GENERICALLY FREE REPRESENTATIONS II:
IRREDUCIBLE REPRESENTATIONS

SKIP GARIBALDI AND ROBERT M. GURALNICK

ABSTRACT. We determine which faithful irreducible representations V' of a
simple linear algebraic group G are generically free for Lie(G), i.e., which V
have an open subset consisting of vectors whose stabilizer in Lie(G) is zero.
This relies on bounds on dim V' obtained in prior work (part I), which reduce
the problem to a finite number of possibilities for G and highest weights for
V', but still infinitely many characteristics. The remaining cases are handled
individually, some by computer calculation. These results were previously
known for fields of characteristic zero, although new phenomena appear in
prime characteristic; we provide a shorter proof that gives the result with very
mild hypotheses on the characteristic. (The few characteristics not treated here
are settled in part III.) These results are related to questions about invariants
and the existence of a stabilizer in general position.

Let G be a simple linear algebraic group over a field k acting faithfully on a
vector space V. In the special case k = C, there is a striking dichotomy between the
properties of irreducible representations V' whose dimension is small (say, < dim G)
versus those whose dimension is large, see | 1, [, [Po], ete., for original results
and | , §8.7] for a survey and bibliography. For example, if dim V' < dim G, then
(trivially) the stabilizer G, of a vector v € V is nontrivial. On the other hand (and
nontrivially), for dim V' hardly bigger than dim G, the stabilizer G, for generic
v € V is trivial, i.e., 1; in this case one says that V is generically free or G acts
generically freely on V. This property has taken on increased importance recently
due to applications in Galois cohomology and essential dimension, see [Re] and
[Mer] for the theory and | I, [ 1, [X], [ ], [L.0], ete. for specific
applications.

With applications in mind, it is desirable to extend the results on generically
free representations to all fields. In that setting, | | has shown that, if V' is
irreducible and dim V' is large enough, then G(k), the group of k-points of G, acts
generically freely. Equivalently (when k is algebraically closed), the stabilizer G, of
a generic v € V is an infinitesimal group scheme. For applications, one would like
to say that G, is not just infinitesimal but is the trivial group scheme, for which
one needs to know that the Lie algebra g of G acts generically freely on V, i.e.,
g, = 0. The two conditions are related in that dim G, < dim g,, so in particular
if g, = 0, then G, is finite. On the other hand, if G,(k) = 1, g, can be nontrivial
(i.e., G, may be a nontrivial infinitesimal group scheme), see Example 4.2.

In a previous paper, | ], we proved that, roughly speaking, if dim V' is large
enough (where the bound grows like (rank G)?) and char k is not special, then V'
is a generically free g-module. In this paper, we restrict our focus to irreducible
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modules and settle the question of whether or not g acts generically freely when
char k is not special.

Theorem A. Let G be a simple linear algebraic group over a field k and let p:
G — GL(V) be a faithful and irreducible representation of G. Then V is generically
free for g if and only if imV > dim G and (G, char k, V) is not in Table 1.

G chark  repn dimV dimg, H G chark high weight dimV dimg,
SLg /144 2 A% 70 3 Spg 3 0100 40 2
SLg /13 3 A3 84 2 Spy 5 11 12 1
Spingg /2 2 half-spin 128 4 SLy podd O01p%, e>1 24 1
SLy /2 2 012¢, e > 2 24 1

TABLE 1. Irreducible and faithful representations V of simple G
with dim V' > dim G that are not generically free for g, up to graph
automorphism. For each, the stabilizer g, of a generic v € V is a

toral subalgebra. The weights on the right side are numbered as
in Table 2.

We say that G acts faithfully on V or p is faithful if ker p is the trivial group
scheme. Regardless, there is an induced map G/ ker p — GL(V) that is a faithful
representation of G/ ker p.

We say that char k is special for G if char k = p # 0 and the Dynkin diagram of
G has a p-valent bond, i.e., if char k = 2 and G has type B,, or C), for n > 2 or type
Fy, or if chark = 3 and G has type G3. Equivalently, these are the cases where
G has a very special isogeny. This definition of special is as in [S 63, §10]; in an
alternative history, these primes might have been called “extremely bad” because
they are a subset of the very bad primes — the lone difference is that for G of type
G, the prime 2 is very bad but not special. In this paper, we prove Theorem A
when char k is not special, and we typically assume that char k is not special in the
rest of this paper. (We do consider some examples where char k is special, such as
for type B in characteristic 2 in §5.) The case where char k is special has a different
flavor and will be handled in a separate paper, part III | ].

We remark that the exceptions in Theorem A, listed in Table 1, can be divided
into types. In the left column are three “f-group” representations, which arise
from embedding g in some larger Lie algebra with a finite grading, and the generic
stabilizer G,, is a non-étale, non-infinitesimal finite group scheme. (Premet’s ap-
pendix in [ ] gives a detailed study of the half-spin representation of Dg in
characteristic 2. For the other two representations in the left column, see Remark
7.3, | ,4.8.2,4.9.2], or | , 3.1].) In the right column are two representations
where the generic stabilizer is a nonzero infinitesimal group scheme, see Examples
4.2 and 5.2, and two that decompose as tensor products from Example 10.4.

The proof of Theorem A relies heavily on the results of part I, | ], which
include the case of type Ay (ibid., Examples 1.8 and 3.3) and the case where dim V'
is large (ibid., Th. A). We also use Magma [ ] to verify that certain specific

representations in specific characteristics are generically free, a process described in
Section 3; the key point is that it suffices to find any vector in the representations
whose stabilizer is zero. In Section 4, we prove a criterion by which Magma can
verify that a representation is not generically free for g. To handle representations
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where we do not specify the characteristic of the base field, we recall a means to
transfer results from characteristic zero (Section 5). Three sections treating specific
classes of representations (Sections 6-8) lead to the proof of Theorem A when char k&
is not special. This proof occupies Sections 9—11. The first of these treats the case
where the highest weight is restricted. The second handles, roughly speaking, the
case of a tensor decomposable representation. The third and final section treats
the few remaining cases, which are tensor decomposable as representations of the
simply connected cover but not necessarily for G itself.

Notation. For convenience of exposition, we will assume in most of the rest of
the paper that k is algebraically closed of characteristic p # 0. This is only for
convenience, as our results for p prime immediately imply the corresponding results
for characteristic zero: simply lift the representation from characteristic 0 to Z and
reduce modulo a sufficiently large prime.

Let G be an affine group scheme of finite type over k. If G is additionally smooth,
then we say that G is an algebraic group. An algebraic group G is simple if its radical
is trivial (i.e., it is semisimple), it is # 1, and its root system is irreducible. For
example, SL,, is simple for every n > 2.

If G acts on a variety X, the stabilizer G5 of an element x € X (k) is a sub-
group-scheme of G with R-points

G:(R) ={g9 € G(R) | gr = v}

for every k-algebra R. A statement “for generic x” means that there is a dense
open subset U of X such that the property holds for all z € U.

If Lie(G) = 0 then G is finite and étale. If additionally G(k) = 1, then G is the
trivial group scheme Spec k.

We write g for Lie(G) and similarly spin,, for Lie(Spin,,), etc. We put 3(g) for
the center of g; it is the Lie algebra of the (scheme-theoretic) center of G. As
char k = p, the Frobenius automorphism of k induces a “p-mapping” z — z["! on g.
When G is a sub-group-scheme of GL,, and € g, the element z[! is the p-th power
of = with respect to the typical, associative multiplication for n-by-n matrices, see
[ , §IL.7, p. 274]. An element = € g is nilpotent if 1" = 0 for some n > 0, toral
if P! = 2, and semisimple if x is contained in the Lie p-subalgebra of g generated
by zP!, cf. [SF, §2.3].

Acknowledgements. We thank the referees for their detailed and helpful com-
ments. Guralnick was partially supported by NSF grants DMS-1600056 and DMS-
1901595.

