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Abstract A coupled system of ordinary differential equations and partial differential
equations is proposed to describe the interaction of pelagic algae, benthic algae and one
essential nutrient in an oligotrophic shallow aquatic ecosystem with ample supply of
light. The existence and uniqueness of non-negative steady states are completely deter-
mined for all possible parameter range, and these results characterize sharp threshold
conditions for the regime shift from extinction to coexistence of pelagic and benthic
algae. The influence of environmental parameters on algal biomass density is also
considered, which is an important indicator of algal blooms. Our studies suggest that
the nutrient recycling from loss of algal biomass may be an important factor in the
algal blooms process; and the presence of benthic algae may limit the pelagic algal
biomass density as they consume common resources even if the sediment nutrient
level is high.
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1 Introduction

Algae are important primary producers of organic compounds through photosynthesis
and chemosynthesis, and they form the base of the food chain in the lakes, oceans and
other aquatic ecosystems. The growth of algae depends on light intensity, temperature
and nutrients in the water, thus the vertical distribution of algae in the water column
usually has a stratified structure. Especially, in shallow lakes or littoral zones, there
are two distinct layers of algae: pelagic algae and benthic algae (Jidger and Diehl 2014;
Scheffer et al. 2003; Vasconcelos et al. 2016).

Pelagic algae, typically phytoplankton, drift in the water column of lakes and oceans
and provide significant biomass to aquatic ecosystems. It has been recognized that
the growth of pelagic algae needs two essential resources: light and nutrients. The
interaction between pelagic algae and its resources has been studied extensively in
three possible ways, in both the theory and the real practical applications. One extreme
case is in oligotrophic aquatic ecosystems with ample supply of light such that pelagic
algae tend to compete only for nutrients (see Hsu et al. 2013; Mei et al. 2016; Nie et al.
2016, 2015; Wang et al. 2015); and the other extreme case is in eutrophic ecosystems
with ample nutrient supply such that pelagic algae tend to compete only for light (see
Du and Hsu 2010; Du and Mei 2011; Du et al. 2015; Hsu and Lou 2010; Huisman et al.
1999; Kolokolnikov et al. 2009; Mei and Zhang 2012a; Peng and Zhao 2016). In some
aquatic ecosystems, pelagic algae compete for light and nutrients simultaneously (see
Du and Hsu 2008a,b; Huisman et al. 2006; Jager et al. 2010; Kerimoglu et al. 2012;
Klausmeier and Litchman 2001; Ryabov et al. 2010; Yoshiyama et al. 2009; Zagaris
et al. 2009; Zagaris and Doelman 2011).

Benthic algae (typically microalgae) are located in the bottom of lakes or oceans,
and they attach to the surface of other plants and rocks or root in the sediment. There is
growing evidence to show that benthic algae in some shallow, oligotrophic, clear-water
ecosystem not only is an important food source of aquatic animals, but also influence
water quality, energy cycle, and various biogeochemical interactions (Jdger and Diehl
2014; Schefter et al. 2003; Vadeboncoeur et al. 2008). But there have been very few
studies of the important role of benthic algae.

When both of pelagic and benthic algae are presented in an aquatic ecosystem,
they may have an intense competition for light and nutrition. There have been existing
dynamical models characterizing this relation between pelagic and benthic algae by
using ordinary differential equations (see Jiager and Diehl 2014; Scheffer et al. 2003;
Vasconcelos et al. 2016; Vadeboncoeur et al. 2008), in which an important assumption
is that the pelagic habitat is well mixed to produce homogeneous vertical distributions
of pelagic algae and nutrients in shallow water columns. However there is increasing
recognition that the distributions of pelagic algae show strong spatial heterogeneity,
both vertically and horizontally (see Du and Hsu 2008a, b; Huisman et al. 2002, 2006;
Jager et al. 2010; Klausmeier and Litchman 2001; Yoshiyama et al. 2009). Therefore
it is important and of great interest to explore the effect of spatial heterogeneity on the
pelagic and benthic algae growth, which has been neglected in previous studies, and
establish some threshold conditions that cause a regime shift between coexistence and
extinction of pelagic algae and benthic algae.
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Motivated by the existing studies and the above considerations, in this study, we
establish a coupled system of ordinary differential equations and partial differential
equations to describe the interactions of pelagic algae, benthic algae and one essential
nutrient in an oligotrophic shallow aquatic ecosystem with ample supply of light. The
new model reveals the effect of the spatial heterogeneity of pelagic algae and gives
threshold conditions of coexistence or regime shifts between pelagic algae and benthic
algae. In addition, from the perspective of preventing algae blooms, we explore the
influence of environmental parameters on algal biomass density. The present paper
only focuses on the case where pelagic algae and benthic algae compete for an essen-
tial nutrient, while other possible cases (compete for light or for light and nutrients
simultaneously) will be considered in forthcoming studies.

The rest of the paper is organized as follows. In Sect. 2, we derive a mathemat-
ical model of pelagic algae, benthic algae and nutrients consisting of two ordinary
differential equations and two partial differential equations. In Sect. 3, we investigate
dynamical properties of this model including the existence, uniqueness and stability
of steady states, which are complemented by numerical simulations under reasonable
parameter values from literature. In Sect. 4, we consider the influence of environmen-
tal parameters on algal biomass density via a systematic sensitivity analysis. In the
discussion section, we summary our findings and state some biologically motivated
mathematical questions for future study.

2 Model construction

In this section, we establish a mathematical model to describe the interactions between
pelagic algae and benthic algae in an oligotrophic shallow aquatic ecosystem with
ample supply of light, which means that pelagic algae and benthic algae tend to com-
pete only for nutrients. We assume that the entire shallow aquatic area consists of two
layers of habitat with uniform depth: pelagic habitat and benthic habitat. Let z denote
the depth coordinate. We assume that z = 0 is the surface of the water, z = L3 is the
sediment surface (bottom of the lake/ocean), and z = Li € (0, L3) is the interface
between the pelagic and benthic habitats. Hence the positive z direction is from the
surface of water to the bottom of lake/ocean. Here L and L, = L3 — L are the
thickness of pelagic habitat and benthic habitat respectively (see Fig. 1). In general,
the benthic habitat closely contacts with the sediment and its thickness is far less than
the depth of the pelagic habitat so Ly < L. Therefore, here we assume that dissolved
nutrients in the benthic habitat are well mixed and homogeneous in space.

A coupled system of two ordinary differential equations (ODE) and two partial
differential equations (PDE) is established below to describe the dynamics of biomass
density of pelagic algae (U ), biomass density of benthic algae (V'), concentration of
dissolved nutrients in the pelagic habitat (R), concentration of dissolved nutrients
in the benthic habitat (W). All the variables and parameters of the system and their
biological significance are listed in Table 1.
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Fig. 1 Interactions of pelagic
algae, benthic algae and one
essential nutrient in a shallow
aquatic ecosystem
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2.1 Pelagic algae and benthic algae

Let U(z, t) denote the biomass density of pelagic algae at depth z € [0, L1] and
time ¢. The intrinsic growth rate of pelagic algae depends on the concentration of
dissolved nutrients R(z, t) in the pelagic habitat, and it takes a Michaelis—Menten type
functional response form r, R/(R + y,,), where r;, is the maximum production rate of
pelagic algae, and y,, is the half-saturation constant. On the other hand, the pelagic
algal biomass density is lost at a density-independent rate m,, caused by processes
such as respiration, death and grazing. Pelagic algal transport is governed by passive
movement due to turbulence with a depth independent turbulent diffusion coefficient
D,, and also active movement due to sinking or buoyant with speed s. Taking together
these assumptions results in the following reaction—diffusion—advection equation of
U with no-flux boundary condition:

aU(z,t)

o turbulent diffusion — sinking(buoyant) + growth — loss

2.1)

9’U U ( ruR
W — ST

972 a4z R4y,
D,U,(0) —sU@0) =0, D,U,(Ly)—sU(Ly)=0.

