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Highlights
The study of mitochondrial aerobic
metabolismprovides a promising avenue
through which ecologists and evolution-
ary biologists can explore mechanistic
sources of variation in metabolic and
life-history phenotypes, with important
consequences for organismal perfor-
mance and fitness.

Mitochondria vary not only in rate of
respiration, but also in ATP produc-
tion efficiency through OXPHOS, rate
of ROS production, and amount of
heat generated; the interplay among
Biologists have long appreciated the critical role that energy turnover plays in
understanding variation in performance and fitness among individuals. Whole-
organismmetabolic studies have provided key insights into fundamental ecological
and evolutionary processes. However, constraints operating at subcellular levels,
such as those operating within the mitochondria, can also play important roles in
optimizing metabolism over different energetic demands and time scales. Herein,
we explore how mitochondrial aerobic metabolism influences different aspects of
organismal performance, such as through changing adenosine triphosphate (ATP)
and reactive oxygen species (ROS) production. We consider how such insights
have advanced our understanding of the mechanisms underpinning key ecological
and evolutionary processes, from variation in life-history traits to adaptation to
changing thermal conditions, and we highlight key areas for future research.
these factors underlies mechanistic
trade-offs and constraints that can
have cascading effects up to the level
of organismal performance.

Growing interest in mitochondrial biology
within ecology and evolutionary biology,
has enriched understanding of how
metabolic rate, energy availability,
and the byproducts of mitochondrial
aerobic metabolism, may interact to
shape different life-history strategies
and how organisms adapt to their
environment.
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Energy Metabolism Drives Ecological Processes
Aerobic respiration is a principal source of energy for most eukaryotes. Energy metabolism con-
trols the amount of energy uptake from the environment and the relative allocation of this energy
to life-history traits. Classical ecological approaches for quantifying energy flows have estimated
metabolic rate bymeasuring whole-organism gas exchange [1–3], which has provided a powerful
foundation for understanding variation in individual performance, population growth rate, and
community structure [4]. However, respiration at the whole-organism level ultimately derives
from energy flow at the subcellular level [5]. Aerobic respiration in the mitochondria is a central
process by which organisms transfer chemical energy locked in substrates into the chemical
bonds of ATP, the main form of chemical energy fueling cellular processes. The efficacy with
whichmitochondria execute this energy transfer can be a major determinant of organismal fitness
[6–10].

Investigating variation in mitochondrial measurements provides an opportunity for integrating how
mechanistic constraints and trade-offs at the cellular level, may shape fundamental evolutionary
and ecological patterns [5,11–15]. Such constraints and trade-offs can involve interrelationships
between ATP, reactive oxygen species (ROS) (see Glossary) production, and heat generated
during cellular respiration—relationships that can be flexibly modulated in response to changing
needs, but may also face physiological constraints (see later) [16,17]. Teasing apart these relation-
ships has the potential to offer valuable insights into the nature of the physiological changes, that
enable organisms to adapt and to optimize function across a broad range of conditions.

Here, we suggest that characterizing energy flow via measurements of mitochondrial aerobic
metabolism, can provide new insights into differences in energy turnover and physiological
performance among and within individuals, across time, and in response to environmental
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change (Figure 1) [18,19]. Meeting energetic demands at the subcellular level, while preventing
the accumulation of potentially damaging byproducts under changing conditions, requires careful
orchestration of biochemical processes in the mitochondria [20]. The effectiveness of mediating
such processes is driven by both genes and environments (Box S1 in the supplemental informa-
tion online), linking mitochondrial processes not only to individual fitness, but also to local
adaptation (Figure 1) [21]. Our aim is to discuss how the study of mitochondria may yield new
insights into evolutionary and ecological sciences. We will firstly summarize mitochondrial traits
and their quantification, and then secondly discuss the implications of these processes for
ecology and evolution.

