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Abstract. We determine which faithful irreducible representations V of a

simple linear algebraic group G are generically free for Lie(G), i.e., which V
have an open subset consisting of vectors whose stabilizer in Lie(G) is zero.

This relies on bounds on dimV obtained in prior work (part I), which reduce

the problem to a finite number of possibilities for G and highest weights for
V , but still infinitely many characteristics. The remaining cases are handled

individually, some by computer calculation. These results were previously

known for fields of characteristic zero, although new phenomena appear in
prime characteristic; we provide a shorter proof that gives the result with very

mild hypotheses on the characteristic. (The few characteristics not treated here

are settled in part III.) These results are related to questions about invariants
and the existence of a stabilizer in general position.

Let G be a simple linear algebraic group over a field k acting faithfully on a
vector space V . In the special case k = C, there is a striking dichotomy between the
properties of irreducible representations V whose dimension is small (say, ≤ dimG)

versus those whose dimension is large, see [AnVE], [È], [Po], etc., for original results
and [PoV, §8.7] for a survey and bibliography. For example, if dim V < dimG, then
(trivially) the stabilizer Gv of a vector v ∈ V is nontrivial. On the other hand (and
nontrivially), for dim V hardly bigger than dimG, the stabilizer Gv for generic
v ∈ V is trivial, i.e., 1; in this case one says that V is generically free or G acts
generically freely on V . This property has taken on increased importance recently
due to applications in Galois cohomology and essential dimension, see [Re] and
[Mer] for the theory and [BrRV], [GaGu 17], [K], [LöMMR], [Lö], etc. for specific
applications.

With applications in mind, it is desirable to extend the results on generically
free representations to all fields. In that setting, [GuL] has shown that, if V is
irreducible and dim V is large enough, then G(k), the group of k-points of G, acts
generically freely. Equivalently (when k is algebraically closed), the stabilizer Gv of
a generic v ∈ V is an infinitesimal group scheme. For applications, one would like
to say that Gv is not just infinitesimal but is the trivial group scheme, for which
one needs to know that the Lie algebra g of G acts generically freely on V , i.e.,
gv = 0. The two conditions are related in that dimGv ≤ dim gv, so in particular
if gv = 0, then Gv is finite. On the other hand, if Gv(k) = 1, gv can be nontrivial
(i.e., Gv may be a nontrivial infinitesimal group scheme), see Example 4.2.

In a previous paper, [GaGu I], we proved that, roughly speaking, if dim V is large
enough (where the bound grows like (rankG)2) and char k is not special, then V
is a generically free g-module. In this paper, we restrict our focus to irreducible
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modules and settle the question of whether or not g acts generically freely when
char k is not special.

Theorem A. Let G be a simple linear algebraic group over a field k and let ρ :
G→ GL(V ) be a faithful and irreducible representation of G. Then V is generically
free for g if and only if dimV > dimG and (G, char k, V ) is not in Table 1.

G char k rep’n dimV dim gv G char k high weight dimV dim gv

SL8 /µ4 2 ∧4 70 3 Sp8 3 0100 40 2
SL9 /µ3 3 ∧3 84 2 Sp4 5 11 12 1

Spin16 /µ2 2 half-spin 128 4 SL4 p odd 01pe, e ≥ 1 24 1
SL4 /µ2 2 012e, e ≥ 2 24 1

Table 1. Irreducible and faithful representations V of simple G
with dimV > dimG that are not generically free for g, up to graph
automorphism. For each, the stabilizer gv of a generic v ∈ V is a
toral subalgebra. The weights on the right side are numbered as
in Table 2.

We say that G acts faithfully on V or ρ is faithful if ker ρ is the trivial group
scheme. Regardless, there is an induced map G/ ker ρ → GL(V ) that is a faithful
representation of G/ ker ρ.

We say that char k is special for G if char k = p 6= 0 and the Dynkin diagram of
G has a p-valent bond, i.e., if char k = 2 and G has type Bn or Cn for n ≥ 2 or type
F4, or if char k = 3 and G has type G2. Equivalently, these are the cases where
G has a very special isogeny. This definition of special is as in [S 63, §10]; in an
alternative history, these primes might have been called “extremely bad” because
they are a subset of the very bad primes — the lone difference is that for G of type
G2, the prime 2 is very bad but not special. In this paper, we prove Theorem A
when char k is not special, and we typically assume that char k is not special in the
rest of this paper. (We do consider some examples where char k is special, such as
for type B in characteristic 2 in §5.) The case where char k is special has a different
flavor and will be handled in a separate paper, part III [GaGu III].

We remark that the exceptions in Theorem A, listed in Table 1, can be divided
into types. In the left column are three “θ-group” representations, which arise
from embedding g in some larger Lie algebra with a finite grading, and the generic
stabilizer Gv is a non-étale, non-infinitesimal finite group scheme. (Premet’s ap-
pendix in [GaGu 17] gives a detailed study of the half-spin representation of D8 in
characteristic 2. For the other two representations in the left column, see Remark
7.3, [Auld, 4.8.2, 4.9.2], or [GuL, 3.1].) In the right column are two representations
where the generic stabilizer is a nonzero infinitesimal group scheme, see Examples
4.2 and 5.2, and two that decompose as tensor products from Example 10.4.

The proof of Theorem A relies heavily on the results of part I, [GaGu I], which
include the case of type A1 (ibid., Examples 1.8 and 3.3) and the case where dim V
is large (ibid., Th. A). We also use Magma [BoCP] to verify that certain specific
representations in specific characteristics are generically free, a process described in
Section 3; the key point is that it suffices to find any vector in the representations
whose stabilizer is zero. In Section 4, we prove a criterion by which Magma can
verify that a representation is not generically free for g. To handle representations
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where we do not specify the characteristic of the base field, we recall a means to
transfer results from characteristic zero (Section 5). Three sections treating specific
classes of representations (Sections 6–8) lead to the proof of Theorem A when char k
is not special. This proof occupies Sections 9–11. The first of these treats the case
where the highest weight is restricted. The second handles, roughly speaking, the
case of a tensor decomposable representation. The third and final section treats
the few remaining cases, which are tensor decomposable as representations of the
simply connected cover but not necessarily for G itself.

Notation. For convenience of exposition, we will assume in most of the rest of
the paper that k is algebraically closed of characteristic p 6= 0. This is only for
convenience, as our results for p prime immediately imply the corresponding results
for characteristic zero: simply lift the representation from characteristic 0 to Z and
reduce modulo a sufficiently large prime.

Let G be an affine group scheme of finite type over k. If G is additionally smooth,
then we say that G is an algebraic group. An algebraic group G is simple if its radical
is trivial (i.e., it is semisimple), it is 6= 1, and its root system is irreducible. For
example, SLn is simple for every n ≥ 2.

If G acts on a variety X, the stabilizer Gx of an element x ∈ X(k) is a sub-
group-scheme of G with R-points

Gx(R) = {g ∈ G(R) | gx = x}

for every k-algebra R. A statement “for generic x” means that there is a dense
open subset U of X such that the property holds for all x ∈ U .

If Lie(G) = 0 then G is finite and étale. If additionally G(k) = 1, then G is the
trivial group scheme Spec k.

We write g for Lie(G) and similarly spinn for Lie(Spinn), etc. We put z(g) for
the center of g; it is the Lie algebra of the (scheme-theoretic) center of G. As
char k = p, the Frobenius automorphism of k induces a “p-mapping” x 7→ x[p] on g.
When G is a sub-group-scheme of GLn and x ∈ g, the element x[p] is the p-th power
of x with respect to the typical, associative multiplication for n-by-n matrices, see
[DGa, §II.7, p. 274]. An element x ∈ g is nilpotent if x[p]

n

= 0 for some n > 0, toral
if x[p] = x, and semisimple if x is contained in the Lie p-subalgebra of g generated
by x[p], cf. [SF, §2.3].

Acknowledgements. We thank the referees for their detailed and helpful com-
ments. Guralnick was partially supported by NSF grants DMS-1600056 and DMS-
1901595.

1. Dominant weights and faithful representations

Let G be a reductive group over the (algebraically closed) field k, and fix a
pinning for G which includes a maximal torus T , a Borel subgroup containing T ,
and generators for the root subalgebras of g.

Irreducible representations of G, up to equivalence, are in one-to-one correspon-
dence with dominant weights (relative to the fixed pinning), where the correspon-
dence is given by sending a representation to its highest weight. We write L(λ) for
the irreducible representation with highest weight λ, imitating the notation in [J].