_mu> U’ ZE(O, Ll)’

The algae in the benthic habitat attach to the surface of other plants, rocks or
roots in the sediment. This implies that they move very slowly or are motionless.
Also the thickness of the benthic habitat is far less than the one of pelagic habitat,
hence we assume that the density function V is spatially uniformly distributed. That
is V(z,t) = V(t) for z € (L1, L3). The change in the benthic algal biomass density
comes from two processes: growth and loss. The intrinsic growth rate of benthic algae
is governed by the concentration of dissolved nutrients W (z, t) = W () in the benthic
habitat, again with a Michaelis—Menten type functional response r, W /(W +y,,), where
ry is the maximum production rate of the benthic algae, and y, is the half-saturation
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Algae growth in a pelagic—benthic aquatic ecosystem 1165

constant. The loss rate of benthic algal biomass density is scaled by a parameter m,,.
Combining these assumptions give the following ODE for benthic algae:

dV (1)
dt

w
= growth — loss = ( i — mv) V. 2.2)
W+

2.2 Nutrients in the pelagic and benthic habitats

The function R(z, t) describes the concentration of dissolved nutrients in the pelagic
habitat at depth z € [0, L1] and time ¢, and W(¢) is the concentration of dissolved
nutrients in the benthic habitat at time ¢. Here again due to the slow movement in the
benthic habitat, the nutrient concentration in the benthic habitat is spatially uniform.
The nutrients in the whole shallow aquatic ecosystems are supplied from the sediment
with a fixed concentration Wy, there. The change of dissolved nutrients in the pelagic
habitat depends on turbulent diffusion with a diffusion coefficient D,, consumption
by pelagic algae, recycling from the loss of pelagic algal biomass with carbon ratio ¢,
and proportion B, € [0, 1], and nutrients exchange between the pelagic and benthic
habitat at z = L with nutrient exchange rate a. The dynamics of R(z, t) is given by

dOR(z,1) oo . :
rya turbulent diffusion + recycling — consumption
3R curu RU (2.3)
=Dr8_Z2+CuﬁumuU_ R+ 7 , 2€(0,Ly),

R.(0,t) =0, D R,(L1,t) =a(W(t) — R(Ly, t)) (nutrients exchange).

The benthic nutrient W (¢) could change as a result of consumption by benthic algae,
recycling from the loss of benthic algal biomass with carbon ratios ¢, and proportion
Bv € [0, 1], nutrients exchange between the pelagic and benthic habitat, and supplying
from the sediment. Thus the dynamics of W (¢) is described as

dW(t
dt( ) = supplying — nutrients exchange + recycling — consumption
D Weea = W) = W = R(Ly. 1)) + copom, v — STV o
= — - - — (W - , cyBomyV — —.
Ly Ly : e W+ vy

In Egs. (2.3) and (2.4), we include the recycle of nutrients ¢, 8,m, U and ¢, B,m, V.
This is because high temperature can cause the rapid decomposition of algae, and
thus promote more nutritious to be recycled. In previous studies, there are very few
dynamical results on recycling. Here our subsequent studies show that the nutrient
recycling from loss of algal biomass may be an important factor in the existence and
uniqueness of non-negative steady state solutions and the algal blooms process.

Alsoin (2.1) and (2.2), we do not include the exchange of algaes between pelagic
habit and benthic habit, as the experiments in Jager et al. (2010), Scheffer et al. (2003),
Vasconcelos et al. (2016) show that there is no algal exchange between the pelagic
and benthic habitat found in these situations.
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2.3 The full model

Combining all Egs. (2.1)—-(2.4), we have the following full system of pelagic algae-
benthic algae-nutrients model:

U 32U U  ryRU
— =Dy—5 —5— —myuU, 0 Ly, t>0,
or T2 T TRy ™ seshReE
dv oWV
— = —myV, t >0,
dt W+2yv
oR d“R cury RU
— =D,—= +¢ myuU — s O<z<Ly,t>0,
ot r 312 uﬁu u R+Vu 1
aw b a cyry WV
— = — (Wgeqg — W) — — (W — R(Ly1, 1)) + cyfumyV — , t>0,
dtaU Ly Ly U W+
DMT(Ov 1) —sU(0,1) =0, Du(,T(LlJ) —sU(Ly,1) =0, t>0,
aR S aR N
T(O’I):O’ Dra—Z(Ll,t):a(W(t)—R(Ll,t)), t>0.
z

2.5)

In consideration of the biological significance of (2.5), we assume that s € R,

Bu, By € [0, 1] and the remaining parameters are all positive constants. Furthermore,
we consider the solutions of (2.5) with nonnegative initial values, i.e.

U(z,0) =Up(z) >#0, R(z,0)=Rp(z) >#0, 0<z<Ly,

(2.6)
V0)=Vy >0, WO =W, >0.

In the following we study the dynamics of (2.5). In particular, we are interested
in the existence, uniqueness, and stability of non-negative steady state solutions
(U(2), V, R(z), W) which satisfy the following steady state system:

DLU"(2) — sU'(2) + (ﬂ
R(@) + yu

w
V( ry _mu>:0’

Dy RN(Z) + CuﬂumuU(Z) -

—mu>U(z):0, 0<z<Ly,

curuRQU(2) 0
R(2) + vu h

ryW
b(Wseq — W) —a(W — R(L1)) +cyLa | Bymy — £ ) V=0,
W+

0<z<Ly,

DL,U/(O) —sU(0) = DuU/(Ll) —sU(Ly) =0,
R'(0) =0, DyR'(L1) = a(W — R(Ly)).

3 Existence and stability of steady states

The main purpose of this section is to investigate the existence, uniqueness and
local/global stability of non-negative steady state solutions of (2.5). The possible
non-negative steady states of (2.5) are listed below:

1. Nutrient-only semi-trivial steady state Eq : (0, 0, R1(z), W1), where (R (z), W1)

solves
R'(z)=0,0<z<Ly,

b(Wseq — W) —a(W — R(Ly1)) =0, (3.1
R'(0) =0, D,R'(L1) = a(W — R(L1));

@ Springer
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2. Benthic algae-nutrient semi-trivial steady state E> : (0, V2, R2(z), W), where
(V2, Ry(z), W) solves
W

W+wn
R'(z) =0, 0<z <Ly,

b(Wyeq — W) —a(W — R(L1)) +cyLo <,3vmv - W ) V=0,

—my =0,

W+
R'(0) =0, D,R'(L1) = a(W — R(L1));
(3.2)
3. Pelagic algae-nutrient semi-trivial steady state E3 : (Uz(z), 0, R3(z), W3), where
(U3(2), R3(z), W3) solves

ryR(z) )
_— — Ui =0, 0 < Ly,
R + my, | U(z) <z 1

cury R(2)U (2)
D,R"(z uBuy - =0, L,
(2) + cuPum, U (2) R@) + 70 0 0<z<L (33)

b(Wyea = W) —a(W — R(L1)) =0,
D,U'(0) —sU(0) = D,U'(Ly) — sU(Ly) =0,
R'(0) =0, D-R'(L1) =a(W — R(L1));

D,U"(z) —sU'(z2) + <

4. Coexistence steady state E4 : (Us(2), V4, Ra(z), Wa), where (Ua(2), V4, R4(2),

W4) solves
DLU" () - sU'(2) + (Rr(;f)y - m> U@ =0, 0<z<Ly.
W !
W+w —m =0,
u MR
Dy R"(2) + cufumuU @) — % =0, O<z<Li (3.4)
u

roW
b(Wseq — W) —a(W — R(L1)) +cyla (ﬂvmv - u ) V =0,
W+}/U

DU’ (0) —sU(0) = DyU'(Ly) —sU(Ly) =0,
R'(0) =0, DrR'(L1) = a(W — R(L)).

In the following subsections, we will discuss the existence, uniqueness and local sta-
bility of steady states in each form categorized above, and also discuss the implication
of such steady states to the whole dynamics of (2.5).

To establish the local stability of the above steady states, we linearize the system
(2.5) about a steady state (u#(z), v, 7(z), w) and obtain an eigenvalue problem

M) = Dy’ =39/ )+ (r(rz)’f)y - m) o) + %wz), 0<z<Ly

= (G ) e _

() = (cuﬁumu - ;(“;)”fii><p(z) +_Dr¢”(z) - %«pm, 0<z<1y, G
A= (cvﬂvmv - ;J’r;‘)) - (;Li‘)’z; + Lizqs(Ll) - (%) Z,

Du¢’ — s¢l.=0,L, =0, ¢'(0) =0, Dy¢/(L1) = a(g — $(L1)).

