2ϕ(z) =
(

κru(Wsed − ω(z))

(Wsed − ω(z)) + γu
− mu

)
U (z) + K2U (z), 0 < z < L1,

−Drφ
′′(z) + K2φ(z) =

(
curu(Wsed − ω(z))

(Wsed − ω(z)) + γu
− cuβumu

)
U (z) + K2ω(z), 0 < z < L1,

Duϕ′ − sϕ|z=0,L1 = 0, φ′(0) = 0, Drφ
′(L1) + ab

a + b
φ(L1) = 0,

(3.32)
where κ ∈ [0, 1] and K2 is large enough such that

K2 > max

{
mu − κru(Wsed − ω(z))

(Wsed − ω(z)) + γu
, curuK1ωU

}
.

Denote the solution operator (ϕ, φ) = Tκ(U, ω) for any (U, ω) ∈ �. It follows from
the strongmaximumprinciple and standard elliptic regularity theory that Tκ : � → X ,
compact and continuously differentiable for any κ ∈ [0, 1]. Moreover, (3.31) has a
nonnegative solution if and only if the operator T1 has a fixed point in �. Carrying
out similar arguments as Theorem 3.4 in Nie et al. (2015), we have the following
conclusions:

(e1) index(T1,�, X ) = 1 and index(T1, (0, 0), X ) = 0;
(e2) if (Û , R̂) is a positive solutionof (3.31) andnon-degenerate, then index(T1, (Û , ω̂),

X ) = 1, where ω̂ = 1 − R̂.

It follows from the compactness of T1 and the non-degeneracy of its fixed points (see
Lemma 3.7) that the operator T1 has at most finitely many positive fixed points in �,
denoted as (Ûi , ω̂i ), i = 1, 2, . . . , N . From (e1) and (e2), we have

N = index(T1, (0, 0), X) +
N∑
i=1

index(T1, (Ûi , ω̂i ), X) = index(T1,�, X) = 1,

which implies that (3.31) has a unique positive solution. Therefore, we obtain the
following conclusion.

Theorem 3.8 The system (2.5) has a pelagic algae-nutrient semi-trivial steady state
E3 if and only if

0 ≤ βu < 1, 0 < mu <
ruWsed

Wsed + γu
, mv > 0, (3.33)

and whenever E3 exists, it is unique and non-degenerate.

Remark 3.9 1. It follows from a standard bifurcation argument [see Du and Hsu
(2008a), Mei and Zhang 2012b] that when mu → 0, ‖Umu

3 ‖∞ → ∞. This
indicates the occurrence of a pelagic algal bloom, which is a serious environmental
problem.
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2. If mv > rv , then from Proposition 3.1, one has that limt→∞ V (t) = 0. Thus
the benthic algae become extinct in this case, and the system (2.5) reduces to the
subsystem of pelagic algae and (pelagic and benthic) nutrients.

3. Although the pelagic algae-nutrients semi-trivial steady state E3 is unique and
non-degenerate, its stability is not known (just as other diffusive predator-prey
systems). But for realistic environmental parameters, our numerical simulation
shows that under (3.33), solutions of (2.5) converge to E3.

4. In case of ample supply of light, recycling of nutrients does not alter the monotony
of nutrition with water depth (see (ii) in Lemma 3.6), but it has an important impact
on the existence and uniqueness of pelagic algae-nutrient semi-trivial steady state
E3 (for βu ∈ [0, 1) and for βu = 1) and pelagic algal biomass (see Sect. 4).

3.4 Coexistence steady state

A coexistence steady state solution of (2.5) is the one whose each component is
positive. The result in Proposition 3.1 shows that a coexistence steady state can only
exist when 0 < mu ≤ ru and 0 < mv ≤ rv . A direct calculation gives

W4 = γvmv

rv − mv

, V4 = b(Wsed − W4) + a(W4 − R4(L1))

cvmvL2(1 − βv)
(3.34)

since the second and fourth equations of (3.4) hold. Similar to (3.26), we conclude
that R4(L1) ≤ W4, and the equal sign holds if and only if βu = 1. It is clear that if V4
is positive, then

0 ≤ βv < 1, 0 < mv <
rvWsed

γv + Wsed
.