Mitochondrial Traits and Their Quantification
Mitochondria have a wide range of functions (e.g., immune signaling pathways, apoptosis,
and epigenetics [22–24]), but we focus predominantly on the central mitochondrial process of
oxidative phosphorylation (OXPHOS) and on how in vitro mitochondrial measurements can
be interpreted in relation to animal performance and fitness. OXPHOS is the specific component
of mitochondrial aerobic respiration, that harnesses potential energy from an electrochemical
gradient, to drive the phosphorylation of ADP into ATP, consuming oxygen in the process.
Specifically, electrons harvested from food-derived substrates flow through the protein complexes
of the electron transport chain (ETC) to fuel the pumping of protons from the mitochondrial
matrix into the intermembrane space (Figure 2). This creates a disequilibrium in both charge
and proton concentration across the inner membrane (a source of potential energy called the
protonmotive force). Protons passing down this gradient through ATP synthase power the
phosphorylation of ADP into ATP (Figure 2) [25,26]. OXPHOS fluctuates in response to changes
in substrate availability and composition, ATP demand, and environmental conditions. Flexibility
in the activity of the ETC, the build-up of protonmotive force, and the movement of protons across
the inner mitochondrial membrane, sets the rate of ATP production and affects metabolic heat
generation as well as mitochondrial ROS production (Figure 2).

Mitochondrial ROS are formedwhen electrons escape the ETC and react directly with oxygen, and
some ROS are always generated during mitochondrial aerobic metabolism. The contribution of
ROS to oxidative stress plays a prominent role in many ecological and evolutionary hypotheses,
such as theories of aging [27–29] and of reproductive costs [30–32]. While ROS serve important
signaling functions and are not inherently harmful [33], excess ROS have the potential to cause
oxidative damage and lead to cellular dysfunction. Rate of mitochondrial ROS generation may
increase due to altered functionality of the ETC, such as mild dysfunction from oxidative damage,
mutation, replication error, or genetic incompatibilities between genes encoding subunits of
OXPHOS (mitonuclear interactions) (Box S1 in the supplemental information online) [34–36]);
we can consider this structural variation as variation in mitochondrial ‘quality’ (Figure 3). In contrast,
mitochondrial ROS production also changes inherently with changing of protonmotive force
(Figures 2 and 3); specifically, more ROS are generated during high protonmotive force, such as
may occur when demand for ATP is low (Figure 2B) [37]. This point is key because it highlights
the misconception that increased metabolic rate will inherently increase rate of ROS production.
Rather, ROS production increases with the build-up of protonmotive force, which can be
countered either by a higher rate of ATP production (coupled with demand) [30,38,39] or a higher
proton leak (i.e., protons flowing back to the mitochondrial matrix without passing through ATP
synthase, dissipating energy as heat) (Figure 2) [39].

Proton leak across the inner mitochondrial membrane can occur through two means: (i) passive
proton leak (movement of protons directly through the membrane, largely influenced by
protonmotive force and membrane composition [40]); and (ii) inducible proton leak (regulated
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Glossary
Electron transport chain (ETC): a
series of protein complexes in the inner
mitochondrial membrane that transfer
electrons via oxidation/reduction
reactions. These reactions are coupled
to the pumping of protons out of the
mitochondrial matrix to create a
protonmotive force.
LEAK respiration: oxygen used to
offset proton leak. Also called state 4
respiration rate.
Mitochondrial aerobic metabolism:
the metabolic (anabolic and catabolic)
reactions that occur within the
mitochondria, that involve direct and
indirect use of oxygen. This comprises
activity of the electron transport chain,
protonmotive force, ATP production,
and ROS generation.
Mitochondrial efficiency: efficiency of
mitochondria to convert food-derived
energy substrate into ATP. Efficiency is
often estimated in vitro with P:O ratios
and respiratory control ratios (RCR).
Mitonuclear interactions: functional
associations between the products of
the mitochondrial and nuclear genomes
that can affect mitochondrial aerobic
metabolism.
Oxidative phosphorylation
(OXPHOS): phosphorylation of ADP
into ATP in the presence of oxygen.
Conversion of ADP to ATP is performed
by ATP synthase, and uses the energy
provided by the protonmotive force.
Oxidative stress: imbalance between
the production of pro-oxidants (such as
ROS) and the ability of a biological
system to neutralize them through
antioxidant defenses, leading to
oxidative damage to biomolecules.
OXPHOS respiration: oxygen used
when mitochondria are actively
producing ATP. Also called state 3
respiration rate.
Proton leak: protons that flow back
across the inner mitochondrial
membrane into the matrix outside of
ATP synthase. Proton leak may be
passive, particularly when membrane
potential is high, or inducible (and
regulated through transmembrane
proteins).
Protonmotive force: the potential
energy stored across the inner
mitochondrial membrane, that is
established by pumping protons from
the mitochondrial membrane to the
intermembrane space; the protonmotive
force involves both the chemical gradient
formed by the difference in proton
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movement of protons through protein channels that span the inner mitochondrial membrane [41]).
Either form of proton leak is essentially ‘uncoupling’ proton movement from the phosphorylation
of ADP into ATP. Proton leak decreases rate of ATP synthesis relative to mitochondrial respiration
rate, but it is not necessarily a dysfunction; rather, proton leak can be beneficial for respiratory
function by lowering protonmotive force and thereby reducing mitochondrial ROS production
(Figure 2) [42]. Inducible proton leak can also be an important means to generate extra metabolic
heat for thermoregulation in endotherms (e.g., UCP1 in the brown adipose tissue of small
mammals [43]), in addition to heat already produced during ATP synthesis.