We number dominant weights as in Table 2, imitating [Lüb01] to make it conve-
nient to refer to that paper. We write c1c2c3 · · · c` as shorthand for the dominant



4 S. GARIBALDI AND R.M. GURALNICK

weight
∑
ciωi, where ωi is the fundamental dominant weight corresponding to the

vertex i in Table 2. The weight
∑
ciωi is restricted if char k = 0, or if char k 6= 0

and 0 ≤ ci < char k for all i.

(A`) r r r· · · r r r
1 2 3 `−2 `−1 `

(C`) r r r· · · r r> r
1 2 3 `−2 `−1 `

(B`) r r r· · · r r< r
1 2 3 `−2 `−1 `

(D`) rr r· · · r rZZ

��

r
r2

1

3 4 `−2 `−1 `

Table 2. Dynkin diagrams of simple root systems of classical
type, with simple roots numbered as in [Lüb01].

The paper [Lüb01] studies L(λ) when λ is restricted. When λ is not restricted,
we have the following statement: If λ = λ0 + pλ1 for λ0 ∈ T ∗ dominant and
restricted, λ1 ∈ T ∗ dominant, and p = char k, then L(λ) ∼= L(λ0)⊗L(λ1)[p], see [J,
II.3.16]. Here L(λ1)[p] denotes the Frobenius twist of the representation L(λ1) as
in [J, I.9.10]; g acts trivially on it.

Slightly more delicate analysis is required to handle the case where λ0, λ1 are
not assumed to belong to T ∗, see Example 10.4 for an illustration.

Lemma 1.1. Let G be a simple algebraic group over k of characteristic p 6= 0. Let
λ = λ0 + pλ1 for λ0, λ1 dominant weights and λ0 restricted.

(1) If g acts faithfully on L(λ), then λ0 6= 0.
(2) If λ0 and λ1 are both nonzero, then dimL(λ) > dimG.

Proof. We write G̃ for the simply connected cover of G.
For (1), suppose λ0 = 0. Then L(λ) is isomorphic to a Frobenius twist L(λ1)[p]

as a representation of G̃, and the composition g̃→ g→ gl(L(λ)) is zero. As g̃→ g
is not itself the zero map, g does not act faithfully on L(λ).

For (2), we may assume that G is simply connected, so that L(λ) ∼= L(λ0) ⊗
L(λ1)[p] and dimL(λ) = dimL(λ0) · dimL(λ1). This, in turn, is at least m(G)2 for
m(G) the dimension of the smallest nontrivial irreducible representation of G. We
list these values in Table 3, obtained from [Lüb01]. We note that in each case

(1.2) m(G)2 > dimG,

proving (2). �

type of G A` B` (` ≥ 3) C` (` ≥ 2) D` (` ≥ 4) E6 E7 E8 F4 G2

m(G) `+ 1 2`+ 1− ε 2` 2` 27 56 248 26− ε 7− ε
dimG `2 + 2` 2`2 + ` 2`2 + ` 2`2 − ` 78 133 248 56 14

Table 3. The dimension m(G) of the smallest nontrivial irre-
ducible representation of G, assuming char k is not special for G.
The symbol ε represents 0 or 1 depending on char k, and is 0 except
possibly when char k ∈ {2, 3}.
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2. Results from part I

For a representation V of simple G with V [g,g] = 0 (such as in Theorem A in
this paper), we showed in part I ([GaGu I, Th. A]): if dimV > b(G) for b(G) as in
Table 4 and char k is not special, then g acts virtually freely on V . Here, virtually
free means that the stabilizer gv for a generic v ∈ V equals ker[g→ gl(V )], i.e., gv
is as small as possible. It is the natural notion that generalizes “generically free”
to allow for the case where the kernel is not zero.

type of G char k b(G) type of G char k b(G)
A` 6= 2 2.25(`+ 1)2 G2 6= 3 48
A` = 2 2`2 + 4` F4 6= 2 240
B` 6= 2 8`2 E6 any 360
C` 6= 2 6`2 E7 any 630
D` 6= 2 2(2`− 1)2 E8 any 1200
D` = 2 4`2

Table 4. Bound b(G) from part I

Recall that g := Lie(G). For x ∈ g, put

V x := {v ∈ V | dρ(x)v = 0}
and xG for the G-conjugacy class Ad(G)x of x. We are going to verify the inequality

(2.1) dimxG + dimV x < dimV

for various x ∈ g. The following lemma is Lemma 1.6 in part I; it resembles [AnP,
Lemma 4], [Gue, §3.3], and [GaGu 17, Lemma 2.6].

Lemma 2.2. Suppose G is semisimple over an algebraically closed field k of char-
acteristic p > 0, and let h be a subspace of g.

(1) If inequality (2.1) holds for every toral or nilpotent x ∈ g \ h, then gv ⊆ h
for generic v ∈ V .

(2) If h consists of semisimple elements and (2.1) holds for every x ∈ g\h with
x[p] ∈ {0, x}, then gv ⊆ h for generic v in V . �

Taking h = z(g) in Lemma 2.2, we see that verifying (2.1) for nonzero nilpotent
and noncentral toral x ∈ g implies that gv ⊆ z(g) for generic v ∈ V . This in turn
implies that the action is virtually free since Z(G) is a diagonalizable group scheme
for the groups G we consider here (so gv ∩ z(g) = z(g)v = ker dρ).

Theorem 12.2 in part I proved a somewhat stronger result than the one stated
at the start of this section: If V is a representation of a simple group G such that
char k is not special for G, V [g,g] = 0, and dimV > b(G), then (2.1) holds for all
noncentral x ∈ g with x[p] ∈ {0, x}.

3. Constructing representations in Magma

In order to prove Theorem A, the results of part I reduce us to considering
a finite list of irreducible representations, each of which we will consider. Some
of these will be dealt with by invoking calculations done on a personal computer
using Magma [BoCP], which we now explain. (Code and output are available at
github.com/skipgaribaldi/genfree-code.)
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The Magma instructions

R := IrreducibleRootDatum(T, `);

g := LieAlgebra(R, GF(q));

create a Lie algebra g of the split reductive group over the finite field Fq with root
datum R of type T` (by default simply connected). For a given highest weight λ,

HighestWeightRepresentation(g, λ);

gives a homomorphism ρ from g to matrices, and one can identify the space of row
vectors v where the action by g is v 7→ vρ(x) for x ∈ g with the representation
H0(λ) of G in the notation of [J]; it is induced from the 1-dimensional represen-
tation λ of the Borel subgroup. The vector (1, 0, . . . , 0), the first basis vector in
the Magma ordering, is a highest weight vector and it generates a submodule V
that is irreducible with highest weight λ. (Untrusting readers can verify that the
submodule generated by this vector has the same dimension as the irreducible rep-
resentation with the same highest weight as recorded in the literature, and therefore
the submodule is the desired irreducible representation.)

For any row vector v, it is then a matter of linear algebra to compute the sta-
bilizer gv, i.e., the subspace of x ∈ g such that vρ(x) = 0. It is determined by
Kernel(VerticalJoin([vρ(y) : y in Basis(g)])).

To verify that a particular V is virtually free, we use Random(V) to generate
random vectors v ∈ V . For each, we compute dim gv. By upper semicontinuity of
dimension, dim gv is at least as big as dim gw for w generic in V . Therefore, if we
find any v ∈ V with dim gv = dim ker dρ, we have verified that the representation
is virtually free.

Remark. Suppose q : G̃→ G is a central isogeny; note that the differential dq : g̃→ g
need not be surjective, i.e., ker q need not be étale. Nonetheless, if g acts virtually
freely on V , then so does g̃. Therefore, in the computer calculations described
above we work with g, the Lie algebra of the group G that acts faithfully on
V . In Magma, this can be done by invoking the optional argument Isogeny for
IrreducibleRootDatum.

(If we instead assume that g̃ acts virtually freely on V , it may occur that g does

not. For example, that is the case when char k = 2 and (a) G̃ = SL4, G = PGL4,

and V has highest weight ω2 + 2ω3 as in Example 10.4 or (b) G̃ = Sp8, G = PSp8,
and V is the 16-dimensional irreducible “spin” representation as in [GaGu III, §8].)

4. Examples where g does not act virtually freely

Lemma 4.1. Let V be a representation of a reductive algebraic group G, and
suppose that Cartan subalgebras in g are maximal toral subalgebras1. If there is a
v ∈ V such that

(1) h := gv is a toral subalgebra;
(2) dim zg(h) = rankG; and
(3) dimG− rankG = dimV − dimV h,

then there is an open subset U of V containing v such that gu is a G-conjugate of
h for every u ∈ U and there is a maximal torus T such that Gu is G-conjugate to
a closed sub-group-scheme of NG(T ) for every u ∈ U .