1. DOMINANT WEIGHTS AND FAITHFUL REPRESENTATIONS

Let G be a reductive group over the (algebraically closed) field k, and fix a
pinning for G which includes a maximal torus 7', a Borel subgroup containing T,
and generators for the root subalgebras of g.

Irreducible representations of G, up to equivalence, are in one-to-one correspon-
dence with dominant weights (relative to the fixed pinning), where the correspon-
dence is given by sending a representation to its highest weight. We write L(\) for
the irreducible representation with highest weight A, imitating the notation in [J].

We number dominant weights as in Table 2, imitating | ] to make it conve-
nient to refer to that paper. We write cicacs - - - ¢¢ as shorthand for the dominant
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weight > ¢;w;, where w; is the fundamental dominant weight corresponding to the
vertex ¢ in Table 2. The weight > c;w; is restricted if chark = 0, or if chark # 0
and 0 < ¢; < char k for all 4.

(Ar)

1 2 3 -2 £—-1 4 1 2 3 -2 £—-1 4

1
1 2 3 -2 (-1 4 5 3 4 -2 1—-1 £

TABLE 2. Dynkin diagrams of simple root systems of classical
type, with simple roots numbered as in [ ].

The paper | ] studies L(\) when A is restricted. When A is not restricted,
we have the following statement: If A = Ao + pA1 for Ao € T* dominant and
restricted, \; € T* dominant, and p = char k, then L(\) = L(\g) ® L(\)P!, see [J,
11.3.16]. Here L(A;)! denotes the Frobenius twist of the representation L()\;) as
in [J, 1.9.10]; g acts trivially on it.

Slightly more delicate analysis is required to handle the case where \g, A\; are
not assumed to belong to 7%, see Example 10.4 for an illustration.

Lemma 1.1. Let G be a simple algebraic group over k of characteristic p # 0. Let
A= Ao + pA1 for Ao, A1 dominant weights and Ao restricted.

(1) If g acts faithfully on L(\), then Ao # 0.

(2) If Ao and A1 are both nonzero, then dim L(A) > dim G.

Proof. We write G for the simply connected cover of G.

For (1), suppose A9 = 0. Then L()\) is isomorphic to a Frobenius twist L(\;)P!
as a representation of G, and the composition § — g — gl(L()\)) is zero. As § — g
is not itself the zero map, g does not act faithfully on L(X).

For (2), we may assume that G is simply connected, so that L(A) = L(Ag) ®
L(M\)P! and dim L()\) = dim L()\g) - dim L(\;). This, in turn, is at least m(G)? for
m(G) the dimension of the smallest nontrivial irreducible representation of G. We

list these values in Table 3, obtained from | ]. We note that in each case
(1.2) m(G)? > dim G,
proving (2). O

type of G ‘ Ay B (¢ > 3) Ci(0>2) Dy (f > 4) Es FE; Eg Fy Go

m(G) /+1 20+1-—¢ 20 20 27 56 248 26—¢ T—¢
dimG |2 +20 20247 202 4+ ¢ 202 —¢ 78 133 248 56 14

TABLE 3. The dimension m(G) of the smallest nontrivial irre-
ducible representation of GG, assuming char k is not special for G.
The symbol € represents 0 or 1 depending on char k, and is 0 except
possibly when char k € {2, 3}.
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2. RESULTS FROM PART I

For a representation V of simple G with V88 = 0 (such as in Theorem A in
this paper), we showed in part I (] , Th. A]): if dim V > b(G) for b(G) as in
Table 4 and char k is not special, then g acts virtually freely on V. Here, virtually
free means that the stabilizer g, for a generic v € V' equals ker[g — gl(V)], i.e., g,
is as small as possible. It is the natural notion that generalizes “generically free”
to allow for the case where the kernel is not zero.

type of G chark b(G) type of G chark | b(G)
Ay #2 [2.25(0+1)2 Gs £3 48
A, —2 | 2244 F, £92 | 240
By #2 802 Es any 360
Cg 75 2 652 E; any 630
Dy £2 | 2(20-1)? Es any | 1200
D, =2 402

TABLE 4. Bound b(G) from part I

Recall that g := Lie(G). For z € g, put
Ve i={v eV |dp(x)v =0}
and x¢ for the G-conjugacy class Ad(G)x of z. We are going to verify the inequality

(2.1) dim 2% 4 dim V* < dim V/
for various = € g. The following lemma is Lemma 1.6 in part I; it resembles | ,
Lemma 4], [Gue, §3.3], and | , Lemma 2.6].

Lemma 2.2. Suppose G is semisimple over an algebraically closed field k of char-
acteristic p > 0, and let h be a subspace of g.

(1) If inequality (2.1) holds for every toral or nilpotent x € g\ b, then g, C b
for genericv e V.

(2) If b consists of semisimple elements and (2.1) holds for every x € g\ b with
zlPl € {0, 2}, then g, C b for generic v in V. O

Taking b = 3(g) in Lemma 2.2, we see that verifying (2.1) for nonzero nilpotent
and noncentral toral z € g implies that g, C 3(g) for generic v € V. This in turn
implies that the action is virtually free since Z(G) is a diagonalizable group scheme
for the groups G we consider here (so g, N 3(g) = 3(g9)» = kerdp).

Theorem 12.2 in part I proved a somewhat stronger result than the one stated
at the start of this section: If V is a representation of a simple group G such that
char k is not special for G, V99 =0, and dimV > b(G), then (2.1) holds for all
noncentral = € g with z!?! € {0, x}.

3. CONSTRUCTING REPRESENTATIONS IN MAGMA

In order to prove Theorem A, the results of part I reduce us to considering
a finite list of irreducible representations, each of which we will consider. Some
of these will be dealt with by invoking calculations done on a personal computer
using Magma | ], which we now explain. (Code and output are available at
github.com/skipgaribaldi/genfree-code.)
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The Magma instructions
R :
g :

create a Lie algebra g of the split reductive group over the finite field F, with root
datum R of type Ty (by default simply connected). For a given highest weight \,

IrreducibleRootDatum (7, 4);
LieAlgebra(R, GF(g));

HighestWeightRepresentation(g, \);

gives a homomorphism p from g to matrices, and one can identify the space of row
vectors v where the action by g is v — vp(z) for x € g with the representation
HP(\) of G in the notation of [J]; it is induced from the 1-dimensional represen-
tation A of the Borel subgroup. The vector (1,0,...,0), the first basis vector in
the Magma ordering, is a highest weight vector and it generates a submodule V'
that is irreducible with highest weight A. (Untrusting readers can verify that the
submodule generated by this vector has the same dimension as the irreducible rep-
resentation with the same highest weight as recorded in the literature, and therefore
the submodule is the desired irreducible representation.)

For any row vector v, it is then a matter of linear algebra to compute the sta-
bilizer g,, i.e., the subspace of x € g such that vp(z) = 0. It is determined by
Kernel (VerticalJoin([vp(y) : y in Basis(g)1)).

To verify that a particular V' is virtually free, we use Random(V) to generate
random vectors v € V. For each, we compute dim g,,. By upper semicontinuity of
dimension, dim g, is at least as big as dim g,, for w generic in V. Therefore, if we
find any v € V with dim g, = dimker dp, we have verified that the representation
is virtually free.

Remark. Suppose q: G — Gis a central isogeny; note that the differential dg: g — g
need not be surjective, i.e., ker ¢ need not be étale. Nonetheless, if g acts virtually
freely on V, then so does g. Therefore, in the computer calculations described
above we work with g, the Lie algebra of the group G that acts faithfully on
V. In Magma, this can be done by invoking the optional argument Isogeny for
IrreducibleRootDatum.

(If we instead assume that g acts virtually freely on V| it may occur that g does
not. For example, that is the case when chark = 2 and (a) G= SL4, G = PGLy,
and V has highest weight wy + 2w3 as in Example 10.4 or (b) G= Spg, G = PSpg,
and V is the 16-dimensional irreducible “spin” representation as in [ , §8].)