Because oxygen consumed during aerobic respiration can be uncoupled from ATP synthesis
through proton leak (Figure 2), two individuals (or more specifically, two mitochondria) with the
same rate of oxygen consumption, can have quite different rates of ATP synthesis. Indeed, the
proportion of oxygen consumed that leads to ATP synthesis versus the proportion that leads
to proton leak (e.g., as captured in measures of mitochondrial efficiency; Box 1 and
Figure 3) can vary considerably across species, individuals, and time (see Outstanding Questions)
[11,44]. Such variation can be due to strategic adjustment of mitochondrial processes to best
respond to current conditions(e.g., increasingmitochondrial efficiency to enhance energy savings
during prolonged fasting [45]) (Figure 3). However, such variation may also be indicative of
structural differences in, for example, the ETC; differences that could constrain ATP production
capacity during times of high demand (Figure 3). Only limited research to date has focused on
the evolutionary implications of within-individual variation in mitochondrial aerobic respiration,
across tissues and life stages.

Understanding the interconnections between mitochondrial oxygen consumption, ATP and ROS
production, and proton leak, is critical for understanding physiological trade-offs operating at the
cellular level that may influence animal phenotype and performance (Box 2). The importance of
these interactions has been recognized for decades, including their relevance to the evolution
of body size [46], thermal biology [47], and more recently, even sexually selected displays [48].
Exploring these processes, particularly with recently developed techniques that allow for
nonterminal and even repeated sampling (Box 1), offers ecologists insights into the long-term
costs and constraints of the metabolic processes that underlie life-history strategies. An
important outstanding area of research with relevance to both ecological and evolutionary
questions, is how and why individuals differ in their mitochondrial phenotype [parameters such
as the efficiency with which ATP is produced from mitochondrial aerobic metabolism, or density
of mitochondria within cells (Figure 3 and Box 2)] and the higher-order effects of such subcellular
variation on broader aspects of organismal performance.

While a full overview of the practical and methodological considerations required to collect
informative mitochondrial measures is beyond the scope of this review, we provide a brief
overview of several of the most well-established methods by which mitochondrial performance
can be quantified in Box 2 (though none are without limitations), and important considerations for
experimental design in Box 1. In the following section, we seek to translate the broad applications
of the study of mitochondrial aerobic metabolism to evolutionary and ecological processes.

Applications of Mitochondrial Aerobic Metabolism to Ecological and
Evolutionary Research
Mitochondrial Processes Underlie Whole-Organism Metabolic Rate
An understanding of mitochondrial aerobic metabolism can enhance our understanding of
variation in whole-organism traits. Whole-organism metabolic rates have been found to vary
severalfold among species and individuals [49,50], and variation in metabolic rate can be a
Trends in Ecology & Evolution, Month 2020, Vol. xx, No. xx 3