1This condition is equivalent to condition (2) in Lemma 7.1 by [DGr, XIII.6.1d].
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Proof. Because G is reductive and h is toral, there exists a maximal torus T in G
whose Lie algebra t contains h, see [H, Th. 13.3, Rmk. 13.4]. Since zg(h) contains
t, the two are equal. In particular, T normalizes V h. Moreover, any element of G
that normalizes h also normalizes z(h) = t, so NG(h) ⊆ NG(t) = NG(T ) (where the
latter equality is by the hypothesis on g [DGr, XIII.6.1b]) and NG(h)◦ = T .

Put Û for the set of v′ ∈ V h such that dim gv′ is minimal; it is open in V h. On
the one hand, h ⊆ gv′ , and on the other hand, v ∈ V h, so dim gv′ ≤ dim h, whence
gv′ = h for all v′ ∈ Û and v is in Û . It follows that, if g ∈ G(k) satisfies gv′ = v,
then g normalizes h.

Define ψ : G × V h → V by ψ(g, w) = gw. By the preceding paragraph, for
generic w ∈ V h, ψ−1(w) = {(g, g−1w) | g ∈ NG(h)}. That is,

dim imψ = dimG+ dimV h − dimNG(h),

which is dimV by (3). Thus ψ is dominant and there is an open subset U of V
consisting of elements whose stabilizer in g is conjugate to h. �

In the language of [PoV, §2.8], the proof shows that V h is a “relative section”
for the action of G on V .

The hypotheses of Lemma 4.1 are easy to verify with a computer. For example,
to check that gv is toral, one checks that it is abelian (Magma’s IsAbelian) and
that a basis consists of semisimple elements (by checking, for each basis vector x,

that x belongs to the subspace spanned by x[p]
i

for i ≥ 1).

Example 4.2 (C4, 0100, p = 3). Consider now G = Sp8 over a field k of charac-
teristic 3. (See Prop. 8.3(3) for the case char k 6= 2, 3.) It has a unique irreducible
representation V with dimV = 40 [Lüb01], which occurs as a quotient of the Weyl
module of dimension 48 contained in ∧3(k8) (with k8 as the other composition fac-
tor), compare [PrS] or Proposition 8.3. Using Magma, one can construct V (say,
with k = F3) as in the preceding section and verify that for a random v ∈ V , in the
notation of Lemma 4.1, dim h = 2 and dimV h = 8. It follows that g does not act
virtually freely on V . On the other hand, Gv(k) = 1 for generic v ∈ V by [GuL], so
this is an example of a representation where the scheme-theoretic generic stabilizer
Gv is a nontrivial and infinitesimal group scheme.

Lemma 4.1 shows also that the second representation in the right column of
Table 1 is not virtually free, see Example 5.2.

5. Representations defined over a localization of the integers

Recall that G is defined over an algebraically closed field k of characteristic p,
and in particular is split. Let now R be a subring of Q with homomophisms to Fp
and to a field K containing a primitive p-th root of unity ζ (e.g., take R = Z and
K = C). There exists a smooth affine group scheme GR over R which is split and
such that GR × k is isomorphic to G.

Lemma 5.1. Let ρ : GR → GL(V ) be a homomorphism of group schemes over R
for some free R-module V . Then the following are equivalent:

(1) dimxG + dim(Vk)x < dimV for all noncentral x ∈ g such that x[p] = x.
(2) dim gGK + dim(VK)g < dimV for all noncentral g ∈ GR(K) such that

gp = 1.
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Here and below we use the shorthand XF for XR×F , where XR is an R-scheme
and there is an implicit homomorphism R→ F .

Proof. This is essentially §3.4 in [Auld], which we reproduce here for the convenience
of the reader. Pick a split maximal torus TR in GR and a basis τ1, . . . , τ` of the
lattice of cocharacters Gm → TR. Identifying the Lie algebra of Gm with k, the
elements hj := dτj(1) make up a basis of the Lie algebra t of TR × Fp such that

h
[p]
j = hj . This gives a bijection of toral elements in t with elements of order p in
TK via

ψ :
∑

cjhj 7→
∏

τj(ζ
cj ) for cj ∈ Fp.

There is a basis χ1, . . . , χ` of the lattice of characters TR → Gm such that
χi ◦ τj : Gm → Gm is the identity for i = j and trivial for i 6= j, hence dχi(hj) = δij
for all i, j. Writing a character χ as

∑
diχi for di ∈ Z, we find

χ(ψ(
∑
cihi)) =

∏
i ζ
cidi = ζ

∑
cidi = ζdχ(

∑
cihi)

for ci ∈ Fp. That is, for toral x ∈ t, dχ(x) = 0 in Fp if and only if χ(ψ(x)) = 1.
Decomposing V as a sum of weight spaces relative to TR (using that R is an integral
domain), we find that dim(Vk)x = dim(VK)ψ(x).

The centralizer in g of x and the centralizer in GK of ψ(x) contain Lie(Tk) and
TK , so their identity components are generated by that and the root subalgebras
or subgroups corresponding to roots vanishing on x or ψ(x) respectively. As in the
preceding paragraph, we find that the centralizers of x and ψ(x) have the same
dimension, hence (a) x is central in g if and only if ψ(x) is central in GK and (b)
dimxG = dimψ(x)GK . The equivalence of (1) and (2) follows. �

We now consider five examples and show, in most cases, that inequality (2.1)
holds. We use Lemma 5.1 to handle the elements with x[p] = x. In the cases
where the characteristic p module is the reduction of a characteristic 0 module, it
suffices to prove the inequality for elements of order p in the group over C. In all
the examples below, this has been confirmed in [GuL, 2.5.10, 2.5.17, 2.5.18, 2.5.24,
2.6.10]. It is also straightforward to use Magma to compute this in all the examples
below as the modules have small dimension. One can also use closure arguments
to reduce to the case of nilpotent elements. Thus, it suffices to consider elements x
with x[p] = 0.

Example 5.2 (B2, 11). Let G = Spin5
∼= Sp4 and take V to be the irreducible

representation of dimension 12 (if char k = 5) or 16 (if char k 6= 5). It occurs as
a composition factor of the tensor product X of the two fundamental irreducible
representations.

In case char k = 5, we apply Lemma 4.1. One finds dim h = 1 and dimV h = 4,
so V is not virtually free. We remark that in this case again Gv(k) = 1, so Gv is a
nonzero infinitesimal group scheme.

In case char k = 2, we verify that V is generically free for g using Magma as in
§3.

So assume char k 6= 2, 5. As X is self-dual, it is a direct sum of V and X/V ,
the natural representation of Sp4. In this case we argue that V is virtually free by
verifying (2.1).

A long root element x has a single Jordan block of size 2 on the natural module
and 2 Jordan blocks of size 2 on the 5-dimensional module. Since char k 6= 2, x
has partition (32, 25, 14) on X, so dimXx = 11. Since X/V is the 4-dimensional
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symplectic module, dim(X/V )x = 3, so dimV x = 8. As dimxG = 4, (2.1) is
verified.

For any other nilpotent class, the closure of xG in sp4 contains a nilpotent element
with partition (2, 2), so dimV x ≤ 6; as dimxG ≤ 8, the inequality is verified.

Example 5.3 (B3, 101). Let G = Spin7 and take V to be the irreducible rep-
resentation of dimension 40 (if char k = 7) or 48 (if char k 6= 7). It occurs as a
composition factor of the tensor product X of the natural and spin representations.
In case char k = 2 or 7, we construct the representation in Magma as in §3 and
observe that it is generically free.

So suppose char k 6= 2, 7. Then X is self-dual so it is a direct sum of V and X/V ,
the spin representation. As in the preceding example, we argue that V is virtually
free by verifying (2.1). Suppose that x is nilpotent. For x with partition (32, 1)
on the natural representation, dim V x ≤ 22 and dimxG = 14. If x has partition
(7) or (5, 12), then dim xG ≤ 18 and dimV x ≤ 22 (by specialization). A long root
element x (partition (22, 13)), has dim xG = 8 and dimV x = 34. The remaining
possibilities for x have partition (3, 22) or (3, 14), which have dim xG = 12 or 10
and by specialization dim V x ≤ 34.