@ Springer



1168 J. Zhang et al.

A steady state solution of (2.5) is locally asymptotically stable if all eigenvalues of
(3.5) have negative real part, and it is unstable if at least one eigenvalue has positive
real part. Note that here for (2.5), the linear stability defined by (3.5) (consisting of
reaction—diffusion equations and ordinary differential equations) implies the nonlinear
local stability (uniformly asymptotically stable) in some proper function spaces (see
Henry 1981, Chapter 5). Similar stability of steady state solutions of shadow systems
of reaction—diffusion systems have been considered in Ni et al. (2001a,b).

Before we discuss each possible steady state as introduced above, we notice the
following observation for the dynamics of the system (2.5).

Proposition 3.1 Let (U(z,t), V(t), R(z,t), W(t)) be a solution of (2.5) with initial
condition specified as in (2.6).

1. If my > ry, then lim;_, o, U (x, t) = O uniformly for x € [0, L1];

2. If my > 1y, thenlim;_,oo V() = 0.

Proof From the equation of V (¢), we have V'(t) < (r, —m,)V (¢), thus it is clear that
if my > ry, then lim;_, 5o V(¢) = 0. On the other hand, from

aU<D32U 8U+( "

— — —Ss— 4+, —m ,

ar — " 9z2 3z o

and m, > r,, we obtain that u(x, t) converges to O uniformly for x € [0, L{] as
t — oo by the comparison theorem of parabolic equations. O

The result in Proposition 3.1 indicates that when m, > r,, the dynamics of (2.5) is
effectively reduced to benthic algae-nutrients subsystem, while when m, > r,, the
dynamics of (2.5) is effectively reduced to pelagic algae-nutrients subsystem.

3.1 Nutrient-only semi-trivial steady state

For any parameter value, there is a unique nutrient-only steady state that is in balance
with the sediment nutrient concentration Wy, and it is at least locally asymptotically
stable when the algae’s loss rates are high.

Theorem 3.2 The system (2.5) has a unique nutrient-only steady state solution

E1 = (0,0, Wyeq, Wieq). (3.6)
Moreover if
my > _TuWsed and my, > r”—“d, (3.7)
Wiea + Vu Wiea + vu

then E1 is locally asymptotically stable with respect to (2.5), and if

TuWsed ryWied
O<my<——"———o0r 0<my<

_—, (3.8)
Wiea + Yu Wsea + Vv

then E1 is unstable.
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Algae growth in a pelagic—benthic aquatic ecosystem 1169

Proof 1Tt is easy to see that Eq given in (3.6) is the unique solution of (3.1). For
the stability of E1(0, 0, Weq, Wied), it follows from (3.5) that the stability of Ej is
determined by the eigenvalue problem

uWse
rp(z) = Dy (2) — s¢'(2) + (r—d — mu> (), 0<z<Li, (39a)
Wsea + Yu
7y Wsead
MM=——"7———my |)§, 3.9b
s (Wsed + " > E ( )
culuWsed ”
rp(z) = <Cu,8umu - —> 0@+ Dy¢"(2), 0 <z < Ly, (3.9¢)
Wsed + Yu
_ . coryWsed a _ a+b
A= (Cvﬂvmv Wer b0 +Vv>$+ L2¢(L1) ( L )L (3.99)
Dy¢' —s¢l.—o,L, =0, ¢'(0) =0, D¢ (L) = a(t — ¢(L1)). (3.9¢)

To establish the local stability of E1, we set

Ty Wied 7y Wsed
hh=————"——-—my, hh = ———— —my.
Wiea + Yu Wiea + Y

Let 1 be the largest eigenvalue of (3.9), and let (¢, &, ¢, ¢) be the corresponding
eigenfunction. We consider the following three cases: (a1) ¢ # 0; (a2) ¢ = 0 and
E#0;0r(az3)9p =0and & =0.
Case (a1): ¢ # 0. In this case, the stability of E is completely described by char-
acteristic equations (3.9a), (3.9¢), (3.9d). Let ¢ = /PG Then (3.9a) translates
into

Ap(2) = Du@"(2) +5¢'(2) + h1¢(z), 0 <z <Ly,

¢'(0) =¢'(L1) = 0.

It is easy to see that the dominant eigenvalue of (3.10) is /#; and the corresponding
eigenfunction is ¢1(z) = 1. Then the dominant eigenvalue of (3.9a) is A; = h; and
the corresponding eigenfunction is ¢ (z) = €* 2/Du Substituting A1 and ¢(z) into (3.9¢)
and (3.9d) we have

(3.10)

a
= m¢(L1), (3.11a)
— sz/Dy "
() = — Sulmd ﬂ;iJrh‘)e + D"Z @ o-z<L.  Glib)
1
Ieon ’ _ ab+hiLy)
#'(0) =0, D¢/ (L) = = —= == =g (L), 3.11¢)

Solving (3.11b) one has that

CuD,,%(mu(l — Bu) + hl)esZ/Du
s2D, — /’l]D%

$1(2) = &1e8VMIPr gy iVI/Dr , ¢, & €R,
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when /h1/D, # s/D,, or

. . D 1= Bu) + hy)zes¥/Pu
$1(2) = 3VITDr g gyemaV/mIDr | 2 ulmu zsﬁg Ve , 03,64 €R,
r

when /h1/D, = s/D,. It follows from the boundary conditions (3.11c) that there
exist constants ¢; (i = 1,2, 3,4) such that ¢ (z) satisfies (3.11¢). This shows that
there exists a solution (¢, ¢ (z)) satisfying Eq. (3.11). Therefore, in case (a;), A1 = h;
determines the stability of Ej.

Case (a2): ¢ = 0 and & # 0. In this case it follows from (3.9b) that A = hy with
eigenfunction £ = 1. Combining (3.9¢) with (3.9d), we have

ULl’l vl_v
e € 2(hy +my(1 — By))
a+b+hl a+b+hal,
6(2) = ",f S
2
(0 =0, DLy = —a| 2Ly eolali tm = B)
¢'(0) =0, Dy¢'(L1) = a[a+b+h1L2¢(Ll)+ a+b+hiL }

(3.12)

It is straightforward to show that there exists a solution (¢, ¢ (z)) satisfying Eq. (3.12).
This implies that A1 = h, determines the stability of E; in case (a3).
Case (a3): ¢ = 0 and £ = 0. Now (3.9) reduces to

Ap(2) = Dr¢"(2), 0 <z < Ly,

ag(L) (a +b)§’ (3.13)
L» L>

¢'(0) =0, D,¢'(L1) = a(C — ¢(Ly)).

A=

If £ = 01in (3.13), then ¢ satisfies
rp(2) = Dy¢"(2), 0 <z <Ly, ¢'(0)=0, ¢'(L1) =0, (L) =0, (3.14)

which implies that ¢ (z) = 0. Hence ¢ # 0, and consequently ¢ (z) # 0 and (¢, ¢)

satisfies
a

¢ = a+b+AL2¢(L1)’
Mp(z) = Dr¢"(2), 0 <z <Ly, (3.15)
§(0) =0, D¢/ (L) = — LT iy

a+b+ AL,

If A > 0 is an eigenvalue of (3.15), then from ¢'(0) = 0 we have ¢(z) = cosh(wz)
for w = +/A/D,. But from the boundary condition at x = L, we get

. a( + AL>)
D, sinh(wL{) = ——— cos(wLy),
a+b+ ALy
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that is a contradiction. It is also easy to see A = 0 cannot be an eigenvalue of (3.15).
Thus the eigenvalues of (3.15) must be negative. Indeed for A < 0, we have ¢ (z) =
cos(wz) for w = /=1 /D, since ¢'(0) = 0. From the boundary condition at x = L1,
we find that

(a/Dy)(b — @* Dy L)

t L) = .
an(wL1) w(a+b—w?D,L»)

(3.16)

Then the dominant eigenvalue A of (3.15)is — D, w% where w is the smallest positive
root of (3.16). Summarizing above discussions, we conclude that in case (a3), A1 is
negative.

In view of case (a;)—(a3), we conclude that A; = max{hy, hy, —Drw%}, and if (3.7)
holds, then A1 < 0 and E is locally asymptotically stable. On the other hand, if (3.8)
holds, then E; is unstable. O

The condition (3.7) implies that large algal loss rates in both the pelagic and benthic
habitats lead to extinction of both algae population. Indeed we prove next that the
extinction is global for all initial conditions if a stronger condition on the loss rates is
satisfied.