It follows from (3.34) that the existence and uniqueness of positive solutions of (3.4)
is equivalent to the existence and uniqueness of positive solutions of the following
system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

DuU ′′(z) − sU ′(z) +
(

ru R(z)

R(z) + γu
− mu

)
U (z) = 0, 0 < z < L1,

Dr R′′(z) + cu

(
βumu − ru R(z)

R(z) + γu

)
U (z) = 0, 0 < z < L1,

DuU ′(0) − sU (0) = DuU ′(L1) − sU (L1) = 0,

R′(0) = 0, Dr R′(L1) = a

(
γvmv

rv − mv

− R(L1)

)
≥ 0.

(3.35)

We now state our main results in this subsection.

Lemma 3.10 Assume that (U4, V4, R4,W4) ∈ C([0, L1]) × R+ × C([0, L1]) × R+
is a positive solution of (3.4) and βu ∈ [0, 1). Then
(v) 0 ≤ βv < 1, 0 < mu <

ruγvmv

γvmv + γu(rv − mv)
and 0 < mv <

rvWsed

Wsed + γv

;
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(vi) R4(z) is a strictly increasing function on [0, L1] and βuγumu

ru − βumu
≤ R4(z) <

γvmv

rv − mv

for all z ∈ [0, L1];
(vii) U4(z)e−sz/Du is a strictly increasing function of z on (0, L1), and for any ε >

0, there exists a positive constant B(ε) such that ‖U4‖∞ ≤ B(ε) if mu ∈
[ε, ruγvmv/(γvmv + γu(rv − mv)).

Theorem 3.11 The system (2.5) has a positive coexistence steady state E4 if and only
if

0 ≤ βu, βv < 1, 0 < mu <
ruγvmv

γvmv + γu(rv − mv)
, 0 < mv <

rvWsed

Wsed + γv

,

(3.36)
and whenever E4 exists, it is unique and non-degenerate.

The proofs of Lemma 3.10 and Theorem 3.11 are similar to those of Lemma 3.6 and
Theorem 3.8 respectively, and here we omit them.

Remark 3.12 1. This existence and uniqueness of coexistence steady state under
(3.36) shows that pelagic algae and benthic algae competing for one essential
nutrient can coexist in the oligotrophic shallow aquatic ecosystem with ample
supply of light.

2. A bifurcation approach can be used to show that the coexistence steady state E4
bifurcates from the benthic algae-nutrient semi-trivial steady state E2 at mu =

ruγvmv

γvmv + γu(rv − mv)
when 0 < mv <

rvWsed

Wsed + γv

is satisfied. Similarly the

pelagic algae-nutrient semi-trivial steady state E3 bifurcates from the nutrient-

only semi-trivial steady state E1 at mu = ruWsed

Wsed + γu
for any mv > 0. The

bifurcation structure of Ei (i = 1, 2, 3, 4) and associated exchange of stability
will be considered in a forthcoming paper.

3. If the loss of pelagic and benthic algal biomass is completely recycled back to
pelagic and benthic nutrients (βu = 1 and βv = 1), then coexistence steady state
E4 dose not exist.

3.5 Simulations of steady states

In this subsection, we show some numerical simulations to illustrate our analysis of
steady states for model (2.5). In order to facilitate our simulations below, we partition
the parameter ranges in Table 2 and summarize our main results on the existence,
uniqueness and stability of steady state solutions shown in previous subsections.

Note that the parameter space of (mu,mv) is partitioned into the following regions
according to Table 2 (see Fig. 2):

�1 : =
{
(mu,mv) : mu >

ruWsed

Wsed + γu
, mv >

rvWsed

Wsed + γv

}
,

�2 : =
{
(mu,mv) : mu >

ruγvmv

γvmv + γu(rv − mv)
, 0 < mv <

rvWsed

Wsed + γv

}
,
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Table 2 Existence, uniqueness and stability of steady states for model (2.5)

Steady states Existence and uniqueness Local stability

E1 = (0, 0, R1,W1) Always mu >
ruWsed

Wsed + γu
, mv >

rvWsed

Wsed + γv

E2 = (0, V2, R2,W2) 0 ≤ βv < 1, 0 < mu ,

0 < mv <
rvWsed

Wsed + γv

mu >
ruγvmv

γvmv + γu(rv − mv)

E3 = (U3, 0, R3,W3) 0 ≤ βu < 1, 0 < mv ,

0 < mu <
ruWsed

Wsed + γu

Unknown

E4 = (U4, V4, R4,W4) 0 ≤ βu , βv < 1, 0 < mu <
ruγvmv

γvmv + γu(rv − mv)
,

0 < mv <
rvWsed

Wsed + γv

Unknown
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m
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Fig. 2 The parameter ranges in the (mu ,mv) plane with different extinction/existence scenarios, as defined
in Table 2. Here the parameter values see Table 1

�3 : =
{
(mu,mv) : 0 < mu <

ruWsed

Wsed + γu
, mv >

rvWsed

Wsed + γv

}
,

�4 : =
{
(mu,mv) : 0 < mu <

ruγvmv

γvmv + γu(rv − mv)
, 0 < mv <

rvWsed

Wsed + γv

}
.