4. EXAMPLES WHERE g DOES NOT ACT VIRTUALLY FREELY

Lemma 4.1. Let V' be a representation of a reductive algebraic group G, and
suppose that Cartan subalgebras in g are mazimal toral subalgebras'. If there is a
v €V such that

(1) b:=g, is a toral subalgebra;

(2) dimj4(h) =rank G; and

(3) dimG —rank G = dimV — dim V9,
then there is an open subset U of V' containing v such that g, is a G-conjugate of
b for every u € U and there is a maximal torus T such that G, is G-conjugate to
a closed sub-group-scheme of Ng(T) for every u € U.

IThis condition is equivalent to condition (2) in Lemma 7.1 by [ , XIIL.6.1d].
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Proof. Because G is reductive and § is toral, there exists a maximal torus 7T in G
whose Lie algebra t contains b, see [H, Th. 13.3, Rmk. 13.4]. Since 34(h) contains
t, the two are equal. In particular, T' normalizes VY. Moreover, any element of G
that normalizes b also normalizes 3(h) = ¢, so Ng(h) C Ng(t) = Ng(T') (where the
latter equality is by the hypothesis on g | , XIIL.6.1b]) and Ng(h)° =T.

Put U for the set of v/ € VY such that dim g, is minimal; it is open in VY. On
the one hand, h C g,, and on the other hand, v € VY, so dim g,» < dim b, whence
gy = b for all v/ € U and v is in U. It follows that, if g € G(k) satisfies gv’ = v,
then g normalizes b.

Define ¢ : G x V9 — V by 9¥(g,w) = gw. By the preceding paragraph, for
generic w € VY, ¢~ (w) = {(g,97 w) | g € Ng(h)}. That is,

dimimv = dim G + dim VY — dim Ng(b),

which is dim V' by (3). Thus ¢ is dominant and there is an open subset U of V'
consisting of elements whose stabilizer in g is conjugate to b. (I

In the language of | , §2.8], the proof shows that V" is a “relative section”
for the action of G on V.

The hypotheses of Lemma 4.1 are easy to verify with a computer. For example,
to check that g, is toral, one checks that it is abelian (Magma’s IsAbelian) and
that a basis consists of semisimple elements (by checking, for each basis vector z,

that x belongs to the subspace spanned by 2P’ for i >1).

Example 4.2 (Cy, 0100, p = 3). Consider now G = Spg over a field k of charac-
teristic 3. (See Prop. 8.3(3) for the case chark # 2,3.) It has a unique irreducible

representation V with dim V' =40 | ], which occurs as a quotient of the Weyl
module of dimension 48 contained in A3(k®) (with &% as the other composition fac-
tor), compare [PrS] or Proposition 8.3. Using Magma, one can construct V (say,

with &k = F3) as in the preceding section and verify that for a random v € V, in the
notation of Lemma 4.1, dimh = 2 and dim VY = 8. It follows that g does not act
virtually freely on V. On the other hand, G, (k) = 1 for generic v € V by | ], so
this is an example of a representation where the scheme-theoretic generic stabilizer
G, is a nontrivial and infinitesimal group scheme.

Lemma 4.1 shows also that the second representation in the right column of
Table 1 is not virtually free, see Example 5.2.

5. REPRESENTATIONS DEFINED OVER A LOCALIZATION OF THE INTEGERS

Recall that G is defined over an algebraically closed field k of characteristic p,
and in particular is split. Let now R be a subring of Q with homomophisms to I,
and to a field K containing a primitive p-th root of unity ¢ (e.g., take R = Z and
K = C). There exists a smooth affine group scheme Gr over R which is split and
such that G X k is isomorphic to G.

Lemma 5.1. Let p: Gg — GL(V) be a homomorphism of group schemes over R
for some free R-module V.. Then the following are equivalent:

(1) dimz€ + dim(V3)* < dim V' for all noncentral x € g such that P! = z.
(2) dimg®* 4 dim(Vk)? < dimV for all noncentral g € Gr(K) such that
gP =1.
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Here and below we use the shorthand X for Xi x F, where Xg is an R-scheme
and there is an implicit homomorphism R — F'.

Proof. This is essentially §3.4 in | |, which we reproduce here for the convenience
of the reader. Pick a split maximal torus Tg in Gg and a basis 7,...,7, of the
lattice of cocharacters G,, — Tgr. Identifying the Lie algebra of G,, with k, the
elements h; := dr;(1) make up a basis of the Lie algebra t of T x F,, such that

hg-p I = hj. This gives a bijection of toral elements in t with elements of order p in

Tk via
P chhj — HTj(Ccf) for ¢; € IFp.
There is a basis x1,...,xe¢ of the lattice of characters T — G,, such that
XioTj: Gy, = Gy is the identity for ¢ = j and trivial for ¢ # j, hence dx;(h;) = d;;
for all ¢, j. Writing a character x as > d;x; for d; € Z, we find

XS ehe)) =TT, ¢k = (Xt = (e
for ¢; € Fp,. That is, for toral = € t, dx(xz) = 0 in F,, if and only if x(¢(z)) = 1.
Decomposing V' as a sum of weight spaces relative to Tr (using that R is an integral
domain), we find that dim(V4)® = dim(Vg)¥®).

The centralizer in g of 2 and the centralizer in Gk of ¥(z) contain Lie(T}) and
Tk, so their identity components are generated by that and the root subalgebras
or subgroups corresponding to roots vanishing on x or ¥ (x) respectively. As in the
preceding paragraph, we find that the centralizers of x and ¥ (x) have the same

dimension, hence (a) x is central in g if and only if ¢(z) is central in Gx and (b)
dim #% = dim ) (z)“%. The equivalence of (1) and (2) follows. O

We now consider five examples and show, in most cases, that inequality (2.1)
holds. We use Lemma 5.1 to handle the elements with z[”! = z. In the cases
where the characteristic p module is the reduction of a characteristic 0 module, it
suffices to prove the inequality for elements of order p in the group over C. In all
the examples below, this has been confirmed in | , 2.5.10, 2.5.17, 2.5.18, 2.5.24,
2.6.10]. It is also straightforward to use Magma to compute this in all the examples
below as the modules have small dimension. One can also use closure arguments
to reduce to the case of nilpotent elements. Thus, it suffices to consider elements x
with z[P! = 0.

Example 5.2 (Bs, 11). Let G = Spin; 2 Sp, and take V' to be the irreducible
representation of dimension 12 (if char k = 5) or 16 (if chark # 5). It occurs as
a composition factor of the tensor product X of the two fundamental irreducible
representations.

In case chark = 5, we apply Lemma 4.1. One finds dimbh = 1 and dim VY = 4,
so V is not virtually free. We remark that in this case again G, (k) =1, s0 G, is a
nonzero infinitesimal group scheme.

In case char k = 2, we verify that V is generically free for g using Magma as in
§3.

So assume chark # 2,5. As X is self-dual, it is a direct sum of V and X/V,
the natural representation of Sp,. In this case we argue that V is virtually free by
verifying (2.1).

A long root element x has a single Jordan block of size 2 on the natural module
and 2 Jordan blocks of size 2 on the 5-dimensional module. Since chark # 2, x
has partition (32,2%,1%) on X, so dim X* = 11. Since X/V is the 4-dimensional
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symplectic module, dim(X/V)* = 3, so dimV® = 8. As dimz% = 4, (2.1) is
verified.

For any other nilpotent class, the closure of 2 in sp, contains a nilpotent element
with partition (2,2), so dim V* < 6; as dimz“ < 8, the inequality is verified.

Example 5.3 (Bs, 101). Let G = Spin, and take V to be the irreducible rep-
resentation of dimension 40 (if chark = 7) or 48 (if chark # 7). It occurs as a
composition factor of the tensor product X of the natural and spin representations.
In case chark = 2 or 7, we construct the representation in Magma as in §3 and
observe that it is generically free.