Example 5.4 (D4, 1001). Consider the representation V of G = Spin8 /µ2 with
highest weight 1001. In case char k = 2, dimV = 48 and we verify with Magma
that V is generically free for g.

So suppose char k 6= 2, in which case dimV = 56. Writing Vi with i = 1, 2, 3
for the three inequivalent irreducible 8-dimensional representations, we find X :=
V1 ⊗ V2 ∼= V ⊕ V3.

Suppose that x is nonzero nilpotent with dim xG < 22. Certainly dimV x ≤
dimV y for a root element y. Such a y has two Jordan blocks of size 2 on the
Vi’s, and so y acts on X with partition (34, 216, 120). Thus dimXy = 40 and
dimV y = dimXy − dimV y3 = 34, and the inequality is verified for x.

We now divide into cases based on the partition of x on one of the Vi’s. If x
only has Jordan blocks of size at most 3, then dim xG < 21 and we are done by the
previous paragraph.

If x has two Jordan blocks of size 4, then dim V x < 16. If x has a Jordan block
of size ≥ 5, then dimV x < 20. In either case, as dim xG ≤ 24, the inequality is
verified. In summary, V is generically free for g.

Example 5.5 (D5, 20000, char k 6= 2). Consider the representation V of G = SO10

with highest weight 20000 of dimension 126 over a field k of characteristic different
from 2. For one of the half-spin representations X, the second symmetric power
S2X is a direct sum of V and the natural 10-dimensional module.

A root element x ∈ g has a 12-dimensional fixed space on X and so has 4
nontrivial Jordan blocks. On S2X, it has a fixed space of dimension 84 hence
dimV x = 76. Therefore, for every nonzero nilpotent x ∈ g, we have dimV x ≤ 76
and of course dim xG ≤ dimG − rankG = 40, verifying the inequality, so V is
generically free for g.

Example 5.6 (C5, 10000, char k 6= 2). Let now V be the irreducible representation
of G = Sp10 with highest weight 10000. In case char k = 3, dimV = 122 and
one checks using Magma that a generic vector has trivial stabilizer. So assume
char k > 3, in which case dimV = 132.
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As above it is enough to verify the inequality for nilpotent elements of sp10.
Restricting to the Levi subgroup Sp8, the representation decomposes as a direct
sum of irreducibles X⊕Y ⊕Y where dimX = 48 and dimY = 42. Since char k > 3,
X is a submodule of ∧3k8 with quotient k8. The restriction of Y to the Levi Sp6

in Sp8 is a direct sum of irreducibles Y ′ ⊕ Y ′ ⊕ Y ′′ where dimY ′ = dimY ′′ = 14,
Y ′ is a submodule of ∧3k6 with quotient k6 and Y ′′ is a submodule of ∧2k6 with
quotient k. Using these decompositions, we find that a long root x ∈ sp6 ⊂ sp10 has
dimV x = 90 and nilpotent y ∈ sp6 ⊂ sp10 with partition (4, 16) has dimV y = 19.
In view of the fomer, it suffices to consider nilpotent z ∈ g such that dimCSp10

(z) ≤
13. Such a z has a Jordan block of size at least 4 and so specializes to y. Then
dim zSp10 + dimV z ≤ 50 + 19, verifying the inequality.

6. Example: symmetric squares and wedge squares

Recall that k is assumed algebraically closed of characteristic p ≥ 0. Put gln
for the Lie algebra of n-by-n matrices with entries in k. We first note that, for
x ∈ gln, ZGLn

(x) is the group of units in the associative k-algebra with underlying
vector space zgln(x). Therefore, dim xGLn = dim [gln, x] and we have the following
well-known result.

Lemma 6.1. For x ∈ gln we have: dimxGLn + dim zgln(x) = n2. �

Suppose that x ∈ gln = gl(V ) is nilpotent. It is well known that dim xGLn , and
therefore also dim zgln(x), depends only on the Jordan form of x and not on k.

Lemma 6.2. Let x ∈ gln = gl(V ) be nilpotent and assume that p 6= 2. Then
dim(S2 V )x and dim(∧2V )x are independent of the characteristic. In particular, if
x ∈ son, then dimxSOn + dim(∧2V )x = dim son.

Proof. Since char k 6= 2, as x-modules we have gln
∼= V ⊗V ∗ ∼= V ⊗V ∼= S2 V ⊕∧2V .

Since the dimension of the fixed space of x can only increase when reducing modulo
a prime (x acting on V is defined over the integers), the first claim follows.

For the second, ∧2V is the adjoint module for SOn, so the equality holds in
characteristic 0. Since dim(∧2V )x depends only on the Jordan form of x and not
on k, and dimxSOn also does not (as p 6= 2), the equality also holds over k. �

Lemma 6.3. Let x ∈ gln = gl(V ) with x a regular nilpotent element.

(1) The number of Jordan blocks of x on gl(V ) and V ⊗ V is n.

If furthermore char k 6= 2, then

(2) the number of Jordan blocks of x on S2 V is n/2 if n is even and (n+ 1)/2
if n is odd; and

(3) the number of Jordan blocks of x on ∧2V is n/2 if n is even and (n− 1)/2
if n is odd.

Proof. As x is nilpotent, V and V ∗ are equivalent k[x]-modules, hence the number
of Jordan blocks on V ⊗ V and gl(V ) is the same and is also independent of the
characteristic. By Lemma 6.2, we may assume that k has characteristic 0.

In characteristic 0, we view V as a module under a principal SL2 and see that
V ⊗ V ∼= L(n − 1) ⊗ L(n − 1) ∼= L(2n − 2) ⊕ L(2n − 4) ⊕ · · · ⊕ L(0), proving (1).
Examining the weights shows that ∧2V ∼= L(2n− 4)⊕L(2n− 8)⊕· · · , proving (3),
from which (2) follows. �
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Lemma 6.4. Let x ∈ gln = gl(V ) with char k 6= 2. Assume that x has r Jordan
blocks of odd size. Let s be the number of Jordan blocks of x on S2 V and a the
number of Jordan blocks on ∧2V . Then s− a = r.

Proof. Write V = V1⊕· · ·⊕Vm where x on Vi is a single Jordan block. Then (as an x-
module), S2 V = (⊕i<jVi ⊗ Vj)⊕

(
⊕i S2 Vi

)
and ∧2V = (⊕i<jVi ⊗ Vj)⊕

(
⊕i ∧2 Vi

)
.

Thus, the difference in the number of Jordan blocks on S2 V and ∧2V is just the
sum of the differences on S2 Vi and ∧2Vi and the result follows by the previous
lemma. �

Put λ for the highest weight of the natural module of son, i.e., λ = ωbn/2c as
in Table 2. We can now show that son acts generically freely on W := L(2λ)
in characteristic not 2 by proving that our standard inequality (2.1) holds. (See
[GaGu 15, Example 10.7] or [GuL, §3.1] for another proof that the generic stabilizer
is an elementary abelian 2-group as a group scheme.) If char k does not divide n,
then W is a summand of the natural representation V with a trivial 1-dimensional
complement. If char k divides n, then S2 V is a uniserial module with trivial head
and socle and W the unique nontrivial composition factor.

Lemma 6.5. Let g = son = so(V ) with n ≥ 5 and char k 6= 2. Set W = L(2λ).
If x ∈ g is nonzero nilpotent or noncentral semisimple, then dimxG + dimW x <
dimW .

Proof. If x is semisimple, by considering weights on V , S2 V and ∧2V , we see
that dim(S2 V )x − dim(∧2V )x = dimV x, using that char k 6= 2. Since dim xG +
dim(∧2V )x = dimG, we see that

dimxG + dim(S2 V )x = dimG+ dimV x = dim S2 V − (dimV − dimV x),

which is at most dim S2 V − 2, because the fixed space of x has codimension at
least 2. Since L(2λ) is a summand of S2 V as an x-module and x is trivial on a
complement, the result follows. (Note that if char k divides n, then L(2λ) is not a
summand of S2 V for G.)

If x is nilpotent, we argue similarly using the previous lemma. Note that, by
Lemma 6.2, dimxG + dim(∧2V )x = dimG. Thus by Lemma 6.4,

dimxG + dim(S2 V )x = dimG+ r = dim S2 V − (n− r) ≤ dim S2 V − 2.