Theorem 3.3 Suppose that
my > ry, and my > ry, (3.17)

then the nutrient-only steady state solution E1 = (0, 0, Weq, Wyeq) is globally asymp-

totically stable for (2.5) with respect to any nonnegative initial value.

Proof From Proposition 3.1, we have tlim u(x,t) = 0 uniformly for x € [0, L] and
—00

tlim V(t) = 0 provided (3.17) holds. From the theory of asymptotical autonomous

—00

systems Mischaikow et al. (1995), (2.5) reduces to a limiting system

AR 92R

EZDrTzz’ 0<z<Ly, t>0,

aw b a

= — (Wyeq — W) — — (W — R(L1, 1)), t>0, 3.18
ar Lz( sed ) Lz( (Ly,1)) > (3.18)
oR oR

5(0, 1 =0, Drg(l‘l» 1) =a(W() — R(Ly, 1)), t>0.

In order to obtain our results, we construct a Lyapunov function for system (3.18):
L 2 Ly 2
V(R, W) = E (R(2) — Wyed) d1+7(W_ Wsed)”
0

Let (R(z,t), W(t)) be an arbitrary solution of (3.18) with nonnegative initial values.
Then

dV(RC, 0, W) _ !

(R(z,t) — W )%d + La(W(t) — W, )dfw
dr o 2, sed 3 Z 2 sed dt
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L 3R )
= (R(z, t)_Wsed)aiZZdZ_b(W(t)_Wsed)
0

— a(W(t) = Wsea)(W(t) — R(L1, 1))

L L r9R\?
1—/ (—) dz
0 0 9z

— bW (1) = Wyea)> — a(W (1) = Wea) (W (1) = R(Ly, 1))

oR
= D, (R - Wsed)
0z

Lt /9R\2
=a(W(t)_R(Llst))(R(Llst)_Wsed)_/o (E) dz

— bW (1) = Wea)” — a(W (1) — Weea)(W(1) — R(Ly, 1))

Li /3R \2
= —a(W(t) = R(L1,1)* = b(Wsea — W(1))* — f (a—z) dz <0.
0

Note that dV (-)/dt = 0 holds if and only if W(¢) = Wseq, R(L1,t) = W(¢), and
dR/dz = 0, thatis, W(t) = R(z,t) = Wieq4. It follows from the LaSalle’s Invariance
Principle that (R(z, t), W(t)) converges to (Wseq, Wseq) uniformly for x € [0, L]
ast — oo for (3.18), and it also follows that any solution of (2.5) with nonnegative
initial value converges to E as ¢t — oo. O

We remark that the global stability of (Ws.q, Wseq) in the nutrient-only subspace
always holds without the condition (3.17), as shown in the proof of Theorem 3.3. The
global stability in Theorem 3.3 also implies that under the condition (3.17), there exist
no any other steady state solutions such as E», E3, E4 as mentioned in the beginning
of this section.

3.2 Benthic algae-nutrient semi-trivial steady state

In this subsection, we prove that when the benthic algal loss rate m, is not large,
then benthic algae is able to grow to a positive equilibrium level. In fact, we show
that m% = r, Wyea/(Wsea + yv) is a sharp threshold for the persistence/extinction of
benthic algae.

Theorem 3.4 The system (2.5) has a positive benthic algae-nutrient semi-trivial
steady state E if and only if

0<By<1. my=0 0<my,<—Wsed (3.19)
Wied + Vv
Whenever E, exists, it is unique and it is given by
b(Wseq — W m m
Ey = (0, Va, Ra(2), Wa) = (o, Weea = W2) - Yomtv Yol ) . (3.20)
coymyLo(l — By) ry —my ry —my
Moreover if in addition to (3.19), we also have

m TuloTy (3.21)

> 9
Yoy + Yu(ry —my)
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then E; is locally asymptotically stable with respect to (2.5), while E3 is unstable if

FuYohiy

Yoly + Yy (ry — mv).

(3.22)

0<my, <

Proof The steady state equation (3.2) can be explicitly solved. The equation of R and
its boundary conditions imply that W, = R,. The value of W, can be solved from the
first equation of (3.2), and finally V, can be solved from the third equation of (3.2).
Thus E, must be given by (3.20). And it is easy to verify that (V>, R>, W») is positive
if and only if (3.19) holds.

Next we investigate the stability of E5. From (3.5), the stability of E is determined
by the eigenvalue problem

rp(2) = D" (2) — s¢'(2) + h3p(2), 0 <z < L1, (3.23a)
%
VLT LT 3.23b
Al (-230)
AP (2) = —[cu(my(1 — By) + h3)]e(2) + Dr¢"(2), 0 <z < Ly, (3.23¢)
%) a a+b
A =cymy(By — 1) — ———— —¢(Ly) — , 3.23d
& = cymy(B )3 (W2+Vu)2§+L2¢( 1) < L >§ ( )
Dy¢' —s¢l.=0,L, =0, ¢'(0) =0, D¢’ (L) =a(¢ —¢(L1)), (3.23¢)
where
hy= W2
Wa + yy

Again let A1 be the largest eigenvalue of (3.23), and let (¢, &, ¢, ¢) be the correspond-
ing eigenfunction. We consider two cases: (b1): ¢ % 0, or (b2): ¢ = 0.

Case (b1): ¢ # 0. Carrying out similar arguments as those of case (a;) in Theorem 3.2,
we conclude that the dominant eigenvalue of (3.23a) is A1 = h3 and the corresponding
eigenfunction is ¢(z) = ¢*¥/P«. With this A1 and ¢(z), (£, ¢(2), ¢) in (3.23) can be
uniquely solved.

Case (by): ¢ = 0. If &€ = 0, then it is clear that { = 0 as well. Then (3.23) reduces
into (3.14) again, thus the dominant eigenvalue is 1| = —(D,7?)/ L% and the corre-
sponding eigenfunction is ¢ (z) = cos(wz/L1). If £ # 0, then (3.23) is reformulated
as

A = hyt,
Ap(2) = Dr¢"(2), 0 <z <Ly,
_ comypha(By — 1)¢ a a+b
AL = — —cphal + E¢(Ll) - ( L )C,

a(Lad* + (b + cyhaLo)A + cymyhaLo(1 — By)

"(0) =0, D.¢'(L)) = —
¢ 0 r¢ (L) a(LaA? + (a + b+ cyhaLo)k + cymyhaLy(1 — By)

¢ (L1),
(3.24)
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where hy = ryyy Vo /(Wa + y,,)z. Then similar to case (a3) in Theorem 3.2, (3.24) has
only negative eigenvalues, and the dominant eigenvalue A| = —Drn%, where 11 is the
smallest root of

alDyLan* — (b + cyhaL2) Dy + cymyhaLo(1 — By)]
DD, Lan* — (a + b + cyhaL2) Dyn? + cymyhaLa(1 — By)]°

tannL =

Combining the cases (b1) and (b,), we conclude that E» is locally asymptotically
stable if 73 < 0 which is equivalent to (3.21), and E is unstable if 43 > 0 which is
equivalent to (3.22). O

Remark 3.5 1. It follows from (3.20) that V; increases with respect to the recycling
proportion 8, and limg _, - V2 = 0o. This implies that the benthic algae-nutrient
semi-trivial steady state E; does not exist when 8, = 1. From the perspective of
ecological point of view, if the recycling proportion 8, from the loss of benthic
algal biomass is high, then there is a benthic algal bloom in this oligotrophic
shallow aquatic ecosystem with ample supply of light.

2. One can see that limmv_,mt E, = Eq, where m} = ryWseq/(Wseq + y»). Hence
m, = m} is acritical value for the existence/nonexistence of benthic algae-nutrient
steady state E».

3. If my, > ry, then from Proposition 3.1, one has that lim;—., U(x, ) = 0. Thus
the pelagic algae become extinct in this case, and the system (2.5) reduces to the
subsystem of benthic algae and (pelagic and benthic) nutrients. It is an interesting
question whether E; is globally asymptotically stable in this situation, which is
indicated by our numerical simulations.

3.3 Pelagic algae-nutrient semi-trivial steady state

In the oligotrophic shallow aquatic ecosystem, it is also possible that pelagic algae can
grow while benthic algae become extinct. In this subsection, we show the existence
and uniqueness of pelagic algae-nutrients semi-trivial steady state, in which benthic
algae is absent in the system. Such a steady state is in a form of E3 = (U3, 0, R3, W3)
with (Uz, R3, W3) being a positive solution of (3.3).