Figures 3, 4, 5, 6 show the simulations of solutions of (2.5) for different algal loss
rates (mu,mv) while other parameters are realistic ones from Table 1, and in each
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Fig. 3 Nutrient-only semi-trivial steady state E1. Here mu = 1, mv = 1 and other parameters are from
Table 1

case the solution converges to a steady state. The simulations appear to have same
convergence results regardless of initial conditions.

For the case of (mu,mv) = (1, 1), one can see that the extinction of both pelagic
algae and benthic algae may arise from this model with the concentration of dissolved
nutrients in the pelagic habitat and benthic habitat reaching the concentration of dis-
solved nutrients in the sediment (see Theorem 3.2, �1 in Figs. 2, and 3). This means
that in the absence of algae, dissolved nutrients is distributed evenly over the whole
shallow aquatic area.

For (mu,mv) = (1, 0.4), the pelagic algae becomes extinct and the benthic algae
persists (see Theorem 3.4, �2 in Figs. 2, and 4). In this case, the equilibrium nutrient
levels in two habitats are still the same but are considerably lower than the sediment
concentration. If (mu,mv) = (0.2, 1), the benthic algae dies out and the pelagic algae
reaches a high level (see Theorem 3.8, �3 in Figs. 2, and 5). Also here the dissolved
nutrient in pelagic habitat is much lower than the one in benthic habitat. The transition
fromFig. 4 to Fig. 5 also indicates that there is a regime shift between pelagic algae and
benthic algae, where the dominance of benthic algae transforms into the dominance
of pelagic algae in a shallow aquatic ecosystem.

Finally for (mu,mv) = (0.1, 0.4), both of pelagic and benthic algae in the habitat
maintain a positive level (see Theorem 3.11, �4 in Figs. 2, and 6). From Figs. 7 and 8,
we can see that (U3(z), R3(z)) and (U4(z), R4(z)) are both nonconstant steady states.
Indeed in both cases, the pelagic algae U (z) and pelagic nutrient R(z) appear to be
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Fig. 4 Benthic algae-nutrient semi-trivial steady state E2. Here mu = 1, mv = 0.4 and other parameters
are from Table 1

increasing from thewater surface z = 0 to the pelagic-benthic interface z = L1, which
verify the monotonicity results shown in Lemmas 3.6 and 3.10.

4 Influence of environmental parameters on algal biomass

The algal biomass density in an aquatic ecosystems is an important index for evaluating
water quality and protecting biological diversity. Especially, algal blooms, exhibited
by excessive proliferation of algae on account of the excessive amounts of nitrogen
and phosphorus in the water, is a secondary pollution and may produce great harm to
environment and human health. Therefore, in this section,wewill explore the influence
of model parameters in (2.5) on the pelagic algal biomass density and benthic algal
biomass density. In order to facilitate the discussion below, we use the spatial average
of U (x, t) and R(x, t) defined as

U (t) = 1

L1

∫ L1

0
U (t, z)dz, R(t) = 1

L1

∫ L1

0
R(t, z)dz.

In figures below, we compare the (spatial averaged) coexistence steady states
(U4, V4, R4,W4) for different parameter values.
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Fig. 5 Pelagic algae-nutrient semi-trivial steady state E3. Here mu = 0.2, mv = 1 and other parameters
are from Table 1

First we observe the effect of nutrient recycling proportion βu and βv from loss
of algal biomass. The parameters βu, βv are closely related and proportional to the
ambient temperature or light intensity.We assume that parameters (mu,mv) are chosen
so that the coexistence steady state E4 can be achieved, then we vary βu and keep
βv = 0 to compare the biomass of E4. From Fig. 9 left panel, one can observe that
pelagic algal biomassmean density increases and benthic algal biomass density almost
keeps unchanged with the increase of βu . Note that in Theorem 3.11, the existence of
E4 is only shown when βu < 1. When βu = 1 (the loss of pelagic algal biomass is
completely recycled back to pelagic nutrients), the pelagic algae biomass appears to
be increasing indefinitely (see Fig. 9 right panel). This shows that algal blooms may
still occur even in nutrient-poor aquatic ecosystems (here Wsed = 10), and it happens
because rapid decomposition of dead algae in high temperature leads to adequate
nutrient supply, which in turn causes algal blooms. The similar phenomenon also
occurs for benthic algae when βv increases to 1 (see Fig. 10). Indeed the expression
of V4 in (3.34) explicitly shows that V4 → ∞ as βv → 1. These indicate that the
nutrient recycling from loss of algal biomass may be an important factor in the algal
blooms process.