Assume char k divides n, for otherwise the result follows. Note that dimW x ≤
dim(S2 V )x and the result follows unless r = n−2 and dimW x = dim(S2 V )x. The
first condition implies that x has one nontrivial Jordan block which must be of size
3. In this case, a trivial calculation gives dimW x = dim(S2 V )x − 2 and the result
follows. �

7. Example: Vinberg representations

Let G be an algebraic group over a field k and suppose θ ∈ Aut(G)(k) has finite
order m not divisible by char k. Choosing a primitive m-th root of unity ζ ∈ k×
gives a Z/m-grading g = ⊕i∈Z/mgi where gi = {x ∈ g | θ(x) = ζix}. The sub-
scheme G0 of fixed points is smooth, see, for example, [Co, Exercise 2.4.10]. In this
section we will assume furthermore that G is semisimple simply connected, in which
case G0 is connected reductive [CoGP, A.8.12] and can be described explicitly using
the recipe in [S 68, §8]. Representations (G0, g1) arising in this way are sometimes
called Vinberg representations or θ-groups.
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Lemma 7.1. Let T be a maximal torus in a simple algebraic group G over a field k.
Then, (1) G = Sp2n for some n ≥ 1 and char k = 2 or (2) for a generic t ∈ Lie(T ),
the transporter {x ∈ Lie(G) | [x, t] ∈ Lie(T )} equals Lie(T ).

Proof. Write x as a sum of an element x0 ∈ Lie(T ) and a generator xα in the root
subalgebra for each root α. Choose t ∈ Lie(T ) generic and suppose [x, t] ∈ Lie(T ),
i.e., dα(t)xα = [xα, t] = 0 for all α. If (1) fails, then an exercise with roots as in
[ChR, Lemma 2.13] shows that dα(t) 6= 0 for every root α, whence the claim. �

Example 7.2 (m = 2). Suppose θ ∈ Aut(G)(k) has order 2 and acts on a maximal
torus T via θ(t) = t−1 for t ∈ T , so Lie(T ) is contained in g1. As char k 6= 2, the
centralizer in Lie(G) of a generic element in Lie(T ) is just Lie(T ) which misses
g0, whence g0 acts virtually freely on g1. More precisely, as a group scheme, the
stabilizer in G0 of a generic element of Lie(T ) is the 2-torsion subgroup of T . In
this way, if we pick a subgroup H of G0, we conclude that h acts generically freely
on g1. We now consider examples where this applies; in each case a generic element
of g1 is a regular semisimple element of g, see [RLYG, §7] or [GuL, §3.1].

(1): Take G to have type E6 and θ to be an outer automorphism so that G0

is the adjoint group PSp8 of type C4, compare, for example, [GaPT, §5]. In that
case, g0 = sp8 and g1 is the Weyl module with highest weight 1000 (the “spin”
representation). If char k 6= 3 (and 6= 2), then the representation g1 is irreducible
of dimension 42.

If char k = 3, g1 has head the irreducible representation of dimension 41 and
radical k = z(g). Let v be a regular semisimple element of Lie(T ) ⊂ g1. The
stabilizer in g0 = sp8 of the image of v in g1/k transports v into z(g), and therefore
belongs to Lie(T ) ∩ g0 = 0 by Lemma 7.1. In particular, sp8 acts generically freely
on the irreducible representation g1/k.

(2): Take G to be E8 and θ to be such that G0 has type D8. In this case, G0 is
a half-spin group Spin16 /µ2 and g1 is the 128-dimensional half-spin representation.
We conclude that g0 acts generically freely when char k 6= 2. (Regardless of char k,
the generic stabilizer in G0 is (Z/2)4 × (µ2)4 as a group scheme, see [GaGu 17,
Th. 1.2].)

(3): Take G to be E7 and θ to be such that G0 = SL8 /µ4. In this case, g1 is
the representation ∧4k8, which is generically free for char k 6= 2. (We provide a
stronger result in Prop. 8.1(1).)

(4): Take G to be SLn with θ(g) = g−>, so G0 = SOn and g1 is the Weyl module
with head L(2λ) as in Lemma 6.5.

The representation ∧3k9 of G0 = SL9 /µ3 arises also in this way when G = E8

and m = 3, see [VE] for a detailed analysis of the orbits in the case char k = 0. A
generic element of g1 is regular semisimple as an element of g as in the references
in Example 7.2 ([GuL] produces an explicit regular nilpotent element), and we find
that sl9 acts generically freely on ∧3k9. We will provide a stronger result below in
Prop. 8.1(1).

Remark 7.3. The setup above can be generalized to accommodate the case where
char k divides m. Instead of an element θ ∈ Aut(G)(k), one picks a homomorphism
of group schemes µm → Aut(G) defined over k. Again one obtains a Z/m-grading
on g and an action of µm on G such that G0 is smooth. Some statements about
the representation g1 of G0 from [V] or [L] do not hold in this generality. For
example, the representations from Example 7.2(2) and (3) with char k = 2 and the
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representation ∧3k9 of SL9 /µ3 with char k = 3, are not virtually free for g0. This
can be seen by computationally verifying that Lemma 4.1 applies; in each of these
three cases the stabilizer of a generic vector is a toral subalgebra whose dimension
we list in Table 1. Alternatively, for x ∈ g1, x[p] is in zg0

(x), so finding any x with

x[p] not in the kernel of the representation (as is done in [Auld, Prop. 4.8.2, 4.9.2])
suffices to show that the representation is not virtually free.

For the spin representation of Sp8, 2 is a special prime so is treated in [GaGu III].

8. Example: 3rd and 4th exterior powers

We now consider the representation ∧e(kn) of SLn and its analogues for SOn and
Spn. Whether or not such representations are virtually free has previously been
considered in [Auld] and elsewhere. We will check here the stronger condition of
whether or not inequality (2.1) holds for x ∈ sln.

Proposition 8.1. For the representation V := ∧e(kn) of SLn and noncentral x ∈
sln with x[p] ∈ {0, x}, we have:

(1) If (a) e = 3 and n ≥ 10; (b) e = 3, n = 9, and char k 6= 2, 3; (c) e = 4 and
n ≥ 9; or (d) e = 4, n = 8, and char k 6= 2, then dimxSLn+dimV x < dimV
and Lie(SLn /µgcd(e,n)) acts generically freely on V .

(2) If (a) e = 3, n = 9, and char k = 2, 3 or (b) e = 4, n = 8, and char k = 2,
then dimxSLn + dimV x ≤ dimV .

Proof. Suppose x[p] = 0. The case where x[p] = x follows from it by Lemma 4.2 in
part I.

Put n0 = 16 if e = 3 and n0 = 10 if e = 4. If n > n0, then dimV =
(
n
e

)
>

2.25n2 ≥ b(SLn), and (2.1) holds by the main result of part I.
So suppose n ≤ n0. We calculate dim xSLn , which does not depend on char k,

using the well-known formulas from, for example, [LiS, p. 39]. For the other term
in (2.1), dimV x, we view V as a representation of SL2 where a nilpotent element
acts as x on V . Arguing as in [McN, §3.4], we find that if char k > en, then the
Jordan form of x acting on V is the same as in characteristic zero. Therefore, it
suffices to check the inequality over Fp for 2 ≤ p < en and for some p larger than
en. This is quickly done via computer. For the convenience of the reader, Table 5
lists the partitions corresponding to nilpotent x for which we have equality in (2).
In case gcd(e, n) = 1, this shows that sln acts generically freely on ∧ekn. For each
n ≤ n0 with gcd(e, n) > 1, we verify that Lie(SLn /µgcd(e,n)) acts generically freely
using Magma. �

representation char k partition of x dimxG dimV x

∧3sl9 2 (24, 1) 40 44
∧3sl9 3 (9) 72 12

(33) 54 30
∧4sl8 2 (8) 56 14

(42) 48 22
(24) 32 38

Table 5. Complete list of nilpotent elements x from Proposition
8.1(2) where equality holds.
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Trivectors and SOn. Consider now SOn with n ≥ 9. The representation ∧3(kn)
is a fundamental Weyl module and is irreducible if char k 6= 2, see for example [J,
II.8.21] and [McN, Remark 3.4].

Proposition 8.2. For SOn with n ≥ 9 (over any field k) and V := ∧3(kn),
the inequality (2.1) holds for all nonzero x ∈ son with x[p] ∈ {0, x}, and g acts
generically freely on V .

Proof. Under the tautological inclusion SOn ↪→ SLn, suppose the inequality holds
for x viewed as an element of sln. Then as dim xSOn ≤ dimxSLn , the inequality
holds also for x as an element of son, completing the proof in case n ≥ 10, or n = 9
and char k 6= 2, 3 (Prop. 8.1).