We first establish some a priori estimates for positive solutions of (3.3).

Lemma 3.6 Assume that (Us, R3, W3) € C([0, L1]) x C([0, L{]) x Ry is a positive
solution of (3.3) and B, € [0, 1). Then

ru W,
i 0<my, < “—Sed;
Wsed + Vu
.. . . . . . BuVumy
(i1) Rj is a strictly increasing function on [0, L1] and ————— < R3(2) < Wieq
Iy — Puly

forall z € [0, L1];

>iii) 0 < W3 < Wieas

(v) Us(z)e™%/Pu is a strictly increasing function of z on (0, Ly), and for any
e > 0, there exists a positive constant A(e) such that |Usllce < A(e) if
my € [&, 1y Wsed | (Wsed + Yu))-
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Proof (1): It follows from the first equation of (3.3) and its boundary conditions that

ryR3(2)
RS(Z) + Yu

D, U4(0) — sU3(0) = D,Uj(L1) — sU3(Ly) = 0.

—D,U{ (z) + sUj3(2) — < ) Us(z) = —m,U3(z), 0 <z < Ly,

(3.25)

Hence the principal eigenvalue of (3.25) is

A ( ryR3(-) > _
1 - N = —my,
R3(') + Vu

with principal eigenfunction Us. From the monotonicity of the principal eigenvalue
on the weight functions, we have

W, Wi R3(-
_ Ty Wsed =1 (_ Ty Wsed ><)»1 <_ ruR3(-) ><)»1(0)=0
Wiea + Yu Wiea + Yu R3(') + Vu

This means that 0 < m,, < ry, Wyea/ Wsea + Vu)-

(i1) and (iii): It follows from the first two equations of (3.3) and its boundary
conditions that

Lv ' riR3(2) )
— —my, | U dz =0,
K; (Rﬂw-km M | Us(2)dz

Ly FMR?,(Z)
a%—&@m+aﬁ<mm_5675

(3.26)
) Us(z)dz = 0.

Since B, € [0, 1), we have R3(L1) < W3. From the third equation of (3.3), we have

_ aR?:(Ll) + bWsed

W
3 a+b

< Wiea. (3.27)

This proves (iii) as W3 > 0. It follows from (3.27) that R3(z) satisfies

R
D, Ry (2) + cu (ﬁumu - r—m> Us(z) =0, 0 <z < L1,
R3(2) + vu 3.28)
ab(Wsea — R3(L1)) '
R;(0) =0, D,Ry(L1) = “a iy > 0.

To prove the upper bound of R3(z), we set

Qp:={z €0, L1]: Bumy <1y R3(2)/(R3(2) + vu), z € Q1},
Qo :={z€[0,Lq]: ﬂumu > ruR3(Z)/(R3(Z) + yu), z € Q}.
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It is clear that

QIN =0, QUQ =10, L], lerg R3(2)|@, = sup R3(2)|g,-
Z 1

7€

We show that 2, = #. We consider the following two cases: (c1) 0 € Q1; (c2) 0 € Q7.
Case (c1): 0 € Q1. For any z € 1, Ry (z) > 0 and R}(z) is increasing for z on ;.
This shows that R;(z) > 0 for all z € 1 and R3(z2) is an increasing function of z on
€21 since R’ 0) = 0 holds. Note that inf e, R3(2)|q, > sup,cq, R3(2)|q, and R3(z)
is contlnuous then x € Q1 forany x € (0, L] and 2, = (J;

Case (c2): 0 € Q. For any z € @2, Ry(z) < 0 and R}(z) is a strictly decreasing
function of z on 2. It follows from 0 € 2, that R3(z) is strictly decreasing for z
on 2, then x € Q) for any x € (0, L;] . But on the other hand L € €2 since
Rg (L1) > 0. This is a contradiction. Therefore, O ¢ £2;.

Combining cases (c1) and (c2), we conclude that R3(z) is strictly increasing for
z € [0, L1] as R;(L1) > 0. By the boundary conditions of (3.28) and the definition
of 1, we have R3(0) > B,yumy/(ry — Bumy) and R3(L1) < Wseq, which implies
that (ii) holds.

(iv): It follows from the first equality of (3.26) and Uz > O thatr, R3/(R3 + v,) —
m, must change sign in (0, L{). From the monotonicity of R3, we conclude that
ryR3(z)/(R3(2) + y4) — my, is an increasing function of z on (0, L1). This means that
there is a z* € (0, L) such that r, R3(z)/(R3(z) + yu) — m, < 0 for z € (0, z*) and
ryR3(2)/(R3(2)+yu) —m, > Oforz € (z*, L1). Combining the first equation of (3.3)
with its boundary conditions, we have D, Ué (z) —sUz(z) > O forany z € (0, Ly).
Then Uz (z)e %/ Pu is a strictly increasing function of z on (0, Ly).

To establish the boundedness of Us(z), for any ¢ > 0, we assume that there are
a sequence m' € e, ruWsea/ Wsea + yu)] and corresponding positive solutions
(U3(z) R’ (2), W3) of (3.3) such that ||U3||oo — o0 as i — o00. Without loss of

generahty, we assume that m!, — m, asi — oo. Let u; = = Ul /||U lloo- Then u;
satisfies
. ru R (2)
—(Dyu(z) — sui () + miui(z) = | ———— | ui(z), 0 <z < Ly,
R3(2) + Yu

Dy (0) — su; (0) = Dyu(L1) — sui(L1) = 0,

/Ll ki@ m', ) u;(z)dz = 0.
0 R3(2) + Yu

It follows from (ii) that 0 < r, R(2)/(R{(2) 4+ i) < ruWsea/ Wiea + vu) for all
z € [0, L1], which means that we may assume that there is a function d; € C([0, L{])
such that ruRg(z)/(Rg(z) + Yu) — di(z) in C([0, L1]) as i — oo. Noting that
{u;}, {m.} are both bounded in L°°[0, L], by using L? theory for elliptic operators
and the Sobolev embedding theorem, we may assume (passing to a subsequence if
necessary) that u; — u in CY(0,L]) asi — oo, and u satisfies (in the weak
sense)
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—(Dyu'(z) = su(2)) + myu(z) = di(x)u(z), 0 <z < Ly,
D,u'(0) — su(0) = Dyu'(Ly) — su(Ly) =0,
Ly

(d1(z) — my)u(z)dz = 0.
0

(3.29)

Since u > 0 and ||u||oo = 1, it fouows from the strong maximum principle that u > 0
on [0, L1]. On the other hand, R} satisfies

ruRL(2)

Dr Ri " _ Y i i
(R3(2))" =¢ (Ré(z) T

—ﬂmi) ui (@) Uillos, 0 <z < Ly,

ab(Wseq — RE(L1))
a+b ’

(3.30)

(RL)(0) =0, D,(RY(Ly) =

Choosing dy € C*°([0, L]) with d§|z=0,L1 =0andd, > 0on [0, L], and multiply-
ing both sides of (3.30) by d> and integrating in (0, L1), we have

b . Ly
<aC:_ b) dr(L1)(Wyeqa — Rl}(Ll)) +/0 Ré(z)(dz(z))//dz

. Ly r Ri(z) .
= cu || U5l / —2=— — B, | ui(2)dz.
ullUszlloo A RS(Z) Iy ulm, i

Dividing by || U3i llc On both sides of the above equality and letting i — oo give
L Ly
0= (d1(2) = Bumy)u(2)dz = / (I = Buymyu(z)dz,
0 0

since the third equation of (3.29) holds. This is a contradiction to 8, € [0, 1), m, €
e, ruWsea/ Wsea + )] and u > 0 on [0, L]. Hence the boundedness of U3 holds
form, € [&, ruWsea/(Wsea + Yu)). ]

