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ABSTRACT: Interest in layered perovskite quantum wells is motivated by their potential for
use in optoelectronic devices. In these systems, the smallest and largest quantum wells are
most concentrated near opposing electrodes in photovoltaic cells. Coincident gradients in the
energy levels and quantum well concentrations promote the funneling of electronic excitations
and charge carriers through space. In this Perspective, we describe the development of several
nonlinear optical techniques designed to elucidate the relaxation processes induced by light
absorption in layered perovskite systems. Transient absorption microscopy provides insight
into carrier diffusion and two-body recombination processes, whereas two-dimensional action
spectroscopies are used to correlate elementary relaxation mechanisms to practical metrics of
photovoltaic device performance. Our experiments suggest that charge carrier funneling
processes do not facilitate long-range transport due to trapping. Rather, the bulklike phases of
the films absorb light and transport carriers without participation of the smallest quantum
wells.

■ INTRODUCTION

Bulk organohalide perovskites have demonstrated great
potential for use in optoelectronic devices such as solar cells
and light-emitting diodes.1−6 These materials offer favorable
light absorption coefficients and tunable band gaps; however,
long-term stability and toxicity remain significant challenges.
One class of systems presently under development involves
mixtures of two-dimensional perovskite quantum wells termed
“layered perovskites.”7−11 These two-dimensional systems
possess large exciton binding energies and are more resistant
to moisture than the corresponding bulk materials.12,13 In
addition, interactions between quantum wells give rise to a
multitude of photoinduced relaxation processes including
electron transfer, energy transfer, defect-assisted recombina-
tion, and spontaneous emission.14−21 Disentangling these
mechanisms with conventional transient absorption spectros-
copy has proven quite challenging due to ambiguities in signal
interpretation.14,15,17−20,22 Moreover, the electronic states and
processes important for the function of a photovoltaic cell do
not necessarily yield spectroscopic signatures with significant
intensities. The complexity of layered perovskite materials has
motivated applications of “action spectroscopies” capable of
directly targeting the functionally relevant processes induced
by light absorption.23−26 In these experiments, nonlinearities in
spontaneous processes of interest (e.g., photocurrent,
fluorescence emission) are directly detected to reveal the
microscopic behaviors that underlie the performances of
photovoltaic devices.27−34

In this Perspective, we describe the elucidation of light-
induced energy and charge transport mechanisms in layered
perovskites using a variety of nonlinear spectroscopies. First,
we present a transient absorption microscopy method designed
to reveal carrier diffusion, two-body recombination, and
exciton dissociation processes in layered perovskite films.35,36

Our measurements show that motions of the charge carriers
are sensitive to the thicknesses of the quantum wells in
addition to extrinsic factors such as grain boundaries and
structural disorder. Second, we have developed nonlinear
action spectroscopies to decompose the optical responses of
photovoltaic cells into productive (photocurrent) and lossy
(fluorescence) processes.23−25 Applications of these techniques
are motivated by the inability of transient absorption
experiments to distinguish energy and charge transfer
mechanisms. Most recently, we have shown that trajectory-
specif ic carrier mobilities can be determined for layered
perovskite systems by cycling the laser pulse sequences and
external biases applied to a photovoltaic cell.26 These
experiments suggest promise in a new family of techniques
that combine multidimensional spectroscopies with device
measurements.
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Coincidence between the concentrations and electronic
structures of layered perovskite quantum wells gives rise to
energy and charge funneling behaviors. For example, the lead-
iodide perovskite quantum wells targeted in our work are
described by the general chemical formula AnMAn−1PbnI3n+1,
where A is an organic cation and MA is methylammonium
(CH3NH3

+). With insulating organic cations such a butyl
ammonium or phenyl ethylammonium, quantum wells in
which n = 2, 3, and 4 exhibit exciton resonances near 570, 600,
and 640 nm, respectively. Exciton binding energies also
decrease as the value of n increases due to a combination of
dimensionality and the dielectric environment.37,38 For
example, quantum wells with n = 2, 3, and 4 have exciton
binding energies of approximately 251, 177, and 157 meV,
respectively.38 Because of these differences, the behaviors of
layered perovskite systems are quite sensitive to the
concentration distributions of quantum wells with different
sizes. In solution-processed films, the smallest and largest
quantum wells are primarily concentrated near the glass and air
interfaces, respectively (i.e., near opposing electrodes in a
photovoltaic device).14,17,18,36 As indicated in Figure 1, the

average band gaps and conduction band levels decrease from
the glass to air sides of a film, thereby promoting energy and
electron transport in the same direction. A consensus has not
been reached regarding the preferential direction of hole
transport.14,15,24 Holes are predicted to transfer from the
smallest to largest quantum wells with Type I band alignments
(i.e., from the glass to air interfaces), whereas the opposite is
true for a Type II configuration. Recent theoretical work
suggests that disordered systems may exhibit a mixture of Type
I and II band alignments.39