So suppose n = 9 and char k = 2 or 3. Write y for the image of x in sln if x
is nilpotent, and for the image of the nilpotent specialization of x as in [GaGu I,
Lemma 4.2] if x is toral. As in the previous paragraph, we are done if the inequality
holds for y, and therefore we may assume that y has partition (24, 1) or (33) as in
Table 5. In either of these cases, we have dim xSO9 + dimV x ≤ 32 + dimV y ≤ 76 <
dimV , completing the proof. �

Trivectors and Sp2`. The natural representation of Sp2` has an invariant alternat-
ing bilinear form b. The subspace V (ω`−2) of ∧3k2` spanned by those v1∧v2∧v3 with

b(vi, vj) = 0 for all i, j is a submodule of dimension
(
2`
3

)
− 2`; it is the Weyl module

with highest weight ω`−2, see [GoK, §1]. It is irreducible, i.e., V (ω`−2) = L(ω`−2),
if and only if `− 1 is nonzero in k; otherwise V (ω`−2) has socle the natural module
k2` and head L(ω`−2) [PrS, Th. 2(i)].

Proposition 8.3. Continue the notation of the preceding paragraph and suppose
that p := char k > 2. If

(1) ` ≥ 7 or ` = 5; or
(2) ` = 6 and p 6= 5; or
(3) ` = 4 and p 6= 3,

then for V := V (ω`−2) or L(ω`−2), inequality (2.1) holds for all nonzero x ∈ sp2`
with x[p] ∈ {0, x}. In these cases, and also when (`, p) = (6, 5), sp2` acts generically
freely on V .

In the case ` = 4 and char k = 3, sp8 does not act generically freely on V , see
Example 4.2.

Proof. If ` > 6, then dimV (ω`−2) ≥ dimL(ω`−2) ≥
(
2`
3

)
− 4` > b(Sp2`), and the

conclusion holds by [GaGu I, Th. 12.2]. So suppose ` = 4, 5, or 6. In particular,
`− 1 is not zero in k and V = V (ω`−2) = L(ω`−2).

First suppose that x ∈ sp2` has x[p] = 0. If ` = 5 or 6, we have dimL(ω`−2)x ≤
dimV (ω`−2)x ≤ dim(∧3k2`)x and one checks that dim xSp2` + dim(∧3k2`)x <
dimL(ω`−2)x, which need only be done for small characteristics as in the proof
of Proposition 8.1 and therefore amounts to a computer calculation. If ` = 4 (and
char k > 3), then ∧3k8 is a direct sum of V and k8, so dimV x = dim(∧3k8)x −
dim(k8)x and the same computer calculations verify (2.1).

For x toral, we appeal to Lemma 5.1.
Lemma 2.1 gives that sp2` acts generically freely, except in the case ` = 6 and

char k = 5 which we verify using Magma. �
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9. Theorem A for restricted highest weights

In this section, we will prove the following by deducing it from what has come
before.

Proposition 9.1. Theorem A holds if char k is not special for G and the highest
weight of ρ is restricted.

In addition to the case of type A1, many other cases were handled in part I.
Corollary B in ibid. reduces us to considering the following:

(1) G has type A` for 2 ≤ ` ≤ 15;
(2) G has type B` or C` with 2 ≤ ` ≤ 11; or
(3) G has type D` for 4 ≤ ` ≤ 11.

Theorem A in ibid. allows us to further assume that dim V ≤ b(G) for b(G) as in
Table 4. Therefore, V appears in tables A.6–A.48 in [Lüb01]. (Note that the search
space remains infinite: while there are only finitely many possibilities for G and for
the highest weight of V , we have not exhibited any upper bound on char k.)

If dimV < dimG − dim z(g), then certainly g cannot act virtually freely on V .
If dimG ≥ dimV ≥ dimG − dim z(g), then examining the tables shows that V is
the irreducible representation with highest weight the highest root, which is not
virtually free as in [GaGu I, Example 3.4]. Therefore we assume for the rest of
this section that dimG < dimV ≤ b(G). We check, for each such V , that g acts
generically freely or that (G, char k, V ) appears in Table 1.

Type A. For A`, we consider 2 ≤ ` ≤ 15.
Proposition 8.1 treats the representations ∧3k`+1 and ∧4k`+1 of G of type A`

apart from a few cases. For ∧3k9 when char k = 2, sl9 acts generically freely on
V by [Auld, Prop. 4.8.3], by reasoning as in §7, or as can be checked in Magma,
despite the failure of inequality (2.1). The representations ∧3k9 of G = SL9 /µ3

when char k = 3 or ∧4k8 of G = SL8 /µ4 when char k = 2 are not virtually free, see
Remark 7.3.

We refer to [Gue, Th. 4.3.2] for the representation of A` (2 ≤ ` ≤ 9) with highest
weight 0 · · · 03 (and char k > 3 so it is restricted); of A3 with highest weight 004
and dimension 35; of A3 with highest weight 102 and char k 6= 5; of A2 with highest
weight 04 and dimension 15; and of A2 with highest weight 13 or 22 with char k = 5.

For the representation of A` (3 ≤ ` ≤ 9) with highest weight 0 · · · 011 with
char k = 3, we verify using Magma with G = SL`+1 /µgcd(`+1,3). (Guerreiro checked
that SL`+1 acts virtually freely, see Claim 12 on p. 97 of [Gue].)

We refer to [Auld] to see that the following are virtually free: the representation
of A` (` = 3, 4, 5) and char k 6= 3 with highest weight 0 · · · 011 (§4.5); the represen-
tation of A2 with highest weight 12 and dimension 15 when char k 6= 2 (§4.1); the
representation of A3 with highest weight 102 and dimension 32 when char k = 5
(§4.2); the representation of A4 with highest weight 0101 and dimension 40 or 45
(§4.6); the representation of A4 with highest weight 0200 and dimension 45 or 50
when char k 6= 2 (§4.7); the representation of A4 with highest weight 0110 and
dimension 51 when char k = 3 (§4.4); and the representation of A5 with highest
weight 01001 and dimension 78 when char k = 5 (§4.6).

The representation of A3 with highest weight 020 and char k 6= 2 is virtually free
by Lemma 6.5.
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Types B and D. For G of type D` with 4 ≤ ` ≤ 11 or B` with 2 ≤ ` ≤ 11 and
char k 6= 2, the representation with highest weight 0 · · · 02 is handled by Lemma
6.5.

The (half) spin representations of B` for 7 ≤ ` ≤ 11 and D` for ` = 9, 10, 11
(for G = Spinn for n = 15, 17, 18, 19, 21, 22, 23 and G = Spinn /µ2 when n = 20)
are generically free. For G = Spin16 /µ2, the half-spin representation has generic
stabilizer (Z/2)4 × µ4

2 as a group scheme, so it is a generically free representation
of g when char k 6= 2 and is not generically free when char k = 2. For these results,
see [GaGu 17].

The representation ∧3(kn) of SOn with n = 9, . . . , 13 (i.e., B4, B5, B6, D5, D6)
with char k 6= 2 is generically free for son by Proposition 8.2. When char k = 2
(and G has type D), ∧3(kn) is reducible with irreducible quotient L(ωn

2−2). For
SO10, we verify with Magma that L(ω3) is generically free. For n = 12, 14, . . .,
dimL(ωn

2−2) > b(SOn).
The representations of B2 with highest weight 11 and B3 with highest weight

101 are handled in Examples 5.2 and 5.3.
The representation of B3 (so7) with highest weight 200 and dimension 35 when

char k 6= 2 appears as a summand in S2X for X the (8-dimensional) spin represen-
tation; we have S2X ∼= V ⊕k. The action on V factors through the action of so8 as
in Lemma 6.5, whence we have the inequality for V . Similarly the representation
of so9 with highest weight 2000 and dimension 126 is generically free because it
factors through the generically free representation of D5 as in Example 5.5.

We refer to [Gue, Th. 4.3.3] for the representations of B4 (spin9) with highest
weight 1001 and dimension 112 or 128; of B3 with highest weight 011 and dimension
63 and char k = 3; of B3 with highest weight 110 and dimension 64 and char k = 5;
and of B2 with highest weights 30, 12, 03, or 21.

The representation of D4 with highest weight 1001 has dimension greater than
dimD4 and is generically free as in Example 5.4.

For the representation of D5 with highest weight 10001 of dimension 144 with
char k 6= 2, 5, [Gue, Th. 4.3.5] proves it is generically free. If char k = 2, that
representation has dimension 144 > b(G) and the inequality holds. If char k = 5,
one checks with Magma that a random vector has zero-dimensional stabilizer.