Our theoretical results in Section 3 have shown that the change of mortality rates
mu,mv can cause the regime shift from one steady state to another. Here we observe
the effect ofmu andmv on the coexistence state algal biomass density. Comparing the
changes in pelagic algal biomass mean density reveals that benthic algae could control
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Fig. 6 Coexistence steady state E4. Here mu = 0.1, mv = 0.4 and other parameters are from Table 1
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pelagic algae, and vice versa (see Fig. 11). This confirms that pelagic algae and benthic
algae are able to control each other through the consumption of common resources
even if they are located in different spatial positions. Therefore, in the presence of both
algae in an aquatic ecosystem, it is possible to prevent the occurance of algal blooms.

The pelagic habitat depth L1 has no significant effect on pelagic algal biomass
and benthic algal biomass (see Fig. 12a), which is partly because that here we do not
consider the role of light intensity, which has an important effect on pelagic and benthic
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Fig. 9 Influence of nutrient recycling proportion rate βu on algal biomass density. Here mu = 0.1,
mv = 0.45 and other parameters are from Table 1. Left Steady state (U4, V4, R4,W4) for 0 ≤ βu ≤ 0.9;
Right time series of solution for βu = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10–1

100

101

102

103

104
(a) β

u
=0

S
te

ad
y 

st
at

e

β
v

benthic algae
pelagic algae
benthic nutrient
pelagic nutrient

0 50 100 150 200
10–1

100

101

102

103

104

105

Time t

(b) β
u
=0, β

v
=1

pelagic algae
pelagic nutrient
benthic algae
benthic nutrient
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Fig. 12 Influence of parameters L1, L2 on algal biomass density. Here mv = 0.42 and other parameters
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algal biomass. On the other hand, the benthic habitat thickness L2 has a negative effect
on benthic algal biomass density and has no significant effect on pelagic algal biomass
since the concentration of dissolved nutrients in the habitat keeps unchange [see (3.34)
and Fig. 12b].

Figure 13a shows that an increasing sediment nutrient level (Wsed ) does not affect
pelagic algal biomass, as the concentration of dissolved nutrients in the benthic habi-
tat is always a constant if benthic algae exist [see (3.34) and (3.35)]. Benthic algae
increases with respect toWsed as shown in (3.34). This further proves that the presence
of benthic algae could control pelagic algal biomass.

Finally we consider the effect of spatial parameters s, Du, Dr on the coexistence
steady state algal biomass density. From Figs. 13b and 14, we can observe: (i) when
the algae has a tendency of sinking (s = 5), then the steady state distribution of pelagic
algae is increasing from thewater level to the interface of the pelagic andbenthic habitat
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(see Fig. 14a); (ii) when there is no any activemovement for pelagic algae (s = 0), then
the pelagic algal biomass almost distribute evenly in the habitat (see Fig. 14b); and (iii)
when pelagic algae has a clear upward trend, the pelagic algal biomass has a decreasing
profile and concentrates near the water surface (see Fig. 14c). Similar to the earlier
observation and studies in Klausmeier and Litchman (2001) and Du and Hsu (2008b),
our studies also suggest that there could be a significant concentration of pelagic algae
when the active movement is more pronounced. Moreover, in an oligotrophic shallow
aquatic ecosystem with ample supply of light, this upward movement trend can cause
a negative effect for pelagic algal biomass (see Fig. 13b).

For the effect of the diffusion coefficients Du and Dr on algal biomass density, we
first consider the case of low nutrient diffusion (Dr = 0.001). From Fig. 15a, one can
observe that pelagic algal biomass density decreases gradually with the increase of
pelagic algal diffusion. When the diffusion coefficient Du is large, the pelagic algal
biomass tends to an asymptote. On the other hand if the nutrient diffusion coefficient is
relatively large (Dr = 2.59), then Fig. 15b shows that the total pelagic algal biomass
does not change significantly with the increase of the turbulent diffusion coefficient
Du .