■ CARRIER DIFFUSION AND RECOMBINATION
REVEALED BY TRANSIENT ABSORPTION
MICROSCOPY

Knowledge of carrier diffusion in layered perovskites is
motivated by implications for electron and hole mobilities
when subjected to an electric field.40 Transient absorption
microscopy has been demonstrated as a powerful new
approach for studying carrier diffusion in nanoparticles and
films.41−52 In these experiments, the pump beam is usually
focused with a microscope objective and a probe beam is raster
scanned to image carrier dynamics. Such point-by-point data
acquisition is readily accomplished using laser systems with
MHz repetition rates. We have developed an alternate wide-
field microscopy approach that is compatible with an available
1 kHz, titanium sapphire laser. This laser system is coupled to
an automated spectral filter, which supplies color-tunable laser
pulses in the visible spectral range for multiple experimental
techniques (e.g., conventional transient absorption and action
spectroscopies). The wavelengths of the laser pulses may be
tuned into the resonances of specific quantum wells to
compare their diffusivities and recombination mechanisms.
Our approach to transient absorption microscopy employs

two multiplexing methods to minimize data acquisition
times.35 As shown in Figure 2a, a diffractive optic splits a

color-tunable pump beam into 41 beams, which are focused to
1 μm spot sizes on the sample surface. Conducting 41
experiments in parallel is advantageous for studies of
heterogeneous films because statistics may be quickly
compiled. In addition, counter-propagation of the pump and
probe beams through the sample enables wide-field signal
detection with a two-dimensional CMOS array detector on a
shot-to-shot basis. Notably, the probe beam is focused to a
spot size much larger than the field-of-view to avoid undesired

Figure 1. Concentration distributions and electronic structures of
layered perovskite systems. (a) Larger and smaller quantum wells are
concentrated near opposite faces of the films. (b) The thicknesses and
exciton resonance wavelengths of quantum wells increase with the
index, n. (c) Staggering of the band gaps and energy levels promotes
energy and electron funneling through space and toward the largest
quantum wells. The direction of hole transport is still under
investigation because a consensus has not been reached regarding
whether the system possesses Type I (shaded rectangles) or Type II
(open rectangles) band alignments.

Figure 2. Carrier dynamics are probed with a diffractive optic-based
transient absorption microscope. (a) Layered perovskite films are
photoexcited at 41 spots, which are probed with a counter-
propagating beam. Wide-field signal detection is enabled by a two-
dimensional CMOS array detector. (b) Carrier diffusion and two-
body recombination dominate in crystals and films, respectively. (c)
Two-body recombination coefficients increase with the index of the
quantum well, n. This behavior is attributed to the greater probability
of exciton dissociation and free carrier recombination in larger
quantum wells. Reprinted with permission from refs 35 and 36.
Copyrights 2018 and 2019 American Chemical Society.
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intensity-dependent effects. The pump and probe beams
originate in a continuum generated by filamentation in argon
gas. Automated spectral filtering devices are used to select 5
nm wide portions of the pump and probe beams for use in
experiments.35

Behaviors of electronic excitations in layered perovskite films
were compared to those in a variety of single crystals to
understand the influence of grain boundaries and disorder on
carrier motions.35,36 In crystals, we found that carrier diffusion
gives rise to a quasi-linear growth in the photoexcited spot
widths on the nanosecond time scale (see Figure 2b). These
dynamics correspond to diffusivities in good agreement with
earlier literature.41,42,53 In contrast, measurements conducted
on films show that two-body recombination induces a
nonlinear rise in the spot widths on the subnanosecond time
scale. Control experiments confirm that these dynamics are
unrelated to ballistic transport in the present systems.36 Rather,
in films, the spot widths expand because the two-body
recombination rate increases with the carrier density, which
is greatest in the centers of the photoexcited regions. Decay
mechanisms that scale as the square of carrier density include
radiative relaxation and trap-assisted Auger recombination.54