It is noteworthy that if (Usz, R3, W3) € C([0, L1]) x C([0, L1]) x R4 is a non-
negative solution of (3.3) with U3 s 0, then (U3, R3, W3) is a positive solution of
(3.3). In fact, we first claim that U3(0) > 0 and R3(0) > 0. Suppose that Uz (0) = 0,
then U3’ (0) = 0 from the boundary condition of Uz, so Uz(z) = 0 for z € [0, L]
from (3.25). Hence we have U3(0) > 0. Next we assume that R3(0) = 0. From
(3.28), we have D, R5(0) = —c,B,m,U3(0) < 0. Since R3(0) = R5(0) = 0, then
R3(z) < O for z € (0, §) for some § > 0, that is a contradiction to R3(z) > 0 for all
z € [0, L1]. Therefore we must have R3(0) > 0. By using the maximum principle, we
get R3(z) > O for all z € [0, L1]. On the other hand, similarly, we have Uz (0) > 0,
Us(1) > 0 and

—D,Uj(2) + sU;(z) + m,Uz(2) = % >£0,0<z <Ly,
D,U;(0) — sU3(0) = D, U;(L1) — sU3(L1) =0,

which imply that U3(z) > O for all z € [0, L] from the strong maximum principle.
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It follows from (3.27), (3.28) and (3.25) that (3.3) is equivalent to

W= aR(Ly) + bWseq

=< WSE
a+b - d
and (U(z2), R(z)) satisfies
D,U"(z) —sU'(z) + (ﬂ—m )U(z):O 0<z<L
! RQ+vu " ’ oo
DR%@+c(ﬂm-nﬁfﬁL)U@—n 0<z<L
r u ullty R(Z)+Vu — Y, 1, (331)

D,U'(0) —sU(0) = D,U'(Ly) —sU(Ly) =0,

b(Wseqd — R(L
R(O) =0, DR(Ly) = 2LMWsed = RED)
a+b

0.

Hence the existence and uniqueness of positive solutions of (3.3) is reduced to the
existence and uniqueness of positive solutions of (3.31). Note that (3.31) is an elliptic
system with predator-prey type nonlinearity. We recall the following assertion for the
non-degeneracy of positive solutions of such system.

Lemma 3.7 If(Usz, R3) is apositive solution of (3.31), then the linearization of (3.31)
with respect to (U3, R3), which is given by

NN anl ruR3(2) . ruYuU3(2) .
Dup Q) v <R3<z) +7a m) YO R g2 @ =0 D=ty
curuR3(2) CuruVuUs(2)

)(ﬁ(Z) + D, ¢"(z) —

(Cuﬂumu - )2¢>(Z) =0, 0<z<Ly,

R3(2) + vu (R3(2) + Vu

ab
Dy¢' —s¢l:—0,L, =0, ¢'(0) =0, D¢'(L1) + m¢(Ll) =0,

only has the trivial solution. This means that (U3, R3) is non-degenerate.

The proof of Lemma 3.7 is similar to that of Nie et al. (2015, Lemma 3.1) and
Lopez-Gémez and Pardo (1993, Lemma 3.1), so we omit it here.

We now embed our problem into the framework of topological degree theory. We
first assume that m, € [e, ry Wsed/ Wsed + vu)), Bu € [0, 1) hold for some ¢ > 0 and
let w(z) = Wseq — R(z) forany z € [0, L1] and 0 < R(z) < Wieq. Then there is a
positive constant K| such that

ngd — CU(Z) > Wsed
Wied — 0(2) +vVu =~ Wsed + Yu

- Kiw(2).

Let

X = {(n,v) € C([0, L1]) x C([0, L1]) : 0 =0, v > 0},
Qi={(u,v)eX:u<A+1, v<Wyq—+1}.
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Then X is the positive cone in C ([0, L1]) x C([0, L1]) and 2 is a bounded open subset
of X. For any (U, w) € 2, we consider

kry(Wyeq — ©(2))
(Wseq — 0(2)) + vu
curu(Wseq — 0(2))
(Wsead — @(2)) + Vu

—(Dug" (2) = 5¢'(2)) + K29(2) = < - m,,,) U(z) + KU(z), 0<z <Ly,

—Dr¢”(2) + K2¢(2) = ( - cuﬂulﬂu) U@) + Krw(2), 0<z<Ly,

b
Dug' —s¢lmo.1, =0, ¢/(0) =0, Dr/(Ly) + a“ﬂwl) —0,
(3.32)
where k € [0, 1] and K> is large enough such that

_ kry(Wseqd — w(2))
(Wsea — 0(2)) + vu

K> > max {mu ,curuKle}.

Denote the solution operator (¢, ¢) = T, (U, w) for any (U, w) € Q. It follows from
the strong maximum principle and standard elliptic regularity theory that 7, : 2 — X,
compact and continuously differentiable for any « € [0, 1]. Moreover, (3.31) has a
nonnegative solution if and only if the operator 7 has a fixed point in 2. Carrying
out similar arguments as Theorem 3.4 in Nie et al. (2015), we have the following
conclusions:

(e1) 1ndex(T1, 2, X) = 1 and index(7T7, (0, 0), X) =
(ep) if (U R) isapositive solutlon of (3.31) and non- degenerate then index (77, (U ),
X)=1, where ® = 1-R.

It follows from the compactness of 77 and the non-degeneracy of its fixed points (see
Lemma 3.7) that the operator T has at most finitely many positive fixed points in €2,
denoted as (U;, @;),i = 1,2, ..., N.From (e1) and (e2), we have

N
= index(T7, (0, 0), X) + Zindex(Tl, (U;, &), X) = index(Ty, 2, X) = 1,
i=1

which implies that (3.31) has a unique positive solution. Therefore, we obtain the
following conclusion.

Theorem 3.8 The system (2.5) has a pelagic algae-nutrient semi-trivial steady state
Es if and only if

0<Bu<l1, O0<my < ————, my >0, (3.33)

and whenever E3 exists, it is unique and non-degenerate.

Remark 3.9 1. It follows from a standard bifurcation argument [see Du and Hsu
(2008a), Mei and Zhang 2012b] that when m, — O, ||Um”||oo — 00. This
indicates the occurrence of a pelagic algal bloom, which is a serious environmental
problem.
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2. If my > ry, then from Proposition 3.1, one has that lim;—, V(¢) = 0. Thus
the benthic algae become extinct in this case, and the system (2.5) reduces to the
subsystem of pelagic algae and (pelagic and benthic) nutrients.

3. Although the pelagic algae-nutrients semi-trivial steady state E3 is unique and
non-degenerate, its stability is not known (just as other diffusive predator-prey
systems). But for realistic environmental parameters, our numerical simulation
shows that under (3.33), solutions of (2.5) converge to E3.

4. In case of ample supply of light, recycling of nutrients does not alter the monotony
of nutrition with water depth (see (ii) in Lemma 3.6), but it has an important impact
on the existence and uniqueness of pelagic algae-nutrient semi-trivial steady state
E3 (for g, € [0, 1) and for B, = 1) and pelagic algal biomass (see Sect. 4).

3.4 Coexistence steady state

A coexistence steady state solution of (2.5) is the one whose each component is
positive. The result in Proposition 3.1 shows that a coexistence steady state can only
exist when 0 < m, <r, and 0 < m, < ry. A direct calculation gives

W — Yoy V= b(Wseq — Wy) +a(Ws — R4(Ly))

(3.34)
ry — Ny cymyLa(1 — By)

since the second and fourth equations of (3.4) hold. Similar to (3.26), we conclude
that R4(L1) < Wy, and the equal sign holds if and only if 8, = 1. Itis clear that if V4
is positive, then

7y Wsed

0<By<1,0<my < ——.
’ b yv"l‘Wsed

It follows from (3.34) that the existence and uniqueness of positive solutions of (3.4)
is equivalent to the existence and uniqueness of positive solutions of the following
system

DU”(z)—sU’(z>+(ﬂ-m>U<z)—o 0<z<L
! R +y. " v b
D,R"(z) + ¢ </3m —ﬂ)U(Z)—O 0<z<L
' A\ R@) + o b 335)

DLU'(0) — sU(0) = D,U'(Ly) — sU(L;) =0,
R'(0) =0, D,R'(L)) = a <M — R(L1)> > 0.

v v

We now state our main results in this subsection.