So suppose char k # 2,7. Then X is self-dual so it is a direct sum of V and X/V,
the spin representation. As in the preceding example, we argue that V is virtually
free by verifying (2.1). Suppose that x is nilpotent. For x with partition (32%,1)
on the natural representation, dim V? < 22 and dimz® = 14. If z has partition
(7) or (5,12), then dim 2% < 18 and dim V* < 22 (by specialization). A long root
element = (partition (22,1%)), has dimz% = 8 and dim V* = 34. The remaining
possibilities for  have partition (3,22) or (3,1%), which have dimz% = 12 or 10
and by specialization dim V* < 34.

Example 5.4 (D4, 1001). Consider the representation V' of G = Sping /us with
highest weight 1001. In case chark = 2, dimV = 48 and we verify with Magma
that V is generically free for g.

So suppose chark # 2, in which case dim V' = 56. Writing V; with ¢ = 1,2,3
for the three inequivalent irreducible 8-dimensional representations, we find X :=
VioVa=2VaeVs.

Suppose that z is nonzero nilpotent with dimz® < 22. Certainly dimV?* <
dim VY for a root element y. Such a y has two Jordan blocks of size 2 on the
Vi’s, and so y acts on X with partition (3%,216,120). Thus dim X¥ = 40 and
dim V¥ = dim XY — dim V/ = 34, and the inequality is verified for z.

We now divide into cases based on the partition of x on one of the V;’s. If x
only has Jordan blocks of size at most 3, then dim z¢ < 21 and we are done by the
previous paragraph.

If x has two Jordan blocks of size 4, then dim V* < 16. If = has a Jordan block
of size > 5, then dimV® < 20. In either case, as dimz® < 24, the inequality is
verified. In summary, V' is generically free for g.

Example 5.5 (Ds, 20000, char k # 2). Consider the representation V of G = SO1¢
with highest weight 20000 of dimension 126 over a field k of characteristic different
from 2. For one of the half-spin representations X, the second symmetric power
S% X is a direct sum of V and the natural 10-dimensional module.

A root element z € g has a 12-dimensional fixed space on X and so has 4
nontrivial Jordan blocks. On S% X, it has a fixed space of dimension 84 hence
dim V* = 76. Therefore, for every nonzero nilpotent = € g, we have dim V* < 76
and of course dimz® < dimG — rank G = 40, verifying the inequality, so V is
generically free for g.

Example 5.6 (C5, 10000, char k # 2). Let now V be the irreducible representation
of G = Sp;, with highest weight 10000. In case chark = 3, dimV = 122 and
one checks using Magma that a generic vector has trivial stabilizer. So assume
char k > 3, in which case dim V' = 132.
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As above it is enough to verify the inequality for nilpotent elements of sp.
Restricting to the Levi subgroup Spg, the representation decomposes as a direct
sum of irreducibles X ®Y @Y where dim X = 48 and dim Y = 42. Since char k > 3,
X is a submodule of Ak® with quotient £8. The restriction of Y to the Levi Spg
in Spg is a direct sum of irreducibles Y/ @ Y’ @ Y where dimY’ = dimY"” = 14,
Y’ is a submodule of A3k® with quotient k® and Y is a submodule of A2kS with
quotient k. Using these decompositions, we find that a long root = € spg C sp;( has
dim V* = 90 and nilpotent y € spg C sp;o with partition (4,16) has dim V¥ = 19.
In view of the fomer, it suffices to consider nilpotent z € g such that dim Cg;,, (2) <
13. Such a z has a Jordan block of size at least 4 and so specializes to y. Then
dim z5P10 4+ dim V* < 50 + 19, verifying the inequality.

6. EXAMPLE: SYMMETRIC SQUARES AND WEDGE SQUARES

Recall that k is assumed algebraically closed of characteristic p > 0. Put gl,
for the Lie algebra of n-by-n matrices with entries in k. We first note that, for
x € gl,,, Zar, () is the group of units in the associative k-algebra with underlying
vector space g1 (). Therefore, dim 2™ = dim [gl,,, 2] and we have the following
well-known result.

Lemma 6.1. For x € gl,, we have: dim 2% 4 dim 31 (z) = n?. ]

Suppose that x € gl,, = gl(V) is nilpotent. It is well known that dim z%%» and

therefore also dim 34( (), depends only on the Jordan form of z and not on k.

Lemma 6.2. Let x € gl, = gl(V) be nilpotent and assume that p # 2. Then
dim(S? V)* and dim(A2V)® are independent of the characteristic. In particular, if
T € 50, then dim 259" + dim(A%V)? = dim so,,.

Proof. Since char k # 2, as xz-modules we have gl, Z VV* =2 VRV = SPVaAV.
Since the dimension of the fixed space of x can only increase when reducing modulo
a prime (x acting on V is defined over the integers), the first claim follows.

For the second, A2V is the adjoint module for SO,, so the equality holds in
characteristic 0. Since dim(A%V)® depends only on the Jordan form of z and not
on k, and dim 259" also does not (as p # 2), the equality also holds over k. 0

Lemma 6.3. Let x € gl, = gl(V) with = a regular nilpotent element.
(1) The number of Jordan blocks of x on gl(V) and V@V is n.
If furthermore char k # 2, then

(2) the number of Jordan blocks of = on S*V is n/2 if n is even and (n+1)/2
if n is odd; and

(3) the number of Jordan blocks of x on A?V is n/2 if n is even and (n —1)/2
if n is odd.

Proof. As z is nilpotent, V and V* are equivalent k[x]-modules, hence the number
of Jordan blocks on V ® V and gl(V) is the same and is also independent of the
characteristic. By Lemma 6.2, we may assume that k has characteristic 0.

In characteristic 0, we view V as a module under a principal SLy and see that
VeV=Lh-1)®Ln—1)=L2n—-2)®L(2n—4) & --- & L(0), proving (1).
Examining the weights shows that A?V = L(2n—4) & L(2n—8) & - - -, proving (3),
from which (2) follows. O
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Lemma 6.4. Let x € gl, = gl(V') with chark # 2. Assume that x has v Jordan
blocks of odd size. Let s be the number of Jordan blocks of x on S*V and a the
number of Jordan blocks on A’V. Then s —a =r.

Proof. Write V. =V1®---®V,,, where x on V; is a single Jordan block. Then (as an z-
module), 2y = (@¢<jvi & VJ)EB (EB@ s? Vz) and A2V = (@qui ® Vj)@ (@i N2 Vl)
Thus, the difference in the number of Jordan blocks on S2V and A2V is just the
sum of the differences on S?V; and A2V; and the result follows by the previous
lemma. [l

Put A for the highest weight of the natural module of so0,, i.e., A = w|, /2] as
in Table 2. We can now show that so,, acts generically freely on W := L(2)\)
in characteristic not 2 by proving that our standard inequality (2.1) holds. (See
[ , Example 10.7] or | , §3.1] for another proof that the generic stabilizer
is an elementary abelian 2-group as a group scheme.) If char k& does not divide n,
then W is a summand of the natural representation V with a trivial 1-dimensional
complement. If char k divides n, then S?V is a uniserial module with trivial head
and socle and W the unique nontrivial composition factor.

Lemma 6.5. Let g = so,, = s0(V) with n > 5 and chark # 2. Set W = L(2)).
If x € g is nonzero nilpotent or noncentral semisimple, then dimz® + dim W? <
dim W.

Proof. If z is semisimple, by considering weights on V, S*V and A%V, we see
that dim(S? V)* — dim(A%V)® = dim V*, using that chark # 2. Since dimz® +
dim(A2V)* = dim G, we see that

dim 2% 4 dim(S? V)? = dim G + dim V? = dim S* V — (dim V — dim V?),

which is at most dimS?V — 2, because the fixed space of z has codimension at
least 2. Since L(2)\) is a summand of S*V as an z-module and z is trivial on a
complement, the result follows. (Note that if char & divides n, then L(2)) is not a
summand of SV for G.)

If x is nilpotent, we argue similarly using the previous lemma. Note that, by
Lemma 6.2, dim 2% + dim(A%?V)® = dim G. Thus by Lemma 6.4,

dim 2% 4 dim(S? V)® = dim G + 7 = dimS?V — (n —7) < dim S$* V — 2.