concentration, and the electrical gradient
formed by the difference in charge.
Reactive oxygen species (ROS):
derivatives of oxygen that are chemically
unstable and quickly react with different
kinds of biomolecules; ROS are
important cellular signals but can also
cause altered function through oxidative
damage.
Uncoupling: the dissociation of
mitochondrial protonmotive force
generation (i.e., the ‘uncoupling’ of
electron transport chain activity) from
ATP synthesis.
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functional determinant of variation in fitness and fitness-related traits [51–53]. Field and laboratory
studies have identified strong relationships between whole-organism metabolic rate and survival,
and reproductive success, but the strength and form of selection varies among species and
ecological contexts [53]. Variation in mitochondrial aerobic metabolism is likely an important
underlying source of the observed among-individual variation in whole-organism metabolic rate
and is likely to influence the relationship between metabolic rate and fitness [44,54,69]. Almost
all measurements of metabolic rate are made through the measurement of O2 or CO2 fluxes
(e.g., the data for thousands of species summarized in [55]). Such measurements are important
estimates of overall energy flow, but as described above, variation at the mitochondrial level
(e.g., uncoupling) alters the proportion of that energy that ultimately results in ATP, heat, or
ROS (Figures 2 and 3) [11].

Exploring variation in mitochondrial aerobic metabolism can therefore help better pinpoint the
significance of variation (or lack thereof) in energy flow at the whole-organism level. For example,
two animals with the same whole-organism metabolic rate can differ in energy available as ATP
(e.g., if they differ in mitochondrial efficiency; Box 2); similarly, two animals that differ in whole-
organism metabolic rate can have the same energy available as ATP, but different levels of heat
or ROS generation (Figures 2 and 3). Differences in strategy or quality at the mitochondrial level
thereby can alter the relationships between whole-organism metabolic rate and physiological
performance or life-history trait expression. Measurements of mitochondrial aerobic metabolism
(e.g., mitochondrial efficiency; Boxes 1 and 2) offer a means to further contextualize measure-
ments of whole-organism energy flow by providing information on whether that energy may be
put toward ATP or instead toward heat or ROS production, alternatives that have ramifications
for the hypotheses we formulate for howmetabolic rate relates to fitness. Combiningmeasurements
of fitness with measurements of mitochondrial aerobic metabolism (e.g., from repeated, nonterminal
sampling; Box 1) and whole-organism metabolic rate will provide an opportunity to grow our
understanding of the functional bases of variation.