The representation of D5 with highest weight 20000 of dimension 126 is generi-
cally free by Example 5.5.

Type C. Type C is similar to types B and D. We consider 3 ≤ ` ≤ 11. Excluding
those V with dimV > b(G) reduces us further to 3 ≤ ` ≤ 6.

The only case for which we refer to [Gue] is type C3 with highest weight 011 of
dimension 50 with char k = 3 (Th. 4.3.4), which can also be checked using Magma.
The representation of C5 with highest weight 10000 is generically free by Example
5.6.

We use Magma to verify that a random vector has trivial stabilizer when char k =
3 for C5 with highest weight 01000 and dimension 121.

The representation V of C4 with highest weight 1000 was treated in Example
7.2(1). It has dimV > dimC4 and V is generically free.

The representation of Sp2` with highest weight 00 · · · 0100 with ` = 4, 5, 6 is
generically free by Proposition 8.3, except for C4 in characteristic 3, see Example
4.2.

This completes the proof of Proposition 9.1. �
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10. Theorem A for some tensor decomposable representations

Next we treat a family of irreducible but tensor decomposable representations.
Implicitly, we fix a pinning of G, which includes a choice of maximal torus T ; the
lattice T ∗ of characters T → Gm is contained in the weight lattice P (and T ∗ is
identified with P when G is simply connected). In this section we will prove:

Proposition 10.1. Theorem A holds if char k is not special and the highest weight
λ of ρ satisfies λ = λ0 + pλ1 where p = char k 6= 0, λ0 and λ1 belong to T ∗, and λ0
is restricted.

Lemma 10.2. Let G be a semisimple algebraic group. For every representation W

of G, g acts virtually freely on W ⊗W [p]i and W ⊗ (W ∗)[p]
i

for all i > 0.

Proof. Put V := W ⊗W [p]i or W ⊗ (W ∗)[p]
i

.
Suppose first that G = SLn and W is the natural module. The representation

of sln on V is equivalent to a direct sum of dimW copies of the natural module,
i.e., is equivalent to sln acting on n-by-n matrices by left multiplication. A generic
matrix v is invertible, so the generic stabilizer (sln)v is zero. (We remark that the
group SLn has finitely many orbits on P(V ) [GuLMS, Lemma 2.6].)

Otherwise, the representation G → GL(V ) factors through SL(W ) → GL(V ),
because G is semisimple, and the previous paragraph shows that sl(W ) acts virtu-
ally freely. �

Note that, in the lemma, the inequality (2.1) need not hold. Specifically, a root
element x ∈ sln has dimxSLn = 2(n − 1) and kernel of dimension n − 1 on the
natural module, so we find dim xSLn + dimV x = dimV + n − 2 for V a sum of n
copies of the natural module.

Example 10.3. Consider now SOn for n ≥ 3 and suppose that char k 6= 2 or n
is even. Take Vc to be a direct sum of c copies of the natural module V1 for some
1 ≤ c ≤ n. Let v ∈ Vc be generic. In particular, the SOn-invariant quadratic
form q is nonzero on each component of v, and the c components of v generate a
c-dimensional subspace U of V1 on which the bilinearization of q is nondegenerate
if char k 6= 2 or c is even, or has a 1-dimensional radical on which q does not vanish
if char k = 2 and c is odd.

Therefore, if c = n−1, an element of son that annihilates U is zero on V1, i.e., son
acts generically freely on Vn−1. If c = n−2, then an element of son that annihilates
U belongs to so(U⊥) for U⊥ the 2-dimensional subspace of V1 orthogonal to U with
respect to the bilinear form, i.e., the stabilizer of a generic v ∈ Vn−2 is a rank 1

toral subalgebra of son. (In case char k = 0, Table 2 of [È] summarizes this and
many similar examples. See also [BuGuS] for more general arguments in a similar
vein.)

Finer results can be proved. For example, suppose char k = 2 and n ≥ 8 is
even. We have already observed that son acts generically freely on Vn−1, but more
is true: the inequality (2.1) holds for noncentral x ∈ gon such that x[2] ∈ {0, x}.
If x[2] = 0, then, as a linear transformation on V1, x has even rank r ≤ n and
dimxSOn ≤ r(n− r) as noted in Example 10.5 in part I, so

dimV xn−1 + dimxSOn ≤ (n− r)(n− 1 + r).

This is less than dimVn−1 since r ≥ 2. In case x[2] = x, the inequality is verified
by arguing as in the proof of [GaGu I, Cor. 10.6].
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Example 10.4 (A3). Suppose G has type A3, p := char k 6= 0, and consider
the irreducible representation V with highest weight λ = ω2 + peω1 for e ≥ 1;
we take G to be the member of the isogeny class that acts faithfully on V . The
composition SL4 → G→ GL(V ) is, as a representation of SL4, L(ω1)[p]

e ⊗L(ω2) =
(k4)[p]

e ⊗∧2(k4). As a representation of the Lie algebra sl4, V is a sum of 4 copies
of ∧2(k4).

If p is odd, then G is SL4. The differential of the isogeny SL4 → SL4 /µ2 = SO6

identifies sl4 with so6, and the action of so6 on a sum of 4 copies of its natural
represention is not generically free by Example 10.3, so V is not generically free for
sl4.

If p = 2 and e ≥ 2, then G is SO6, and the same argument shows that V is
not generically free for so6. Nonetheless, sl4 does act virtually freely. This can be
seen by noting that semisimple elements of so6 have eigenvalues that come in pairs
(say, λ1, λ2, λ3 each occurring twice), the image of sl4 in so6 only contains those
with λ1 + λ2 + λ3 = 0 (because the sum on the left side is SL4-invariant [GaGu 15,
Example 8.5] and the image of sl4 is the unique codimension-1 SL4-submodule of
so6), and the elements of the generic stabilizer so2 in so6 have two of λ1, λ2, λ3
equal to zero. Alternatively, Magma verifies that sl4 acts virtually freely.

Finally, if p = 2 and e = 1, then G = PGL4 and we claim that pgl4 acts
generically freely on V . Write down the map pgl4 → gl(V ) explicitly as follows.
Fixing a pinning for SL4 and bases for k4 and ∧2k4 consisting of weight vectors, we
can write down the image in gl(V ) of the generator of each of the root subalgebras
of sl4. Now, the image of sl4 in pgl4 has codimension 1, corresponding to the
statement that the weight lattice for A3 is generated by the root lattice and the
fundamental weight ω1, so pgl4 is generated by the image of sl4 and a semisimple
element h corresponding to ω1 in the sense that hvδ = 〈δ, ω1〉vδ for every weight
vector vδ of weight δ in every representation of PGL4; this describes the image of
h in gl(V ). From this, Magma verifies that pgl4 acts generically freely on V .

Proof of Proposition 10.1. By hypothesis, V ∼= L(λ0)⊗L(λ1)[p] [J, I.3.16] and λ0 6=
0 (Lemma 1.1(1)). If λ1 = 0 then λ is restricted and we are done by Proposition
9.1, so assume that λ1 6= 0. By Lemma 1.1(2), dimV > dimG; our task is to show
that V is generically free if and only if (G, char k, V ) does not appear in Table 1.

As g acts trivially on L(λ1)[p], the representation V of g is the same as a sum
of dimL(λ1) copies of L(λ0). Let m(G) be the dimension of the smallest nonzero
irreducible representation of G with restricted highest weight as in Table 3. If
dimL(λ0) > b(G)/m(G) for b(G) as in Table 4, then dimV > b(G) and g acts
virtually freely on V by part I. In particular, if m(G)2 > b(G) — as is true for G
exceptional — we are done.

If dimL(λ0) = m(G), then V (considered as a g-module) contains L(λ0) ⊗
L(λ0)[p] as a summand, and we are done by Lemma 10.2. Therefore, it remains to
inspect ⊕m(G)L(λ0) for those nonzero restricted dominant weights λ0 with

(10.5) m(G) < dimL(λ0) ≤ b(G)/m(G).

We proceed case by case, where the possibilities for λ0 are enumerated in [Lüb01].
We find very few possibilities, reflecting the fact that the bounds in (10.5) both
grow linearly in the rank of G.

Type B. For G of type B` with ` ≥ 3, the constraint (10.5) reduces us to consider
the case where G has type B3 and L(λ0) is the 8-dimensional spin representation.
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Then L(λ0) factors through Spin8 as a vector representation, and we apply Example
10.3 to see that the generic stabilizer in so8 is trivial and therefore the same is true
for spin7.