Assume char k divides n, for otherwise the result follows. Note that dim W?# <
dim(S? V)® and the result follows unless r = n— 2 and dim W* = dim(S? V)®. The
first condition implies that x has one nontrivial Jordan block which must be of size

3. In this case, a trivial calculation gives dim W? = dim(S? V))* — 2 and the result
follows. .

7. EXAMPLE: VINBERG REPRESENTATIONS

Let G be an algebraic group over a field k and suppose 6 € Aut(G)(k) has finite
order m not divisible by char k. Choosing a primitive m-th root of unity ¢ € k*
gives a Z/m-grading g = ®;cz/m8; where g; = {2z € g | 0(z) = (‘z}. The sub-
scheme G of fixed points is smooth, see, for example, [Co, Exercise 2.4.10]. In this
section we will assume furthermore that G is semisimple simply connected, in which
case G is connected reductive | , A.8.12] and can be described explicitly using
the recipe in [S 68, §8]. Representations (Go, g1) arising in this way are sometimes
called Vinberg representations or -groups.
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Lemma 7.1. Let T be a maximal torus in a simple algebraic group G over a field k.
Then, (1) G = Spy,, for somen > 1 and chark = 2 or (2) for a generic t € Lie(T),
the transporter {xz € Lie(G) | [z,t] € Lie(T)} equals Lie(T).

Proof. Write x as a sum of an element zy € Lie(T") and a generator z,, in the root
subalgebra for each root . Choose t € Lie(T') generic and suppose [z,t] € Lie(T),
ie., da(t)zq = [Tq,t] = 0 for all a. If (1) fails, then an exercise with roots as in
[ , Lemma 2.13] shows that da(t) # 0 for every root a, whence the claim. O

Example 7.2 (m = 2). Suppose 6 € Aut(G)(k) has order 2 and acts on a maximal
torus T via 0(t) = t=! for t € T, so Lie(T) is contained in g;. As chark # 2, the
centralizer in Lie(G) of a generic element in Lie(T) is just Lie(T") which misses
g0, whence gg acts virtually freely on g;. More precisely, as a group scheme, the
stabilizer in G of a generic element of Lie(T) is the 2-torsion subgroup of T. In
this way, if we pick a subgroup H of G, we conclude that h acts generically freely
on g1. We now consider examples where this applies; in each case a generic element

of gy is a regular semisimple element of g, see | , 87 or | , §3.1].
(1): Take G to have type Fg and 6 to be an outer automorphism so that Gy
is the adjoint group PSpg of type Cy, compare, for example, | , 85]. In that

case, go = spg and g1 is the Weyl module with highest weight 1000 (the “spin”
representation). If chark # 3 (and # 2), then the representation gy is irreducible
of dimension 42.

If chark = 3, g1 has head the irreducible representation of dimension 41 and
radical ¥ = 3(g). Let v be a regular semisimple element of Lie(T) C g;. The
stabilizer in go = spg of the image of v in g1 /k transports v into 3(g), and therefore
belongs to Lie(T) Ngo = 0 by Lemma 7.1. In particular, spg acts generically freely
on the irreducible representation g;/k.

(2): Take G to be Eg and € to be such that G has type Ds. In this case, Gy is
a half-spin group Spin;g /u2 and g; is the 128-dimensional half-spin representation.
We conclude that g acts generically freely when char k # 2. (Regardless of char k,
the generic stabilizer in G is (Z/2)* x (u2)* as a group scheme, see | ,
Th. 1.2].)

(3): Take G to be E7 and 6 to be such that Gy = SLg /p4. In this case, g is
the representation A*k8, which is generically free for chark # 2. (We provide a
stronger result in Prop. 8.1(1).)

(4): Take G to be SL,, with 8(g) = g~ ", so Gy = SO,, and g; is the Weyl module
with head L(2)\) as in Lemma 6.5.

The representation AkY of Gy = SLg /u3 arises also in this way when G = Eg

and m = 3, see [VE] for a detailed analysis of the orbits in the case chark = 0. A
generic element of g; is regular semisimple as an element of g as in the references
in Example 7.2 ([ ] produces an explicit regular nilpotent element), and we find

that sly acts generically freely on A3k?. We will provide a stronger result below in
Prop. 8.1(1).

Remark 7.3. The setup above can be generalized to accommodate the case where
char k divides m. Instead of an element § € Aut(G)(k), one picks a homomorphism
of group schemes pi,,, = Aut(G) defined over k. Again one obtains a Z/m-grading
on g and an action of u,, on G such that Gq is smooth. Some statements about
the representation g; of Go from [V] or [L] do not hold in this generality. For
example, the representations from Example 7.2(2) and (3) with char k = 2 and the
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representation A3k? of SLg /u3 with char k = 3, are not virtually free for go. This
can be seen by computationally verifying that Lemma 4.1 applies; in each of these
three cases the stabilizer of a generic vector is a toral subalgebra whose dimension
we list in Table 1. Alternatively, for z € g1, z[? is in 3g0 (), so finding any x with
zPl not in the kernel of the representation (as is done in [ , Prop. 4.8.2, 4.9.2])
suffices to show that the representation is not virtually free.

For the spin representation of Spg, 2 is a special prime so is treated in | ].

8. EXAMPLE: 3RD AND 4TH EXTERIOR POWERS

We now consider the representation A¢(k™) of SL,, and its analogues for SO,, and
Sp,,. Whether or not such representations are virtually free has previously been
considered in | ] and elsewhere. We will check here the stronger condition of
whether or not inequality (2.1) holds for = € sl,,.

Proposition 8.1. For the representation V := A(k™) of SL,, and noncentral x €
sl, with 2! € {0,2}, we have:
(1) If (a) e=3 and n>10; (b)) e=3,n =29, and chark # 2,3; (c) e =4 and
n>9;0r(d)e=4,n=8, andchark # 2, then dim 25 +dim V* < dim V
and Lie(SL,, /pigeae,n)) acts generically freely on V.
(2) If (a) e=3,n=29, and chark = 2,3 or (b) e =4, n =8, and chark = 2,
then dim 25 + dimV?® < dim V.

Proof. Suppose z!P! = 0. The case where 2! = z follows from it by Lemma 4.2 in
part I.

Put ng = 16 if e = 3 and ng = 10 if e = 4. If n > ng, then dimV = (7) >
2.25n2 > b(SL,,), and (2.1) holds by the main result of part I.

So suppose n < ny. We calculate dim 25", which does not depend on char k,
using the well-known formulas from, for example, [LiS, p. 39]. For the other term
n (2.1), dim V*, we view V as a representation of SLs where a nilpotent element
acts as ¢ on V. Arguing as in | , §3.4], we find that if chark > en, then the
Jordan form of x acting on V is the same as in characteristic zero. Therefore, it
suffices to check the inequality over F, for 2 < p < en and for some p larger than
en. This is quickly done via computer. For the convenience of the reader, Table 5
lists the partitions corresponding to nilpotent x for which we have equality in (2).
In case ged(e,n) = 1, this shows that sl,, acts generically freely on A°k™. For each
n < ng with ged(e,n) > 1, we verify that Lie(SLy, /figcd(e,n)) acts generically freely
using Magma. ([

representation chark ‘ partition of z dimz® dimV?®

A3slg 2 (2%,1) 40 44
A3slg 3 109 72 12
(3%) 54 30
Nislg 2 (8) 56 14
(42) 48 22
(24) 32 38

TABLE 5. Complete list of nilpotent elements x from Proposition
8.1(2) where equality holds.
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Trivectors and SO,,. Consider now SO,, with n > 9. The representation A3(k™)
is a fundamental Weyl module and is irreducible if char k # 2, see for example [J,
I1.8.21] and | , Remark 3.4].

Proposition 8.2. For SO, with n > 9 (over any field k) and V := A3(k"),
the inequality (2.1) holds for all nonzero x € so,, with zlPl e {0,2}, and g acts
generically freely on V.