Can Variation in Mitochondrial Aerobic Metabolism Explain Life-History Trade-Offs?
The study of metabolism has also played a central role in explaining fundamental life-history trade-
offs, such as that between growth rate and lifespan. Applying an understanding of mitochondrial
aerobic metabolism and the relationships between metabolic rate, ATP production, and ROS
production, offers a new tool for further exploring such life-history trade-offs. The ‘oxidative stress
life-history hypothesis’, for example, proposes that energy-demanding phases of life that neces-
sitate increased metabolism, such as growth or reproduction, come at the cost of increased
generation of mitochondrial ROS, which in turn would have ultimate consequences to longevity
(Figure 1) [56,57]. However, as described previously, increased metabolism does not necessarily
increase the production of mitochondrial ROS, and can actually have the opposite effect
(Figure 2); so, it is perhaps unsurprising that empirical evidence for this hypothesis is currently
mixed (reviewed in [31,56,58]). More comprehensive comparisons of mitochondrial and organ-
ismal respiration across species, individuals, and tissues, has the potential to provide new
insights into longstanding questions regarding major physiological and life-history patterns,
such as trade-offs surrounding whole-organism metabolic rate [54] or growth [59]. For
example, an individual could potentially maintain growth rate during times of food scarcity
without altering oxygen consumption by instead increasing efficiency of ATP production
(Box 2), but such increases in coupling between electron flow and ATP synthesis at lower
metabolic rates, may come at the potential cost of the increases in mitochondrial ROS production
(Figures 2 and 3) [17,60,61]. Mitochondrial processes can therefore provide testable predictions for
how and why individuals differ in performance when whole-organismmeasures do not fully explain
observed variation.
4 Trends in Ecology & Evolution, Month 2020, Vol. xx, No. xx
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Figure 2. Simplified Diagrams Illustrating Relationships among ATP Demand, Protonmotive Force, Mitochondrial ROS Production, and Proton Leak.
Here, we illustrate electron movement through the ETC, ATP synthesis from ADP via ATP synthase, and proton movement across the inner mitochondrial membrane
through the ETC (i), ATP synthase (ii), or proton leak (iii). The top region of each graphic represents the intermembrane space, and the bottom region represents the
mitochondrial matrix. The three panels represent conditions of high ATP demand (A), low ATP demand (B), and low ATP demand with increased inducible proton leak
(C). In (A), high demand for ATP prevents the build-up of protonmotive force as protons are quickly passed through ATP synthase, which limits mitochondrial ROS
production. In (B), decreased ATP demand has increased protonmotive force because proton movement through ATP synthase has decreased; under these
conditions, electrons ‘escape’ the ETC at higher rates, forming ROS. In (C), proton leak, both basal and induced (black bars across the membrane represent
upregulated protein channels), prevents the build-up of protonmotive force and thereby controls ROS generation even while demand for ATP is low, producing heat in
the process. The differences between (B) and (C) are key to the concept of how the strategic adjustment of proton leak may be beneficial, but also underlie trade-offs;
for example, greater proton leak in (C) compared to (B) decreases mitochondrial efficiency, but also decreases mitochondrial ROS production even when ATP demand
is low. Abbreviations: ETC, electron transport chain; ROS, reactive oxygenated species.
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A second hypothesis more specifically considers how regulation of protonmotive force to adjust
ROS production may itself be a key to life-history trade-offs. This ‘uncoupling to survive’ hypoth-
esis proposes that proton leak is carefully controlled to decrease protonmotive force and thereby
to regulate mitochondrial ROS generation (Figures 2 and 3) [42,44,62,63]. Studies have tested
this hypothesis by experimentally manipulating uncoupling and/or by comparing uncoupling
levels to life-history trait performance and oxidative stress [14,64–66]. For example, the adminis-
tration of an experimental mitochondrial uncoupler to captive zebra finches (Taeniopygia guttata)
caused whole-organismmetabolic rate to increase, likely in response to reduced ATP production
efficiency caused by the treatment but did not alter oxidative stress. However, finches receiving
the uncoupling treatment had decreased reproductive investment, which supports the potential
existence of a trade-off between possible benefits of uncoupling and maximizing current fitness
[67]. Further studies are needed to better understand how uncoupling varies in wild animals
that are balancing ATP and ROS production, lifespan, and reproduction across constantly vary-
ing environmental conditions.
Figure 1. Mitochondria Link Energy Flow through the Environment to Organism Life-History, Impacting Meta-Population and Community Dynamics.
Environmental factors, such as temperature and water availability, affect net primary productivity (NPP) (A), and thus food availability. Organisms ingest food (B) and
liberate the organic molecules that are absorbed, transporting them to tissues and cells. Carbohydrates, fats, and proteins are each independently catabolized and the
energy stored within their chemical bonds is captured to produce ATP through aerobic respiration. The final steps take place in the electron transport chain (ETC)
within the inner membrane of the mitochondria. Protonmotive force across the inner mitochondrial membrane is used to fuel ATP production through ATP synthase
(C) but can also be dissipated through proton leak; this decreases ATP production efficiency and increases the amount of energy released as heat (D). Mitochondria
are also a source for reactive oxygen species (ROS), which can damage proteins, lipids, and nucleic acids, potentially causing mitochondrial and cellular dysfunction
and affecting life-history traits (E). Mitochondrial and nuclear genes coding for enzymes in the ETC (F) interact with environmental factors to play critical roles in
determining the efficiency of mitochondria in producing ATP, heat, and ROS. Mitochondrial aerobic metabolism is therefore important in determining the amount
of ATP available to fuel metabolic processes underlying cellular and tissue maintenance, activity, growth, and reproduction, all critical underpinnings of an organism’s
life-history repertoire (G). Changes in life-history traits at the individual level ‘funnel’ up to affect the dynamics of populations, and ultimately, metapopulations and
communities (H).

6 Trends in Ecology & Evolution, Month 2020, Vol. xx, No. xx
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Figure 3. Illustration of Within- and Among-Individual Variation in Mitochondrial Aerobic Metabolism.
For a Figure360 author presentation of Figure 3, see the figure legend at https://doi.org/10.1016/j.tree.2020.12.006.
The shading of each region represents whether oxygen is put toward ATP production (broken-lined region), proton leak (filled
gray region), or ROS production (unfilled region). In (A), the filled circles represent possible measurements of an animal at rest
(i) or the same animal in a state of high activity (ii), informed by data in [78]. In a highly active state (ii), the high demand for ATP
causes ATP synthase to rapidly use up the proton gradient, so protonmotive force and rate of proton leak become relatively
low. In contrast, the slowing of ATP synthase activity when an active animal shifts to rest (i) causes an increase in membrane
potential. The open circles represent the in vitromeasurements of OXPHOS (iii) or LEAK (iv) respiration (Box 2), though these
extremeswould not occur in vivo; it is worth noting that using these extremes to calculate the proportion of oxygen resulting in
proton leak (i.e., RCR; Box 2) would result in an misleading estimate of the actual proportions of oxygen resulting in leak or
ATP production at either during either high or low activity [79,80]. In (B), within- and among-individual variation in