We attribute two-body recombination in the films to the
trapping of carriers within individual disordered grains based
on the absence of such behavior in the crystals. The standard
deviations shown in Figure 2b correspond to 205 measure-
ments. Fast acquisition of statistical information is an
advantage of this diffractive optic-based approach.
Interestingly, our transient absorption microscopy experi-

ments show that quantum wells with different sizes possess
markedly different two-body recombination coefficients in
films.36 As indicated in Figure 2c, our measurements establish
that the prevalence of two-body recombination increases with
the index of the quantum well, n. Minimal two-body

recombination is observed in quantum wells with n = 2 and
3; however, the recombination coefficients are more than an
order of magnitude larger in quantum wells with n = 6. We
attribute this behavior to the smaller exciton binding energies
found in larger quantum wells. For example, the fractions of
dissociated excitons predicted by the Saha equation are
approximately 2% and 50% in systems with n = 2 and ∞,
respectively.36 Thus, our data suggest that the subnanosecond,
nonlinear rises in the spot widths observed in larger quantum
wells represent two-body recombination of free charge carriers.
Interactions between excitons in the smaller quantum wells (n
< 4) do not produce such significant density-dependent effects.

■ DISTINGUISHING PRODUCTIVE AND LOSSY
RELAXATION PROCESSES BY NONLINEAR
ACTION SPECTROSCOPIES

Photoexcitation induces a multitude of relaxation processes in
layered perovskites, which have proven difficult to disentangle
by transient absorption spectroscopy (e.g., energy transfer,
charge transfer, spontaneous emission, many-body recombina-
tion).5,14,15,17−21,24 Although dominant carrier funneling
dynamics were suggested in early work, it is now clear that
energy transfer processes have significant yields for the smallest
quantum wells due to their higher binding energies and
transition dipole couplings.38 Transient absorption cross-peaks
were previously suggested to represent extraordinary hole
transfer processes; however, we have shown these resonances
to be natural consequences of transition dipole couplings24

similar to those observed in molecular aggregates and
photosynthetic complexes.55,56 Moreover, global fits of data
based on explicit response functions suggest that 40−50% of
the electronic excitations in smaller quantum wells participate
in energy transfer processes.17,18 The remainder of the
excitations relax through a combination of defect-assisted

Figure 3. Action spectroscopies correlate ultrafast relaxation mechanisms to the fates of the electronic excitations. (a) Conventional transient
absorption (TA) setup with dispersed detection is shown. (b) A pair of color-tunable laser pulses induces nonlinear photocurrent (NLPC) and
fluorescence (NLFL) signals. (c) TA experiments are sensitive to all photoexcited populations at delay time, τ. The contribution of a particular
species depends on its concentration and extinction coefficient rather than its functional significance. NLFL and NLPC experiments are primarily
sensitive to energy and charge transport, respectively. In effect, the optical response detected by TA spectroscopy is decomposed into lossy and
productive components by NLFL and NLPC measurements, respectively. Panel (c) is adapted with permission from ref 25. Copyright 2020
American Institute of Physics.
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recombination, spontaneous emission, and charge carrier
funneling dynamics.
Contributions from energy transfer processes are consistent

with the basic physics of the systems. Layered perovskites
consist of quantum wells with large transition dipoles (≥10
D)57 in close proximities (∼1 nm).7 The Coulombic couplings
are on the order of 10s of millielectronvolts under the
assumption of an inverse cubic dependence on the donor−
acceptor separation;17,24 however, Scholes and co-workers
have shown that the coupling scales as the inverse square of the
distance between the donor and acceptor for cofacial
geometries.19 Because the couplings that drive charge transfer
decrease exponentially with distance, it should be anticipated
that energy transfer outcompetes charge transfer on short time
scales.58,59

Temperature variation can be a powerful approach for
distinguishing parallel relaxation mechanisms in layered
perovskites.22 Marcus’ equation for charge transfer possesses
well-known activated and activationless regimes.58,59 In
addition, it has been established that Förster’s rate formula
exhibits a temperature dependence originating in the spectral
overlap between the donor and acceptor.60−62 These earlier
works suggest that the temperature dependence of energy
transfer will be most pronounced in systems like layered
perovskites, where the nondegenerate donor and acceptor
spectra have narrow line widths. Fluctuations in energy gaps,
which promote transitions by temporarily bringing the energy
donor and acceptor resonances into degeneracy, scale as the
square root of temperature under the assumption of Gaussian
statistics.63,64 Whereas the homogeneous component of the
line width is sensitive to temperature, static disordered
environments can give rise to temperature-independent
inhomogeneous line widths (i.e., the subensembles cannot be
exchanged by spectral diffusion). In the Supporting Informa-
tion, we present calculations that illustrate how temperature
can influence energy transfer processes in layered perovskites.