Proof. Under the tautological inclusion SO,, — SL,,, suppose the inequality holds
for « viewed as an element of sl,. Then as dim z5°» < dim 25", the inequality
holds also for x as an element of so,,, completing the proof in case n > 10, or n = 9
and char k # 2,3 (Prop. 8.1).

So suppose n = 9 and chark = 2 or 3. Write y for the image of z in sl, if =
is nilpotent, and for the image of the nilpotent specialization of z as in [ ,
Lemma 4.2] if x is toral. As in the previous paragraph, we are done if the inequality
holds for y, and therefore we may assume that y has partition (2%,1) or (3%) as in
Table 5. In either of these cases, we have dim 2590 + dimV* < 324+ dim V¥ < 76 <
dim V', completing the proof. O

Trivectors and Sp,y,. The natural representation of Sp,, has an invariant alternat-
ing bilinear form b. The subspace V (w;_2) of A2k?* spanned by those v; Ava Avz with
b(vi,v;) = 0 for all 4, j is a submodule of dimension (235) — 2¢; it is the Weyl module
with highest weight wy_o, see | , §1]. Tt is irreducible, i.e., V(wp—2) = L(we—2),
if and only if £ — 1 is nonzero in k; otherwise V (wy_2) has socle the natural module
k% and head L(wg_o) [PrS, Th. 2(i)].

Proposition 8.3. Continue the notation of the preceding paragraph and suppose
that p := chark > 2. If

(1) £>7 ort=5; or

(2) £=6 andp #5; or

(3) £=4 and p # 3,
then for V := V(wy—2) or L(wi—2), inequality (2.1) holds for all nonzero x € spy,
with xP! € {0,x}. In these cases, and also when (£, p) = (6,5), spy, acts generically
freely on V.

In the case ¢ = 4 and char k = 3, spg does not act generically freely on V, see
Example 4.2.

Proof. If £ > 6, then dim V(wy—2) > dim L(we—2) > (%) — 4¢ > b(Spy,), and the
conclusion holds by [ , Th. 12.2]. So suppose £ = 4, 5, or 6. In particular,
¢ —1ismnot zero in k and V = V(wy_2) = L(we—2).

First suppose that 2 € spy, has [Pl = 0. If £ = 5 or 6, we have dim L(w,_2)* <
dim V(wp_2)* < dim(A%k%%)® and one checks that dimzSP2¢ + dim(A%k%)* <
dim L(wy—2)*, which need only be done for small characteristics as in the proof
of Proposition 8.1 and therefore amounts to a computer calculation. If £ =4 (and
chark > 3), then A3k® is a direct sum of V and k%, so dim V*® = dim(A3k8)® —
dim(k®)* and the same computer calculations verify (2.1).

For x toral, we appeal to Lemma 5.1.

Lemma 2.1 gives that sp,y, acts generically freely, except in the case ¢ = 6 and
char k = 5 which we verify using Magma. (I
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9. THEOREM A FOR RESTRICTED HIGHEST WEIGHTS

In this section, we will prove the following by deducing it from what has come
before.

Proposition 9.1. Theorem A holds if chark is not special for G and the highest
weight of p is restricted.

In addition to the case of type A;, many other cases were handled in part I.
Corollary B in ibid. reduces us to considering the following:

(1) G has type Ay for 2 < ¢ < 15;
(2) G has type By or Cp with 2 < ¢ < 11; or
(3) G has type Dy for 4 < ¢ < 11.

Theorem A in ibid. allows us to further assume that dim V' < b(G) for b(G) as in
Table 4. Therefore, V' appears in tables A.6-A.48 in [ ]. (Note that the search
space remains infinite: while there are only finitely many possibilities for G and for
the highest weight of V| we have not exhibited any upper bound on char k.)

If dimV < dim G — dim 3(g), then certainly g cannot act virtually freely on V.
If dimG > dimV > dim G — dim 3(g), then examining the tables shows that V is
the irreducible representation with highest weight the highest root, which is not
virtually free as in [ , Example 3.4]. Therefore we assume for the rest of
this section that dim G < dimV < b(G). We check, for each such V, that g acts
generically freely or that (G, char k, V') appears in Table 1.

Type A. For Ay, we consider 2 < ¢ < 15.

Proposition 8.1 treats the representations A3k‘t! and A*E‘T! of G of type Ay
apart from a few cases. For Ak when chark = 2, sly acts generically freely on
V by | , Prop. 4.8.3], by reasoning as in §7, or as can be checked in Magma,
despite the failure of inequality (2.1). The representations A3k of G = SLg /us3
when char k = 3 or A*k® of G = SLg /p4 when char k = 2 are not virtually free, see
Remark 7.3.

We refer to [Gue, Th. 4.3.2] for the representation of A, (2 < ¢ < 9) with highest
weight 0---03 (and chark > 3 so it is restricted); of As with highest weight 004
and dimension 35; of A3 with highest weight 102 and char k # 5; of Ay with highest
weight 04 and dimension 15; and of A, with highest weight 13 or 22 with char k& = 5.

For the representation of A, (3 < ¢ < 9) with highest weight 0---011 with
char k = 3, we verify using Magma with G' = SLy11 /ftgcd(e+1,3)- (Guerreiro checked
that SLyy; acts virtually freely, see Claim 12 on p. 97 of [Gue].)

We refer to | ] to see that the following are virtually free: the representation
of Ay (¢ =3,4,5) and char k # 3 with highest weight 0---011 (§4.5); the represen-
tation of As with highest weight 12 and dimension 15 when char k # 2 (§4.1); the
representation of Az with highest weight 102 and dimension 32 when chark = 5
(84.2); the representation of A4 with highest weight 0101 and dimension 40 or 45
(§4.6); the representation of A4 with highest weight 0200 and dimension 45 or 50
when chark # 2 (§4.7); the representation of A, with highest weight 0110 and
dimension 51 when chark = 3 (§4.4); and the representation of As with highest
weight 01001 and dimension 78 when char k = 5 (§4.6).

The representation of Az with highest weight 020 and char k # 2 is virtually free
by Lemma 6.5.
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Types B and D. For G of type Dy with 4 < ¢ < 11 or By with 2 < ¢ < 11 and
char k # 2, the representation with highest weight 0---02 is handled by Lemma
6.5.

The (half) spin representations of By for 7 < ¢ < 11 and Dy for ¢ = 9,10,11
(for G = Spin,, for n = 15, 17, 18, 19, 21, 22, 23 and G = Spin,, /2 when n = 20)
are generically free. For G = Spin, /2, the half-spin representation has generic
stabilizer (Z/2)* x p3 as a group scheme, so it is a generically free representation
of g when char k # 2 and is not generically free when char k = 2. For these results,
see [ ].

The representation A3(k™) of SO,, with n =9,...,13 (i.e., By, Bs, Bs, D5, Ds)
with chark # 2 is generically free for so,, by Proposition 8.2. When chark = 2
(and G has type D), A*(k™) is reducible with irreducible quotient L(w= ). For
SOq9, we verify with Magma that L(ws) is generically free. For n = 12,14,...,
dim L(wz —2) > b(SO,,).

The representations of By with highest weight 11 and Bz with highest weight
101 are handled in Examples 5.2 and 5.3.

The representation of Bs (s07) with highest weight 200 and dimension 35 when
char k # 2 appears as a summand in S? X for X the (8-dimensional) spin represen-
tation; we have S> X = V @ k. The action on V factors through the action of sog as
in Lemma 6.5, whence we have the inequality for V. Similarly the representation
of sog with highest weight 2000 and dimension 126 is generically free because it
factors through the generically free representation of D5 as in Example 5.5.

We refer to [Gue, Th. 4.3.3] for the representations of By (sping) with highest
weight 1001 and dimension 112 or 128; of B3 with highest weight 011 and dimension
63 and char k = 3; of B3 with highest weight 110 and dimension 64 and char k = 5;
and of By with highest weights 30, 12, 03, or 21.

The representation of D, with highest weight 1001 has dimension greater than
dim D, and is generically free as in Example 5.4.