Type C. For G of type C` with ` ≥ 2, the dimension bounds reduce us to considering
C2 where L(λ0) is the 5-dimensional fundamental irreducible representation, i.e.,
g = sp4 = so5 acting on a sum of four copies of the 5-dimensional module. This
action is generically free by Example 10.3.

Type D. For G of type D` with ` ≥ 4, the unique dominant weight λ0 that must be
considered is for type D5 with char k 6= 2 and L(λ0) a half-spin representation, so
G = Spin10 and we may take V = ⊕10L(λ0). We verify inequality (2.1) for nonzero
x ∈ g with x[p] ∈ {0, x}.

Consider first a a nilpotent element y in the Levi of type gl5 with two Jordan
blocks of size 5 in the natural representation of so10. On the half-spin module, sl5
has three composition factors: one trivial submodule, the natural representation k5

(or its dual), and ∧2(k5)∗ (or its dual). As y has 1, 1, and 2 Jordan blocks on these
representations (see Lemma 6.3(3)), we find that dimL(λ0)y ≤ 4.

Now dimL(λ0)x ≤ 12 by [GaGu 17, Prop. 2.1(i)] and (2.1) holds unless dim xG =
40 and x is regular. Thus, it suffices to show that dimL(λ0)x < 12 for x regular.
By passing to closures it suffices to take x regular nilpotent. Since the element y
in the preceding paragraph is in the closure of xG, we have dimL(λ0)x ≤ 4, hence
V is generically free for g.

Type A. For type A` with ` ≥ 2, the dimension bounds (10.5) reduce us to the
following cases:

(i) A2, where char k 6= 2 and L(λ0) = S2(k3);
(ii) A3, where L(λ0) = ∧2(k4); and

(iii) A4, where char k 6= 2 and L(λ0) = ∧2(k5).

Case (ii) can be viewed as so6 acting on four copies of its natural representation,
which is handled in Example 10.3.

For cases (i) and (iii), G = SL`+1. We verify inequality (2.1) for nonzero x ∈ g
with x[p] = 0. This will verify it also for noncentral toral x ∈ g [GaGu I, Lemma
4.2], whence g acts generically freely on V .

Consider case (iii). For x ∈ sl5 a root element, i.e., nilpotent with partition
(2, 13), we have dim xG = 8 and dimL(λ0)x = 7, and 8 + 5 · 7 = 43 < 50. For
x nilpotent with partition (22, 1), we have dim xG = 12 and dimL(λ0)x = 6, and
12 + 5 · 6 = 42 < 50.

For x nilpotent with partition (3, 12), we have dimL(λ0)x = 4 and dimxG ≤
dimG − rankG = 20. Consequently, for every nilpotent y ∈ sl5 such that x ∈ yG,
we have:

dim yG + dimV y ≤ (dimG− rankG) +m(G) · dimL(λ0)x < dimV.

Thus we have verified the inequality (2.1) for every nonzero nilpotent in sl5.
Finally consider case (i). There are two classes of nilpotent elements. If x is a root

element, then dimL(λ0)x = 3 and dimxG = 4. If x is regular, then dimL(λ0)x = 2
and dimxG = 6. In both cases, the inequality (2.1) holds. �
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11. Conclusion of proof of Theorem A

We now complete the proof of Theorem A, assuming char k is not special. Write
the highest weight λ of V as λ = λ0 + pλ1 for λ0, λ1 dominant weights (not neces-
sarily in T ∗) and λ0 restricted.

Put π : G̃ → G for the simply connected cover. If G is itself simply connected,
then we are done by Proposition 10.1. Thus we are also done if dπ is surjective (i.e.,
if ker dπ = 0), and we may assume that the finite group scheme ker π is not smooth
and has exponent divisible by p, reducing us to the following cases: G = SLn /µm
where p | m (and n ≥ 3), G has type D` and p = 2, G is adjoint of type E6 and
p = 3, or G is adjoint of type E7 and p = 2.

Suppose that λ0 = 0. The composition dρ dπ is the representation L(λ1)[p] of

G̃, whence g̃ acts trivially on V , so V is not faithful.
On the other hand, the case where λ1 = 0 is done by Prop. 9.1, so we may

assume that λ0 and λ1 are both nonzero.
Now λ vanishes on ker π (because λ ∈ T ∗) and pλ1 vanishes on the p-torsion

in kerπ, so it follows that λ0 vanishes on the p-torsion in ker π. Put mp(G) for
the minimum of dimL(µ) as µ ranges over nonzero restricted dominant weights
such that kerµ has exponent divisible by p; the value of mp(G) is listed in Table

6. The pullback ρ π of ρ is the representation L(λ0) ⊗ L(λ1)[p] of G̃, so dimV ≥
mp(G)m(G).

type G p mp(G) m(G)

A` (odd ` ≥ 3) 2
(
`+1
2

)
`+ 1

A` (` ≥ 2) odd p | `+ 1 (`+ 1)2 − 2 `+ 1
D` (` ≥ 4) 2 2` 2`

E6 3 77 27
E7 2 132 56

Table 6. Value of mp(G) for various p and G.

In particular, if mp(G)m(G) is greater than b(G), we are done by the main result
of part I. This handles the cases where G has type E6 or E7, or type A` when p is
odd.

Lemma 11.1. Consider representations V and W of a Lie algebra L. For nilpotent
x ∈ L, dim(V ⊗W )x ≤ (dimV x)(dimW ).

Proof. Put ψ : L → gl(V ) and ζ : L → gl(W ) for the two actions. For each t ∈ k,
tζ is a representation of the Lie algebra kx; since x is nilpotent the ones with
t 6= 0 are all equivalent. Therefore, writing Ut for the representation ψ⊗ (tζ) — so
U1 = V ⊗W — the dimension of (Ut)

x is constant for t 6= 0. Now U0 is a direct sum
of dimW copies of (V, ψ), so dim(U0)x = (dimV x)(dimW ). On the other hand,
by upper semicontinuity of dimension, dim(U0)x ≥ dim(Ut)

x for t 6= 0. �

Type D`. Suppose now thatG has typeD` and char k = 2, in which casemp(G)m(G) =
4`2 = b(G) and we are done unless dimL(λ0) = dimL(λ1) = 2` as representations

of G̃.
If ` > 4, the only restricted irreducible representation of G̃ with restricted highest

weight and of dimension 2` is the vector representation Spin2` → SO2` with highest
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weight ω` or a Frobenius twist of it, hence λ is an odd multiple of ω`. In particular,
ω` ∈ T ∗, so λ0, λ1 ∈ T ∗ and we are done by Proposition 10.1.

For ` = 4, the representations L(ωi) with i = 1, 3, 4 of Spin8 all have dimension 8,
and up to graph automorphism we are left with considering the case λ = 2eω1 +ω4

for some e ≥ 1. Thus we may view G as SO8, and the pullback to Spin8 of V
is the natural representation k8 of SO8 (with highest weight ω4) tensored with a
Frobenius twist of a half-spin representation; as a representation of SO8 we find
k8 ⊗ L(2eω1).

Arguing as in Example 10.3, a square-zero x ∈ so8 has even rank r ≤ 4,
dimxSOn ≤ r(8 − r) and dim(k8)x = 8 − r, so dim(k8 ⊗ L(2eω1))x ≤ 8(8 − r)
(Lemma 11.1) and dimxSOn + dimV x ≤ 64 − r2 < dimV , verifying (2.1). From
this, we deduce (2.1) also for noncentral toral x ∈ so8 as in Example 10.3 and it
follows that so8 acts generically freely on V .

Type A`. Suppose now that G = SLn /µm with char k = 2, so m is even and n ≥ 4.
As mp(G) = dimL(ω2) =

(
n
2

)
, we have

mp(G)m(G)− b(G) =
1

2

(
n3 − 5n2 + 4

)
.

which is positive for n ≥ 5. So suppose further that n = 4, in which case b(G) = 30
and Table A.7 in [Lüb01] says that the smallest nontrivial restricted irreducible
representations of SL4 have dimension 4 (the natural representation k4 or its dual)
or 6 (∧2k6 with highest weight ω2), so λ0 = ω2. As SL4 does not act faithfully, up
to graph automorphism λ = 2eω1 + ω2 for some e ≥ 1. These representations were
handled in Example 10.4. This completes the proof of Theorem A when char k is
not special. �

The proof of Theorem A in the remaining cases, when char k is special, will
appear in part III, [GaGu III].
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vol. 152, Springer, 1970.
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