Notably, the temperature dependence of energy transfer
mechanisms does not rule out parallel charge transfer or
Dexter energy transfer processes.
Transient absorption signals are primarily sensitive to energy

transfer processes because excitons dominate the nonlinear
optical responses. For this reason, we have developed
nonlinear fluorescence (NLFL) and photocurrent (NLPC)
spectroscopies to separately target energy and charge transfer
mechanisms. The information content associated with these
techniques is illustrated in Figure 3. In a transient absorption
experiment, the populations of reactants, intermediates, and
products are tracked by varying the experimentally controlled
delay time, τ. The signal intensity associated with a particular
species depends only on its concentration and extinction
coefficient for light absorption. In our action spectroscopies,
two laser pulses with a variable delay time are similarly applied
to a photovoltaic cell; however, both beams must be chopped
to isolate the nonlinear response because the transmission of
the second laser pulse is not detected. Rather, the signal (either
photocurrent or fluorescence intensity) is cycled between four
conditions: pulse 1 only (S1), pulse 2 only (S2), pulses 1 and 2
(S1+2), and both pulses blocked (S0). The nonlinear response is
isolated by evaluating the linear combination, SAction = S1+2 −
S1 − S2 + S0. In effect, this pair of action spectroscopies
decomposes the optical response into productive (photo-
current) and lossy (fluorescence) relaxation processes.
Our recent applications of NLPC and NLFL spectroscopies

to layered perovskite systems demonstrate the utilities of the
methods.23−26 The spectra presented in Figure 4 exemplify the
complementary information provided by these two detection
channels. The NLPC spectra exhibit broader line widths and
smaller contributions from excitons when compared to the
corresponding NLFL spectra. In fact, the suppression of
exciton resonances is not unique to nonlinear action
spectroscopies. Linear transmission and external quantum
efficiency (EQE) spectra acquired for layered perovskites

Figure 4. Two-dimensional NLPC (top) and NLFL (bottom) spectra are acquired at (a), (e) 1 ps; (b), (f) 500 ps; (c), (g) 1000 ps; (d), (h) 2000
ps. Electron and energy transfer processes induce red shifts along the λ2 axis for the NLPC and NLFL spectra, respectively. For both axes, peaks
associated with the n = 2, 3, 4, and 5 quantum wells are located at 570, 600, 640, and 680 nm. The NLPC and NLFL signals are reported in units of
nA and mV, respectively. Reprinted with permission from ref 24. Copyright 2020 American Chemical Society.
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possess similar differences in line widths, wherein the
contributions of excitons to the EQE are diminished compared
to the linear transmission spectra.23 We hypothesize that the
discrepancy between transmission and EQE spectra originates
in the large exciton binding energies, which are close to 10
times kBT in the smaller quantum wells.38 That is, the large
exciton binding energies increase the probability that light
absorption will result in spontaneous emission rather than
exciton dissociation. This interpretation is consistent with the
intense steady-state fluorescence emission observed for the
smallest quantum wells in layered perovskite films.17,18

The NLPC spectra possess peaks near the exciton resonance
wavelengths of 570, 600, and 640 nm. For example, at τ = 1 ps,
the peak associated with the n = 4 quantum wells near λ1 = λ2
= 640 nm appears well-resolved because the continuum
transitions associated with smaller quantum wells are found at
shorter wavelengths. As the delay time increases, the signal
intensity red shifts along the λ2 axis at λ1 = 570 nm. This region
of the spectrum is primarily associated with excitations initially
located in n = 2 system (λ1 = 570 nm); however, the line
widths are broad, so the dynamics cannot be unambiguously
assigned to specific quantum wells (e.g., n = 2 to n = 3 electron
transfer). Nonetheless, the nanosecond time scale of the red
shift observed by NLPC spectroscopy is consistent with the
direction of electron transfer processes depicted in Figure 1.