Lemma 3.10 Assume that (Us, Va, Ra, W4) € C([0, L1]) x Ry x C([0, L1]) x R+
is a positive solution of (3.4) and B, € [0, 1). Then
TuYvhiy rvWsed

and 0 <my < ————
Yoy + Yu(ry — my) Wiea + Yo

VM 0<By,<1,0<my <
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. . . . . . BuYumy
(vi) R4(2) is a strictly increasing function on [0, L1] and ———— < Ru4(z) <
ry — Pulmy
m
Lfor all z € [0, L{];
ry — Ny

(vii) Us(z)e*%/Pu is a strictly increasing function of z on (0, Ly), and for any & >
0, there exists a positive constant B(e) such that ||Usllcc < B(e) if m, €
[e, ruyvmy [ (yomy + yu(ry — my)).
Theorem 3.11 The system (2.5) has a positive coexistence steady state E4 if and only
if
Ty Yoy ryWied

, 0<my < ————,
Yoly + Yy (ry — my) Wiea + Yo
(3.36)

0<Bu,Bv<l, O0<my <

and whenever E4 exists, it is unique and non-degenerate.

The proofs of Lemma 3.10 and Theorem 3.11 are similar to those of Lemma 3.6 and
Theorem 3.8 respectively, and here we omit them.

Remark 3.12 1. This existence and uniqueness of coexistence steady state under
(3.36) shows that pelagic algae and benthic algae competing for one essential
nutrient can coexist in the oligotrophic shallow aquatic ecosystem with ample
supply of light.

2. A bifurcation approach can be used to show that the coexistence steady state E4

bifurcates from the benthic algae-nutrient semi-trivial steady state E, at m, =
Tu Yoy roWsed . . .

when 0 < m, < ————— is satisfied. Similarly the

yvmv_+ Yu(ry — mv) L Wsea + Vv .

pelagic algae-nutrient semi-trivial steady state E3 bifurcates from the nutrient-

. "uWsed
only semi-trivial steady state Ey at m;, = —————— for any m, > 0. The
Wiea + Yu

bifurcation structure of E; (i = 1,2, 3,4) and associated exchange of stability
will be considered in a forthcoming paper.

3. If the loss of pelagic and benthic algal biomass is completely recycled back to
pelagic and benthic nutrients (8, = 1 and B, = 1), then coexistence steady state
E4 dose not exist.

3.5 Simulations of steady states

In this subsection, we show some numerical simulations to illustrate our analysis of
steady states for model (2.5). In order to facilitate our simulations below, we partition
the parameter ranges in Table 2 and summarize our main results on the existence,
uniqueness and stability of steady state solutions shown in previous subsections.

Note that the parameter space of (m,, m,) is partitioned into the following regions
according to Table 2 (see Fig. 2):

. . ruWsed 7y Wsed
Api=y0my,my) imy > ————, My > ——— 1,
Wsea + Vu Wsea +
W
Azzz{(mu,mv):mu> TuVolly ,O<mv<rv—sed},
Yoy + Yu(ry — my) Wsea + Yo
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Table 2 Existence, uniqueness and stability of steady states for model (2.5)

Steady states

Existence and uniqueness

Local stability

Wie W,
E; = (0,0, Ry, Wy) Always my > —vlsed - TvVsed
Wsed + Vu Wsed + vv
T'uYviny
Er = (0, Va2, Ry, Wr) 0<pBy <1, 0<my, my > ————
ersed )’vmu+)’u(rv —my)
0<my < ———
Wsea + vv
E3 = (U3,0, R3, W3) 0<Bu<1,0<my, Unknown
TuWsed
O<my < ————
Wsed + Vu
Eq = (Uy, V4, Rg, Wy) 0<Bu,Bv<1,0<my < Unknown
TuYvhy
yonmy + Yy (ry —my) ’
v Wyea
O<my < ————
Wsea + vv
14
1.2+ E
1t A A 1
3 1
0.8 E
>
€
0.6 E
04} A |
4 A
2
0.2 |
0 . . . . .
0 0.2 0.4 0.6 0.8 1 1.2 1.4
m

u

Fig.2 The parameter ranges in the (m,, m,) plane with different extinction/existence scenarios, as defined
in Table 2. Here the parameter values see Table 1

Ag::{(mu,mv):0<mu<

Ay

{(mu,mv) 0 <my <

ruWsed
— " m
Wsed + Vu
Ty Yvlity

Yoy + Yu(ry —m

ryWied }
Wsea + W
ryWied }
,0<my < ———— 4.
v) Wiea + vo

Figures 3, 4, 5, 6 show the simulations of solutions of (2.5) for different algal loss
rates (m,, m,) while other parameters are realistic ones from Table 1, and in each
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Fig. 3 Nutrient-only semi-trivial steady state E1. Here m; = 1, my, = | and other parameters are from
Table 1

case the solution converges to a steady state. The simulations appear to have same
convergence results regardless of initial conditions.

For the case of (m,, m,) = (1, 1), one can see that the extinction of both pelagic
algae and benthic algae may arise from this model with the concentration of dissolved
nutrients in the pelagic habitat and benthic habitat reaching the concentration of dis-
solved nutrients in the sediment (see Theorem 3.2, A in Figs. 2, and 3). This means
that in the absence of algae, dissolved nutrients is distributed evenly over the whole
shallow aquatic area.

For (m,, m,) = (1, 0.4), the pelagic algae becomes extinct and the benthic algae
persists (see Theorem 3.4, A, in Figs. 2, and 4). In this case, the equilibrium nutrient
levels in two habitats are still the same but are considerably lower than the sediment
concentration. If (m,, m,) = (0.2, 1), the benthic algae dies out and the pelagic algae
reaches a high level (see Theorem 3.8, Az in Figs. 2, and 5). Also here the dissolved
nutrient in pelagic habitat is much lower than the one in benthic habitat. The transition
from Fig. 4 to Fig. 5 also indicates that there is a regime shift between pelagic algae and
benthic algae, where the dominance of benthic algae transforms into the dominance
of pelagic algae in a shallow aquatic ecosystem.

Finally for (m,, m,) = (0.1, 0.4), both of pelagic and benthic algae in the habitat
maintain a positive level (see Theorem 3.11, A4 in Figs. 2, and 6). From Figs. 7 and 8,
we can see that (U3 (z), R3(z)) and (U4(z), R4(z)) are both nonconstant steady states.
Indeed in both cases, the pelagic algae U (z) and pelagic nutrient R(z) appear to be
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Fig. 4 Benthic algae-nutrient semi-trivial steady state E,. Here m;,, = 1, m, = 0.4 and other parameters

are from Table 1

increasing from the water surface z = 0 to the pelagic-benthic interface z = L, which
verify the monotonicity results shown in Lemmas 3.6 and 3.10.

4 Influence of environmental parameters on algal biomass

The algal biomass density in an aquatic ecosystems is an important index for evaluating
water quality and protecting biological diversity. Especially, algal blooms, exhibited
by excessive proliferation of algae on account of the excessive amounts of nitrogen
and phosphorus in the water, is a secondary pollution and may produce great harm to
environment and human health. Therefore, in this section, we will explore the influence
of model parameters in (2.5) on the pelagic algal biomass density and benthic algal
biomass density. In order to facilitate the discussion below, we use the spatial average
of U(x,t) and R(x, t) defined as

_ Ly

1 b —_ 1
u@) = L_1/0 Ul(t,z)dz, R(t) = L_1/0 R(t,7)dz.

In figures below, we compare the (spatial averaged) coexistence steady states
(U4, V4, R4, Wy) for different parameter values.
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Fig. 5 Pelagic algae-nutrient semi-trivial steady state E3. Here m,, = 0.2, my = 1 and other parameters
are from Table 1

First we observe the effect of nutrient recycling proportion g, and B, from loss
of algal biomass. The parameters 8,, 8, are closely related and proportional to the
ambient temperature or light intensity. We assume that parameters (m,,, m,) are chosen
so that the coexistence steady state E4 can be achieved, then we vary B8, and keep
By = 0 to compare the biomass of E4. From Fig. 9 left panel, one can observe that
pelagic algal biomass mean density increases and benthic algal biomass density almost
keeps unchanged with the increase of 8. Note that in Theorem 3.11, the existence of
E4 is only shown when 8, < 1. When B, = 1 (the loss of pelagic algal biomass is
completely recycled back to pelagic nutrients), the pelagic algae biomass appears to
be increasing indefinitely (see Fig. 9 right panel). This shows that algal blooms may
still occur even in nutrient-poor aquatic ecosystems (here W,y = 10), and it happens
because rapid decomposition of dead algae in high temperature leads to adequate
nutrient supply, which in turn causes algal blooms. The similar phenomenon also
occurs for benthic algae when B, increases to 1 (see Fig. 10). Indeed the expression
of V4 in (3.34) explicitly shows that V4 — oo as B, — 1. These indicate that the
nutrient recycling from loss of algal biomass may be an important factor in the algal
blooms process.