(Figure legend continued at the bottom of the next page.)
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Box 1. Designing Experimental Tests of Mitochondrial Aerobic Metabolism

Measures of mitochondrial aerobic metabolism tend to be relatively low-throughput and most have to be measured in
freshly collected biological samples (especially efficiency proxies) within a few hours of sampling ([81], but see [82,83]).
Such constraints may limit the number of animals sampled and require that tissue collection be organized strategically.
In addition, the sampling approach (e.g., choice of tissue and frequency of sampling), the mitochondrial properties to
assess (e.g., mitochondrial respiration rates, efficiency, and density; Box 2), and the experimental conditions
(e.g., assay temperature [20], substrates [84]) should each be chosen with care based on the focus and constraints of
a given study.

Since mitochondrial aerobic metabolism varies considerably among tissues (e.g., [17,54]), conclusions based on a single
tissue should always be considered within context, and extrapolation to additional tissues without validation should be
avoided. When selecting which tissue to measure, researchers should consider both the physiology that underlies the
question being evaluated and the practical and ethical constraints of destructive sampling. For example, a study of
ornamental red coloration in male house finches (Haemorhous mexicanus) measured the performance of mitochondria
in the liver because the process of converting dietary yellow to red feather pigments is thought to occur specifically within
the liver in that species [48]. When studies focus on small species, sample collection often must be destructive, making
repeated sampling of an individual impossible. In larger animals, it may be possible to biopsy organs such as skeletal
muscle [26], but the consequences of such invasive procedures should be carefully considered. Beyond ethical
considerations, it is important to consider how the stressors animals experience prior to death or during sampling can
impact their physiology [85].

Evaluating mitochondrial aerobic metabolism from blood cells has emerged over the last decade as a potential alternative
to circumvent some of these issues. This approach using blood cells is becoming more prevalent in biomedical studies
(e.g., [86]), and is starting to be implemented in ecological studies on non-model and wild animals [14,15,26,87–89].
Several studies have revealed moderate positive associations between measurements of mitochondrial aerobic
metabolism in blood cells and other tissues ([26,90–92]; but see [93,94]). Additionally, a study in wild female pied
flycatchers (Ficedula hypoleuca) during reproduction showed that mitochondrial measurements in blood cells were
moderately to highly repeatable within individuals over a period of 10 days, despite those measurements being highly
plastic across reproductive stage [88]. Such results suggest that measurements from blood cells have the potential to
be relevant and individual-specific markers of mitochondrial parameters.

Trends in Ecology & Evolution
Mitochondrial Aerobic Metabolism and Temperature: Thermoregulation, Climatic Adaptation,
and Acclimation
Uncoupling also has important ramifications for thermoregulation, as proton leak can be an
important endogenous heat source. In developing chicken embryos, for example, the transition
from ectothermy to endothermy is accompanied by increased mitochondrial uncoupling [68],
suggesting an important role of proton leak in mechanisms of thermoregulation. In addition, a
particular uncoupling protein in mammals (UCP1) has been found to drive heat production
through nonshivering thermogenesis in the brown adipose tissue of many (but not all) cold-
adapted mammals [43,69]. Increased proton leak may also potentially be a means to generate
extra metabolic heat while decreasing ROS production [70]; for example, a study subjecting
zebra finches to acute cold stress found that untreated birds had increased oxidative damage
to DNA, while birds treated with an experimental mitochondrial uncoupler showed no such
increases [71]. Such examples provide insight into the potential for mitochondrial measurements
to provide new mechanistic explanations for the potential costs or benefits of different means of
endogenous heat production.
mitochondrial efficiency, is illustrated by tracing hypothetical relative proportions of different endpoints of mitochondria
oxygen consumption during states of high or low demand for ATP. Mitochondria with high efficiency (v) will produce more
ATP at a given level of oxygen consumption than those with low efficiency (vi and vii). However, higher efficiency
mitochondria can also generate higher levels of ROS under states of low ATP demand (v, right column), so decreased
efficiency may hypothetically be an adaptive ‘strategy’ to lower ROS (e.g., shift from v to vi). In contrast, lower efficiency
can also be caused by decreased mitochondrial ‘quality’ (e.g., due to mild dysfunction from damage or mitonuclea
incompatibility), potentially both reducing ATP production and increasing ROS generation (vii). Note that the relative
proportions allocated to ROS are inflated to be more visually clear.
Abbreviations: OXPHOS, oxidative phosphorylation; RCR, respiratory control ratio; ROS, reactive oxygen species.
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Box 2. The Biological Implications of Methodological Choices