The NLFL spectra presented in the bottom row of Figure 4
reveal enhanced contributions from exciton resonances, which
have much narrower line widths than those found in the NLPC
spectra. For the slice of the NLFL spectra at λ1 = 600 nm (n =
3), the progression of peaks observed at λ2 = 600, 640, and 680
nm corresponds to the n = 3, 4, and 5 quantum wells,
respectively. Each of these quantum wells is populated at τ = 1
ps; however, this primarily occurs by way of direct photo-
excitation of higher-energy continuum states as opposed to
nonradiative transitions between quantum wells.17,18 The
initial condition, wherein each of the quantum wells is
significantly populated by the first laser pulse, partly obscures
observations of energy transfer-induced red shifts in the signal
intensity. At τ = 500 ps, signal intensity has accumulated in a
cross peak at λ1 = 600 nm and λ2 = 640 nm due to energy
transfer processes. In contrast, the cross peak at λ1 = 600 nm
and λ2 = 680 nm grows more slowly because the n = 5
quantum well is populated through a sequence of energy
transfer steps (i.e., n = 3 to n = 4 transitions occur before n = 4
to n = 5). These interpretations of the NLFL spectra have been
confirmed by combining a response function-based model with
the relaxation scheme summarized in Figure 3.25

Although NLPC spectroscopy reveals signatures of carrier
funneling, it is not clear on the basis of the measurements in
Figure 4 that these processes enhance the performance of a
photovoltaic cell. That is, carriers photoexcited in the layered

Figure 5. NLPC spectroscopy is used to determine 2D carrier mobility surfaces for layered and bulk perovskites. (a)−(c) The external bias applied
to the cell is varied to extract drift velocities. Linear fits of the velocities versus electric fields yield the carrier mobilities. (d) Quantum well-specific
carrier mobilities determined for layered perovskites reveal a pronounced asymmetry above and below the diagonal of the 2D mobility spectrum.
The mobilities are smallest when the charge transport processes are initiated by photoexcitation of smaller quantum wells (n = 2−3). The mobility
surface determined for a bulk perovskite is relatively flat and does not approach zero in any region of the spectrum. (e) NLPC measurements
suggest that electron and hole transport occur in the phases of the thickest quantum wells in layered perovskite-based photovoltaic cells. Charge
carrier funneling processes do not contribute to the photocurrent. Reprinted with permission from ref 26. Copyright 2021 American Chemical
Society.
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perovskite system may reach the electrodes by a variety of
trajectories that do not involve funneling. In addition, the
temporal profiles of NLPC signals are influenced by processes
including carrier drift, diffusion, spontaneous emission, and
two-body recombination. Because the drift velocity scales
linearly with the applied electric field, the pulse sequence and
external bias applied to the device may be cycled to decompose
mobility of the material into contributions from specific
pathways. Like a conventional time-of-flight method,65 carrier
transport is initiated by photoexcitation of the active layer in
NLPC spectroscopy; however, information regarding the
trajectory is gathered by applying a second, intervening laser
pulse before the carriers are injected into the transport layers.
Layered perovskites are ideally suited for this approach because
trajectories can be distinguished by tuning the laser pulses into
separate components of the active layer.
The procedure used to determine carrier mobilities is

illustrated in Figure 5. The wavelengths of the two pulses are
tuned into the exciton resonances designated by the 16 points
of intersection in Figure 5a. The signal magnitude decreases as
the delay time increases because photoexcited carriers are
cleared from the active layer; however, this may occur by
photocurrent generation in addition to a variety of excited-
state deactivation processes. With inspiration from conven-
tional time-of-flight methods,66,67 the external bias applied to
the photovoltaic cell is cycled from −0.2 to +0.2 V to target
carrier drift. The velocities are determined for each of the
external biases by dividing the active layer thickness by the
average decay times, which are determined by fitting the decay
profiles to biexponential functions. The mobilities are then
obtained by fitting the velocity versus the electric field to a
straight line. Here, the electric field is set equal to the ratio of
the potential and active layer thickness, where the overall
potential is given by the sum of the internal and external biases.
Because the internal bias has a negative sign (−1.0 V), the
shortest decay times are measured with an external bias of −0.2
V in Figure 5b.
The mobilities determined for the layered perovskite system

exhibit a significant asymmetry above and below the diagonal
of the 2D NLPC spectrum. Signals acquired above the
diagonal represent processes in which electrons transfer from
smallest to largest quantum wells as depicted in Figure 1. For
example, the mobility of zero measured at the cross peak
between the n = 2 and 5 quantum wells (λ1 = 570 nm and λ2 =
680 nm) reflects insensitivity of the electron funneling process
to the external bias.26 The temporal profiles of NLPC signals
measured in this region of the spectrum do not decay
monotonically because of carrier trapping in the domains
occupied by the smallest quantum wells.26 In contrast, carrier
transport is initiated in the largest quantum wells when the first
laser pulse is tuned to longer wavelengths. We do not assign
the large mobilities measured below the diagonal of the 2D
NLPC spectrum to an extraordinary hole transfer mechanism
(see Figure 1). Rather, we suggest that the thickest quantum
wells absorb light and transport the carriers to the charge-
selective layers without transitions into other phases of the
material. The larger quantum wells contribute off-diagonal
responses because the resonances with continuum states span
the full visible spectral range. For example, the quantum well
with n = 5 exhibits an intense response with λ1 = 680 nm
(exciton) and λ2 = 570 nm (continuum states).
Mobilities measured for layered and bulk perovskite systems