Our theoretical results in Section 3 have shown that the change of mortality rates
m,,, m, can cause the regime shift from one steady state to another. Here we observe
the effect of m,, and m,, on the coexistence state algal biomass density. Comparing the
changes in pelagic algal biomass mean density reveals that benthic algae could control
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Fig. 6 Coexistence steady state E4. Here m,, = 0.1, my, = 0.4 and other parameters are from Table 1
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Fig. 7 Profile of pelagic algae-nutrient steady state E3. Here m;,, = 0.2, m;, = 1 and other parameters are
from Table 1. Left Uz (x), Right R3(x)

pelagic algae, and vice versa (see Fig. 11). This confirms that pelagic algae and benthic
algae are able to control each other through the consumption of common resources
even if they are located in different spatial positions. Therefore, in the presence of both
algae in an aquatic ecosystem, it is possible to prevent the occurance of algal blooms.

The pelagic habitat depth L has no significant effect on pelagic algal biomass
and benthic algal biomass (see Fig. 12a), which is partly because that here we do not
consider the role of light intensity, which has an important effect on pelagic and benthic
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Fig. 11 Influence of parameters m,,, m, on algal biomass density. Here W, = 20 and other parameters
are from Table 1. Left Steady state (Ug4, V4, R4, Wy) for 0.35 < my < 0.65; Right (U4, V4, R4, Wy) for
0.1 <my <0.6
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Fig. 12 Influence of parameters L1, Ly on algal biomass density. Here m, = 0.42 and other parameters
are from Table 1. Left Steady state (Uyg, V4, Rq, Wy) for 2 < Ly < 4; Right (U4, V4, Rq, Wy) for
0.01 <Ly <0.1

algal biomass. On the other hand, the benthic habitat thickness L, has a negative effect
on benthic algal biomass density and has no significant effect on pelagic algal biomass
since the concentration of dissolved nutrients in the habitat keeps unchange [see (3.34)
and Fig. 12b].

Figure 13a shows that an increasing sediment nutrient level (W) does not affect
pelagic algal biomass, as the concentration of dissolved nutrients in the benthic habi-
tat is always a constant if benthic algae exist [see (3.34) and (3.35)]. Benthic algae
increases with respect to W4 as shown in (3.34). This further proves that the presence
of benthic algae could control pelagic algal biomass.

Finally we consider the effect of spatial parameters s, D,, D, on the coexistence
steady state algal biomass density. From Figs. 13b and 14, we can observe: (i) when
the algae has a tendency of sinking (s = 5), then the steady state distribution of pelagic
algae is increasing from the water level to the interface of the pelagic and benthic habitat
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Fig. 14 Profile of steady state U4 (x). Here m, = 0.4 and other parameters are from Table 1

(see Fig. 14a); (ii) when there is no any active movement for pelagic algae (s = 0), then
the pelagic algal biomass almost distribute evenly in the habitat (see Fig. 14b); and (iii)
when pelagic algae has a clear upward trend, the pelagic algal biomass has a decreasing
profile and concentrates near the water surface (see Fig. 14c). Similar to the earlier
observation and studies in Klausmeier and Litchman (2001) and Du and Hsu (2008b),
our studies also suggest that there could be a significant concentration of pelagic algae
when the active movement is more pronounced. Moreover, in an oligotrophic shallow
aquatic ecosystem with ample supply of light, this upward movement trend can cause
a negative effect for pelagic algal biomass (see Fig. 13b).

For the effect of the diffusion coefficients D, and D, on algal biomass density, we
first consider the case of low nutrient diffusion (D, = 0.001). From Fig. 15a, one can
observe that pelagic algal biomass density decreases gradually with the increase of
pelagic algal diffusion. When the diffusion coefficient D, is large, the pelagic algal
biomass tends to an asymptote. On the other hand if the nutrient diffusion coefficient is
relatively large (D, = 2.59), then Fig. 15b shows that the total pelagic algal biomass
does not change significantly with the increase of the turbulent diffusion coefficient
D,.

As a summary of the above discussion, the influence of environmental parameters
on algal biomass density are listed in Table 3.
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Fig. 15 Influence of parameters Dy, D, on algal biomass density. Here m, = 0.4 and other parameters
are from Table 1. Steady state (Uy, V4, R4, Wy) for 0.001 < D, < 10

Table 3 The influence of environmental parameters on algal biomass density

Parameters PABMD BABD Parameters PABMD BABD
Bu t T NSE Buv 1t NSE T

my 1 | 1 my 1 t \
Lyt NSE NSE Ly ¢ NSE N
Wsea NSE 0 st 4 NSE
Dy 1 Dy is small N 1 Dy 1 Dy is large NSE NSE

PABMD pelagic algal biomass mean density, BABD benthic algal biomass density
4 increasing, |: decreasing, NSE no significant effect

5 Discussion

In this paper, we establish and analyze a coupled system of ordinary differential equa-
tions and partial differential equations (2.5) modelling the interactions of pelagic algae,
benthic algae and one essential nutrient in an oligotrophic shallow aquatic ecosystem
with ample supply of light.

The steady state solutions of system (2.5) are completely classified rigorously using
the parameters (m,, m,) (the loss rates of the pelagic and benthic algae), and the
results are summarized in Table 2 and Fig. 2. Our theoretical analysis suggests that
both pelagic algae and benthic algae are extinct when m,, and m,, are both over some
threshold values (see Theorem 3.2). The benthic and pelagic algae are indirectly com-
peting for a shared resource, hence a competition exclusion occurs when m,, is large
but m, is not (benthic algae dominates, see Theorem 3.4), or when m,, is large but
m, is not (pelagic algae dominates, see Theorem 3.8). On the other hand, the pelagic
and benthic algae can coexist when both m,, and m,, are below some threshold values
(Theorem 3.11), and the parameter range for algae coexistence is robust. Note that
we have shown that the existence/nonexistence of any steady state is independent of
spatial environmental parameters such as sinking/buoyant rate s and diffusion coef-
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ficients D, D, for pelagic algae and nutrients, but these parameters can affect the
profile and amplitude of the steady states.

All the environmental parameters could influence the algal biomass density (see
Table 3). Our studies show that in the case of high temperature, nutrient recycling
from loss of algal biomass can lead to algal biomass density increases dramatically,
which is an important factor in the existence and uniqueness of non-negative steady
state solutions (Theorems 3.4, 3.8 and 3.11) and the algal blooms process (Figs. 9 and
10). The presence of benthic algae could control the growth of pelagic algal biomass
even if the sediment nutrient level is high (Figs. 11, 13a). In an oligotrophic shallow
aquatic ecosystem, the upward movement trend of pelagic algae can lead to a negative
effect on the pelagic algal biomass (Fig. 13b). In the case of low nutrient diffusion,
pelagic algal biomass is a decreasing function of D, and tends to an asymptote as the
diffusion coefficient D, approaches infinity, but if the nutrient diffusion coefficient is
relatively large, then the total pelagic algal biomass does not change much with the
increase of D, (Fig. 15).

Our study here is one of the first quantitative attempts to model the effect of benthic
algae and nutrient inputs, which complements and further develops earlier studies of
algae population growth in water column. It is important to understand the stability
and asymptotic profile of the non-constant steady states E£3 and E4, which is not con-
sidered in this paper. In the context of competition between pelagic algae and benthic
algae, it will be of interest to further model some even more intriguing biological ques-
tions. For example, pelagic algae and benthic algae compete for light and nutrients
simultaneously Huisman et al. (1999, 2006), algaes may compete for two comple-
mentary nutrients Hsu et al. (2011), Klausmeier et al. (2007), algae exchange in the
pelagic and benthic habitat Jiager and Diehl (2014), Loreau et al. (2003), the effect of
toxic plankton species Hsu et al. (2013), Ikeda et al. (2017), Wang et al. (2015), and
the effect of zooplankton and fishes Loladze et al. (2000); Lv et al. (2016). Also an
important assumption of our study is the light supply is ample and uniform for the
system, which is the case for shallow aquatic ecosystem. The combined effect of light
and nutrient will be a subject of future study.
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