For the representation of D5 with highest weight 10001 of dimension 144 with
chark # 2,5, | , Th. 4.3.5] proves it is generically free. If chark = 2, that
representation has dimension 144 > b(G) and the inequality holds. If chark = 5,
one checks with Magma that a random vector has zero-dimensional stabilizer.

The representation of D5 with highest weight 20000 of dimension 126 is generi-
cally free by Example 5.5.

Type C. Type C is similar to types B and D. We consider 3 < ¢ < 11. Excluding
those V' with dim V' > b(G) reduces us further to 3 < ¢ < 6.

The only case for which we refer to [Gue] is type C3 with highest weight 011 of
dimension 50 with char k = 3 (Th. 4.3.4), which can also be checked using Magma.
The representation of C5 with highest weight 10000 is generically free by Example
5.6.

We use Magma to verify that a random vector has trivial stabilizer when char k =
3 for Cs with highest weight 01000 and dimension 121.

The representation V' of C4y with highest weight 1000 was treated in Example
7.2(1). It has dimV > dim Cy and V is generically free.

The representation of Sp,, with highest weight 00---0100 with ¢ = 4,5,6 is
generically free by Proposition 8.3, except for Cj in characteristic 3, see Example
4.2.

This completes the proof of Proposition 9.1. (]
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10. THEOREM A FOR SOME TENSOR DECOMPOSABLE REPRESENTATIONS

Next we treat a family of irreducible but tensor decomposable representations.
Implicitly, we fix a pinning of G, which includes a choice of maximal torus T’; the
lattice T* of characters T — G,, is contained in the weight lattice P (and T is
identified with P when G is simply connected). In this section we will prove:

Proposition 10.1. Theorem A holds if char k is not special and the highest weight
A of p satisfies A = A\g + pA1 where p = chark # 0, A\g and Ay belong to T*, and \g
is restricted.

Lemma 10.2. Let G' be a semisimple algebraic group. For every representation W
of G, g acts virtually freely on W @ WPI' and W @ (W*)PI' for all i > 0.

Proof. Put V:= W @ WP or W @ (W*)PI",

Suppose first that G = SL,, and W is the natural module. The representation
of sl, on V is equivalent to a direct sum of dim W copies of the natural module,
i.e., is equivalent to sl, acting on n-by-n matrices by left multiplication. A generic
matrix v is invertible, so the generic stabilizer (sl,), is zero. (We remark that the
group SL,, has finitely many orbits on P(V) | , Lemma 2.6].)

Otherwise, the representation G — GL(V') factors through SL(W) — GL(V),
because G is semisimple, and the previous paragraph shows that s[(W) acts virtu-
ally freely. O

Note that, in the lemma, the inequality (2.1) need not hold. Specifically, a root
element x € sl, has dim25"» = 2(n — 1) and kernel of dimension n — 1 on the
natural module, so we find dim 25 + dimV?® = dimV +n — 2 for V a sum of n
copies of the natural module.

Example 10.3. Consider now SO,, for n > 3 and suppose that chark # 2 or n
is even. Take V. to be a direct sum of ¢ copies of the natural module V; for some
1 < ¢ <n. Let v € V. be generic. In particular, the SO,-invariant quadratic
form ¢ is nonzero on each component of v, and the ¢ components of v generate a
c-dimensional subspace U of Vi on which the bilinearization of ¢ is nondegenerate
if char k # 2 or ¢ is even, or has a 1-dimensional radical on which ¢ does not vanish
if char k = 2 and ¢ is odd.

Therefore, if c = n—1, an element of s0,, that annihilates U is zero on V1, i.e., s0,,
acts generically freely on V,,_;. If ¢ = n—2, then an element of so0,, that annihilates
U belongs to so(U+) for U+ the 2-dimensional subspace of V; orthogonal to U with
respect to the bilinear form, i.e., the stabilizer of a generic v € V,,_5 is a rank 1

toral subalgebra of so,. (In case chark = 0, Table 2 of [[)] summarizes this and
many similar examples. See also | ] for more general arguments in a similar
vein.)

Finer results can be proved. For example, suppose chark = 2 and n > 8 is
even. We have already observed that so,, acts generically freely on V,,_1, but more
is true: the inequality (2.1) holds for noncentral x € go,, such that z?l € {0,z}.
If z[2 = 0, then, as a linear transformation on V;, x has even rank r < n and
dim 5°" < r(n — ) as noted in Example 10.5 in part I, so

dimV? | +dim25°" < (n —r)(n — 14 7).
This is less than dim V,,_; since r > 2. In case z[?
by arguing as in the proof of | , Cor. 10.6].

= z, the inequality is verified
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Example 10.4 (A3). Suppose G has type As, p := chark # 0, and consider
the irreducible representation V' with highest weight A\ = ws + p®w; for e > 1;
we take G to be the member of the isogeny class that acts faithfully on V. The
composition SLy — G — GL(V) is, as a representation of SLy, L(w1)P!" ® L(wy) =
(EMP)" @ A%(k*). As a representation of the Lie algebra sly, V' is a sum of 4 copies
of A2(k%).

If p is odd, then G is SL4. The differential of the isogeny SLs — SL4 /e = SOg
identifies sl4 with sog, and the action of sog on a sum of 4 copies of its natural
represention is not generically free by Example 10.3, so V' is not generically free for
5[4.

If p=2and e > 2, then G is SOg, and the same argument shows that V' is
not generically free for sog. Nonetheless, sly does act virtually freely. This can be
seen by noting that semisimple elements of sog have eigenvalues that come in pairs
(say, A1, A2, Az each occurring twice), the image of sly in s0g only contains those
with A1 + A2 + A3 = 0 (because the sum on the left side is SL4-invariant [ ,
Example 8.5] and the image of sl is the unique codimension-1 SL4-submodule of
506), and the elements of the generic stabilizer sos in s0g have two of A1, Aa, A3
equal to zero. Alternatively, Magma verifies that sl; acts virtually freely.

Finally, if p = 2 and e = 1, then G = PGLy and we claim that pgl, acts
generically freely on V. Write down the map pgl, — gl(V) explicitly as follows.
Fixing a pinning for SL4 and bases for k* and A?k?* consisting of weight vectors, we
can write down the image in gl(V') of the generator of each of the root subalgebras
of sly. Now, the image of sly in pgl, has codimension 1, corresponding to the
statement that the weight lattice for A3 is generated by the root lattice and the
fundamental weight w1, so pgl, is generated by the image of sl and a semisimple
element h corresponding to w; in the sense that hvs = (§,w;)vs for every weight
vector vs of weight 0 in every representation of PGLy; this describes the image of
h in gl(V'). From this, Magma verifies that pgl, acts generically freely on V.

Proof of Proposition 10.1. By hypothesis, V 2 L(\o)® L(\)P! [, 1.3.16] and A\ #
0 (Lemma 1.1(1)). If A; = 0 then X is restricted and we are done by Proposition
9.1, so assume that A\; # 0. By Lemma 1.1(2), dim V' > dim G} our task is to show
that V' is generically free if and only if (G, char k, V') does not appear in Table 1.

As g acts trivially on L()\l)[p], the representation V of g is the same as a sum
of dim L(A1) copies of L(Ag). Let m(G) be the dimension of the smallest nonzero
irreducible representation of G with restricted highest weight as in Table 3. If
dim L(Ag) > b(G)/m(G) for b(G) as in Table 4, then dimV > b(G) and g acts
virtually freely on V by part I. In particular, if m(G)? > b(G) — as is true for G
exceptional — we are done.

If dim L(Ag) = m(G), then V (considered as a g-module) contains L(Ag) ®
L(X\o)P! as a summand, and we are done by Lemma 10.2. Therefore, it remains to
inspect (@ L(\g) for those nonzero restricted dominant weights \g with

(10.5) m(G) < dim L(Ag) < b(G)/m(G).
We proceed case by case, where the possibilities for Ay are enumerated in | ].

We find very few possibilities, reflecting the fact that the bounds in (10.5) both
grow linearly in the rank of G.