are compared in Figure 5d. Unlike the layered perovskite, the

2D mobility surface measured for the bulk perovskite is
relatively flat and does not possess regions of zero mobility.
Insensitivity of the mobilities to the excitation wavelengths is
expected for the bulk perovskite because carrier cooling is fast
compared to the transit time through the active layer. These
results are also in good agreement with the electron mobility of
a bulk perovskite obtained by measuring the steady-state space
charge-limited current (0.012 cm2/V/s);68 however, photo-
luminescence quenching experiments, which are not con-
ducted with photovoltaic devices, yield mobilities that are 50−
100 times larger than those determined by NLPC spectros-
copy.66,69 We attribute this discrepancy between in situ and ex
situ measurements to contributions from the electrodes,
interfaces with the transport layers, and space-charge effects
in photovoltaic devices.
Our results suggest the transport mechanism depicted in

Figure 5e dominates photocurrent generation in layered
perovskite systems. Carrier funneling processes do not
facilitate long-range transport because of trapping in the
domains occupied by the smallest quantum wells. Rather,
photocurrent generation is most efficient when the largest
quantum wells absorb light and transport the carriers without
transitions into phases associated with smaller quantum wells.
In addition, we find that photoexcitation of the smallest
quantum wells is a major source of energy loss in photovoltaic
devices. As evidenced by steady-state fluorescence spectra,17

the smallest quantum wells are likely to relax by spontaneous
emission because they have the largest exciton binding energies
and transition dipoles. Moreover, the concentration profiles of
the smallest quantum wells do not span the full thicknesses of
the active layers, leading to “dead ends” in the carrier
trajectories.36

■ CONCLUSIONS
Overall, the experiments summarized in this perspective article
support the following physical insights into relaxation
processes induced by light absorption in layered perovskite
films and photovoltaic devices:

(i) Dynamics in the spatial distributions of photoexcited
charge carriers are primarily influenced by two-body
recombination in films because of disorder and grain
boundaries. Carrier diffusivity is 10−100 times greater in
single crystals compared to solution-processed films.

(ii) Energy funneling is a subnanosecond process, whereas
charge carrier funneling occurs at later times.

(iii) Charge carrier funneling does not contribute to long-
range transport because of trapping in the domains
occupied by the smallest quantum wells.

(iv) Photocurrent generation in layered perovskite-based
devices is dominated by processes in which the largest
quantum wells absorb light and transport carriers
without transitions into phases associated with smaller
quantum wells.

(v) The smallest quantum wells function as debris in
photovoltaic devices. These systems are likely to relax
by spontaneous emission and do not have concentration
profiles spanning the full active layer of a device.

In conclusion, our investigations of layered perovskites
suggest that the concentration profiles of the individual
quantum wells are not tailored to produce functionally relevant
charge carrier funnels. Alternate approaches must be
considered to exploit the optoelectronic properties of these
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systems. One aspect of layered 2D perovskites, which sets
them apart from their bulk 3D counterparts, is the
accommodation of large organic molecules between the layers
of inorganic octahedra. Thus far, we have investigated systems
in which insulating organic molecules, which are transparent in
the visible spectral range, fill the interstitial spaces between
quantum wells; however, organic chromophores with smaller
band gaps can be substituted to promote out-of-plane
transport processes.70−75 Energy transfer and exciton delocal-
ization can be enhanced in systems where the donor and
acceptor sites possess degenerate electronic resonances. In
addition, the individual energy levels can be varied to promote
charge transfer between the inorganic and organic phases of
the materials. Because the couplings that drive charge transfer
transitions are short-range in nature, charge carrier mobilities
can be significantly enhanced by incorporating organic
chromophores. Studies of crystals with well-characterized
structures will be necessary to distinguish in-plane and out-
of-plane charge transport in materials with such hybridized
electronic structures. Extending the NLPC method from the
nanosecond to microsecond time scale will enable studies of
crystals, which will have transit times greater than the systems
targeted in Figure 5 due to larger thicknesses.
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