(i) Sample Type and Preparation

Mitochondrial aerobic metabolism can be measured in vitro from isolated mitochondria, permeabilized cells/tissues, or
intact cells [95]. While isolated mitochondria provide precise control of cellular conditions (i.e., substrates and ADP
availability), they lack cellular context. Intact cells have a preserved cellular and mitochondrial network and are able to
inform on endogenous mitochondrial aerobic metabolism but lack control of substrates and ADP availability. Perme-
abilized cells/tissues share some of the advantages and drawbacks of both isolated mitochondria and intact cells [95]. Iso-
lated mitochondria are considered a better choice for mechanistic studies, while intact cells have a greater ecological
relevance [95].

(ii) Mitochondrial Aerobic Metabolism Parameters

Different mitochondrial aerobic metabolism parameters can be measured (Table I); the two main categories are respiration
rates (e.g., OXPHOS and LEAK respiration) and proxies of mitochondrial efficiency (e.g., P:O, the amount of ADP
used, or ATP produced per atom of oxygen consumed; or, respiratory control ratio (RCR), the ratio of oxygen used
for OXPHOS to oxygen used for proton leak). Although RCR (OXPHOS/LEAK respiration) is widely used, it has several
mathematical and interpretation limitations; a related metric has recently been proposed to alleviate these limitations,
called OXPHOS Coupling Efficiency (abbreviated here as OxCE). OxCE reflects the proportion of total mitochondrial
oxygen consumption being allocated to ATP synthesis (1-LEAK/OXPHOS respiration) [79,96]. Yet, both RCR and
OxCE are biased by the fact that the proton leak estimated when no ATP synthesis occurs (i.e., LEAK respiration)
over-estimates the proton leak occurring when active ATP synthesis takes place (Figure 3A). Respiration rates indicate
potential metabolic capacity levels, while efficiency proxies indicate how efficient mitochondria are at producing ATP
[80,95]. Both are likely to be relevant for organismal performance, but the in vivo relevance of such in vitro measure-
ments must be carefully considered.

Table I. Logistical Considerations When Measuring Mitochondrial Aerobic Metabolism Parameters

– Respiration
rates

RCR or
OxCE

ADP:O ATP:O ratio

Equipment required Oxygraphy Oxygraphy Oxygraphy Oxygraphy +
colorimetry

Oxygraphy +
fluorimetry

Mitochondrial
preparation

Isolated
mitochondria

Feasible Feasible Feasible Feasible Feasible

Permeabilized
cells/tissues

Feasible Feasible Not
feasible

Not feasible Feasible

Intact cells Feasible Feasible Not
feasible

Not feasible Not feasible

Start-up effort required Low Low Low High High

Able to measure ATP
production?