As a summary of the above discussion, the influence of environmental parameters
on algal biomass density are listed in Table 3.
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Fig. 15 Influence of parameters Du , Dr on algal biomass density. Here mv = 0.4 and other parameters
are from Table 1. Steady state (U4, V4, R4,W4) for 0.001 ≤ Du ≤ 10

Table 3 The influence of environmental parameters on algal biomass density

Parameters PABMD BABD Parameters PABMD BABD

βu ↑ ↑ NSE βv ↑ NSE ↑
mu ↑ ↓ ↑ mv ↑ ↑ ↓
L1 ↑ NSE NSE L2 ↑ NSE ↓
Wsed ↑ NSE ↑ s ↑ ↑ NSE

Du ↑ Dr is small ↓ ↑ Du ↑ Dr is large NSE NSE

PABMD pelagic algal biomass mean density, BABD benthic algal biomass density
↑: increasing, ↓: decreasing, NSE no significant effect

5 Discussion

In this paper, we establish and analyze a coupled system of ordinary differential equa-
tions and partial differential equations (2.5)modelling the interactions of pelagic algae,
benthic algae and one essential nutrient in an oligotrophic shallow aquatic ecosystem
with ample supply of light.

The steady state solutions of system (2.5) are completely classified rigorously using
the parameters (mu,mv) (the loss rates of the pelagic and benthic algae), and the
results are summarized in Table 2 and Fig. 2. Our theoretical analysis suggests that
both pelagic algae and benthic algae are extinct when mu and mv are both over some
threshold values (see Theorem 3.2). The benthic and pelagic algae are indirectly com-
peting for a shared resource, hence a competition exclusion occurs when mu is large
but mv is not (benthic algae dominates, see Theorem 3.4), or when mv is large but
mu is not (pelagic algae dominates, see Theorem 3.8). On the other hand, the pelagic
and benthic algae can coexist when both mu and mv are below some threshold values
(Theorem 3.11), and the parameter range for algae coexistence is robust. Note that
we have shown that the existence/nonexistence of any steady state is independent of
spatial environmental parameters such as sinking/buoyant rate s and diffusion coef-
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ficients Du, Dr for pelagic algae and nutrients, but these parameters can affect the
profile and amplitude of the steady states.

All the environmental parameters could influence the algal biomass density (see
Table 3). Our studies show that in the case of high temperature, nutrient recycling
from loss of algal biomass can lead to algal biomass density increases dramatically,
which is an important factor in the existence and uniqueness of non-negative steady
state solutions (Theorems 3.4, 3.8 and 3.11) and the algal blooms process (Figs. 9 and
10). The presence of benthic algae could control the growth of pelagic algal biomass
even if the sediment nutrient level is high (Figs. 11, 13a). In an oligotrophic shallow
aquatic ecosystem, the upward movement trend of pelagic algae can lead to a negative
effect on the pelagic algal biomass (Fig. 13b). In the case of low nutrient diffusion,
pelagic algal biomass is a decreasing function of Du and tends to an asymptote as the
diffusion coefficient Du approaches infinity, but if the nutrient diffusion coefficient is
relatively large, then the total pelagic algal biomass does not change much with the
increase of Du (Fig. 15).

Our study here is one of the first quantitative attempts to model the effect of benthic
algae and nutrient inputs, which complements and further develops earlier studies of
algae population growth in water column. It is important to understand the stability
and asymptotic profile of the non-constant steady states E3 and E4, which is not con-
sidered in this paper. In the context of competition between pelagic algae and benthic
algae, it will be of interest to further model some evenmore intriguing biological ques-
tions. For example, pelagic algae and benthic algae compete for light and nutrients
simultaneously Huisman et al. (1999, 2006), algaes may compete for two comple-
mentary nutrients Hsu et al. (2011), Klausmeier et al. (2007), algae exchange in the
pelagic and benthic habitat Jäger and Diehl (2014), Loreau et al. (2003), the effect of
toxic plankton species Hsu et al. (2013), Ikeda et al. (2017), Wang et al. (2015), and
the effect of zooplankton and fishes Loladze et al. (2000); Lv et al. (2016). Also an
important assumption of our study is the light supply is ample and uniform for the
system, which is the case for shallow aquatic ecosystem. The combined effect of light
and nutrient will be a subject of future study.
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