Type B. For G of type By with £ > 3, the constraint (10.5) reduces us to consider
the case where G has type Bs and L()\g) is the 8-dimensional spin representation.
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Then L(Ao) factors through Sping as a vector representation, and we apply Example
10.3 to see that the generic stabilizer in sog is trivial and therefore the same is true
for spin,.

Type C. For G of type Cp with £ > 2, the dimension bounds reduce us to considering
Cy where L(\o) is the 5-dimensional fundamental irreducible representation, i.e.,
g = sp, = s05 acting on a sum of four copies of the 5-dimensional module. This
action is generically free by Example 10.3.

Type D. For G of type Dy with ¢ > 4, the unique dominant weight Ay that must be
considered is for type D5 with chark # 2 and L(\) a half-spin representation, so
G = Spin,, and we may take V = ®°L()\g). We verify inequality (2.1) for nonzero
r € g with 2P € {0,z}.

Consider first a a nilpotent element y in the Levi of type gls with two Jordan
blocks of size 5 in the natural representation of s015. On the half-spin module, sl5
has three composition factors: one trivial submodule, the natural representation k°
(or its dual), and A%(k°)* (or its dual). As y has 1, 1, and 2 Jordan blocks on these
representations (see Lemma 6.3(3)), we find that dim L(\g)¥ < 4.

Now dim L(X\o)* < 12 by | , Prop. 2.1(i)] and (2.1) holds unless dim 2% =
40 and z is regular. Thus, it suffices to show that dim L(Ag)* < 12 for = regular.
By passing to closures it suffices to take x regular nilpotent. Since the element y
in the preceding paragraph is in the closure of %, we have dim L()\g)® < 4, hence
V' is generically free for g.

Type A. For type Ay with ¢ > 2, the dimension bounds (10.5) reduce us to the
following cases:

(1) Ay, where chark # 2 and L()\) = S*(k®);
(ii) Az, where L(\g) = A2(k*); and
(iii) A4, where chark # 2 and L(\g) = A2(k®).

Case (ii) can be viewed as sog acting on four copies of its natural representation,
which is handled in Example 10.3.

For cases (i) and (iii), G = SLg41. We verify inequality (2.1) for nonzero x € g
with [Pl = 0. This will verify it also for noncentral toral = € g [ , Lemma
4.2], whence g acts generically freely on V.

Consider case (iii). For x € sl5 a root element, i.e., nilpotent with partition
(2,1%), we have dimz® = 8 and dim L(\¢)* = 7, and 8 + 5 -7 = 43 < 50. For
x nilpotent with partition (22,1), we have dim 2% = 12 and dim L(\¢)* = 6, and
124+ 5-6 =42 < 50.

For x nilpotent with partition (3,12), we have dim L()\g)® = 4 and dim 2% <
dim G — rank G’ = 20. Consequently, for every nilpotent y € sl5 such that z € y&,
we have:

dimy% + dim V¥ < (dim G — rank G) + m(G) - dim L(A\g)® < dim V.

Thus we have verified the inequality (2.1) for every nonzero nilpotent in sls.
Finally consider case (i). There are two classes of nilpotent elements. If z is a root

element, then dim L()\g)® = 3 and dim 2% = 4. If z is regular, then dim L()\)® = 2

and dim 2% = 6. In both cases, the inequality (2.1) holds. a
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11. CONCLUSION OF PROOF OF THEOREM A

We now complete the proof of Theorem A, assuming char k is not special. Write
the highest weight A of V' as A = A\g 4+ pA; for Ag, A1 dominant weights (not neces-
sarily in 7%*) and A¢ restricted.

Put 7: G — G for the simply connected cover. If G is itself simply connected,
then we are done by Proposition 10.1. Thus we are also done if d is surjective (i.e.,
if ker dm = 0), and we may assume that the finite group scheme ker 7 is not smooth
and has exponent divisible by p, reducing us to the following cases: G = SL,, /um,
where p | m (and n > 3), G has type D, and p = 2, G is adjoint of type Eg and
p =3, or G is adjoint of type F7 and p = 2.

Suppose that \g = 0. The composition dpdr is the representation L()\l)[”] of
é, whence g acts trivially on V', so V is not faithful.

On the other hand, the case where A\; = 0 is done by Prop. 9.1, so we may
assume that A\p and A\ are both nonzero.

Now X vanishes on ker w (because A € T*) and pA; vanishes on the p-torsion
in kerm, so it follows that Ag vanishes on the p-torsion in kerw. Put m,(G) for
the minimum of dim L(u) as p ranges over nonzero restricted dominant weights
such that ker  has exponent divisible by p; the value of m,(G) is listed in Table

6. The pullback p7 of p is the representation L(Xo) ® L(A)P of G, so dimV >
my(G) m(G).

type G D my(G)  m(G)

Ay (odd € > 3) 2 a9 e+1
Ar(0>2) oddp|l+1 ({+1)2-2 (+1
Dy (¢ >4) 2 20 20
Eg 3 7 27

E; 2 132 56

TABLE 6. Value of m,(G) for various p and G.

In particular, if m,(G) m(G) is greater than b(G), we are done by the main result
of part I. This handles the cases where G has type Eg or E7, or type Ay when p is
odd.

Lemma 11.1. Consider representations V and W of a Lie algebra L. For nilpotent
z € L, dim(V @ W)* < (dim V*)(dim W).

Proof. Put ¢: L — gl(V') and ¢: L — gl(W) for the two actions. For each t € k,
t( is a representation of the Lie algebra kx; since x is nilpotent the ones with
t # 0 are all equivalent. Therefore, writing U; for the representation ¥ ® (t{) — so
Uy = V®W — the dimension of (U;)* is constant for ¢ # 0. Now Up is a direct sum
of dim W copies of (V,4), so dim(Up)® = (dim V*)(dim W). On the other hand,
by upper semicontinuity of dimension, dim(Up)* > dim(Uy)” for ¢ # 0. O

Type Dy. Suppose now that G has type D, and char k = 2, in which case m,(G)m(G) =
4¢% = b(G) and we are done unless dim L(\g) = dim L()\;) = 2/ as representations
of G. ~

If £ > 4, the only restricted irreducible representation of G with restricted highest
weight and of dimension 2/ is the vector representation Sping, — SOsq, with highest
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weight wy or a Frobenius twist of it, hence A is an odd multiple of wy. In particular,
wp € T*, 80 Ag, A1 € T* and we are done by Proposition 10.1.

For ¢ = 4, the representations L(w;) with i = 1,3, 4 of Sping all have dimension 8,
and up to graph automorphism we are left with considering the case A = 2w + wy
for some e > 1. Thus we may view G as SOg, and the pullback to Sping of V'
is the natural representation &% of SOg (with highest weight w,) tensored with a
Frobenius twist of a half-spin representation; as a representation of SOg we find
]CS X L(2€w1).

Arguing as in Example 10.3, a square-zero x € s0g has even rank r < 4,
dim 259 < r(8 — 7) and dim(k®)* = 8 — r, so dim(k® ® L(2°w;))* < 8(8 — 1)
(Lemma 11.1) and dim 259" + dimV?* < 64 — r? < dim V, verifying (2.1). From
this, we deduce (2.1) also for noncentral toral = € sog as in Example 10.3 and it
follows that sog acts generically freely on V.

Type A;. Suppose now that G = SL,, /p,, with chark = 2, so m is even and n > 4.
As m,(G) = dim L(ws) = (}), we have
1
m,(G)m(G) — b(G) = 3 (n® —5n® +4).

which is positive for n > 5. So suppose further that n = 4, in which case b(G) = 30
and Table A.7 in | | says that the smallest nontrivial restricted irreducible
representations of SLy have dimension 4 (the natural representation k* or its dual)
or 6 (A2k® with highest weight ws), so \g = wa. As SL4 does not act faithfully, up
to graph automorphism A = 2°w; + ws for some e > 1. These representations were
handled in Example 10.4. This completes the proof of Theorem A when char k is
not special. (I

The proof of Theorem A in the remaining cases, when chark is special, will
appear in part III, | ].
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