No No No Yes Yes

Relative processing time per
sample

Low to
moderate

Low to
moderate

Low to
moderate

Very high Moderate

Cost (equipment + consumables) Low to
moderate

Low to
moderate

Low to
moderate

Low to
moderate

High

Refs [97] [97,98] [97,98] [97,98] [99]

(iii) Normalization of Mitochondrial Respiration Rates

Ratios like P:O, RCR, and OxCE are unitless, but mitochondrial respiration rates (e.g., OXPHOS or LEAK respiration rates
need to be normalized relative to tissue/mitochondrial content in order to be compared. Normalizing respiration rates o
isolated mitochondria is usually done by expressing oxygen consumption per amount of mitochondrial protein content
Normalizing mitochondrial respiration rates from permeabilized and intact cells can either be achieved using mass of tissue
or number of cells, or a proxy of mitochondrial abundance/density, and this choice has critical consequences on data
interpretation [79]. For instance, two groups of animals could exhibit similar respiration rates expressed per unit of tissue
but one group may require more mitochondria to reach the same respiratory capacity; contextualizing measures in this
way is important to reveal hidden complexity, which in turn can suggest the possibility of further underlying patterns to
explore (e.g., increased mitochondrial density to compensate for dysfunction, at the possible cost of increased ROS
generation [100]).
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Outstanding Questions
Does early developmental environment
alter mitochondrial aerobic respiration,
and how may such effects carry
across life-history stages?

To what extent does variation in
mitochondrial aerobic respiration
underlie variation in whole-organism
metabolic rate, and how does incorpo-
ration of a mitochondrial perspective
alter our understanding of the role
of metabolic variation in ecology and
evolution?

Do constraints on mitochondrial aerobic
respiration shape the expression of
condition-dependent, sexually selected
traits?

When is mitochondrial ROS produc-
tion beneficial and when is it harmful?
How do the answers to these ques-
tions change our understanding of the
evolutionary consequences of variation
in mitochondrial bioenergetics?

Is blood a useful tissue in many
species for noninvasive, repeated
sampling, for understanding the
evolutionary consequences of variation
in mitochondrial aerobic respiration?

Can we establish links from genotype
to mitochondrial aerobic respiration
phenotype, then ultimately to the
fitness of individuals?

When does heterogeneity in
mitochondrial aerobic respiration
have a selective advantage that is
context-specific (i.e., mitochondria
function well in one environment but
not another)?

To what extent does mitochondrial
‘quality’ (i.e., levels of function vs dys-
function) vary in natural populations,
and what mechanisms underlie this
variation?

Trends in Ecology & Evolution
Mitochondria are not only important to regulating internal temperature, but also to responding to
changes in external temperature, on the scales of both long-term adaptation and short-term
acclimation. For example, a study of wild mayfly larvae (Baetis and Drunella spp.) found that
high-and low-elevation-adapted populations differed in multiple measures of mitochondrial
aerobic metabolism when tested under common conditions [72]. This study demonstrates the po-
tential for the evolution of mitochondrial phenotypes (over generations) to prevailing climatic condi-
tions, with implications for local population adaptation. On shorter-term scales, mitochondrial
aerobic metabolism also appears to be key to organisms’ response to varying temperatures, such
as may occur during seasonal acclimation (e.g., [73]) or short-term thermal stress (e.g., [74]). Thermal
conditions can themselves have fundamental thermodynamic effects on reaction rates in the mito-
chondria as cellular temperature changes, and organisms may respond by changing mitochondrial
efficiency or density (potentially facing trade-offs in the process; e.g., [75,76]). Importantly, the limits
of mitochondria to respond to changing conditions are expected to be a key determinant of thermal
limits [72,76,77], with implications for how populations will respond to a changing climate.

Concluding Remarks
There is a growing awareness among ecologists and evolutionary biologists that mitochondrial
phenotype can play a central role in shaping the fundamental characteristics of organisms. At
the heart of this awareness is an understanding that selection acts on individual variation, and
yet we know relatively little about how selection acts on mitonuclear genotype and mitochondrial
phenotype. To understand how variation in mitochondrial aerobic metabolism has contributed
to shaping selection on organisms, we need to understand how mitochondrial phenotype
constrains and/or enables response to environmental change. Fruitful lines of research include
quantifying individual variation in mitochondria, including individual consistency in responses to
changing environmental conditions, and tissue-specific responses for which fitness is dependent
on managing periods of intense energy demands (e.g., rapid growth or migration). As interest in
mitochondrial biology expands, there emerges an increasing need for a common foundation in the
best practices for studying mitochondrial aerobic metabolism, grounded in a careful understanding
of mitochondrial biology. Such a foundation will promote amore unified understanding of how cellular
processes may shape the evolution of life-history traits, and support new research avenues that
probe the broader ecological and evolutionary implications (see Outstanding Questions).
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